MachineInstr.h revision f3014761c955345d6e05491608e73228d014afb7
1//===- llvm/CodeGen/MachineInstr.h - MachineInstr class ---------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the declaration of the MachineInstr class, which is the
11// basic representation for all target dependent machine instructions used by
12// the back end.
13//
14//===----------------------------------------------------------------------===//
15
16#ifndef LLVM_CODEGEN_MACHINEINSTR_H
17#define LLVM_CODEGEN_MACHINEINSTR_H
18
19#include "llvm/ADT/DenseMapInfo.h"
20#include "llvm/ADT/ilist.h"
21#include "llvm/ADT/ilist_node.h"
22#include "llvm/ADT/iterator_range.h"
23#include "llvm/Analysis/AliasAnalysis.h"
24#include "llvm/CodeGen/MachineOperand.h"
25#include "llvm/IR/DebugLoc.h"
26#include "llvm/IR/InlineAsm.h"
27#include "llvm/MC/MCInstrDesc.h"
28#include "llvm/Support/ArrayRecycler.h"
29#include "llvm/Target/TargetOpcodes.h"
30#include <algorithm>
31#include <cassert>
32#include <cstdint>
33#include <utility>
34
35namespace llvm {
36
37template <typename T> class ArrayRef;
38class DIExpression;
39class DILocalVariable;
40class MachineBasicBlock;
41class MachineFunction;
42class MachineMemOperand;
43class MachineRegisterInfo;
44class ModuleSlotTracker;
45class raw_ostream;
46template <typename T> class SmallVectorImpl;
47class StringRef;
48class TargetInstrInfo;
49class TargetRegisterClass;
50class TargetRegisterInfo;
51
52//===----------------------------------------------------------------------===//
53/// Representation of each machine instruction.
54///
55/// This class isn't a POD type, but it must have a trivial destructor. When a
56/// MachineFunction is deleted, all the contained MachineInstrs are deallocated
57/// without having their destructor called.
58///
59class MachineInstr
60    : public ilist_node_with_parent<MachineInstr, MachineBasicBlock,
61                                    ilist_sentinel_tracking<true>> {
62public:
63  using mmo_iterator = MachineMemOperand **;
64
65  /// Flags to specify different kinds of comments to output in
66  /// assembly code.  These flags carry semantic information not
67  /// otherwise easily derivable from the IR text.
68  ///
69  enum CommentFlag {
70    ReloadReuse = 0x1 // higher bits are reserved for target dep comments.
71  };
72
73  enum MIFlag {
74    NoFlags      = 0,
75    FrameSetup   = 1 << 0,              // Instruction is used as a part of
76                                        // function frame setup code.
77    FrameDestroy = 1 << 1,              // Instruction is used as a part of
78                                        // function frame destruction code.
79    BundledPred  = 1 << 2,              // Instruction has bundled predecessors.
80    BundledSucc  = 1 << 3               // Instruction has bundled successors.
81  };
82
83private:
84  const MCInstrDesc *MCID;              // Instruction descriptor.
85  MachineBasicBlock *Parent = nullptr;  // Pointer to the owning basic block.
86
87  // Operands are allocated by an ArrayRecycler.
88  MachineOperand *Operands = nullptr;   // Pointer to the first operand.
89  unsigned NumOperands = 0;             // Number of operands on instruction.
90  using OperandCapacity = ArrayRecycler<MachineOperand>::Capacity;
91  OperandCapacity CapOperands;          // Capacity of the Operands array.
92
93  uint8_t Flags = 0;                    // Various bits of additional
94                                        // information about machine
95                                        // instruction.
96
97  uint8_t AsmPrinterFlags = 0;          // Various bits of information used by
98                                        // the AsmPrinter to emit helpful
99                                        // comments.  This is *not* semantic
100                                        // information.  Do not use this for
101                                        // anything other than to convey comment
102                                        // information to AsmPrinter.
103
104  uint8_t NumMemRefs = 0;               // Information on memory references.
105  // Note that MemRefs == nullptr,  means 'don't know', not 'no memory access'.
106  // Calling code must treat missing information conservatively.  If the number
107  // of memory operands required to be precise exceeds the maximum value of
108  // NumMemRefs - currently 256 - we remove the operands entirely. Note also
109  // that this is a non-owning reference to a shared copy on write buffer owned
110  // by the MachineFunction and created via MF.allocateMemRefsArray.
111  mmo_iterator MemRefs = nullptr;
112
113  DebugLoc debugLoc;                    // Source line information.
114
115  // Intrusive list support
116  friend struct ilist_traits<MachineInstr>;
117  friend struct ilist_callback_traits<MachineBasicBlock>;
118  void setParent(MachineBasicBlock *P) { Parent = P; }
119
120  /// This constructor creates a copy of the given
121  /// MachineInstr in the given MachineFunction.
122  MachineInstr(MachineFunction &, const MachineInstr &);
123
124  /// This constructor create a MachineInstr and add the implicit operands.
125  /// It reserves space for number of operands specified by
126  /// MCInstrDesc.  An explicit DebugLoc is supplied.
127  MachineInstr(MachineFunction &, const MCInstrDesc &MCID, DebugLoc dl,
128               bool NoImp = false);
129
130  // MachineInstrs are pool-allocated and owned by MachineFunction.
131  friend class MachineFunction;
132
133public:
134  MachineInstr(const MachineInstr &) = delete;
135  MachineInstr &operator=(const MachineInstr &) = delete;
136  // Use MachineFunction::DeleteMachineInstr() instead.
137  ~MachineInstr() = delete;
138
139  const MachineBasicBlock* getParent() const { return Parent; }
140  MachineBasicBlock* getParent() { return Parent; }
141
142  /// Return the asm printer flags bitvector.
143  uint8_t getAsmPrinterFlags() const { return AsmPrinterFlags; }
144
145  /// Clear the AsmPrinter bitvector.
146  void clearAsmPrinterFlags() { AsmPrinterFlags = 0; }
147
148  /// Return whether an AsmPrinter flag is set.
149  bool getAsmPrinterFlag(CommentFlag Flag) const {
150    return AsmPrinterFlags & Flag;
151  }
152
153  /// Set a flag for the AsmPrinter.
154  void setAsmPrinterFlag(uint8_t Flag) {
155    AsmPrinterFlags |= Flag;
156  }
157
158  /// Clear specific AsmPrinter flags.
159  void clearAsmPrinterFlag(CommentFlag Flag) {
160    AsmPrinterFlags &= ~Flag;
161  }
162
163  /// Return the MI flags bitvector.
164  uint8_t getFlags() const {
165    return Flags;
166  }
167
168  /// Return whether an MI flag is set.
169  bool getFlag(MIFlag Flag) const {
170    return Flags & Flag;
171  }
172
173  /// Set a MI flag.
174  void setFlag(MIFlag Flag) {
175    Flags |= (uint8_t)Flag;
176  }
177
178  void setFlags(unsigned flags) {
179    // Filter out the automatically maintained flags.
180    unsigned Mask = BundledPred | BundledSucc;
181    Flags = (Flags & Mask) | (flags & ~Mask);
182  }
183
184  /// clearFlag - Clear a MI flag.
185  void clearFlag(MIFlag Flag) {
186    Flags &= ~((uint8_t)Flag);
187  }
188
189  /// Return true if MI is in a bundle (but not the first MI in a bundle).
