1//===- llvm/CodeGen/MachineFunction.h ---------------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Collect native machine code for a function.  This class contains a list of
11// MachineBasicBlock instances that make up the current compiled function.
12//
13// This class also contains pointers to various classes which hold
14// target-specific information about the generated code.
15//
16//===----------------------------------------------------------------------===//
17
18#ifndef LLVM_CODEGEN_MACHINEFUNCTION_H
19#define LLVM_CODEGEN_MACHINEFUNCTION_H
20
21#include "llvm/ADT/ArrayRef.h"
22#include "llvm/ADT/BitVector.h"
23#include "llvm/ADT/DenseMap.h"
24#include "llvm/ADT/GraphTraits.h"
25#include "llvm/ADT/Optional.h"
26#include "llvm/ADT/SmallVector.h"
27#include "llvm/ADT/StringRef.h"
28#include "llvm/ADT/ilist.h"
29#include "llvm/ADT/iterator.h"
30#include "llvm/Analysis/EHPersonalities.h"
31#include "llvm/CodeGen/MachineBasicBlock.h"
32#include "llvm/CodeGen/MachineInstr.h"
33#include "llvm/CodeGen/MachineMemOperand.h"
34#include "llvm/IR/DebugLoc.h"
35#include "llvm/IR/Instructions.h"
36#include "llvm/IR/Metadata.h"
37#include "llvm/MC/MCDwarf.h"
38#include "llvm/MC/MCSymbol.h"
39#include "llvm/Support/Allocator.h"
40#include "llvm/Support/ArrayRecycler.h"
41#include "llvm/Support/AtomicOrdering.h"
42#include "llvm/Support/Compiler.h"
43#include "llvm/Support/ErrorHandling.h"
44#include "llvm/Support/Recycler.h"
45#include <cassert>
46#include <cstdint>
47#include <memory>
48#include <utility>
49#include <vector>
50
51namespace llvm {
52
53class BasicBlock;
54class BlockAddress;
55class DataLayout;
56class DIExpression;
57class DILocalVariable;
58class DILocation;
59class Function;
60class GlobalValue;
61class MachineConstantPool;
62class MachineFrameInfo;
63class MachineFunction;
64class MachineJumpTableInfo;
65class MachineModuleInfo;
66class MachineRegisterInfo;
67class MCContext;
68class MCInstrDesc;
69class Pass;
70class PseudoSourceValueManager;
71class raw_ostream;
72class SlotIndexes;
73class TargetMachine;
74class TargetRegisterClass;
75class TargetSubtargetInfo;
76struct WinEHFuncInfo;
77
78template <> struct ilist_alloc_traits<MachineBasicBlock> {
79  void deleteNode(MachineBasicBlock *MBB);
80};
81
82template <> struct ilist_callback_traits<MachineBasicBlock> {
83  void addNodeToList(MachineBasicBlock* MBB);
84  void removeNodeFromList(MachineBasicBlock* MBB);
85
86  template <class Iterator>
87  void transferNodesFromList(ilist_callback_traits &OldList, Iterator, Iterator) {
88    llvm_unreachable("Never transfer between lists");
89  }
90};
91
92/// MachineFunctionInfo - This class can be derived from and used by targets to
93/// hold private target-specific information for each MachineFunction.  Objects
94/// of type are accessed/created with MF::getInfo and destroyed when the
95/// MachineFunction is destroyed.
96struct MachineFunctionInfo {
97  virtual ~MachineFunctionInfo();
98
99  /// \brief Factory function: default behavior is to call new using the
100  /// supplied allocator.
101  ///
102  /// This function can be overridden in a derive class.
103  template<typename Ty>
104  static Ty *create(BumpPtrAllocator &Allocator, MachineFunction &MF) {
105    return new (Allocator.Allocate<Ty>()) Ty(MF);
106  }
107};
108
109/// Properties which a MachineFunction may have at a given point in time.
110/// Each of these has checking code in the MachineVerifier, and passes can
111/// require that a property be set.
112class MachineFunctionProperties {
113  // Possible TODO: Allow targets to extend this (perhaps by allowing the
114  // constructor to specify the size of the bit vector)
115  // Possible TODO: Allow requiring the negative (e.g. VRegsAllocated could be
116  // stated as the negative of "has vregs"
117
118public:
119  // The properties are stated in "positive" form; i.e. a pass could require
120  // that the property hold, but not that it does not hold.
121
122  // Property descriptions:
123  // IsSSA: True when the machine function is in SSA form and virtual registers
124  //  have a single def.
125  // NoPHIs: The machine function does not contain any PHI instruction.
126  // TracksLiveness: True when tracking register liveness accurately.
127  //  While this property is set, register liveness information in basic block
128  //  live-in lists and machine instruction operands (e.g. kill flags, implicit
129  //  defs) is accurate. This means it can be used to change the code in ways
130  //  that affect the values in registers, for example by the register
131  //  scavenger.
