MachineInstr.h revision f3014761c955345d6e05491608e73228d014afb7
1//===- llvm/CodeGen/MachineInstr.h - MachineInstr class ---------*- C++ -*-===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file contains the declaration of the MachineInstr class, which is the 11// basic representation for all target dependent machine instructions used by 12// the back end. 13// 14//===----------------------------------------------------------------------===// 15 16#ifndef LLVM_CODEGEN_MACHINEINSTR_H 17#define LLVM_CODEGEN_MACHINEINSTR_H 18 19#include "llvm/ADT/DenseMapInfo.h" 20#include "llvm/ADT/ilist.h" 21#include "llvm/ADT/ilist_node.h" 22#include "llvm/ADT/iterator_range.h" 23#include "llvm/Analysis/AliasAnalysis.h" 24#include "llvm/CodeGen/MachineOperand.h" 25#include "llvm/IR/DebugLoc.h" 26#include "llvm/IR/InlineAsm.h" 27#include "llvm/MC/MCInstrDesc.h" 28#include "llvm/Support/ArrayRecycler.h" 29#include "llvm/Target/TargetOpcodes.h" 30#include <algorithm> 31#include <cassert> 32#include <cstdint> 33#include <utility> 34 35namespace llvm { 36 37template <typename T> class ArrayRef; 38class DIExpression; 39class DILocalVariable; 40class MachineBasicBlock; 41class MachineFunction; 42class MachineMemOperand; 43class MachineRegisterInfo; 44class ModuleSlotTracker; 45class raw_ostream; 46template <typename T> class SmallVectorImpl; 47class StringRef; 48class TargetInstrInfo; 49class TargetRegisterClass; 50class TargetRegisterInfo; 51 52//===----------------------------------------------------------------------===// 53/// Representation of each machine instruction. 54/// 55/// This class isn't a POD type, but it must have a trivial destructor. When a 56/// MachineFunction is deleted, all the contained MachineInstrs are deallocated 57/// without having their destructor called. 58/// 59class MachineInstr 60 : public ilist_node_with_parent<MachineInstr, MachineBasicBlock, 61 ilist_sentinel_tracking<true>> { 62public: 63 using mmo_iterator = MachineMemOperand **; 64 65 /// Flags to specify different kinds of comments to output in 66 /// assembly code. These flags carry semantic information not 67 /// otherwise easily derivable from the IR text. 68 /// 69 enum CommentFlag { 70 ReloadReuse = 0x1 // higher bits are reserved for target dep comments. 71 }; 72 73 enum MIFlag { 74 NoFlags = 0, 75 FrameSetup = 1 << 0, // Instruction is used as a part of 76 // function frame setup code. 77 FrameDestroy = 1 << 1, // Instruction is used as a part of 78 // function frame destruction code. 79 BundledPred = 1 << 2, // Instruction has bundled predecessors. 80 BundledSucc = 1 << 3 // Instruction has bundled successors. 81 }; 82 83private: 84 const MCInstrDesc *MCID; // Instruction descriptor. 85 MachineBasicBlock *Parent = nullptr; // Pointer to the owning basic block. 86 87 // Operands are allocated by an ArrayRecycler. 88 MachineOperand *Operands = nullptr; // Pointer to the first operand. 89 unsigned NumOperands = 0; // Number of operands on instruction. 90 using OperandCapacity = ArrayRecycler<MachineOperand>::Capacity; 91 OperandCapacity CapOperands; // Capacity of the Operands array. 92 93 uint8_t Flags = 0; // Various bits of additional 94 // information about machine 95 // instruction. 96 97 uint8_t AsmPrinterFlags = 0; // Various bits of information used by 98 // the AsmPrinter to emit helpful 99 // comments. This is *not* semantic 100 // information. Do not use this for 101 // anything other than to convey comment 102 // information to AsmPrinter. 103 104 uint8_t NumMemRefs = 0; // Information on memory references. 105 // Note that MemRefs == nullptr, means 'don't know', not 'no memory access'. 106 // Calling code must treat missing information conservatively. If the number 107 // of memory operands required to be precise exceeds the maximum value of 108 // NumMemRefs - currently 256 - we remove the operands entirely. Note also 109 // that this is a non-owning reference to a shared copy on write buffer owned 110 // by the MachineFunction and created via MF.allocateMemRefsArray. 111 mmo_iterator MemRefs = nullptr; 112 113 DebugLoc debugLoc; // Source line information. 114 115 // Intrusive list support 116 friend struct ilist_traits<MachineInstr>; 117 friend struct ilist_callback_traits<MachineBasicBlock>; 118 void setParent(MachineBasicBlock *P) { Parent = P; } 119 120 /// This constructor creates a copy of the given 121 /// MachineInstr in the given MachineFunction. 122 MachineInstr(MachineFunction &, const MachineInstr &); 123 124 /// This constructor create a MachineInstr and add the implicit operands. 125 /// It reserves space for number of operands specified by 126 /// MCInstrDesc. An explicit DebugLoc is supplied. 127 MachineInstr(MachineFunction &, const MCInstrDesc &MCID, DebugLoc dl, 128 bool NoImp = false); 129 130 // MachineInstrs are pool-allocated and owned by MachineFunction. 131 friend class MachineFunction; 132 133public: 134 MachineInstr(const MachineInstr &) = delete; 135 MachineInstr &operator=(const MachineInstr &) = delete; 136 // Use MachineFunction::DeleteMachineInstr() instead. 137 ~MachineInstr() = delete; 138 139 const MachineBasicBlock* getParent() const { return Parent; } 140 MachineBasicBlock* getParent() { return Parent; } 141 142 /// Return the asm printer flags bitvector. 143 uint8_t getAsmPrinterFlags() const { return AsmPrinterFlags; } 144 145 /// Clear the AsmPrinter bitvector. 146 void clearAsmPrinterFlags() { AsmPrinterFlags = 0; } 147 148 /// Return whether an AsmPrinter flag is set. 149 bool getAsmPrinterFlag(CommentFlag Flag) const { 150 return AsmPrinterFlags & Flag; 151 } 152 153 /// Set a flag for the AsmPrinter. 154 void setAsmPrinterFlag(uint8_t Flag) { 155 AsmPrinterFlags |= Flag; 156 } 157 158 /// Clear specific AsmPrinter flags. 159 void clearAsmPrinterFlag(CommentFlag Flag) { 160 AsmPrinterFlags &= ~Flag; 161 } 162 163 /// Return the MI flags bitvector. 164 uint8_t getFlags() const { 165 return Flags; 166 } 167 168 /// Return whether an MI flag is set. 169 bool getFlag(MIFlag Flag) const { 170 return Flags & Flag; 171 } 172 173 /// Set a MI flag. 174 void setFlag(MIFlag Flag) { 175 Flags |= (uint8_t)Flag; 176 } 177 178 void setFlags(unsigned flags) { 179 // Filter out the automatically maintained flags. 