190  ///
191  /// A bundle looks like this before it's finalized:
192  ///   ----------------
193  ///   |      MI      |
194  ///   ----------------
195  ///          |
196  ///   ----------------
197  ///   |      MI    * |
198  ///   ----------------
199  ///          |
200  ///   ----------------
201  ///   |      MI    * |
202  ///   ----------------
203  /// In this case, the first MI starts a bundle but is not inside a bundle, the
204  /// next 2 MIs are considered "inside" the bundle.
205  ///
206  /// After a bundle is finalized, it looks like this:
207  ///   ----------------
208  ///   |    Bundle    |
209  ///   ----------------
210  ///          |
211  ///   ----------------
212  ///   |      MI    * |
213  ///   ----------------
214  ///          |
215  ///   ----------------
216  ///   |      MI    * |
217  ///   ----------------
218  ///          |
219  ///   ----------------
220  ///   |      MI    * |
221  ///   ----------------
222  /// The first instruction has the special opcode "BUNDLE". It's not "inside"
223  /// a bundle, but the next three MIs are.
224  bool isInsideBundle() const {
225    return getFlag(BundledPred);
226  }
227
228  /// Return true if this instruction part of a bundle. This is true
229  /// if either itself or its following instruction is marked "InsideBundle".
230  bool isBundled() const {
231    return isBundledWithPred() || isBundledWithSucc();
232  }
233
234  /// Return true if this instruction is part of a bundle, and it is not the
235  /// first instruction in the bundle.
236  bool isBundledWithPred() const { return getFlag(BundledPred); }
237
238  /// Return true if this instruction is part of a bundle, and it is not the
239  /// last instruction in the bundle.
240  bool isBundledWithSucc() const { return getFlag(BundledSucc); }
241
242  /// Bundle this instruction with its predecessor. This can be an unbundled
243  /// instruction, or it can be the first instruction in a bundle.
244  void bundleWithPred();
245
246  /// Bundle this instruction with its successor. This can be an unbundled
247  /// instruction, or it can be the last instruction in a bundle.
248  void bundleWithSucc();
249
250  /// Break bundle above this instruction.
251  void unbundleFromPred();
252
253  /// Break bundle below this instruction.
254  void unbundleFromSucc();
255
256  /// Returns the debug location id of this MachineInstr.
257  const DebugLoc &getDebugLoc() const { return debugLoc; }
258
259  /// Return the debug variable referenced by
260  /// this DBG_VALUE instruction.
261  const DILocalVariable *getDebugVariable() const;
262
263  /// Return the complex address expression referenced by
264  /// this DBG_VALUE instruction.
265  const DIExpression *getDebugExpression() const;
266
267  /// Emit an error referring to the source location of this instruction.
268  /// This should only be used for inline assembly that is somehow
269  /// impossible to compile. Other errors should have been handled much
270  /// earlier.
271  ///
272  /// If this method returns, the caller should try to recover from the error.
273  void emitError(StringRef Msg) const;
274
275  /// Returns the target instruction descriptor of this MachineInstr.
276  const MCInstrDesc &getDesc() const { return *MCID; }
277
278  /// Returns the opcode of this MachineInstr.
279  unsigned getOpcode() const { return MCID->Opcode; }
280
281  /// Access to explicit operands of the instruction.
282  unsigned getNumOperands() const { return NumOperands; }
283
284  const MachineOperand& getOperand(unsigned i) const {
285    assert(i < getNumOperands() && "getOperand() out of range!");
286    return Operands[i];
287  }
288  MachineOperand& getOperand(unsigned i) {
289    assert(i < getNumOperands() && "getOperand() out of range!");
290    return Operands[i];
291  }
292
293  /// Returns the number of non-implicit operands.
294  unsigned getNumExplicitOperands() const;
295
296  /// iterator/begin/end - Iterate over all operands of a machine instruction.
297  using mop_iterator = MachineOperand *;
298  using const_mop_iterator = const MachineOperand *;
299
300  mop_iterator operands_begin() { return Operands; }
301  mop_iterator operands_end() { return Operands + NumOperands; }
302
303  const_mop_iterator operands_begin() const { return Operands; }
304  const_mop_iterator operands_end() const { return Operands + NumOperands; }
305
306  iterator_range<mop_iterator> operands() {
307    return make_range(operands_begin(), operands_end());
308  }
309  iterator_range<const_mop_iterator> operands() const {
310    return make_range(operands_begin(), operands_end());
311  }
312  iterator_range<mop_iterator> explicit_operands() {
313    return make_range(operands_begin(),
314                      operands_begin() + getNumExplicitOperands());
315  }
316  iterator_range<const_mop_iterator> explicit_operands() const {
317    return make_range(operands_begin(),
318                      operands_begin() + getNumExplicitOperands());
319  }
320  iterator_range<mop_iterator> implicit_operands() {
321    return make_range(explicit_operands().end(), operands_end());
322  }
323  iterator_range<const_mop_iterator> implicit_operands() const {
324    return make_range(explicit_operands().end(), operands_end());
325  }
326  /// Returns a range over all explicit operands that are register definitions.
327  /// Implicit definition are not included!
328  iterator_range<mop_iterator> defs() {
329    return make_range(operands_begin(),
330                      operands_begin() + getDesc().getNumDefs());
331  }
332  /// \copydoc defs()
333  iterator_range<const_mop_iterator> defs() const {
334    return make_range(operands_begin(),
335                      operands_begin() + getDesc().getNumDefs());
336  }
337  /// Returns a range that includes all operands that are register uses.
338  /// This may include unrelated operands which are not register uses.
339  iterator_range<mop_iterator> uses() {
340    return make_range(operands_begin() + getDesc().getNumDefs(),
341                      operands_end());
342  }
343  /// \copydoc uses()
344  iterator_range<const_mop_iterator> uses() const {
345    return make_range(operands_begin() + getDesc().getNumDefs(),
346                      operands_end());
347  }
348  iterator_range<mop_iterator> explicit_uses() {
349    return make_range(operands_begin() + getDesc().getNumDefs(),
350                      operands_begin() + getNumExplicitOperands() );
351  }
352  iterator_range<const_mop_iterator> explicit_uses() const {
353    return make_range(operands_begin() + getDesc().getNumDefs(),
354                      operands_begin() + getNumExplicitOperands() );
355  }
356
357  /// Returns the number of the operand iterator \p I points to.
358  unsigned getOperandNo(const_mop_iterator I) const {
359    return I - operands_begin();
360  }
361
362  /// Access to memory operands of the instruction
363  mmo_iterator memoperands_begin() const { return MemRefs; }
364  mmo_iterator memoperands_end() const { return MemRefs + NumMemRefs; }
365  /// Return true if we don't have any memory operands which described the the
366  /// memory access done by this instruction.  If this is true, calling code
367  /// must be conservative.
368  bool memoperands_empty() const { return NumMemRefs == 0; }
369
370  iterator_range<mmo_iterator>  memoperands() {
371    return make_range(memoperands_begin(), memoperands_end());
372  }
373  iterator_range<mmo_iterator> memoperands() const {
374    return make_range(memoperands_begin(), memoperands_end());
375  }
376
377  /// Return true if this instruction has exactly one MachineMemOperand.
378  bool hasOneMemOperand() const {
379    return NumMemRefs == 1;
380  }
381
382  /// API for querying MachineInstr properties. They are the same as MCInstrDesc
383  /// queries but they are bundle aware.