132  //  When this property is clear, liveness is no longer reliable.
133  // NoVRegs: The machine function does not use any virtual registers.
134  // Legalized: In GlobalISel: the MachineLegalizer ran and all pre-isel generic
135  //  instructions have been legalized; i.e., all instructions are now one of:
136  //   - generic and always legal (e.g., COPY)
137  //   - target-specific
138  //   - legal pre-isel generic instructions.
139  // RegBankSelected: In GlobalISel: the RegBankSelect pass ran and all generic
140  //  virtual registers have been assigned to a register bank.
141  // Selected: In GlobalISel: the InstructionSelect pass ran and all pre-isel
142  //  generic instructions have been eliminated; i.e., all instructions are now
143  //  target-specific or non-pre-isel generic instructions (e.g., COPY).
144  //  Since only pre-isel generic instructions can have generic virtual register
145  //  operands, this also means that all generic virtual registers have been
146  //  constrained to virtual registers (assigned to register classes) and that
147  //  all sizes attached to them have been eliminated.
148  enum class Property : unsigned {
149    IsSSA,
150    NoPHIs,
151    TracksLiveness,
152    NoVRegs,
153    FailedISel,
154    Legalized,
155    RegBankSelected,
156    Selected,
157    LastProperty = Selected,
158  };
159
160  bool hasProperty(Property P) const {
161    return Properties[static_cast<unsigned>(P)];
162  }
163
164  MachineFunctionProperties &set(Property P) {
165    Properties.set(static_cast<unsigned>(P));
166    return *this;
167  }
168
169  MachineFunctionProperties &reset(Property P) {
170    Properties.reset(static_cast<unsigned>(P));
171    return *this;
172  }
173
174  /// Reset all the properties.
175  MachineFunctionProperties &reset() {
176    Properties.reset();
177    return *this;
178  }
179
180  MachineFunctionProperties &set(const MachineFunctionProperties &MFP) {
181    Properties |= MFP.Properties;
182    return *this;
183  }
184
185  MachineFunctionProperties &reset(const MachineFunctionProperties &MFP) {
186    Properties.reset(MFP.Properties);
187    return *this;
188  }
189
190  // Returns true if all properties set in V (i.e. required by a pass) are set
191  // in this.
192  bool verifyRequiredProperties(const MachineFunctionProperties &V) const {
193    return !V.Properties.test(Properties);
194  }
195
196  /// Print the MachineFunctionProperties in human-readable form.
197  void print(raw_ostream &OS) const;
198
199private:
200  BitVector Properties =
201      BitVector(static_cast<unsigned>(Property::LastProperty)+1);
202};
203
204struct SEHHandler {
205  /// Filter or finally function. Null indicates a catch-all.
206  const Function *FilterOrFinally;
207
208  /// Address of block to recover at. Null for a finally handler.
209  const BlockAddress *RecoverBA;
210};
211
212/// This structure is used to retain landing pad info for the current function.
213struct LandingPadInfo {
214  MachineBasicBlock *LandingPadBlock;      // Landing pad block.
215  SmallVector<MCSymbol *, 1> BeginLabels;  // Labels prior to invoke.
216  SmallVector<MCSymbol *, 1> EndLabels;    // Labels after invoke.
217  SmallVector<SEHHandler, 1> SEHHandlers;  // SEH handlers active at this lpad.
218  MCSymbol *LandingPadLabel = nullptr;     // Label at beginning of landing pad.
219  std::vector<int> TypeIds;                // List of type ids (filters negative).
220
221  explicit LandingPadInfo(MachineBasicBlock *MBB)
222      : LandingPadBlock(MBB) {}
223};
224
225class MachineFunction {
226  const Function *Fn;
227  const TargetMachine &Target;
228  const TargetSubtargetInfo *STI;
229  MCContext &Ctx;
230  MachineModuleInfo &MMI;
231
232  // RegInfo - Information about each register in use in the function.
233  MachineRegisterInfo *RegInfo;
234
235  // Used to keep track of target-specific per-machine function information for
236  // the target implementation.
237  MachineFunctionInfo *MFInfo;
238
239  // Keep track of objects allocated on the stack.
240  MachineFrameInfo *FrameInfo;
241
242  // Keep track of constants which are spilled to memory
243  MachineConstantPool *ConstantPool;
244
245  // Keep track of jump tables for switch instructions
246  MachineJumpTableInfo *JumpTableInfo;
247
248  // Keeps track of Windows exception handling related data. This will be null
249  // for functions that aren't using a funclet-based EH personality.
250  WinEHFuncInfo *WinEHInfo = nullptr;
251
252  // Function-level unique numbering for MachineBasicBlocks.  When a
253  // MachineBasicBlock is inserted into a MachineFunction is it automatically
254  // numbered and this vector keeps track of the mapping from ID's to MBB's.
255  std::vector<MachineBasicBlock*> MBBNumbering;
256
257  // Pool-allocate MachineFunction-lifetime and IR objects.