180 unsigned Mask = BundledPred | BundledSucc; 181 Flags = (Flags & Mask) | (flags & ~Mask); 182 } 183 184 /// clearFlag - Clear a MI flag. 185 void clearFlag(MIFlag Flag) { 186 Flags &= ~((uint8_t)Flag); 187 } 188 189 /// Return true if MI is in a bundle (but not the first MI in a bundle). 190 /// 191 /// A bundle looks like this before it's finalized: 192 /// ---------------- 193 /// | MI | 194 /// ---------------- 195 /// | 196 /// ---------------- 197 /// | MI * | 198 /// ---------------- 199 /// | 200 /// ---------------- 201 /// | MI * | 202 /// ---------------- 203 /// In this case, the first MI starts a bundle but is not inside a bundle, the 204 /// next 2 MIs are considered "inside" the bundle. 205 /// 206 /// After a bundle is finalized, it looks like this: 207 /// ---------------- 208 /// | Bundle | 209 /// ---------------- 210 /// | 211 /// ---------------- 212 /// | MI * | 213 /// ---------------- 214 /// | 215 /// ---------------- 216 /// | MI * | 217 /// ---------------- 218 /// | 219 /// ---------------- 220 /// | MI * | 221 /// ---------------- 222 /// The first instruction has the special opcode "BUNDLE". It's not "inside" 223 /// a bundle, but the next three MIs are. 224 bool isInsideBundle() const { 225 return getFlag(BundledPred); 226 } 227 228 /// Return true if this instruction part of a bundle. This is true 229 /// if either itself or its following instruction is marked "InsideBundle". 230 bool isBundled() const { 231 return isBundledWithPred() || isBundledWithSucc(); 232 } 233 234 /// Return true if this instruction is part of a bundle, and it is not the 235 /// first instruction in the bundle. 236 bool isBundledWithPred() const { return getFlag(BundledPred); } 237 238 /// Return true if this instruction is part of a bundle, and it is not the 239 /// last instruction in the bundle. 240 bool isBundledWithSucc() const { return getFlag(BundledSucc); } 241 242 /// Bundle this instruction with its predecessor. This can be an unbundled 243 /// instruction, or it can be the first instruction in a bundle. 244 void bundleWithPred(); 245 246 /// Bundle this instruction with its successor. This can be an unbundled 247 /// instruction, or it can be the last instruction in a bundle. 248 void bundleWithSucc(); 249 250 /// Break bundle above this instruction. 251 void unbundleFromPred(); 252 253 /// Break bundle below this instruction. 254 void unbundleFromSucc(); 255 256 /// Returns the debug location id of this MachineInstr. 257 const DebugLoc &getDebugLoc() const { return debugLoc; } 258 259 /// Return the debug variable referenced by 260 /// this DBG_VALUE instruction. 261 const DILocalVariable *getDebugVariable() const; 262 263 /// Return the complex address expression referenced by 264 /// this DBG_VALUE instruction. 265 const DIExpression *getDebugExpression() const; 266 267 /// Emit an error referring to the source location of this instruction. 268 /// This should only be used for inline assembly that is somehow 269 /// impossible to compile. Other errors should have been handled much 270 /// earlier. 271 /// 272 /// If this method returns, the caller should try to recover from the error. 273 void emitError(StringRef Msg) const; 274 275 /// Returns the target instruction descriptor of this MachineInstr. 276 const MCInstrDesc &getDesc() const { return *MCID; } 277 278 /// Returns the opcode of this MachineInstr. 279 unsigned getOpcode() const { return MCID->Opcode; } 280 281 /// Access to explicit operands of the instruction. 282 unsigned getNumOperands() const { return NumOperands; } 283 284 const MachineOperand& getOperand(unsigned i) const { 285 assert(i < getNumOperands() && "getOperand() out of range!"); 286 return Operands[i]; 287 } 288 MachineOperand& getOperand(unsigned i) { 289 assert(i < getNumOperands() && "getOperand() out of range!"); 290 return Operands[i]; 291 } 292 293 /// Returns the number of non-implicit operands. 294 unsigned getNumExplicitOperands() const; 295 296 /// iterator/begin/end - Iterate over all operands of a machine instruction. 297 using mop_iterator = MachineOperand *; 298 using const_mop_iterator = const MachineOperand *; 299 300 mop_iterator operands_begin() { return Operands; } 301 mop_iterator operands_end() { return Operands + NumOperands; } 302 303 const_mop_iterator operands_begin() const { return Operands; } 304 const_mop_iterator operands_end() const { return Operands + NumOperands; } 305 306 iterator_range<mop_iterator> operands() { 307 return make_range(operands_begin(), operands_end()); 308 } 309 iterator_range<const_mop_iterator> operands() const { 310 return make_range(operands_begin(), operands_end()); 311 } 312 iterator_range<mop_iterator> explicit_operands() { 313 return make_range(operands_begin(), 314 operands_begin() + getNumExplicitOperands()); 315 } 316 iterator_range<const_mop_iterator> explicit_operands() const { 317 return make_range(operands_begin(), 318 operands_begin() + getNumExplicitOperands()); 319 } 320 iterator_range<mop_iterator> implicit_operands() { 321 return make_range(explicit_operands().end(), operands_end()); 322 } 323 iterator_range<const_mop_iterator> implicit_operands() const { 324 return make_range(explicit_operands().end(), operands_end()); 325 } 326 /// Returns a range over all explicit operands that are register definitions. 327 /// Implicit definition are not included! 328 iterator_range<mop_iterator> defs() { 329 return make_range(operands_begin(), 330 operands_begin() + getDesc().getNumDefs()); 331 } 332 /// \copydoc defs() 333 iterator_range<const_mop_iterator> defs() const { 334 return make_range(operands_begin(), 335 operands_begin() + getDesc().getNumDefs()); 336 } 337 /// Returns a range that includes all operands that are register uses. 338 /// This may include unrelated operands which are not register uses. 339 iterator_range<mop_iterator> uses() { 340 return make_range(operands_begin() + getDesc().getNumDefs(), 341 operands_end()); 342 } 343 /// \copydoc uses() 344 iterator_range<const_mop_iterator> uses() const { 345 return make_range(operands_begin() + getDesc().getNumDefs(), 346 operands_end()); 347 } 348 iterator_range<mop_iterator> explicit_uses() { 349 return make_range(operands_begin() + getDesc().getNumDefs(), 350 operands_begin() + getNumExplicitOperands() ); 351 } 352 iterator_range<const_mop_iterator> explicit_uses() const { 353 return make_range(operands_begin() + getDesc().getNumDefs(), 354 operands_begin() + getNumExplicitOperands() ); 355 } 356 357 /// Returns the number of the operand iterator \p I points to. 358 unsigned getOperandNo(const_mop_iterator I) const { 359 return I - operands_begin(); 360 } 361 362 /// Access to memory operands of the instruction 363 mmo_iterator memoperands_begin() const { return MemRefs; } 364 mmo_iterator memoperands_end() const { return MemRefs + NumMemRefs; } 365 /// Return true if we don't have any memory operands which described the the 366 /// memory access done by this instruction. If this is true, calling code 367 /// must be conservative. 