384
385  enum QueryType {
386    IgnoreBundle,    // Ignore bundles
387    AnyInBundle,     // Return true if any instruction in bundle has property
388    AllInBundle      // Return true if all instructions in bundle have property
389  };
390
391  /// Return true if the instruction (or in the case of a bundle,
392  /// the instructions inside the bundle) has the specified property.
393  /// The first argument is the property being queried.
394  /// The second argument indicates whether the query should look inside
395  /// instruction bundles.
396  bool hasProperty(unsigned MCFlag, QueryType Type = AnyInBundle) const {
397    // Inline the fast path for unbundled or bundle-internal instructions.
398    if (Type == IgnoreBundle || !isBundled() || isBundledWithPred())
399      return getDesc().getFlags() & (1ULL << MCFlag);
400
401    // If this is the first instruction in a bundle, take the slow path.
402    return hasPropertyInBundle(1ULL << MCFlag, Type);
403  }
404
405  /// Return true if this instruction can have a variable number of operands.
406  /// In this case, the variable operands will be after the normal
407  /// operands but before the implicit definitions and uses (if any are
408  /// present).
409  bool isVariadic(QueryType Type = IgnoreBundle) const {
410    return hasProperty(MCID::Variadic, Type);
411  }
412
413  /// Set if this instruction has an optional definition, e.g.
414  /// ARM instructions which can set condition code if 's' bit is set.
415  bool hasOptionalDef(QueryType Type = IgnoreBundle) const {
416    return hasProperty(MCID::HasOptionalDef, Type);
417  }
418
419  /// Return true if this is a pseudo instruction that doesn't
420  /// correspond to a real machine instruction.
421  bool isPseudo(QueryType Type = IgnoreBundle) const {
422    return hasProperty(MCID::Pseudo, Type);
423  }
424
425  bool isReturn(QueryType Type = AnyInBundle) const {
426    return hasProperty(MCID::Return, Type);
427  }
428
429  bool isCall(QueryType Type = AnyInBundle) const {
430    return hasProperty(MCID::Call, Type);
431  }
432
433  /// Returns true if the specified instruction stops control flow
434  /// from executing the instruction immediately following it.  Examples include
435  /// unconditional branches and return instructions.
436  bool isBarrier(QueryType Type = AnyInBundle) const {
437    return hasProperty(MCID::Barrier, Type);
438  }
439
440  /// Returns true if this instruction part of the terminator for a basic block.
441  /// Typically this is things like return and branch instructions.
442  ///
443  /// Various passes use this to insert code into the bottom of a basic block,
444  /// but before control flow occurs.
445  bool isTerminator(QueryType Type = AnyInBundle) const {
446    return hasProperty(MCID::Terminator, Type);
447  }
448
449  /// Returns true if this is a conditional, unconditional, or indirect branch.
450  /// Predicates below can be used to discriminate between
451  /// these cases, and the TargetInstrInfo::AnalyzeBranch method can be used to
452  /// get more information.
453  bool isBranch(QueryType Type = AnyInBundle) const {
454    return hasProperty(MCID::Branch, Type);
455  }
456
457  /// Return true if this is an indirect branch, such as a
458  /// branch through a register.
459  bool isIndirectBranch(QueryType Type = AnyInBundle) const {
460    return hasProperty(MCID::IndirectBranch, Type);
461  }
462
463  /// Return true if this is a branch which may fall
464  /// through to the next instruction or may transfer control flow to some other
465  /// block.  The TargetInstrInfo::AnalyzeBranch method can be used to get more
466  /// information about this branch.
467  bool isConditionalBranch(QueryType Type = AnyInBundle) const {
468    return isBranch(Type) & !isBarrier(Type) & !isIndirectBranch(Type);
469  }
470
471  /// Return true if this is a branch which always
472  /// transfers control flow to some other block.  The
473  /// TargetInstrInfo::AnalyzeBranch method can be used to get more information
474  /// about this branch.
475  bool isUnconditionalBranch(QueryType Type = AnyInBundle) const {
476    return isBranch(Type) & isBarrier(Type) & !isIndirectBranch(Type);
477  }
478
479  /// Return true if this instruction has a predicate operand that
480  /// controls execution.  It may be set to 'always', or may be set to other
481  /// values.   There are various methods in TargetInstrInfo that can be used to
482  /// control and modify the predicate in this instruction.
483  bool isPredicable(QueryType Type = AllInBundle) const {
484    // If it's a bundle than all bundled instructions must be predicable for this
485    // to return true.
486    return hasProperty(MCID::Predicable, Type);
487  }
488
489  /// Return true if this instruction is a comparison.
490  bool isCompare(QueryType Type = IgnoreBundle) const {
491    return hasProperty(MCID::Compare, Type);
492  }
493
494  /// Return true if this instruction is a move immediate
495  /// (including conditional moves) instruction.
496  bool isMoveImmediate(QueryType Type = IgnoreBundle) const {
497    return hasProperty(MCID::MoveImm, Type);
498  }
499
500  /// Return true if this instruction is a bitcast instruction.
501  bool isBitcast(QueryType Type = IgnoreBundle) const {
502    return hasProperty(MCID::Bitcast, Type);
503  }
504
505  /// Return true if this instruction is a select instruction.
506  bool isSelect(QueryType Type = IgnoreBundle) const {
507    return hasProperty(MCID::Select, Type);
508  }
509
510  /// Return true if this instruction cannot be safely duplicated.
511  /// For example, if the instruction has a unique labels attached
512  /// to it, duplicating it would cause multiple definition errors.
513  bool isNotDuplicable(QueryType Type = AnyInBundle) const {
514    return hasProperty(MCID::NotDuplicable, Type);
515  }
516
517  /// Return true if this instruction is convergent.
518  /// Convergent instructions can not be made control-dependent on any
519  /// additional values.
520  bool isConvergent(QueryType Type = AnyInBundle) const {
521    if (isInlineAsm()) {
522      unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
523      if (ExtraInfo & InlineAsm::Extra_IsConvergent)
524        return true;
525    }
526    return hasProperty(MCID::Convergent, Type);
527  }
528
529  /// Returns true if the specified instruction has a delay slot
530  /// which must be filled by the code generator.
531  bool hasDelaySlot(QueryType Type = AnyInBundle) const {
532    return hasProperty(MCID::DelaySlot, Type);
533  }
534
535  /// Return true for instructions that can be folded as
536  /// memory operands in other instructions. The most common use for this
537  /// is instructions that are simple loads from memory that don't modify
538  /// the loaded value in any way, but it can also be used for instructions
539  /// that can be expressed as constant-pool loads, such as V_SETALLONES
540  /// on x86, to allow them to be folded when it is beneficial.
541  /// This should only be set on instructions that return a value in their
542  /// only virtual register definition.
543  bool canFoldAsLoad(QueryType Type = IgnoreBundle) const {
544    return hasProperty(MCID::FoldableAsLoad, Type);
545  }
546
547  /// \brief Return true if this instruction behaves
548  /// the same way as the generic REG_SEQUENCE instructions.
549  /// E.g., on ARM,
550  /// dX VMOVDRR rY, rZ
551  /// is equivalent to
552  /// dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1.
553  ///
554  /// Note that for the optimizers to be able to take advantage of
555  /// this property, TargetInstrInfo::getRegSequenceLikeInputs has to be
556  /// override accordingly.