258  BumpPtrAllocator Allocator;
259
260  // Allocation management for instructions in function.
261  Recycler<MachineInstr> InstructionRecycler;
262
263  // Allocation management for operand arrays on instructions.
264  ArrayRecycler<MachineOperand> OperandRecycler;
265
266  // Allocation management for basic blocks in function.
267  Recycler<MachineBasicBlock> BasicBlockRecycler;
268
269  // List of machine basic blocks in function
270  using BasicBlockListType = ilist<MachineBasicBlock>;
271  BasicBlockListType BasicBlocks;
272
273  /// FunctionNumber - This provides a unique ID for each function emitted in
274  /// this translation unit.
275  ///
276  unsigned FunctionNumber;
277
278  /// Alignment - The alignment of the function.
279  unsigned Alignment;
280
281  /// ExposesReturnsTwice - True if the function calls setjmp or related
282  /// functions with attribute "returns twice", but doesn't have
283  /// the attribute itself.
284  /// This is used to limit optimizations which cannot reason
285  /// about the control flow of such functions.
286  bool ExposesReturnsTwice = false;
287
288  /// True if the function includes any inline assembly.
289  bool HasInlineAsm = false;
290
291  /// True if any WinCFI instruction have been emitted in this function.
292  Optional<bool> HasWinCFI;
293
294  /// Current high-level properties of the IR of the function (e.g. is in SSA
295  /// form or whether registers have been allocated)
296  MachineFunctionProperties Properties;
297
298  // Allocation management for pseudo source values.
299  std::unique_ptr<PseudoSourceValueManager> PSVManager;
300
301  /// List of moves done by a function's prolog.  Used to construct frame maps
302  /// by debug and exception handling consumers.
303  std::vector<MCCFIInstruction> FrameInstructions;
304
305  /// \name Exception Handling
306  /// \{
307
308  /// List of LandingPadInfo describing the landing pad information.
309  std::vector<LandingPadInfo> LandingPads;
310
311  /// Map a landing pad's EH symbol to the call site indexes.
312  DenseMap<MCSymbol*, SmallVector<unsigned, 4>> LPadToCallSiteMap;
313
314  /// Map of invoke call site index values to associated begin EH_LABEL.
315  DenseMap<MCSymbol*, unsigned> CallSiteMap;
316
317  bool CallsEHReturn = false;
318  bool CallsUnwindInit = false;
319  bool HasEHFunclets = false;
320
321  /// List of C++ TypeInfo used.
322  std::vector<const GlobalValue *> TypeInfos;
323
324  /// List of typeids encoding filters used.
325  std::vector<unsigned> FilterIds;
326
327  /// List of the indices in FilterIds corresponding to filter terminators.
328  std::vector<unsigned> FilterEnds;
329
330  EHPersonality PersonalityTypeCache = EHPersonality::Unknown;
331
332  /// \}
333
334  /// Clear all the members of this MachineFunction, but the ones used
335  /// to initialize again the MachineFunction.
336  /// More specifically, this deallocates all the dynamically allocated
337  /// objects and get rid of all the XXXInfo data structure, but keep
338  /// unchanged the references to Fn, Target, MMI, and FunctionNumber.
339  void clear();
340  /// Allocate and initialize the different members.
341  /// In particular, the XXXInfo data structure.
342  /// \pre Fn, Target, MMI, and FunctionNumber are properly set.
343  void init();
344
345public:
346  struct VariableDbgInfo {
347    const DILocalVariable *Var;
348    const DIExpression *Expr;
349    unsigned Slot;
350    const DILocation *Loc;
351
352    VariableDbgInfo(const DILocalVariable *Var, const DIExpression *Expr,
353                    unsigned Slot, const DILocation *Loc)
354        : Var(Var), Expr(Expr), Slot(Slot), Loc(Loc) {}
355  };
356  using VariableDbgInfoMapTy = SmallVector<VariableDbgInfo, 4>;
357  VariableDbgInfoMapTy VariableDbgInfos;
358
359  MachineFunction(const Function *Fn, const TargetMachine &TM,
360                  unsigned FunctionNum, MachineModuleInfo &MMI);
361  MachineFunction(const MachineFunction &) = delete;
362  MachineFunction &operator=(const MachineFunction &) = delete;
363  ~MachineFunction();
364
365  /// Reset the instance as if it was just created.
366  void reset() {
367    clear();
368    init();
369  }
370
371  MachineModuleInfo &getMMI() const { return MMI; }
372  MCContext &getContext() const { return Ctx; }
373
374  PseudoSourceValueManager &getPSVManager() const { return *PSVManager; }
375
376  /// Return the DataLayout attached to the Module associated to this MF.
377  const DataLayout &getDataLayout() const;
378
379  /// getFunction - Return the LLVM function that this machine code represents
380  const Function *getFunction() const { return Fn; }
381
382  /// getName - Return the name of the corresponding LLVM function.
