1//===------ CXXInheritance.h - C++ Inheritance ------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides routines that help analyzing C++ inheritance hierarchies.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_CXXINHERITANCE_H
15#define LLVM_CLANG_AST_CXXINHERITANCE_H
16
17#include "clang/AST/DeclBase.h"
18#include "clang/AST/DeclCXX.h"
19#include "clang/AST/Type.h"
20#include "clang/AST/TypeOrdering.h"
21#include "llvm/ADT/MapVector.h"
22#include "llvm/ADT/SmallSet.h"
23#include "llvm/ADT/SmallVector.h"
24#include <cassert>
25#include <list>
26
27namespace clang {
28
29class CXXBaseSpecifier;
30class CXXMethodDecl;
31class CXXRecordDecl;
32class NamedDecl;
33
34/// \brief Represents an element in a path from a derived class to a
35/// base class.
36///
37/// Each step in the path references the link from a
38/// derived class to one of its direct base classes, along with a
39/// base "number" that identifies which base subobject of the
40/// original derived class we are referencing.
41struct CXXBasePathElement {
42  /// \brief The base specifier that states the link from a derived
43  /// class to a base class, which will be followed by this base
44  /// path element.
45  const CXXBaseSpecifier *Base;
46
47  /// \brief The record decl of the class that the base is a base of.
48  const CXXRecordDecl *Class;
49
50  /// \brief Identifies which base class subobject (of type
51  /// \c Base->getType()) this base path element refers to.
52  ///
53  /// This value is only valid if \c !Base->isVirtual(), because there
54  /// is no base numbering for the zero or one virtual bases of a
55  /// given type.
56  int SubobjectNumber;
57};
58
59/// \brief Represents a path from a specific derived class
60/// (which is not represented as part of the path) to a particular
61/// (direct or indirect) base class subobject.
62///
63/// Individual elements in the path are described by the \c CXXBasePathElement
64/// structure, which captures both the link from a derived class to one of its
65/// direct bases and identification describing which base class
66/// subobject is being used.
67class CXXBasePath : public SmallVector<CXXBasePathElement, 4> {
68public:
69  CXXBasePath() : Access(AS_public) {}
70
71  /// \brief The access along this inheritance path.  This is only
72  /// calculated when recording paths.  AS_none is a special value
73  /// used to indicate a path which permits no legal access.
74  AccessSpecifier Access;
75
76  /// \brief The set of declarations found inside this base class
77  /// subobject.
78  DeclContext::lookup_result Decls;
79
80  void clear() {
81    SmallVectorImpl<CXXBasePathElement>::clear();
82    Access = AS_public;
83  }
84};
85
86/// BasePaths - Represents the set of paths from a derived class to
87/// one of its (direct or indirect) bases. For example, given the
88/// following class hierarchy:
89///
90/// @code
91/// class A { };
92/// class B : public A { };
93/// class C : public A { };
94/// class D : public B, public C{ };
95/// @endcode
96///
97/// There are two potential BasePaths to represent paths from D to a
98/// base subobject of type A. One path is (D,0) -> (B,0) -> (A,0)
99/// and another is (D,0)->(C,0)->(A,1). These two paths actually
100/// refer to two different base class subobjects of the same type,
101/// so the BasePaths object refers to an ambiguous path. On the
102/// other hand, consider the following class hierarchy:
103///
104/// @code
105/// class A { };
106/// class B : public virtual A { };
107/// class C : public virtual A { };
108/// class D : public B, public C{ };
109/// @endcode
110///
111/// Here, there are two potential BasePaths again, (D, 0) -> (B, 0)
112/// -> (A,v) and (D, 0) -> (C, 0) -> (A, v), but since both of them
113/// refer to the same base class subobject of type A (the virtual
114/// one), there is no ambiguity.
115class CXXBasePaths {
116  /// \brief The type from which this search originated.
117  CXXRecordDecl *Origin;
118
119  /// Paths - The actual set of paths that can be taken from the
120  /// derived class to the same base class.
121  std::list<CXXBasePath> Paths;
122
123  /// ClassSubobjects - Records the class subobjects for each class
124  /// type that we've seen. The first element in the pair says
125  /// whether we found a path to a virtual base for that class type,
126  /// while the element contains the number of non-virtual base
127  /// class subobjects for that class type. The key of the map is
128  /// the cv-unqualified canonical type of the base class subobject.
129  llvm::SmallDenseMap<QualType, std::pair<bool, unsigned>, 8> ClassSubobjects;
130
131  /// VisitedDependentRecords - Records the dependent records that have been
132  /// already visited.
133  llvm::SmallDenseSet<const CXXRecordDecl *, 4> VisitedDependentRecords;
134
135  /// FindAmbiguities - Whether Sema::IsDerivedFrom should try find
136  /// ambiguous paths while it is looking for a path from a derived
137  /// type to a base type.