368 bool memoperands_empty() const { return NumMemRefs == 0; } 369 370 iterator_range<mmo_iterator> memoperands() { 371 return make_range(memoperands_begin(), memoperands_end()); 372 } 373 iterator_range<mmo_iterator> memoperands() const { 374 return make_range(memoperands_begin(), memoperands_end()); 375 } 376 377 /// Return true if this instruction has exactly one MachineMemOperand. 378 bool hasOneMemOperand() const { 379 return NumMemRefs == 1; 380 } 381 382 /// API for querying MachineInstr properties. They are the same as MCInstrDesc 383 /// queries but they are bundle aware. 384 385 enum QueryType { 386 IgnoreBundle, // Ignore bundles 387 AnyInBundle, // Return true if any instruction in bundle has property 388 AllInBundle // Return true if all instructions in bundle have property 389 }; 390 391 /// Return true if the instruction (or in the case of a bundle, 392 /// the instructions inside the bundle) has the specified property. 393 /// The first argument is the property being queried. 394 /// The second argument indicates whether the query should look inside 395 /// instruction bundles. 396 bool hasProperty(unsigned MCFlag, QueryType Type = AnyInBundle) const { 397 // Inline the fast path for unbundled or bundle-internal instructions. 398 if (Type == IgnoreBundle || !isBundled() || isBundledWithPred()) 399 return getDesc().getFlags() & (1ULL << MCFlag); 400 401 // If this is the first instruction in a bundle, take the slow path. 402 return hasPropertyInBundle(1ULL << MCFlag, Type); 403 } 404 405 /// Return true if this instruction can have a variable number of operands. 406 /// In this case, the variable operands will be after the normal 407 /// operands but before the implicit definitions and uses (if any are 408 /// present). 409 bool isVariadic(QueryType Type = IgnoreBundle) const { 410 return hasProperty(MCID::Variadic, Type); 411 } 412 413 /// Set if this instruction has an optional definition, e.g. 414 /// ARM instructions which can set condition code if 's' bit is set. 415 bool hasOptionalDef(QueryType Type = IgnoreBundle) const { 416 return hasProperty(MCID::HasOptionalDef, Type); 417 } 418 419 /// Return true if this is a pseudo instruction that doesn't 420 /// correspond to a real machine instruction. 421 bool isPseudo(QueryType Type = IgnoreBundle) const { 422 return hasProperty(MCID::Pseudo, Type); 423 } 424 425 bool isReturn(QueryType Type = AnyInBundle) const { 426 return hasProperty(MCID::Return, Type); 427 } 428 429 bool isCall(QueryType Type = AnyInBundle) const { 430 return hasProperty(MCID::Call, Type); 431 } 432 433 /// Returns true if the specified instruction stops control flow 434 /// from executing the instruction immediately following it. Examples include 435 /// unconditional branches and return instructions. 436 bool isBarrier(QueryType Type = AnyInBundle) const { 437 return hasProperty(MCID::Barrier, Type); 438 } 439 440 /// Returns true if this instruction part of the terminator for a basic block. 441 /// Typically this is things like return and branch instructions. 442 /// 443 /// Various passes use this to insert code into the bottom of a basic block, 444 /// but before control flow occurs. 445 bool isTerminator(QueryType Type = AnyInBundle) const { 446 return hasProperty(MCID::Terminator, Type); 447 } 448 449 /// Returns true if this is a conditional, unconditional, or indirect branch. 450 /// Predicates below can be used to discriminate between 451 /// these cases, and the TargetInstrInfo::AnalyzeBranch method can be used to 452 /// get more information. 453 bool isBranch(QueryType Type = AnyInBundle) const { 454 return hasProperty(MCID::Branch, Type); 455 } 456 457 /// Return true if this is an indirect branch, such as a 458 /// branch through a register. 459 bool isIndirectBranch(QueryType Type = AnyInBundle) const { 460 return hasProperty(MCID::IndirectBranch, Type); 461 } 462 463 /// Return true if this is a branch which may fall 464 /// through to the next instruction or may transfer control flow to some other 465 /// block. The TargetInstrInfo::AnalyzeBranch method can be used to get more 466 /// information about this branch. 467 bool isConditionalBranch(QueryType Type = AnyInBundle) const { 468 return isBranch(Type) & !isBarrier(Type) & !isIndirectBranch(Type); 469 } 470 471 /// Return true if this is a branch which always 472 /// transfers control flow to some other block. The 473 /// TargetInstrInfo::AnalyzeBranch method can be used to get more information 474 /// about this branch. 475 bool isUnconditionalBranch(QueryType Type = AnyInBundle) const { 476 return isBranch(Type) & isBarrier(Type) & !isIndirectBranch(Type); 477 } 478 479 /// Return true if this instruction has a predicate operand that 480 /// controls execution. It may be set to 'always', or may be set to other 481 /// values. There are various methods in TargetInstrInfo that can be used to 482 /// control and modify the predicate in this instruction. 483 bool isPredicable(QueryType Type = AllInBundle) const { 484 // If it's a bundle than all bundled instructions must be predicable for this 485 // to return true. 486 return hasProperty(MCID::Predicable, Type); 487 } 488 489 /// Return true if this instruction is a comparison. 490 bool isCompare(QueryType Type = IgnoreBundle) const { 491 return hasProperty(MCID::Compare, Type); 492 } 493 494 /// Return true if this instruction is a move immediate 495 /// (including conditional moves) instruction. 496 bool isMoveImmediate(QueryType Type = IgnoreBundle) const { 497 return hasProperty(MCID::MoveImm, Type); 498 } 499 500 /// Return true if this instruction is a bitcast instruction. 