383  StringRef getName() const;
384
385  /// getFunctionNumber - Return a unique ID for the current function.
386  unsigned getFunctionNumber() const { return FunctionNumber; }
387
388  /// getTarget - Return the target machine this machine code is compiled with
389  const TargetMachine &getTarget() const { return Target; }
390
391  /// getSubtarget - Return the subtarget for which this machine code is being
392  /// compiled.
393  const TargetSubtargetInfo &getSubtarget() const { return *STI; }
394  void setSubtarget(const TargetSubtargetInfo *ST) { STI = ST; }
395
396  /// getSubtarget - This method returns a pointer to the specified type of
397  /// TargetSubtargetInfo.  In debug builds, it verifies that the object being
398  /// returned is of the correct type.
399  template<typename STC> const STC &getSubtarget() const {
400    return *static_cast<const STC *>(STI);
401  }
402
403  /// getRegInfo - Return information about the registers currently in use.
404  MachineRegisterInfo &getRegInfo() { return *RegInfo; }
405  const MachineRegisterInfo &getRegInfo() const { return *RegInfo; }
406
407  /// getFrameInfo - Return the frame info object for the current function.
408  /// This object contains information about objects allocated on the stack
409  /// frame of the current function in an abstract way.
410  MachineFrameInfo &getFrameInfo() { return *FrameInfo; }
411  const MachineFrameInfo &getFrameInfo() const { return *FrameInfo; }
412
413  /// getJumpTableInfo - Return the jump table info object for the current
414  /// function.  This object contains information about jump tables in the
415  /// current function.  If the current function has no jump tables, this will
416  /// return null.
417  const MachineJumpTableInfo *getJumpTableInfo() const { return JumpTableInfo; }
418  MachineJumpTableInfo *getJumpTableInfo() { return JumpTableInfo; }
419
420  /// getOrCreateJumpTableInfo - Get the JumpTableInfo for this function, if it
421  /// does already exist, allocate one.
422  MachineJumpTableInfo *getOrCreateJumpTableInfo(unsigned JTEntryKind);
423
424  /// getConstantPool - Return the constant pool object for the current
425  /// function.
426  MachineConstantPool *getConstantPool() { return ConstantPool; }
427  const MachineConstantPool *getConstantPool() const { return ConstantPool; }
428
429  /// getWinEHFuncInfo - Return information about how the current function uses
430  /// Windows exception handling. Returns null for functions that don't use
431  /// funclets for exception handling.
432  const WinEHFuncInfo *getWinEHFuncInfo() const { return WinEHInfo; }
433  WinEHFuncInfo *getWinEHFuncInfo() { return WinEHInfo; }
434
435  /// getAlignment - Return the alignment (log2, not bytes) of the function.
436  unsigned getAlignment() const { return Alignment; }
437
438  /// setAlignment - Set the alignment (log2, not bytes) of the function.
439  void setAlignment(unsigned A) { Alignment = A; }
440
441  /// ensureAlignment - Make sure the function is at least 1 << A bytes aligned.
442  void ensureAlignment(unsigned A) {
443    if (Alignment < A) Alignment = A;
444  }
445
446  /// exposesReturnsTwice - Returns true if the function calls setjmp or
447  /// any other similar functions with attribute "returns twice" without
448  /// having the attribute itself.
449  bool exposesReturnsTwice() const {
450    return ExposesReturnsTwice;
451  }
452
453  /// setCallsSetJmp - Set a flag that indicates if there's a call to
454  /// a "returns twice" function.
455  void setExposesReturnsTwice(bool B) {
456    ExposesReturnsTwice = B;
457  }
458
459  /// Returns true if the function contains any inline assembly.
460  bool hasInlineAsm() const {
461    return HasInlineAsm;
462  }
463
464  /// Set a flag that indicates that the function contains inline assembly.
465  void setHasInlineAsm(bool B) {
466    HasInlineAsm = B;
467  }
468
469  bool hasWinCFI() const {
470    assert(HasWinCFI.hasValue() && "HasWinCFI not set yet!");
471    return *HasWinCFI;
472  }
473  void setHasWinCFI(bool v) { HasWinCFI = v; }
474
475  /// Get the function properties
476  const MachineFunctionProperties &getProperties() const { return Properties; }
477  MachineFunctionProperties &getProperties() { return Properties; }
478
479  /// getInfo - Keep track of various per-function pieces of information for
480  /// backends that would like to do so.
481  ///
482  template<typename Ty>
483  Ty *getInfo() {
484    if (!MFInfo)
485      MFInfo = Ty::template create<Ty>(Allocator, *this);
486    return static_cast<Ty*>(MFInfo);
487  }
488
489  template<typename Ty>
490  const Ty *getInfo() const {
491     return const_cast<MachineFunction*>(this)->getInfo<Ty>();
492  }
493
494  /// getBlockNumbered - MachineBasicBlocks are automatically numbered when they
495  /// are inserted into the machine function.  The block number for a machine
496  /// basic block can be found by using the MBB::getNumber method, this method
497  /// provides the inverse mapping.