138  bool FindAmbiguities;
139
140  /// RecordPaths - Whether Sema::IsDerivedFrom should record paths
141  /// while it is determining whether there are paths from a derived
142  /// type to a base type.
143  bool RecordPaths;
144
145  /// DetectVirtual - Whether Sema::IsDerivedFrom should abort the search
146  /// if it finds a path that goes across a virtual base. The virtual class
147  /// is also recorded.
148  bool DetectVirtual;
149
150  /// ScratchPath - A BasePath that is used by Sema::lookupInBases
151  /// to help build the set of paths.
152  CXXBasePath ScratchPath;
153
154  /// DetectedVirtual - The base class that is virtual.
155  const RecordType *DetectedVirtual;
156
157  /// \brief Array of the declarations that have been found. This
158  /// array is constructed only if needed, e.g., to iterate over the
159  /// results within LookupResult.
160  std::unique_ptr<NamedDecl *[]> DeclsFound;
161  unsigned NumDeclsFound;
162
163  friend class CXXRecordDecl;
164
165  void ComputeDeclsFound();
166
167  bool lookupInBases(ASTContext &Context, const CXXRecordDecl *Record,
168                     CXXRecordDecl::BaseMatchesCallback BaseMatches,
169                     bool LookupInDependent = false);
170
171public:
172  typedef std::list<CXXBasePath>::iterator paths_iterator;
173  typedef std::list<CXXBasePath>::const_iterator const_paths_iterator;
174  typedef NamedDecl **decl_iterator;
175
176  /// BasePaths - Construct a new BasePaths structure to record the
177  /// paths for a derived-to-base search.
178  explicit CXXBasePaths(bool FindAmbiguities = true, bool RecordPaths = true,
179                        bool DetectVirtual = true)
180      : Origin(), FindAmbiguities(FindAmbiguities), RecordPaths(RecordPaths),
181        DetectVirtual(DetectVirtual), DetectedVirtual(nullptr),
182        NumDeclsFound(0) {}
183
184  paths_iterator begin() { return Paths.begin(); }
185  paths_iterator end()   { return Paths.end(); }
186  const_paths_iterator begin() const { return Paths.begin(); }
187  const_paths_iterator end()   const { return Paths.end(); }
188
189  CXXBasePath&       front()       { return Paths.front(); }
190  const CXXBasePath& front() const { return Paths.front(); }
191
192  typedef llvm::iterator_range<decl_iterator> decl_range;
193  decl_range found_decls();
194
195  /// \brief Determine whether the path from the most-derived type to the
196  /// given base type is ambiguous (i.e., it refers to multiple subobjects of
197  /// the same base type).
198  bool isAmbiguous(CanQualType BaseType);
199
200  /// \brief Whether we are finding multiple paths to detect ambiguities.
201  bool isFindingAmbiguities() const { return FindAmbiguities; }
202
203  /// \brief Whether we are recording paths.
204  bool isRecordingPaths() const { return RecordPaths; }
205
206  /// \brief Specify whether we should be recording paths or not.
207  void setRecordingPaths(bool RP) { RecordPaths = RP; }
208
209  /// \brief Whether we are detecting virtual bases.
210  bool isDetectingVirtual() const { return DetectVirtual; }
211
212  /// \brief The virtual base discovered on the path (if we are merely
213  /// detecting virtuals).
214  const RecordType* getDetectedVirtual() const {
215    return DetectedVirtual;
216  }
217
218  /// \brief Retrieve the type from which this base-paths search
219  /// began
220  CXXRecordDecl *getOrigin() const { return Origin; }
221  void setOrigin(CXXRecordDecl *Rec) { Origin = Rec; }
222
223  /// \brief Clear the base-paths results.
224  void clear();
225
226  /// \brief Swap this data structure's contents with another CXXBasePaths
227  /// object.
228  void swap(CXXBasePaths &Other);
229};
230
231/// \brief Uniquely identifies a virtual method within a class
232/// hierarchy by the method itself and a class subobject number.
233struct UniqueVirtualMethod {
234  UniqueVirtualMethod()
235    : Method(nullptr), Subobject(0), InVirtualSubobject(nullptr) { }
236
237  UniqueVirtualMethod(CXXMethodDecl *Method, unsigned Subobject,
238                      const CXXRecordDecl *InVirtualSubobject)
239    : Method(Method), Subobject(Subobject),
240      InVirtualSubobject(InVirtualSubobject) { }
241
242  /// \brief The overriding virtual method.
243  CXXMethodDecl *Method;
244
245  /// \brief The subobject in which the overriding virtual method
246  /// resides.
247  unsigned Subobject;
248
249  /// \brief The virtual base class subobject of which this overridden
250  /// virtual method is a part. Note that this records the closest
251  /// derived virtual base class subobject.