557  bool isRegSequenceLike(QueryType Type = IgnoreBundle) const {
558    return hasProperty(MCID::RegSequence, Type);
559  }
560
561  /// \brief Return true if this instruction behaves
562  /// the same way as the generic EXTRACT_SUBREG instructions.
563  /// E.g., on ARM,
564  /// rX, rY VMOVRRD dZ
565  /// is equivalent to two EXTRACT_SUBREG:
566  /// rX = EXTRACT_SUBREG dZ, ssub_0
567  /// rY = EXTRACT_SUBREG dZ, ssub_1
568  ///
569  /// Note that for the optimizers to be able to take advantage of
570  /// this property, TargetInstrInfo::getExtractSubregLikeInputs has to be
571  /// override accordingly.
572  bool isExtractSubregLike(QueryType Type = IgnoreBundle) const {
573    return hasProperty(MCID::ExtractSubreg, Type);
574  }
575
576  /// \brief Return true if this instruction behaves
577  /// the same way as the generic INSERT_SUBREG instructions.
578  /// E.g., on ARM,
579  /// dX = VSETLNi32 dY, rZ, Imm
580  /// is equivalent to a INSERT_SUBREG:
581  /// dX = INSERT_SUBREG dY, rZ, translateImmToSubIdx(Imm)
582  ///
583  /// Note that for the optimizers to be able to take advantage of
584  /// this property, TargetInstrInfo::getInsertSubregLikeInputs has to be
585  /// override accordingly.
586  bool isInsertSubregLike(QueryType Type = IgnoreBundle) const {
587    return hasProperty(MCID::InsertSubreg, Type);
588  }
589
590  //===--------------------------------------------------------------------===//
591  // Side Effect Analysis
592  //===--------------------------------------------------------------------===//
593
594  /// Return true if this instruction could possibly read memory.
595  /// Instructions with this flag set are not necessarily simple load
596  /// instructions, they may load a value and modify it, for example.
597  bool mayLoad(QueryType Type = AnyInBundle) const {
598    if (isInlineAsm()) {
599      unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
600      if (ExtraInfo & InlineAsm::Extra_MayLoad)
601        return true;
602    }
603    return hasProperty(MCID::MayLoad, Type);
604  }
605
606  /// Return true if this instruction could possibly modify memory.
607  /// Instructions with this flag set are not necessarily simple store
608  /// instructions, they may store a modified value based on their operands, or
609  /// may not actually modify anything, for example.
610  bool mayStore(QueryType Type = AnyInBundle) const {
611    if (isInlineAsm()) {
612      unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
613      if (ExtraInfo & InlineAsm::Extra_MayStore)
614        return true;
615    }
616    return hasProperty(MCID::MayStore, Type);
617  }
618
619  /// Return true if this instruction could possibly read or modify memory.
620  bool mayLoadOrStore(QueryType Type = AnyInBundle) const {
621    return mayLoad(Type) || mayStore(Type);
622  }
623
624  //===--------------------------------------------------------------------===//
625  // Flags that indicate whether an instruction can be modified by a method.
626  //===--------------------------------------------------------------------===//
627
628  /// Return true if this may be a 2- or 3-address
629  /// instruction (of the form "X = op Y, Z, ..."), which produces the same
630  /// result if Y and Z are exchanged.  If this flag is set, then the
631  /// TargetInstrInfo::commuteInstruction method may be used to hack on the
632  /// instruction.
633  ///
634  /// Note that this flag may be set on instructions that are only commutable
635  /// sometimes.  In these cases, the call to commuteInstruction will fail.
636  /// Also note that some instructions require non-trivial modification to
637  /// commute them.
638  bool isCommutable(QueryType Type = IgnoreBundle) const {
639    return hasProperty(MCID::Commutable, Type);
640  }
641
642  /// Return true if this is a 2-address instruction
643  /// which can be changed into a 3-address instruction if needed.  Doing this
644  /// transformation can be profitable in the register allocator, because it
645  /// means that the instruction can use a 2-address form if possible, but
646  /// degrade into a less efficient form if the source and dest register cannot
647  /// be assigned to the same register.  For example, this allows the x86
648  /// backend to turn a "shl reg, 3" instruction into an LEA instruction, which
649  /// is the same speed as the shift but has bigger code size.
650  ///
651  /// If this returns true, then the target must implement the
652  /// TargetInstrInfo::convertToThreeAddress method for this instruction, which
653  /// is allowed to fail if the transformation isn't valid for this specific
654  /// instruction (e.g. shl reg, 4 on x86).
655  ///
656  bool isConvertibleTo3Addr(QueryType Type = IgnoreBundle) const {
657    return hasProperty(MCID::ConvertibleTo3Addr, Type);
658  }
659
660  /// Return true if this instruction requires
661  /// custom insertion support when the DAG scheduler is inserting it into a
662  /// machine basic block.  If this is true for the instruction, it basically
663  /// means that it is a pseudo instruction used at SelectionDAG time that is
664  /// expanded out into magic code by the target when MachineInstrs are formed.
665  ///
666  /// If this is true, the TargetLoweringInfo::InsertAtEndOfBasicBlock method
667  /// is used to insert this into the MachineBasicBlock.
668  bool usesCustomInsertionHook(QueryType Type = IgnoreBundle) const {
669    return hasProperty(MCID::UsesCustomInserter, Type);
670  }
671
672  /// Return true if this instruction requires *adjustment*
673  /// after instruction selection by calling a target hook. For example, this
674  /// can be used to fill in ARM 's' optional operand depending on whether
675  /// the conditional flag register is used.
676  bool hasPostISelHook(QueryType Type = IgnoreBundle) const {
677    return hasProperty(MCID::HasPostISelHook, Type);
678  }
679
680  /// Returns true if this instruction is a candidate for remat.
681  /// This flag is deprecated, please don't use it anymore.  If this
682  /// flag is set, the isReallyTriviallyReMaterializable() method is called to
683  /// verify the instruction is really rematable.
684  bool isRematerializable(QueryType Type = AllInBundle) const {
685    // It's only possible to re-mat a bundle if all bundled instructions are
686    // re-materializable.
687    return hasProperty(MCID::Rematerializable, Type);
688  }
689
690  /// Returns true if this instruction has the same cost (or less) than a move
691  /// instruction. This is useful during certain types of optimizations
692  /// (e.g., remat during two-address conversion or machine licm)
693  /// where we would like to remat or hoist the instruction, but not if it costs
694  /// more than moving the instruction into the appropriate register. Note, we
695  /// are not marking copies from and to the same register class with this flag.
696  bool isAsCheapAsAMove(QueryType Type = AllInBundle) const {
697    // Only returns true for a bundle if all bundled instructions are cheap.
698    return hasProperty(MCID::CheapAsAMove, Type);
699  }
700
701  /// Returns true if this instruction source operands
702  /// have special register allocation requirements that are not captured by the
703  /// operand register classes. e.g. ARM::STRD's two source registers must be an
704  /// even / odd pair, ARM::STM registers have to be in ascending order.
705  /// Post-register allocation passes should not attempt to change allocations
706  /// for sources of instructions with this flag.