498  MachineBasicBlock *getBlockNumbered(unsigned N) const {
499    assert(N < MBBNumbering.size() && "Illegal block number");
500    assert(MBBNumbering[N] && "Block was removed from the machine function!");
501    return MBBNumbering[N];
502  }
503
504  /// Should we be emitting segmented stack stuff for the function
505  bool shouldSplitStack() const;
506
507  /// getNumBlockIDs - Return the number of MBB ID's allocated.
508  unsigned getNumBlockIDs() const { return (unsigned)MBBNumbering.size(); }
509
510  /// RenumberBlocks - This discards all of the MachineBasicBlock numbers and
511  /// recomputes them.  This guarantees that the MBB numbers are sequential,
512  /// dense, and match the ordering of the blocks within the function.  If a
513  /// specific MachineBasicBlock is specified, only that block and those after
514  /// it are renumbered.
515  void RenumberBlocks(MachineBasicBlock *MBBFrom = nullptr);
516
517  /// print - Print out the MachineFunction in a format suitable for debugging
518  /// to the specified stream.
519  void print(raw_ostream &OS, const SlotIndexes* = nullptr) const;
520
521  /// viewCFG - This function is meant for use from the debugger.  You can just
522  /// say 'call F->viewCFG()' and a ghostview window should pop up from the
523  /// program, displaying the CFG of the current function with the code for each
524  /// basic block inside.  This depends on there being a 'dot' and 'gv' program
525  /// in your path.
526  void viewCFG() const;
527
528  /// viewCFGOnly - This function is meant for use from the debugger.  It works
529  /// just like viewCFG, but it does not include the contents of basic blocks
530  /// into the nodes, just the label.  If you are only interested in the CFG
531  /// this can make the graph smaller.
532  ///
533  void viewCFGOnly() const;
534
535  /// dump - Print the current MachineFunction to cerr, useful for debugger use.
536  void dump() const;
537
538  /// Run the current MachineFunction through the machine code verifier, useful
539  /// for debugger use.
540  /// \returns true if no problems were found.
541  bool verify(Pass *p = nullptr, const char *Banner = nullptr,
542              bool AbortOnError = true) const;
543
544  // Provide accessors for the MachineBasicBlock list...
545  using iterator = BasicBlockListType::iterator;
546  using const_iterator = BasicBlockListType::const_iterator;
547  using const_reverse_iterator = BasicBlockListType::const_reverse_iterator;
548  using reverse_iterator = BasicBlockListType::reverse_iterator;
549
550  /// Support for MachineBasicBlock::getNextNode().
551  static BasicBlockListType MachineFunction::*
552  getSublistAccess(MachineBasicBlock *) {
553    return &MachineFunction::BasicBlocks;
554  }
555
556  /// addLiveIn - Add the specified physical register as a live-in value and
557  /// create a corresponding virtual register for it.
558  unsigned addLiveIn(unsigned PReg, const TargetRegisterClass *RC);
559
560  //===--------------------------------------------------------------------===//
561  // BasicBlock accessor functions.
562  //
563  iterator                 begin()       { return BasicBlocks.begin(); }
564  const_iterator           begin() const { return BasicBlocks.begin(); }
565  iterator                 end  ()       { return BasicBlocks.end();   }
566  const_iterator           end  () const { return BasicBlocks.end();   }
567
568  reverse_iterator        rbegin()       { return BasicBlocks.rbegin(); }
569  const_reverse_iterator  rbegin() const { return BasicBlocks.rbegin(); }
570  reverse_iterator        rend  ()       { return BasicBlocks.rend();   }
571  const_reverse_iterator  rend  () const { return BasicBlocks.rend();   }
572
573  unsigned                  size() const { return (unsigned)BasicBlocks.size();}
574  bool                     empty() const { return BasicBlocks.empty(); }
575  const MachineBasicBlock &front() const { return BasicBlocks.front(); }
576        MachineBasicBlock &front()       { return BasicBlocks.front(); }
577  const MachineBasicBlock & back() const { return BasicBlocks.back(); }
578        MachineBasicBlock & back()       { return BasicBlocks.back(); }
579
580  void push_back (MachineBasicBlock *MBB) { BasicBlocks.push_back (MBB); }
581  void push_front(MachineBasicBlock *MBB) { BasicBlocks.push_front(MBB); }
582  void insert(iterator MBBI, MachineBasicBlock *MBB) {
583    BasicBlocks.insert(MBBI, MBB);
584  }
585  void splice(iterator InsertPt, iterator MBBI) {
586    BasicBlocks.splice(InsertPt, BasicBlocks, MBBI);
587  }
588  void splice(iterator InsertPt, MachineBasicBlock *MBB) {
589    BasicBlocks.splice(InsertPt, BasicBlocks, MBB);
590  }
591  void splice(iterator InsertPt, iterator MBBI, iterator MBBE) {
592    BasicBlocks.splice(InsertPt, BasicBlocks, MBBI, MBBE);
593  }
594
595  void remove(iterator MBBI) { BasicBlocks.remove(MBBI); }
596  void remove(MachineBasicBlock *MBBI) { BasicBlocks.remove(MBBI); }
597  void erase(iterator MBBI) { BasicBlocks.erase(MBBI); }
598  void erase(MachineBasicBlock *MBBI) { BasicBlocks.erase(MBBI); }
599
600  template <typename Comp>
601  void sort(Comp comp) {
602    BasicBlocks.sort(comp);
603  }
604
605  //===--------------------------------------------------------------------===//
606  // Internal functions used to automatically number MachineBasicBlocks
607
608  /// \brief Adds the MBB to the internal numbering. Returns the unique number
609  /// assigned to the MBB.