501 bool isBitcast(QueryType Type = IgnoreBundle) const { 502 return hasProperty(MCID::Bitcast, Type); 503 } 504 505 /// Return true if this instruction is a select instruction. 506 bool isSelect(QueryType Type = IgnoreBundle) const { 507 return hasProperty(MCID::Select, Type); 508 } 509 510 /// Return true if this instruction cannot be safely duplicated. 511 /// For example, if the instruction has a unique labels attached 512 /// to it, duplicating it would cause multiple definition errors. 513 bool isNotDuplicable(QueryType Type = AnyInBundle) const { 514 return hasProperty(MCID::NotDuplicable, Type); 515 } 516 517 /// Return true if this instruction is convergent. 518 /// Convergent instructions can not be made control-dependent on any 519 /// additional values. 520 bool isConvergent(QueryType Type = AnyInBundle) const { 521 if (isInlineAsm()) { 522 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 523 if (ExtraInfo & InlineAsm::Extra_IsConvergent) 524 return true; 525 } 526 return hasProperty(MCID::Convergent, Type); 527 } 528 529 /// Returns true if the specified instruction has a delay slot 530 /// which must be filled by the code generator. 531 bool hasDelaySlot(QueryType Type = AnyInBundle) const { 532 return hasProperty(MCID::DelaySlot, Type); 533 } 534 535 /// Return true for instructions that can be folded as 536 /// memory operands in other instructions. The most common use for this 537 /// is instructions that are simple loads from memory that don't modify 538 /// the loaded value in any way, but it can also be used for instructions 539 /// that can be expressed as constant-pool loads, such as V_SETALLONES 540 /// on x86, to allow them to be folded when it is beneficial. 541 /// This should only be set on instructions that return a value in their 542 /// only virtual register definition. 543 bool canFoldAsLoad(QueryType Type = IgnoreBundle) const { 544 return hasProperty(MCID::FoldableAsLoad, Type); 545 } 546 547 /// \brief Return true if this instruction behaves 548 /// the same way as the generic REG_SEQUENCE instructions. 549 /// E.g., on ARM, 550 /// dX VMOVDRR rY, rZ 551 /// is equivalent to 552 /// dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1. 553 /// 554 /// Note that for the optimizers to be able to take advantage of 555 /// this property, TargetInstrInfo::getRegSequenceLikeInputs has to be 556 /// override accordingly. 557 bool isRegSequenceLike(QueryType Type = IgnoreBundle) const { 558 return hasProperty(MCID::RegSequence, Type); 559 } 560 561 /// \brief Return true if this instruction behaves 562 /// the same way as the generic EXTRACT_SUBREG instructions. 563 /// E.g., on ARM, 564 /// rX, rY VMOVRRD dZ 565 /// is equivalent to two EXTRACT_SUBREG: 566 /// rX = EXTRACT_SUBREG dZ, ssub_0 567 /// rY = EXTRACT_SUBREG dZ, ssub_1 568 /// 569 /// Note that for the optimizers to be able to take advantage of 570 /// this property, TargetInstrInfo::getExtractSubregLikeInputs has to be 571 /// override accordingly. 572 bool isExtractSubregLike(QueryType Type = IgnoreBundle) const { 573 return hasProperty(MCID::ExtractSubreg, Type); 574 } 575 576 /// \brief Return true if this instruction behaves 577 /// the same way as the generic INSERT_SUBREG instructions. 578 /// E.g., on ARM, 579 /// dX = VSETLNi32 dY, rZ, Imm 580 /// is equivalent to a INSERT_SUBREG: 581 /// dX = INSERT_SUBREG dY, rZ, translateImmToSubIdx(Imm) 582 /// 583 /// Note that for the optimizers to be able to take advantage of 584 /// this property, TargetInstrInfo::getInsertSubregLikeInputs has to be 585 /// override accordingly. 586 bool isInsertSubregLike(QueryType Type = IgnoreBundle) const { 587 return hasProperty(MCID::InsertSubreg, Type); 588 } 589 590 //===--------------------------------------------------------------------===// 591 // Side Effect Analysis 592 //===--------------------------------------------------------------------===// 593 594 /// Return true if this instruction could possibly read memory. 595 /// Instructions with this flag set are not necessarily simple load 596 /// instructions, they may load a value and modify it, for example. 597 bool mayLoad(QueryType Type = AnyInBundle) const { 598 if (isInlineAsm()) { 599 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 600 if (ExtraInfo & InlineAsm::Extra_MayLoad) 601 return true; 602 } 603 return hasProperty(MCID::MayLoad, Type); 604 } 605 606 /// Return true if this instruction could possibly modify memory. 607 /// Instructions with this flag set are not necessarily simple store 608 /// instructions, they may store a modified value based on their operands, or 609 /// may not actually modify anything, for example. 610 bool mayStore(QueryType Type = AnyInBundle) const { 611 if (isInlineAsm()) { 612 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 613 if (ExtraInfo & InlineAsm::Extra_MayStore) 614 return true; 615 } 616 return hasProperty(MCID::MayStore, Type); 617 } 618 619 /// Return true if this instruction could possibly read or modify memory. 620 bool mayLoadOrStore(QueryType Type = AnyInBundle) const { 621 return mayLoad(Type) || mayStore(Type); 622 } 623 624 //===--------------------------------------------------------------------===// 625 // Flags that indicate whether an instruction can be modified by a method. 626 //===--------------------------------------------------------------------===// 627 628 /// Return true if this may be a 2- or 3-address 629 /// instruction (of the form "X = op Y, Z, ..."), which produces the same 630 /// result if Y and Z are exchanged. If this flag is set, then the 631 /// TargetInstrInfo::commuteInstruction method may be used to hack on the 632 /// instruction. 