252  const CXXRecordDecl *InVirtualSubobject;
253
254  friend bool operator==(const UniqueVirtualMethod &X,
255                         const UniqueVirtualMethod &Y) {
256    return X.Method == Y.Method && X.Subobject == Y.Subobject &&
257      X.InVirtualSubobject == Y.InVirtualSubobject;
258  }
259
260  friend bool operator!=(const UniqueVirtualMethod &X,
261                         const UniqueVirtualMethod &Y) {
262    return !(X == Y);
263  }
264};
265
266/// \brief The set of methods that override a given virtual method in
267/// each subobject where it occurs.
268///
269/// The first part of the pair is the subobject in which the
270/// overridden virtual function occurs, while the second part of the
271/// pair is the virtual method that overrides it (including the
272/// subobject in which that virtual function occurs).
273class OverridingMethods {
274  typedef SmallVector<UniqueVirtualMethod, 4> ValuesT;
275  typedef llvm::MapVector<unsigned, ValuesT> MapType;
276  MapType Overrides;
277
278public:
279  // Iterate over the set of subobjects that have overriding methods.
280  typedef MapType::iterator iterator;
281  typedef MapType::const_iterator const_iterator;
282  iterator begin() { return Overrides.begin(); }
283  const_iterator begin() const { return Overrides.begin(); }
284  iterator end() { return Overrides.end(); }
285  const_iterator end() const { return Overrides.end(); }
286  unsigned size() const { return Overrides.size(); }
287
288  // Iterate over the set of overriding virtual methods in a given
289  // subobject.
290  typedef SmallVectorImpl<UniqueVirtualMethod>::iterator
291    overriding_iterator;
292  typedef SmallVectorImpl<UniqueVirtualMethod>::const_iterator
293    overriding_const_iterator;
294
295  // Add a new overriding method for a particular subobject.
296  void add(unsigned OverriddenSubobject, UniqueVirtualMethod Overriding);
297
298  // Add all of the overriding methods from "other" into overrides for
299  // this method. Used when merging the overrides from multiple base
300  // class subobjects.
301  void add(const OverridingMethods &Other);
302
303  // Replace all overriding virtual methods in all subobjects with the
304  // given virtual method.
305  void replaceAll(UniqueVirtualMethod Overriding);
306};
307
308/// \brief A mapping from each virtual member function to its set of
309/// final overriders.
310///
311/// Within a class hierarchy for a given derived class, each virtual
312/// member function in that hierarchy has one or more "final
313/// overriders" (C++ [class.virtual]p2). A final overrider for a
314/// virtual function "f" is the virtual function that will actually be
315/// invoked when dispatching a call to "f" through the
316/// vtable. Well-formed classes have a single final overrider for each
317/// virtual function; in abstract classes, the final overrider for at
318/// least one virtual function is a pure virtual function. Due to
319/// multiple, virtual inheritance, it is possible for a class to have
320/// more than one final overrider. Athough this is an error (per C++
321/// [class.virtual]p2), it is not considered an error here: the final
322/// overrider map can represent multiple final overriders for a
323/// method, and it is up to the client to determine whether they are
324/// problem. For example, the following class \c D has two final
325/// overriders for the virtual function \c A::f(), one in \c C and one
326/// in \c D:
327///
328/// \code
329///   struct A { virtual void f(); };
330///   struct B : virtual A { virtual void f(); };
331///   struct C : virtual A { virtual void f(); };
332///   struct D : B, C { };
333/// \endcode
334///
335/// This data structure contains a mapping from every virtual
336/// function *that does not override an existing virtual function* and
337/// in every subobject where that virtual function occurs to the set
338/// of virtual functions that override it. Thus, the same virtual
339/// function \c A::f can actually occur in multiple subobjects of type
340/// \c A due to multiple inheritance, and may be overridden by
341/// different virtual functions in each, as in the following example:
342///
343/// \code
344///   struct A { virtual void f(); };
345///   struct B : A { virtual void f(); };
346///   struct C : A { virtual void f(); };
347///   struct D : B, C { };
348/// \endcode
349///
350/// Unlike in the previous example, where the virtual functions \c
351/// B::f and \c C::f both overrode \c A::f in the same subobject of
352/// type \c A, in this example the two virtual functions both override
353/// \c A::f but in *different* subobjects of type A. This is
354/// represented by numbering the subobjects in which the overridden
355/// and the overriding virtual member functions are located. Subobject
356/// 0 represents the virtual base class subobject of that type, while
357/// subobject numbers greater than 0 refer to non-virtual base class
358/// subobjects of that type.
359class CXXFinalOverriderMap
360  : public llvm::MapVector<const CXXMethodDecl *, OverridingMethods> { };
361
362/// \brief A set of all the primary bases for a class.
363class CXXIndirectPrimaryBaseSet
364  : public llvm::SmallSet<const CXXRecordDecl*, 32> { };
365
366} // end namespace clang
367
368#endif
369