610  unsigned addToMBBNumbering(MachineBasicBlock *MBB) {
611    MBBNumbering.push_back(MBB);
612    return (unsigned)MBBNumbering.size()-1;
613  }
614
615  /// removeFromMBBNumbering - Remove the specific machine basic block from our
616  /// tracker, this is only really to be used by the MachineBasicBlock
617  /// implementation.
618  void removeFromMBBNumbering(unsigned N) {
619    assert(N < MBBNumbering.size() && "Illegal basic block #");
620    MBBNumbering[N] = nullptr;
621  }
622
623  /// CreateMachineInstr - Allocate a new MachineInstr. Use this instead
624  /// of `new MachineInstr'.
625  MachineInstr *CreateMachineInstr(const MCInstrDesc &MCID, const DebugLoc &DL,
626                                   bool NoImp = false);
627
628  /// CloneMachineInstr - Create a new MachineInstr which is a copy of the
629  /// 'Orig' instruction, identical in all ways except the instruction
630  /// has no parent, prev, or next.
631  ///
632  /// See also TargetInstrInfo::duplicate() for target-specific fixes to cloned
633  /// instructions.
634  MachineInstr *CloneMachineInstr(const MachineInstr *Orig);
635
636  /// DeleteMachineInstr - Delete the given MachineInstr.
637  void DeleteMachineInstr(MachineInstr *MI);
638
639  /// CreateMachineBasicBlock - Allocate a new MachineBasicBlock. Use this
640  /// instead of `new MachineBasicBlock'.
641  MachineBasicBlock *CreateMachineBasicBlock(const BasicBlock *bb = nullptr);
642
643  /// DeleteMachineBasicBlock - Delete the given MachineBasicBlock.
644  void DeleteMachineBasicBlock(MachineBasicBlock *MBB);
645
646  /// getMachineMemOperand - Allocate a new MachineMemOperand.
647  /// MachineMemOperands are owned by the MachineFunction and need not be
648  /// explicitly deallocated.
649  MachineMemOperand *getMachineMemOperand(
650      MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, uint64_t s,
651      unsigned base_alignment, const AAMDNodes &AAInfo = AAMDNodes(),
652      const MDNode *Ranges = nullptr,
653      SynchronizationScope SynchScope = CrossThread,
654      AtomicOrdering Ordering = AtomicOrdering::NotAtomic,
655      AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic);
656
657  /// getMachineMemOperand - Allocate a new MachineMemOperand by copying
658  /// an existing one, adjusting by an offset and using the given size.
659  /// MachineMemOperands are owned by the MachineFunction and need not be
660  /// explicitly deallocated.
661  MachineMemOperand *getMachineMemOperand(const MachineMemOperand *MMO,
662                                          int64_t Offset, uint64_t Size);
663
664  using OperandCapacity = ArrayRecycler<MachineOperand>::Capacity;
665
666  /// Allocate an array of MachineOperands. This is only intended for use by
667  /// internal MachineInstr functions.
668  MachineOperand *allocateOperandArray(OperandCapacity Cap) {
669    return OperandRecycler.allocate(Cap, Allocator);
670  }
671
672  /// Dellocate an array of MachineOperands and recycle the memory. This is
673  /// only intended for use by internal MachineInstr functions.
674  /// Cap must be the same capacity that was used to allocate the array.
675  void deallocateOperandArray(OperandCapacity Cap, MachineOperand *Array) {
676    OperandRecycler.deallocate(Cap, Array);
677  }
678
679  /// \brief Allocate and initialize a register mask with @p NumRegister bits.
680  uint32_t *allocateRegisterMask(unsigned NumRegister) {
681    unsigned Size = (NumRegister + 31) / 32;
682    uint32_t *Mask = Allocator.Allocate<uint32_t>(Size);
683    for (unsigned i = 0; i != Size; ++i)
684      Mask[i] = 0;
685    return Mask;
686  }
687
688  /// allocateMemRefsArray - Allocate an array to hold MachineMemOperand
689  /// pointers.  This array is owned by the MachineFunction.