633 /// 634 /// Note that this flag may be set on instructions that are only commutable 635 /// sometimes. In these cases, the call to commuteInstruction will fail. 636 /// Also note that some instructions require non-trivial modification to 637 /// commute them. 638 bool isCommutable(QueryType Type = IgnoreBundle) const { 639 return hasProperty(MCID::Commutable, Type); 640 } 641 642 /// Return true if this is a 2-address instruction 643 /// which can be changed into a 3-address instruction if needed. Doing this 644 /// transformation can be profitable in the register allocator, because it 645 /// means that the instruction can use a 2-address form if possible, but 646 /// degrade into a less efficient form if the source and dest register cannot 647 /// be assigned to the same register. For example, this allows the x86 648 /// backend to turn a "shl reg, 3" instruction into an LEA instruction, which 649 /// is the same speed as the shift but has bigger code size. 650 /// 651 /// If this returns true, then the target must implement the 652 /// TargetInstrInfo::convertToThreeAddress method for this instruction, which 653 /// is allowed to fail if the transformation isn't valid for this specific 654 /// instruction (e.g. shl reg, 4 on x86). 655 /// 656 bool isConvertibleTo3Addr(QueryType Type = IgnoreBundle) const { 657 return hasProperty(MCID::ConvertibleTo3Addr, Type); 658 } 659 660 /// Return true if this instruction requires 661 /// custom insertion support when the DAG scheduler is inserting it into a 662 /// machine basic block. If this is true for the instruction, it basically 663 /// means that it is a pseudo instruction used at SelectionDAG time that is 664 /// expanded out into magic code by the target when MachineInstrs are formed. 665 /// 666 /// If this is true, the TargetLoweringInfo::InsertAtEndOfBasicBlock method 667 /// is used to insert this into the MachineBasicBlock. 668 bool usesCustomInsertionHook(QueryType Type = IgnoreBundle) const { 669 return hasProperty(MCID::UsesCustomInserter, Type); 670 } 671 672 /// Return true if this instruction requires *adjustment* 673 /// after instruction selection by calling a target hook. For example, this 674 /// can be used to fill in ARM 's' optional operand depending on whether 675 /// the conditional flag register is used. 676 bool hasPostISelHook(QueryType Type = IgnoreBundle) const { 677 return hasProperty(MCID::HasPostISelHook, Type); 678 } 679 680 /// Returns true if this instruction is a candidate for remat. 681 /// This flag is deprecated, please don't use it anymore. If this 682 /// flag is set, the isReallyTriviallyReMaterializable() method is called to 683 /// verify the instruction is really rematable. 684 bool isRematerializable(QueryType Type = AllInBundle) const { 685 // It's only possible to re-mat a bundle if all bundled instructions are 686 // re-materializable. 687 return hasProperty(MCID::Rematerializable, Type); 688 } 689 690 /// Returns true if this instruction has the same cost (or less) than a move 691 /// instruction. This is useful during certain types of optimizations 692 /// (e.g., remat during two-address conversion or machine licm) 693 /// where we would like to remat or hoist the instruction, but not if it costs 694 /// more than moving the instruction into the appropriate register. Note, we 695 /// are not marking copies from and to the same register class with this flag. 696 bool isAsCheapAsAMove(QueryType Type = AllInBundle) const { 697 // Only returns true for a bundle if all bundled instructions are cheap. 698 return hasProperty(MCID::CheapAsAMove, Type); 699 } 700 701 /// Returns true if this instruction source operands 702 /// have special register allocation requirements that are not captured by the 703 /// operand register classes. e.g. ARM::STRD's two source registers must be an 704 /// even / odd pair, ARM::STM registers have to be in ascending order. 705 /// Post-register allocation passes should not attempt to change allocations 706 /// for sources of instructions with this flag. 707 bool hasExtraSrcRegAllocReq(QueryType Type = AnyInBundle) const { 708 return hasProperty(MCID::ExtraSrcRegAllocReq, Type); 709 } 710 711 /// Returns true if this instruction def operands 712 /// have special register allocation requirements that are not captured by the 713 /// operand register classes. e.g. ARM::LDRD's two def registers must be an 714 /// even / odd pair, ARM::LDM registers have to be in ascending order. 715 /// Post-register allocation passes should not attempt to change allocations 716 /// for definitions of instructions with this flag. 717 bool hasExtraDefRegAllocReq(QueryType Type = AnyInBundle) const { 718 return hasProperty(MCID::ExtraDefRegAllocReq, Type); 719 } 720 721 enum MICheckType { 722 CheckDefs, // Check all operands for equality 723 CheckKillDead, // Check all operands including kill / dead markers 724 IgnoreDefs, // Ignore all definitions 725 IgnoreVRegDefs // Ignore virtual register definitions 726 }; 727 728 /// Return true if this instruction is identical to \p Other. 729 /// Two instructions are identical if they have the same opcode and all their 730 /// operands are identical (with respect to MachineOperand::isIdenticalTo()). 731 /// Note that this means liveness related flags (dead, undef, kill) do not 732 /// affect the notion of identical. 733 bool isIdenticalTo(const MachineInstr &Other, 734 MICheckType Check = CheckDefs) const; 735 736 /// Unlink 'this' from the containing basic block, and return it without 737 /// deleting it. 738 /// 739 /// This function can not be used on bundled instructions, use 740 /// removeFromBundle() to remove individual instructions from a bundle. 741 MachineInstr *removeFromParent(); 742 743 /// Unlink this instruction from its basic block and return it without 744 /// deleting it. 745 /// 746 /// If the instruction is part of a bundle, the other instructions in the 747 /// bundle remain bundled. 748 MachineInstr *removeFromBundle(); 749 750 /// Unlink 'this' from the containing basic block and delete it. 751 /// 752 /// If this instruction is the header of a bundle, the whole bundle is erased. 753 /// This function can not be used for instructions inside a bundle, use 754 /// eraseFromBundle() to erase individual bundled instructions. 755 void eraseFromParent(); 756 757 /// Unlink 'this' from the containing basic block and delete it. 758 /// 759 /// For all definitions mark their uses in DBG_VALUE nodes 760 /// as undefined. Otherwise like eraseFromParent(). 761 void eraseFromParentAndMarkDBGValuesForRemoval(); 762 763 /// Unlink 'this' form its basic block and delete it. 764 /// 765 /// If the instruction is part of a bundle, the other instructions in the 766 /// bundle remain bundled. 