707  bool hasExtraSrcRegAllocReq(QueryType Type = AnyInBundle) const {
708    return hasProperty(MCID::ExtraSrcRegAllocReq, Type);
709  }
710
711  /// Returns true if this instruction def operands
712  /// have special register allocation requirements that are not captured by the
713  /// operand register classes. e.g. ARM::LDRD's two def registers must be an
714  /// even / odd pair, ARM::LDM registers have to be in ascending order.
715  /// Post-register allocation passes should not attempt to change allocations
716  /// for definitions of instructions with this flag.
717  bool hasExtraDefRegAllocReq(QueryType Type = AnyInBundle) const {
718    return hasProperty(MCID::ExtraDefRegAllocReq, Type);
719  }
720
721  enum MICheckType {
722    CheckDefs,      // Check all operands for equality
723    CheckKillDead,  // Check all operands including kill / dead markers
724    IgnoreDefs,     // Ignore all definitions
725    IgnoreVRegDefs  // Ignore virtual register definitions
726  };
727
728  /// Return true if this instruction is identical to \p Other.
729  /// Two instructions are identical if they have the same opcode and all their
730  /// operands are identical (with respect to MachineOperand::isIdenticalTo()).
731  /// Note that this means liveness related flags (dead, undef, kill) do not
732  /// affect the notion of identical.
733  bool isIdenticalTo(const MachineInstr &Other,
734                     MICheckType Check = CheckDefs) const;
735
736  /// Unlink 'this' from the containing basic block, and return it without
737  /// deleting it.
738  ///
739  /// This function can not be used on bundled instructions, use
740  /// removeFromBundle() to remove individual instructions from a bundle.
741  MachineInstr *removeFromParent();
742
743  /// Unlink this instruction from its basic block and return it without
744  /// deleting it.
745  ///
746  /// If the instruction is part of a bundle, the other instructions in the
747  /// bundle remain bundled.
748  MachineInstr *removeFromBundle();
749
750  /// Unlink 'this' from the containing basic block and delete it.
751  ///
752  /// If this instruction is the header of a bundle, the whole bundle is erased.
753  /// This function can not be used for instructions inside a bundle, use
754  /// eraseFromBundle() to erase individual bundled instructions.
755  void eraseFromParent();
756
757  /// Unlink 'this' from the containing basic block and delete it.
758  ///
759  /// For all definitions mark their uses in DBG_VALUE nodes
760  /// as undefined. Otherwise like eraseFromParent().
761  void eraseFromParentAndMarkDBGValuesForRemoval();
762
763  /// Unlink 'this' form its basic block and delete it.
764  ///
765  /// If the instruction is part of a bundle, the other instructions in the
766  /// bundle remain bundled.
767  void eraseFromBundle();
768
769  bool isEHLabel() const { return getOpcode() == TargetOpcode::EH_LABEL; }
770  bool isGCLabel() const { return getOpcode() == TargetOpcode::GC_LABEL; }
771
772  /// Returns true if the MachineInstr represents a label.
773  bool isLabel() const { return isEHLabel() || isGCLabel(); }
774
775  bool isCFIInstruction() const {
776    return getOpcode() == TargetOpcode::CFI_INSTRUCTION;
777  }
778
779  // True if the instruction represents a position in the function.
780  bool isPosition() const { return isLabel() || isCFIInstruction(); }
781
782  bool isDebugValue() const { return getOpcode() == TargetOpcode::DBG_VALUE; }
783
784  /// A DBG_VALUE is indirect iff the first operand is a register and
785  /// the second operand is an immediate.
786  bool isIndirectDebugValue() const {
787    return isDebugValue()
788      && getOperand(0).isReg()
789      && getOperand(1).isImm();
790  }
791
792  bool isPHI() const { return getOpcode() == TargetOpcode::PHI; }
793  bool isKill() const { return getOpcode() == TargetOpcode::KILL; }
794  bool isImplicitDef() const { return getOpcode()==TargetOpcode::IMPLICIT_DEF; }
795  bool isInlineAsm() const { return getOpcode() == TargetOpcode::INLINEASM; }
796
797  bool isMSInlineAsm() const {
798    return getOpcode() == TargetOpcode::INLINEASM && getInlineAsmDialect();
799  }
800
801  bool isStackAligningInlineAsm() const;
802  InlineAsm::AsmDialect getInlineAsmDialect() const;
803
804  bool isInsertSubreg() const {
805    return getOpcode() == TargetOpcode::INSERT_SUBREG;
806  }
807
808  bool isSubregToReg() const {
809    return getOpcode() == TargetOpcode::SUBREG_TO_REG;
810  }
811
812  bool isRegSequence() const {
813    return getOpcode() == TargetOpcode::REG_SEQUENCE;
814  }
815
816  bool isBundle() const {
817    return getOpcode() == TargetOpcode::BUNDLE;
818  }
819
820  bool isCopy() const {
821    return getOpcode() == TargetOpcode::COPY;
822  }
823
824  bool isFullCopy() const {
825    return isCopy() && !getOperand(0).getSubReg() && !getOperand(1).getSubReg();
826  }
827
828  bool isExtractSubreg() const {
829    return getOpcode() == TargetOpcode::EXTRACT_SUBREG;
830  }
831
832  /// Return true if the instruction behaves like a copy.
833  /// This does not include native copy instructions.
834  bool isCopyLike() const {
835    return isCopy() || isSubregToReg();
836  }
837
838  /// Return true is the instruction is an identity copy.
839  bool isIdentityCopy() const {
840    return isCopy() && getOperand(0).getReg() == getOperand(1).getReg() &&
841      getOperand(0).getSubReg() == getOperand(1).getSubReg();
842  }
843
844  /// Return true if this instruction doesn't produce any output in the form of
845  /// executable instructions.
846  bool isMetaInstruction() const {
847    switch (getOpcode()) {
848    default:
849      return false;
850    case TargetOpcode::IMPLICIT_DEF:
851    case TargetOpcode::KILL:
852    case TargetOpcode::CFI_INSTRUCTION:
853    case TargetOpcode::EH_LABEL:
854    case TargetOpcode::GC_LABEL:
855    case TargetOpcode::DBG_VALUE:
856      return true;
857    }
858  }
859
860  /// Return true if this is a transient instruction that is either very likely
861  /// to be eliminated during register allocation (such as copy-like
862  /// instructions), or if this instruction doesn't have an execution-time cost.
863  bool isTransient() const {
864    switch (getOpcode()) {
865    default:
866      return isMetaInstruction();
867    // Copy-like instructions are usually eliminated during register allocation.
868    case TargetOpcode::PHI:
869    case TargetOpcode::COPY:
870    case TargetOpcode::INSERT_SUBREG:
871    case TargetOpcode::SUBREG_TO_REG:
872    case TargetOpcode::REG_SEQUENCE:
873      return true;
874    }
875  }
876
877  /// Return the number of instructions inside the MI bundle, excluding the
878  /// bundle header.
879  ///
880  /// This is the number of instructions that MachineBasicBlock::iterator
881  /// skips, 0 for unbundled instructions.
882  unsigned getBundleSize() const;
883
884  /// Return true if the MachineInstr reads the specified register.
885  /// If TargetRegisterInfo is passed, then it also checks if there
886  /// is a read of a super-register.
887  /// This does not count partial redefines of virtual registers as reads:
888  ///   %reg1024:6 = OP.
889  bool readsRegister(unsigned Reg,
890                     const TargetRegisterInfo *TRI = nullptr) const {
891    return findRegisterUseOperandIdx(Reg, false, TRI) != -1;
892  }
893
894  /// Return true if the MachineInstr reads the specified virtual register.