690  MachineInstr::mmo_iterator allocateMemRefsArray(unsigned long Num);
691
692  /// extractLoadMemRefs - Allocate an array and populate it with just the
693  /// load information from the given MachineMemOperand sequence.
694  std::pair<MachineInstr::mmo_iterator,
695            MachineInstr::mmo_iterator>
696    extractLoadMemRefs(MachineInstr::mmo_iterator Begin,
697                       MachineInstr::mmo_iterator End);
698
699  /// extractStoreMemRefs - Allocate an array and populate it with just the
700  /// store information from the given MachineMemOperand sequence.
701  std::pair<MachineInstr::mmo_iterator,
702            MachineInstr::mmo_iterator>
703    extractStoreMemRefs(MachineInstr::mmo_iterator Begin,
704                        MachineInstr::mmo_iterator End);
705
706  /// Allocate a string and populate it with the given external symbol name.
707  const char *createExternalSymbolName(StringRef Name);
708
709  //===--------------------------------------------------------------------===//
710  // Label Manipulation.
711
712  /// getJTISymbol - Return the MCSymbol for the specified non-empty jump table.
713  /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a
714  /// normal 'L' label is returned.
715  MCSymbol *getJTISymbol(unsigned JTI, MCContext &Ctx,
716                         bool isLinkerPrivate = false) const;
717
718  /// getPICBaseSymbol - Return a function-local symbol to represent the PIC
719  /// base.
720  MCSymbol *getPICBaseSymbol() const;
721
722  /// Returns a reference to a list of cfi instructions in the function's
723  /// prologue.  Used to construct frame maps for debug and exception handling
724  /// comsumers.
725  const std::vector<MCCFIInstruction> &getFrameInstructions() const {
726    return FrameInstructions;
727  }
728
729  LLVM_NODISCARD unsigned addFrameInst(const MCCFIInstruction &Inst) {
730    FrameInstructions.push_back(Inst);
731    return FrameInstructions.size() - 1;
732  }
733
734  /// \name Exception Handling
735  /// \{
736
737  bool callsEHReturn() const { return CallsEHReturn; }
738  void setCallsEHReturn(bool b) { CallsEHReturn = b; }
739
740  bool callsUnwindInit() const { return CallsUnwindInit; }
741  void setCallsUnwindInit(bool b) { CallsUnwindInit = b; }
742
743  bool hasEHFunclets() const { return HasEHFunclets; }
744  void setHasEHFunclets(bool V) { HasEHFunclets = V; }
745
746  /// Find or create an LandingPadInfo for the specified MachineBasicBlock.
747  LandingPadInfo &getOrCreateLandingPadInfo(MachineBasicBlock *LandingPad);
748
749  /// Remap landing pad labels and remove any deleted landing pads.
750  void tidyLandingPads(DenseMap<MCSymbol*, uintptr_t> *LPMap = nullptr);
751
752  /// Return a reference to the landing pad info for the current function.
753  const std::vector<LandingPadInfo> &getLandingPads() const {
754    return LandingPads;
755  }
756
757  /// Provide the begin and end labels of an invoke style call and associate it
758  /// with a try landing pad block.
759  void addInvoke(MachineBasicBlock *LandingPad,
760                 MCSymbol *BeginLabel, MCSymbol *EndLabel);
761
762  /// Add a new panding pad.  Returns the label ID for the landing pad entry.
763  MCSymbol *addLandingPad(MachineBasicBlock *LandingPad);
764
765  /// Provide the catch typeinfo for a landing pad.
766  void addCatchTypeInfo(MachineBasicBlock *LandingPad,
767                        ArrayRef<const GlobalValue *> TyInfo);
768
769  /// Provide the filter typeinfo for a landing pad.
770  void addFilterTypeInfo(MachineBasicBlock *LandingPad,
771                         ArrayRef<const GlobalValue *> TyInfo);
772
773  /// Add a cleanup action for a landing pad.
774  void addCleanup(MachineBasicBlock *LandingPad);
775
776  void addSEHCatchHandler(MachineBasicBlock *LandingPad, const Function *Filter,
777                          const BlockAddress *RecoverLabel);
778
779  void addSEHCleanupHandler(MachineBasicBlock *LandingPad,
780                            const Function *Cleanup);
781
782  /// Return the type id for the specified typeinfo.  This is function wide.
783  unsigned getTypeIDFor(const GlobalValue *TI);
784
785  /// Return the id of the filter encoded by TyIds.  This is function wide.
786  int getFilterIDFor(std::vector<unsigned> &TyIds);
787
788  /// Map the landing pad's EH symbol to the call site indexes.
789  void setCallSiteLandingPad(MCSymbol *Sym, ArrayRef<unsigned> Sites);
790
791  /// Get the call site indexes for a landing pad EH symbol.
792  SmallVectorImpl<unsigned> &getCallSiteLandingPad(MCSymbol *Sym) {
793    assert(hasCallSiteLandingPad(Sym) &&
794           "missing call site number for landing pad!");
795    return LPadToCallSiteMap[Sym];
796  }
797
798  /// Return true if the landing pad Eh symbol has an associated call site.