767 void eraseFromBundle(); 768 769 bool isEHLabel() const { return getOpcode() == TargetOpcode::EH_LABEL; } 770 bool isGCLabel() const { return getOpcode() == TargetOpcode::GC_LABEL; } 771 772 /// Returns true if the MachineInstr represents a label. 773 bool isLabel() const { return isEHLabel() || isGCLabel(); } 774 775 bool isCFIInstruction() const { 776 return getOpcode() == TargetOpcode::CFI_INSTRUCTION; 777 } 778 779 // True if the instruction represents a position in the function. 780 bool isPosition() const { return isLabel() || isCFIInstruction(); } 781 782 bool isDebugValue() const { return getOpcode() == TargetOpcode::DBG_VALUE; } 783 784 /// A DBG_VALUE is indirect iff the first operand is a register and 785 /// the second operand is an immediate. 786 bool isIndirectDebugValue() const { 787 return isDebugValue() 788 && getOperand(0).isReg() 789 && getOperand(1).isImm(); 790 } 791 792 bool isPHI() const { return getOpcode() == TargetOpcode::PHI; } 793 bool isKill() const { return getOpcode() == TargetOpcode::KILL; } 794 bool isImplicitDef() const { return getOpcode()==TargetOpcode::IMPLICIT_DEF; } 795 bool isInlineAsm() const { return getOpcode() == TargetOpcode::INLINEASM; } 796 797 bool isMSInlineAsm() const { 798 return getOpcode() == TargetOpcode::INLINEASM && getInlineAsmDialect(); 799 } 800 801 bool isStackAligningInlineAsm() const; 802 InlineAsm::AsmDialect getInlineAsmDialect() const; 803 804 bool isInsertSubreg() const { 805 return getOpcode() == TargetOpcode::INSERT_SUBREG; 806 } 807 808 bool isSubregToReg() const { 809 return getOpcode() == TargetOpcode::SUBREG_TO_REG; 810 } 811 812 bool isRegSequence() const { 813 return getOpcode() == TargetOpcode::REG_SEQUENCE; 814 } 815 816 bool isBundle() const { 817 return getOpcode() == TargetOpcode::BUNDLE; 818 } 819 820 bool isCopy() const { 821 return getOpcode() == TargetOpcode::COPY; 822 } 823 824 bool isFullCopy() const { 825 return isCopy() && !getOperand(0).getSubReg() && !getOperand(1).getSubReg(); 826 } 827 828 bool isExtractSubreg() const { 829 return getOpcode() == TargetOpcode::EXTRACT_SUBREG; 830 } 831 832 /// Return true if the instruction behaves like a copy. 833 /// This does not include native copy instructions. 834 bool isCopyLike() const { 835 return isCopy() || isSubregToReg(); 836 } 837 838 /// Return true is the instruction is an identity copy. 839 bool isIdentityCopy() const { 840 return isCopy() && getOperand(0).getReg() == getOperand(1).getReg() && 841 getOperand(0).getSubReg() == getOperand(1).getSubReg(); 842 } 843 844 /// Return true if this instruction doesn't produce any output in the form of 845 /// executable instructions. 846 bool isMetaInstruction() const { 847 switch (getOpcode()) { 848 default: 849 return false; 850 case TargetOpcode::IMPLICIT_DEF: 851 case TargetOpcode::KILL: 852 case TargetOpcode::CFI_INSTRUCTION: 853 case TargetOpcode::EH_LABEL: 854 case TargetOpcode::GC_LABEL: 855 case TargetOpcode::DBG_VALUE: 856 return true; 857 } 858 } 859 860 /// Return true if this is a transient instruction that is either very likely 861 /// to be eliminated during register allocation (such as copy-like 862 /// instructions), or if this instruction doesn't have an execution-time cost. 863 bool isTransient() const { 864 switch (getOpcode()) { 865 default: 866 return isMetaInstruction(); 867 // Copy-like instructions are usually eliminated during register allocation. 868 case TargetOpcode::PHI: 869 case TargetOpcode::COPY: 870 case TargetOpcode::INSERT_SUBREG: 871 case TargetOpcode::SUBREG_TO_REG: 872 case TargetOpcode::REG_SEQUENCE: 873 return true; 874 } 875 } 876 877 /// Return the number of instructions inside the MI bundle, excluding the 878 /// bundle header. 879 /// 880 /// This is the number of instructions that MachineBasicBlock::iterator 881 /// skips, 0 for unbundled instructions. 882 unsigned getBundleSize() const; 883 884 /// Return true if the MachineInstr reads the specified register. 885 /// If TargetRegisterInfo is passed, then it also checks if there 886 /// is a read of a super-register. 887 /// This does not count partial redefines of virtual registers as reads: 888 /// %reg1024:6 = OP. 889 bool readsRegister(unsigned Reg, 890 const TargetRegisterInfo *TRI = nullptr) const { 891 return findRegisterUseOperandIdx(Reg, false, TRI) != -1; 892 } 893 894 /// Return true if the MachineInstr reads the specified virtual register. 895 /// Take into account that a partial define is a 896 /// read-modify-write operation. 897 bool readsVirtualRegister(unsigned Reg) const { 898 return readsWritesVirtualRegister(Reg).first; 899 } 900 901 /// Return a pair of bools (reads, writes) indicating if this instruction 902 /// reads or writes Reg. This also considers partial defines. 903 /// If Ops is not null, all operand indices for Reg are added. 904 std::pair<bool,bool> readsWritesVirtualRegister(unsigned Reg, 905 SmallVectorImpl<unsigned> *Ops = nullptr) const; 906 907 /// Return true if the MachineInstr kills the specified register. 908 /// If TargetRegisterInfo is passed, then it also checks if there is 909 /// a kill of a super-register. 910 bool killsRegister(unsigned Reg, 911 const TargetRegisterInfo *TRI = nullptr) const { 912 return findRegisterUseOperandIdx(Reg, true, TRI) != -1; 913 } 914 915 /// Return true if the MachineInstr fully defines the specified register. 916 /// If TargetRegisterInfo is passed, then it also checks 917 /// if there is a def of a super-register. 918 /// NOTE: It's ignoring subreg indices on virtual registers. 919 bool definesRegister(unsigned Reg, 920 const TargetRegisterInfo *TRI = nullptr) const { 921 return findRegisterDefOperandIdx(Reg, false, false, TRI) != -1; 922 } 923 924 /// Return true if the MachineInstr modifies (fully define or partially 925 /// define) the specified register. 926 /// NOTE: It's ignoring subreg indices on virtual registers. 927 bool modifiesRegister(unsigned Reg, const TargetRegisterInfo *TRI) const { 928 return findRegisterDefOperandIdx(Reg, false, true, TRI) != -1; 929 } 930 931 /// Returns true if the register is dead in this machine instruction. 932 /// If TargetRegisterInfo is passed, then it also checks 933 /// if there is a dead def of a super-register. 