895  /// Take into account that a partial define is a
896  /// read-modify-write operation.
897  bool readsVirtualRegister(unsigned Reg) const {
898    return readsWritesVirtualRegister(Reg).first;
899  }
900
901  /// Return a pair of bools (reads, writes) indicating if this instruction
902  /// reads or writes Reg. This also considers partial defines.
903  /// If Ops is not null, all operand indices for Reg are added.
904  std::pair<bool,bool> readsWritesVirtualRegister(unsigned Reg,
905                                SmallVectorImpl<unsigned> *Ops = nullptr) const;
906
907  /// Return true if the MachineInstr kills the specified register.
908  /// If TargetRegisterInfo is passed, then it also checks if there is
909  /// a kill of a super-register.
910  bool killsRegister(unsigned Reg,
911                     const TargetRegisterInfo *TRI = nullptr) const {
912    return findRegisterUseOperandIdx(Reg, true, TRI) != -1;
913  }
914
915  /// Return true if the MachineInstr fully defines the specified register.
916  /// If TargetRegisterInfo is passed, then it also checks
917  /// if there is a def of a super-register.
918  /// NOTE: It's ignoring subreg indices on virtual registers.
919  bool definesRegister(unsigned Reg,
920                       const TargetRegisterInfo *TRI = nullptr) const {
921    return findRegisterDefOperandIdx(Reg, false, false, TRI) != -1;
922  }
923
924  /// Return true if the MachineInstr modifies (fully define or partially
925  /// define) the specified register.
926  /// NOTE: It's ignoring subreg indices on virtual registers.
927  bool modifiesRegister(unsigned Reg, const TargetRegisterInfo *TRI) const {
928    return findRegisterDefOperandIdx(Reg, false, true, TRI) != -1;
929  }
930
931  /// Returns true if the register is dead in this machine instruction.
932  /// If TargetRegisterInfo is passed, then it also checks
933  /// if there is a dead def of a super-register.
934  bool registerDefIsDead(unsigned Reg,
935                         const TargetRegisterInfo *TRI = nullptr) const {
936    return findRegisterDefOperandIdx(Reg, true, false, TRI) != -1;
937  }
938
939  /// Returns true if the MachineInstr has an implicit-use operand of exactly
940  /// the given register (not considering sub/super-registers).
941  bool hasRegisterImplicitUseOperand(unsigned Reg) const;
942
943  /// Returns the operand index that is a use of the specific register or -1
944  /// if it is not found. It further tightens the search criteria to a use
945  /// that kills the register if isKill is true.
946  int findRegisterUseOperandIdx(unsigned Reg, bool isKill = false,
947                                const TargetRegisterInfo *TRI = nullptr) const;
948
949  /// Wrapper for findRegisterUseOperandIdx, it returns
950  /// a pointer to the MachineOperand rather than an index.
951  MachineOperand *findRegisterUseOperand(unsigned Reg, bool isKill = false,
952                                      const TargetRegisterInfo *TRI = nullptr) {
953    int Idx = findRegisterUseOperandIdx(Reg, isKill, TRI);
954    return (Idx == -1) ? nullptr : &getOperand(Idx);
955  }
956
957  const MachineOperand *findRegisterUseOperand(
958    unsigned Reg, bool isKill = false,
959    const TargetRegisterInfo *TRI = nullptr) const {
960    return const_cast<MachineInstr *>(this)->
961      findRegisterUseOperand(Reg, isKill, TRI);
962  }
963
964  /// Returns the operand index that is a def of the specified register or
965  /// -1 if it is not found. If isDead is true, defs that are not dead are
966  /// skipped. If Overlap is true, then it also looks for defs that merely
967  /// overlap the specified register. If TargetRegisterInfo is non-null,
968  /// then it also checks if there is a def of a super-register.
969  /// This may also return a register mask operand when Overlap is true.
970  int findRegisterDefOperandIdx(unsigned Reg,
971                                bool isDead = false, bool Overlap = false,
972                                const TargetRegisterInfo *TRI = nullptr) const;
973
974  /// Wrapper for findRegisterDefOperandIdx, it returns
975  /// a pointer to the MachineOperand rather than an index.
976  MachineOperand *findRegisterDefOperand(unsigned Reg, bool isDead = false,
977                                      const TargetRegisterInfo *TRI = nullptr) {
978    int Idx = findRegisterDefOperandIdx(Reg, isDead, false, TRI);
979    return (Idx == -1) ? nullptr : &getOperand(Idx);
980  }
981
982  /// Find the index of the first operand in the
983  /// operand list that is used to represent the predicate. It returns -1 if
984  /// none is found.
985  int findFirstPredOperandIdx() const;
986
987  /// Find the index of the flag word operand that
988  /// corresponds to operand OpIdx on an inline asm instruction.  Returns -1 if
989  /// getOperand(OpIdx) does not belong to an inline asm operand group.
990  ///
991  /// If GroupNo is not NULL, it will receive the number of the operand group
992  /// containing OpIdx.
993  ///
994  /// The flag operand is an immediate that can be decoded with methods like
995  /// InlineAsm::hasRegClassConstraint().
996  int findInlineAsmFlagIdx(unsigned OpIdx, unsigned *GroupNo = nullptr) const;
997
998  /// Compute the static register class constraint for operand OpIdx.
999  /// For normal instructions, this is derived from the MCInstrDesc.
1000  /// For inline assembly it is derived from the flag words.
1001  ///
1002  /// Returns NULL if the static register class constraint cannot be
1003  /// determined.
1004  const TargetRegisterClass*
1005  getRegClassConstraint(unsigned OpIdx,
1006                        const TargetInstrInfo *TII,
1007                        const TargetRegisterInfo *TRI) const;
1008
1009  /// \brief Applies the constraints (def/use) implied by this MI on \p Reg to
1010  /// the given \p CurRC.
1011  /// If \p ExploreBundle is set and MI is part of a bundle, all the
1012  /// instructions inside the bundle will be taken into account. In other words,
1013  /// this method accumulates all the constraints of the operand of this MI and
1014  /// the related bundle if MI is a bundle or inside a bundle.
1015  ///
1016  /// Returns the register class that satisfies both \p CurRC and the
1017  /// constraints set by MI. Returns NULL if such a register class does not
1018  /// exist.
1019  ///
1020  /// \pre CurRC must not be NULL.
1021  const TargetRegisterClass *getRegClassConstraintEffectForVReg(
1022      unsigned Reg, const TargetRegisterClass *CurRC,
1023      const TargetInstrInfo *TII, const TargetRegisterInfo *TRI,
1024      bool ExploreBundle = false) const;
1025
1026  /// \brief Applies the constraints (def/use) implied by the \p OpIdx operand
1027  /// to the given \p CurRC.
1028  ///
1029  /// Returns the register class that satisfies both \p CurRC and the
1030  /// constraints set by \p OpIdx MI. Returns NULL if such a register class
1031  /// does not exist.
1032  ///
1033  /// \pre CurRC must not be NULL.
1034  /// \pre The operand at \p OpIdx must be a register.
1035  const TargetRegisterClass *
1036  getRegClassConstraintEffect(unsigned OpIdx, const TargetRegisterClass *CurRC,
1037                              const TargetInstrInfo *TII,
1038                              const TargetRegisterInfo *TRI) const;
1039
1040  /// Add a tie between the register operands at DefIdx and UseIdx.