799  bool hasCallSiteLandingPad(MCSymbol *Sym) {
800    return !LPadToCallSiteMap[Sym].empty();
801  }
802
803  /// Map the begin label for a call site.
804  void setCallSiteBeginLabel(MCSymbol *BeginLabel, unsigned Site) {
805    CallSiteMap[BeginLabel] = Site;
806  }
807
808  /// Get the call site number for a begin label.
809  unsigned getCallSiteBeginLabel(MCSymbol *BeginLabel) const {
810    assert(hasCallSiteBeginLabel(BeginLabel) &&
811           "Missing call site number for EH_LABEL!");
812    return CallSiteMap.lookup(BeginLabel);
813  }
814
815  /// Return true if the begin label has a call site number associated with it.
816  bool hasCallSiteBeginLabel(MCSymbol *BeginLabel) const {
817    return CallSiteMap.count(BeginLabel);
818  }
819
820  /// Return a reference to the C++ typeinfo for the current function.
821  const std::vector<const GlobalValue *> &getTypeInfos() const {
822    return TypeInfos;
823  }
824
825  /// Return a reference to the typeids encoding filters used in the current
826  /// function.
827  const std::vector<unsigned> &getFilterIds() const {
828    return FilterIds;
829  }
830
831  /// \}
832
833  /// Collect information used to emit debugging information of a variable.
834  void setVariableDbgInfo(const DILocalVariable *Var, const DIExpression *Expr,
835                          unsigned Slot, const DILocation *Loc) {
836    VariableDbgInfos.emplace_back(Var, Expr, Slot, Loc);
837  }
838
839  VariableDbgInfoMapTy &getVariableDbgInfo() { return VariableDbgInfos; }
840  const VariableDbgInfoMapTy &getVariableDbgInfo() const {
841    return VariableDbgInfos;
842  }
843};
844
845/// \name Exception Handling
846/// \{
847
848/// Extract the exception handling information from the landingpad instruction
849/// and add them to the specified machine module info.
850void addLandingPadInfo(const LandingPadInst &I, MachineBasicBlock &MBB);
851
852/// \}
853
854//===--------------------------------------------------------------------===//
855// GraphTraits specializations for function basic block graphs (CFGs)
856//===--------------------------------------------------------------------===//
857
858// Provide specializations of GraphTraits to be able to treat a
859// machine function as a graph of machine basic blocks... these are
860// the same as the machine basic block iterators, except that the root
861// node is implicitly the first node of the function.
862//
863template <> struct GraphTraits<MachineFunction*> :
864  public GraphTraits<MachineBasicBlock*> {
865  static NodeRef getEntryNode(MachineFunction *F) { return &F->front(); }
866
867  // nodes_iterator/begin/end - Allow iteration over all nodes in the graph
868  using nodes_iterator = pointer_iterator<MachineFunction::iterator>;
869
870  static nodes_iterator nodes_begin(MachineFunction *F) {
871    return nodes_iterator(F->begin());
872  }
873
874  static nodes_iterator nodes_end(MachineFunction *F) {
875    return nodes_iterator(F->end());
876  }
877
878  static unsigned       size       (MachineFunction *F) { return F->size(); }
879};
880template <> struct GraphTraits<const MachineFunction*> :
881  public GraphTraits<const MachineBasicBlock*> {
882  static NodeRef getEntryNode(const MachineFunction *F) { return &F->front(); }
883
884  // nodes_iterator/begin/end - Allow iteration over all nodes in the graph
885  using nodes_iterator = pointer_iterator<MachineFunction::const_iterator>;
886
887  static nodes_iterator nodes_begin(const MachineFunction *F) {
888    return nodes_iterator(F->begin());
889  }
890
891  static nodes_iterator nodes_end  (const MachineFunction *F) {
892    return nodes_iterator(F->end());
893  }
894
895  static unsigned       size       (const MachineFunction *F)  {
896    return F->size();
897  }
898};
899
900// Provide specializations of GraphTraits to be able to treat a function as a
901// graph of basic blocks... and to walk it in inverse order.  Inverse order for
902// a function is considered to be when traversing the predecessor edges of a BB
903// instead of the successor edges.
904//
905template <> struct GraphTraits<Inverse<MachineFunction*>> :
906  public GraphTraits<Inverse<MachineBasicBlock*>> {
907  static NodeRef getEntryNode(Inverse<MachineFunction *> G) {
908    return &G.Graph->front();
909  }
910};
911template <> struct GraphTraits<Inverse<const MachineFunction*>> :
912  public GraphTraits<Inverse<const MachineBasicBlock*>> {
913  static NodeRef getEntryNode(Inverse<const MachineFunction *> G) {
914    return &G.Graph->front();
915  }
916};
917
918} // end namespace llvm
919
920#endif // LLVM_CODEGEN_MACHINEFUNCTION_H
921