934 bool registerDefIsDead(unsigned Reg, 935 const TargetRegisterInfo *TRI = nullptr) const { 936 return findRegisterDefOperandIdx(Reg, true, false, TRI) != -1; 937 } 938 939 /// Returns true if the MachineInstr has an implicit-use operand of exactly 940 /// the given register (not considering sub/super-registers). 941 bool hasRegisterImplicitUseOperand(unsigned Reg) const; 942 943 /// Returns the operand index that is a use of the specific register or -1 944 /// if it is not found. It further tightens the search criteria to a use 945 /// that kills the register if isKill is true. 946 int findRegisterUseOperandIdx(unsigned Reg, bool isKill = false, 947 const TargetRegisterInfo *TRI = nullptr) const; 948 949 /// Wrapper for findRegisterUseOperandIdx, it returns 950 /// a pointer to the MachineOperand rather than an index. 951 MachineOperand *findRegisterUseOperand(unsigned Reg, bool isKill = false, 952 const TargetRegisterInfo *TRI = nullptr) { 953 int Idx = findRegisterUseOperandIdx(Reg, isKill, TRI); 954 return (Idx == -1) ? nullptr : &getOperand(Idx); 955 } 956 957 const MachineOperand *findRegisterUseOperand( 958 unsigned Reg, bool isKill = false, 959 const TargetRegisterInfo *TRI = nullptr) const { 960 return const_cast<MachineInstr *>(this)-> 961 findRegisterUseOperand(Reg, isKill, TRI); 962 } 963 964 /// Returns the operand index that is a def of the specified register or 965 /// -1 if it is not found. If isDead is true, defs that are not dead are 966 /// skipped. If Overlap is true, then it also looks for defs that merely 967 /// overlap the specified register. If TargetRegisterInfo is non-null, 968 /// then it also checks if there is a def of a super-register. 969 /// This may also return a register mask operand when Overlap is true. 970 int findRegisterDefOperandIdx(unsigned Reg, 971 bool isDead = false, bool Overlap = false, 972 const TargetRegisterInfo *TRI = nullptr) const; 973 974 /// Wrapper for findRegisterDefOperandIdx, it returns 975 /// a pointer to the MachineOperand rather than an index. 976 MachineOperand *findRegisterDefOperand(unsigned Reg, bool isDead = false, 977 const TargetRegisterInfo *TRI = nullptr) { 978 int Idx = findRegisterDefOperandIdx(Reg, isDead, false, TRI); 979 return (Idx == -1) ? nullptr : &getOperand(Idx); 980 } 981 982 /// Find the index of the first operand in the 983 /// operand list that is used to represent the predicate. It returns -1 if 984 /// none is found. 985 int findFirstPredOperandIdx() const; 986 987 /// Find the index of the flag word operand that 988 /// corresponds to operand OpIdx on an inline asm instruction. Returns -1 if 989 /// getOperand(OpIdx) does not belong to an inline asm operand group. 990 /// 991 /// If GroupNo is not NULL, it will receive the number of the operand group 992 /// containing OpIdx. 993 /// 994 /// The flag operand is an immediate that can be decoded with methods like 995 /// InlineAsm::hasRegClassConstraint(). 996 int findInlineAsmFlagIdx(unsigned OpIdx, unsigned *GroupNo = nullptr) const; 997 998 /// Compute the static register class constraint for operand OpIdx. 999 /// For normal instructions, this is derived from the MCInstrDesc. 1000 /// For inline assembly it is derived from the flag words. 1001 /// 1002 /// Returns NULL if the static register class constraint cannot be 1003 /// determined. 1004 const TargetRegisterClass* 1005 getRegClassConstraint(unsigned OpIdx, 1006 const TargetInstrInfo *TII, 1007 const TargetRegisterInfo *TRI) const; 1008 1009 /// \brief Applies the constraints (def/use) implied by this MI on \p Reg to 1010 /// the given \p CurRC. 1011 /// If \p ExploreBundle is set and MI is part of a bundle, all the 1012 /// instructions inside the bundle will be taken into account. In other words, 1013 /// this method accumulates all the constraints of the operand of this MI and 1014 /// the related bundle if MI is a bundle or inside a bundle. 1015 /// 1016 /// Returns the register class that satisfies both \p CurRC and the 1017 /// constraints set by MI. Returns NULL if such a register class does not 1018 /// exist. 1019 /// 1020 /// \pre CurRC must not be NULL. 1021 const TargetRegisterClass *getRegClassConstraintEffectForVReg( 1022 unsigned Reg, const TargetRegisterClass *CurRC, 1023 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI, 1024 bool ExploreBundle = false) const; 1025 1026 /// \brief Applies the constraints (def/use) implied by the \p OpIdx operand 1027 /// to the given \p CurRC. 1028 /// 1029 /// Returns the register class that satisfies both \p CurRC and the 1030 /// constraints set by \p OpIdx MI. Returns NULL if such a register class 1031 /// does not exist. 1032 /// 1033 /// \pre CurRC must not be NULL. 1034 /// \pre The operand at \p OpIdx must be a register. 1035 const TargetRegisterClass * 1036 getRegClassConstraintEffect(unsigned OpIdx, const TargetRegisterClass *CurRC, 1037 const TargetInstrInfo *TII, 1038 const TargetRegisterInfo *TRI) const; 1039 1040 /// Add a tie between the register operands at DefIdx and UseIdx. 1041 /// The tie will cause the register allocator to ensure that the two 1042 /// operands are assigned the same physical register. 1043 /// 1044 /// Tied operands are managed automatically for explicit operands in the 1045 /// MCInstrDesc. This method is for exceptional cases like inline asm. 1046 void tieOperands(unsigned DefIdx, unsigned UseIdx); 1047 1048 /// Given the index of a tied register operand, find the 1049 /// operand it is tied to. Defs are tied to uses and vice versa. Returns the 1050 /// index of the tied operand which must exist. 1051 unsigned findTiedOperandIdx(unsigned OpIdx) const; 1052 1053 /// Given the index of a register def operand, 1054 /// check if the register def is tied to a source operand, due to either 1055 /// two-address elimination or inline assembly constraints. Returns the 1056 /// first tied use operand index by reference if UseOpIdx is not null. 1057 bool isRegTiedToUseOperand(unsigned DefOpIdx, 1058 unsigned *UseOpIdx = nullptr) const { 1059 const MachineOperand &MO = getOperand(DefOpIdx); 1060 if (!MO.isReg() || !MO.isDef() || !MO.isTied()) 1061 return false; 1062 if (UseOpIdx) 1063 *UseOpIdx = findTiedOperandIdx(DefOpIdx); 1064 return true; 1065 } 1066 1067 /// Return true if the use operand of the specified index is tied to a def 1068 /// operand. It also returns the def operand index by reference if DefOpIdx 1069 /// is not null. 1070 bool isRegTiedToDefOperand(unsigned UseOpIdx, 1071 unsigned *DefOpIdx = nullptr) const { 1072 const MachineOperand &MO = getOperand(UseOpIdx); 1073 if (!MO.isReg() || !MO.isUse() || !MO.isTied()) 1074 return false; 1075 if (DefOpIdx) 1076 *DefOpIdx = findTiedOperandIdx(UseOpIdx); 1077 return true; 1078 } 1079 1080 /// Clears kill flags on all operands. 