1041  /// The tie will cause the register allocator to ensure that the two
1042  /// operands are assigned the same physical register.
1043  ///
1044  /// Tied operands are managed automatically for explicit operands in the
1045  /// MCInstrDesc. This method is for exceptional cases like inline asm.
1046  void tieOperands(unsigned DefIdx, unsigned UseIdx);
1047
1048  /// Given the index of a tied register operand, find the
1049  /// operand it is tied to. Defs are tied to uses and vice versa. Returns the
1050  /// index of the tied operand which must exist.
1051  unsigned findTiedOperandIdx(unsigned OpIdx) const;
1052
1053  /// Given the index of a register def operand,
1054  /// check if the register def is tied to a source operand, due to either
1055  /// two-address elimination or inline assembly constraints. Returns the
1056  /// first tied use operand index by reference if UseOpIdx is not null.
1057  bool isRegTiedToUseOperand(unsigned DefOpIdx,
1058                             unsigned *UseOpIdx = nullptr) const {
1059    const MachineOperand &MO = getOperand(DefOpIdx);
1060    if (!MO.isReg() || !MO.isDef() || !MO.isTied())
1061      return false;
1062    if (UseOpIdx)
1063      *UseOpIdx = findTiedOperandIdx(DefOpIdx);
1064    return true;
1065  }
1066
1067  /// Return true if the use operand of the specified index is tied to a def
1068  /// operand. It also returns the def operand index by reference if DefOpIdx
1069  /// is not null.
1070  bool isRegTiedToDefOperand(unsigned UseOpIdx,
1071                             unsigned *DefOpIdx = nullptr) const {
1072    const MachineOperand &MO = getOperand(UseOpIdx);
1073    if (!MO.isReg() || !MO.isUse() || !MO.isTied())
1074      return false;
1075    if (DefOpIdx)
1076      *DefOpIdx = findTiedOperandIdx(UseOpIdx);
1077    return true;
1078  }
1079
1080  /// Clears kill flags on all operands.
1081  void clearKillInfo();
1082
1083  /// Replace all occurrences of FromReg with ToReg:SubIdx,
1084  /// properly composing subreg indices where necessary.
1085  void substituteRegister(unsigned FromReg, unsigned ToReg, unsigned SubIdx,
1086                          const TargetRegisterInfo &RegInfo);
1087
1088  /// We have determined MI kills a register. Look for the
1089  /// operand that uses it and mark it as IsKill. If AddIfNotFound is true,
1090  /// add a implicit operand if it's not found. Returns true if the operand
1091  /// exists / is added.
1092  bool addRegisterKilled(unsigned IncomingReg,
1093                         const TargetRegisterInfo *RegInfo,
1094                         bool AddIfNotFound = false);
1095
1096  /// Clear all kill flags affecting Reg.  If RegInfo is provided, this includes
1097  /// all aliasing registers.
1098  void clearRegisterKills(unsigned Reg, const TargetRegisterInfo *RegInfo);
1099
1100  /// We have determined MI defined a register without a use.
1101  /// Look for the operand that defines it and mark it as IsDead. If
1102  /// AddIfNotFound is true, add a implicit operand if it's not found. Returns
1103  /// true if the operand exists / is added.
1104  bool addRegisterDead(unsigned Reg, const TargetRegisterInfo *RegInfo,
1105                       bool AddIfNotFound = false);
1106
1107  /// Clear all dead flags on operands defining register @p Reg.
1108  void clearRegisterDeads(unsigned Reg);
1109
1110  /// Mark all subregister defs of register @p Reg with the undef flag.
1111  /// This function is used when we determined to have a subregister def in an
1112  /// otherwise undefined super register.
1113  void setRegisterDefReadUndef(unsigned Reg, bool IsUndef = true);
1114
1115  /// We have determined MI defines a register. Make sure there is an operand
1116  /// defining Reg.
1117  void addRegisterDefined(unsigned Reg,
1118                          const TargetRegisterInfo *RegInfo = nullptr);
1119
1120  /// Mark every physreg used by this instruction as
1121  /// dead except those in the UsedRegs list.
1122  ///
1123  /// On instructions with register mask operands, also add implicit-def
1124  /// operands for all registers in UsedRegs.
1125  void setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs,
1126                             const TargetRegisterInfo &TRI);
1127
1128  /// Return true if it is safe to move this instruction. If
1129  /// SawStore is set to true, it means that there is a store (or call) between
1130  /// the instruction's location and its intended destination.
1131  bool isSafeToMove(AliasAnalysis *AA, bool &SawStore) const;
1132
1133  /// Returns true if this instruction's memory access aliases the memory
1134  /// access of Other.
1135  //
1136  /// Assumes any physical registers used to compute addresses
1137  /// have the same value for both instructions.  Returns false if neither
1138  /// instruction writes to memory.
1139  ///
1140  /// @param AA Optional alias analysis, used to compare memory operands.
1141  /// @param Other MachineInstr to check aliasing against.
1142  /// @param UseTBAA Whether to pass TBAA information to alias analysis.
1143  bool mayAlias(AliasAnalysis *AA, MachineInstr &Other, bool UseTBAA);
1144
1145  /// Return true if this instruction may have an ordered
1146  /// or volatile memory reference, or if the information describing the memory
1147  /// reference is not available. Return false if it is known to have no
1148  /// ordered or volatile memory references.
1149  bool hasOrderedMemoryRef() const;
1150
1151  /// Return true if this load instruction never traps and points to a memory
1152  /// location whose value doesn't change during the execution of this function.
1153  ///
1154  /// Examples include loading a value from the constant pool or from the
1155  /// argument area of a function (if it does not change).  If the instruction
1156  /// does multiple loads, this returns true only if all of the loads are
1157  /// dereferenceable and invariant.
1158  bool isDereferenceableInvariantLoad(AliasAnalysis *AA) const;
1159
1160  /// If the specified instruction is a PHI that always merges together the
1161  /// same virtual register, return the register, otherwise return 0.
1162  unsigned isConstantValuePHI() const;
1163
1164  /// Return true if this instruction has side effects that are not modeled
1165  /// by mayLoad / mayStore, etc.
1166  /// For all instructions, the property is encoded in MCInstrDesc::Flags
1167  /// (see MCInstrDesc::hasUnmodeledSideEffects(). The only exception is
1168  /// INLINEASM instruction, in which case the side effect property is encoded
1169  /// in one of its operands (see InlineAsm::Extra_HasSideEffect).
1170  ///
1171  bool hasUnmodeledSideEffects() const;
1172
1173  /// Returns true if it is illegal to fold a load across this instruction.
1174  bool isLoadFoldBarrier() const;
1175
1176  /// Return true if all the defs of this instruction are dead.
1177  bool allDefsAreDead() const;
1178
1179  /// Copy implicit register operands from specified
1180  /// instruction to this instruction.
1181  void copyImplicitOps(MachineFunction &MF, const MachineInstr &MI);
1182
1183  /// Debugging support
1184  /// @{
1185  /// Print this MI to \p OS.
1186  /// Only print the defs and the opcode if \p SkipOpers is true.
1187  /// Otherwise, also print operands if \p SkipDebugLoc is true.
1188  /// Otherwise, also print the debug loc, with a terminating newline.
1189  /// \p TII is used to print the opcode name.  If it's not present, but the
1190  /// MI is in a function, the opcode will be printed using the function's TII.
1191  void print(raw_ostream &OS, bool SkipOpers = false, bool SkipDebugLoc = false,
1192             const TargetInstrInfo *TII = nullptr) const;
1193  void print(raw_ostream &OS, ModuleSlotTracker &MST, bool SkipOpers = false,
1194             bool SkipDebugLoc = false,
1195             const TargetInstrInfo *TII = nullptr) const;
1196  void dump() const;
1197  /// @}
1198
1199  //===--------------------------------------------------------------------===//
1200  // Accessors used to build up machine instructions.
1201
1202  /// Add the specified operand to the instruction.  If it is an implicit
1203  /// operand, it is added to the end of the operand list.  If it is an
1204  /// explicit operand it is added at the end of the explicit operand list
1205  /// (before the first implicit operand).
1206  ///
1207  /// MF must be the machine function that was used to allocate this
1208  /// instruction.
1209  ///
1210  /// MachineInstrBuilder provides a more convenient interface for creating
1211  /// instructions and adding operands.
1212  void addOperand(MachineFunction &MF, const MachineOperand &Op);
1213
1214  /// Add an operand without providing an MF reference. This only works for
1215  /// instructions that are inserted in a basic block.
1216  ///
1217  /// MachineInstrBuilder and the two-argument addOperand(MF, MO) should be
1218  /// preferred.
1219  void addOperand(const MachineOperand &Op);
1220
1221  /// Replace the instruction descriptor (thus opcode) of
1222  /// the current instruction with a new one.
1223  void setDesc(const MCInstrDesc &tid) { MCID = &tid; }
1224
1225  /// Replace current source information with new such.
1226  /// Avoid using this, the constructor argument is preferable.
1227  void setDebugLoc(DebugLoc dl) {
1228    debugLoc = std::move(dl);
1229    assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
1230  }
1231
1232  /// Erase an operand from an instruction, leaving it with one
1233  /// fewer operand than it started with.
1234  void RemoveOperand(unsigned i);
1235
1236  /// Add a MachineMemOperand to the machine instruction.
1237  /// This function should be used only occasionally. The setMemRefs function
1238  /// is the primary method for setting up a MachineInstr's MemRefs list.
1239  void addMemOperand(MachineFunction &MF, MachineMemOperand *MO);
1240
1241  /// Assign this MachineInstr's memory reference descriptor list.
1242  /// This does not transfer ownership.
1243  void setMemRefs(mmo_iterator NewMemRefs, mmo_iterator NewMemRefsEnd) {
1244    setMemRefs(std::make_pair(NewMemRefs, NewMemRefsEnd-NewMemRefs));
1245  }
1246
1247  /// Assign this MachineInstr's memory reference descriptor list.  First
1248  /// element in the pair is the begin iterator/pointer to the array; the
1249  /// second is the number of MemoryOperands.  This does not transfer ownership
1250  /// of the underlying memory.
1251  void setMemRefs(std::pair<mmo_iterator, unsigned> NewMemRefs) {
1252    MemRefs = NewMemRefs.first;
1253    NumMemRefs = uint8_t(NewMemRefs.second);
1254    assert(NumMemRefs == NewMemRefs.second &&
1255           "Too many memrefs - must drop memory operands");
1256  }
1257
1258  /// Return a set of memrefs (begin iterator, size) which conservatively
1259  /// describe the memory behavior of both MachineInstrs.  This is appropriate
1260  /// for use when merging two MachineInstrs into one. This routine does not
1261  /// modify the memrefs of the this MachineInstr.
1262  std::pair<mmo_iterator, unsigned> mergeMemRefsWith(const MachineInstr& Other);
1263
1264  /// Clear this MachineInstr's memory reference descriptor list.  This resets
1265  /// the memrefs to their most conservative state.  This should be used only
1266  /// as a last resort since it greatly pessimizes our knowledge of the memory
1267  /// access performed by the instruction.
1268  void dropMemRefs() {
1269    MemRefs = nullptr;
1270    NumMemRefs = 0;
1271  }
1272
1273  /// Break any tie involving OpIdx.
1274  void untieRegOperand(unsigned OpIdx) {
1275    MachineOperand &MO = getOperand(OpIdx);
1276    if (MO.isReg() && MO.isTied()) {
1277      getOperand(findTiedOperandIdx(OpIdx)).TiedTo = 0;
1278      MO.TiedTo = 0;
1279    }
1280  }
1281
1282  /// Add all implicit def and use operands to this instruction.
1283  void addImplicitDefUseOperands(MachineFunction &MF);
1284
1285private:
1286  /// If this instruction is embedded into a MachineFunction, return the
1287  /// MachineRegisterInfo object for the current function, otherwise
1288  /// return null.
1289  MachineRegisterInfo *getRegInfo();
1290
1291  /// Unlink all of the register operands in this instruction from their
1292  /// respective use lists.  This requires that the operands already be on their
1293  /// use lists.
1294  void RemoveRegOperandsFromUseLists(MachineRegisterInfo&);
1295
1296  /// Add all of the register operands in this instruction from their
1297  /// respective use lists.  This requires that the operands not be on their
1298  /// use lists yet.
1299  void AddRegOperandsToUseLists(MachineRegisterInfo&);
1300
1301  /// Slow path for hasProperty when we're dealing with a bundle.
1302  bool hasPropertyInBundle(unsigned Mask, QueryType Type) const;
1303
1304  /// \brief Implements the logic of getRegClassConstraintEffectForVReg for the
1305  /// this MI and the given operand index \p OpIdx.
1306  /// If the related operand does not constrained Reg, this returns CurRC.
1307  const TargetRegisterClass *getRegClassConstraintEffectForVRegImpl(
1308      unsigned OpIdx, unsigned Reg, const TargetRegisterClass *CurRC,
1309      const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const;
1310};
1311
1312/// Special DenseMapInfo traits to compare MachineInstr* by *value* of the
1313/// instruction rather than by pointer value.
1314/// The hashing and equality testing functions ignore definitions so this is
1315/// useful for CSE, etc.
1316struct MachineInstrExpressionTrait : DenseMapInfo<MachineInstr*> {
1317  static inline MachineInstr *getEmptyKey() {
1318    return nullptr;
1319  }
1320
1321  static inline MachineInstr *getTombstoneKey() {
1322    return reinterpret_cast<MachineInstr*>(-1);
1323  }
1324
1325  static unsigned getHashValue(const MachineInstr* const &MI);
1326
1327  static bool isEqual(const MachineInstr* const &LHS,
1328                      const MachineInstr* const &RHS) {
1329    if (RHS == getEmptyKey() || RHS == getTombstoneKey() ||
1330        LHS == getEmptyKey() || LHS == getTombstoneKey())
1331      return LHS == RHS;
1332    return LHS->isIdenticalTo(*RHS, MachineInstr::IgnoreVRegDefs);
1333  }
1334};
1335
1336//===----------------------------------------------------------------------===//
1337// Debugging Support
1338
1339inline raw_ostream& operator<<(raw_ostream &OS, const MachineInstr &MI) {
1340  MI.print(OS);
1341  return OS;
1342}
1343
1344} // end namespace llvm
1345
1346#endif // LLVM_CODEGEN_MACHINEINSTR_H
1347