1081 void clearKillInfo(); 1082 1083 /// Replace all occurrences of FromReg with ToReg:SubIdx, 1084 /// properly composing subreg indices where necessary. 1085 void substituteRegister(unsigned FromReg, unsigned ToReg, unsigned SubIdx, 1086 const TargetRegisterInfo &RegInfo); 1087 1088 /// We have determined MI kills a register. Look for the 1089 /// operand that uses it and mark it as IsKill. If AddIfNotFound is true, 1090 /// add a implicit operand if it's not found. Returns true if the operand 1091 /// exists / is added. 1092 bool addRegisterKilled(unsigned IncomingReg, 1093 const TargetRegisterInfo *RegInfo, 1094 bool AddIfNotFound = false); 1095 1096 /// Clear all kill flags affecting Reg. If RegInfo is provided, this includes 1097 /// all aliasing registers. 1098 void clearRegisterKills(unsigned Reg, const TargetRegisterInfo *RegInfo); 1099 1100 /// We have determined MI defined a register without a use. 1101 /// Look for the operand that defines it and mark it as IsDead. If 1102 /// AddIfNotFound is true, add a implicit operand if it's not found. Returns 1103 /// true if the operand exists / is added. 1104 bool addRegisterDead(unsigned Reg, const TargetRegisterInfo *RegInfo, 1105 bool AddIfNotFound = false); 1106 1107 /// Clear all dead flags on operands defining register @p Reg. 1108 void clearRegisterDeads(unsigned Reg); 1109 1110 /// Mark all subregister defs of register @p Reg with the undef flag. 1111 /// This function is used when we determined to have a subregister def in an 1112 /// otherwise undefined super register. 1113 void setRegisterDefReadUndef(unsigned Reg, bool IsUndef = true); 1114 1115 /// We have determined MI defines a register. Make sure there is an operand 1116 /// defining Reg. 1117 void addRegisterDefined(unsigned Reg, 1118 const TargetRegisterInfo *RegInfo = nullptr); 1119 1120 /// Mark every physreg used by this instruction as 1121 /// dead except those in the UsedRegs list. 1122 /// 1123 /// On instructions with register mask operands, also add implicit-def 1124 /// operands for all registers in UsedRegs. 1125 void setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs, 1126 const TargetRegisterInfo &TRI); 1127 1128 /// Return true if it is safe to move this instruction. If 1129 /// SawStore is set to true, it means that there is a store (or call) between 1130 /// the instruction's location and its intended destination. 1131 bool isSafeToMove(AliasAnalysis *AA, bool &SawStore) const; 1132 1133 /// Returns true if this instruction's memory access aliases the memory 1134 /// access of Other. 1135 // 1136 /// Assumes any physical registers used to compute addresses 1137 /// have the same value for both instructions. Returns false if neither 1138 /// instruction writes to memory. 1139 /// 1140 /// @param AA Optional alias analysis, used to compare memory operands. 1141 /// @param Other MachineInstr to check aliasing against. 1142 /// @param UseTBAA Whether to pass TBAA information to alias analysis. 1143 bool mayAlias(AliasAnalysis *AA, MachineInstr &Other, bool UseTBAA); 1144 1145 /// Return true if this instruction may have an ordered 1146 /// or volatile memory reference, or if the information describing the memory 1147 /// reference is not available. Return false if it is known to have no 1148 /// ordered or volatile memory references. 1149 bool hasOrderedMemoryRef() const; 1150 1151 /// Return true if this load instruction never traps and points to a memory 1152 /// location whose value doesn't change during the execution of this function. 1153 /// 1154 /// Examples include loading a value from the constant pool or from the 1155 /// argument area of a function (if it does not change). If the instruction 1156 /// does multiple loads, this returns true only if all of the loads are 1157 /// dereferenceable and invariant. 1158 bool isDereferenceableInvariantLoad(AliasAnalysis *AA) const; 1159 1160 /// If the specified instruction is a PHI that always merges together the 1161 /// same virtual register, return the register, otherwise return 0. 1162 unsigned isConstantValuePHI() const; 1163 1164 /// Return true if this instruction has side effects that are not modeled 1165 /// by mayLoad / mayStore, etc. 1166 /// For all instructions, the property is encoded in MCInstrDesc::Flags 1167 /// (see MCInstrDesc::hasUnmodeledSideEffects(). The only exception is 1168 /// INLINEASM instruction, in which case the side effect property is encoded 1169 /// in one of its operands (see InlineAsm::Extra_HasSideEffect). 1170 /// 1171 bool hasUnmodeledSideEffects() const; 1172 1173 /// Returns true if it is illegal to fold a load across this instruction. 1174 bool isLoadFoldBarrier() const; 1175 1176 /// Return true if all the defs of this instruction are dead. 1177 bool allDefsAreDead() const; 1178 1179 /// Copy implicit register operands from specified 1180 /// instruction to this instruction. 1181 void copyImplicitOps(MachineFunction &MF, const MachineInstr &MI); 1182 1183 /// Debugging support 1184 /// @{ 1185 /// Print this MI to \p OS. 1186 /// Only print the defs and the opcode if \p SkipOpers is true. 1187 /// Otherwise, also print operands if \p SkipDebugLoc is true. 1188 /// Otherwise, also print the debug loc, with a terminating newline. 1189 /// \p TII is used to print the opcode name. If it's not present, but the 1190 /// MI is in a function, the opcode will be printed using the function's TII. 1191 void print(raw_ostream &OS, bool SkipOpers = false, bool SkipDebugLoc = false, 1192 const TargetInstrInfo *TII = nullptr) const; 1193 void print(raw_ostream &OS, ModuleSlotTracker &MST, bool SkipOpers = false, 1194 bool SkipDebugLoc = false, 1195 const TargetInstrInfo *TII = nullptr) const; 1196 void dump() const; 1197 /// @} 1198 1199 //===--------------------------------------------------------------------===// 1200 // Accessors used to build up machine instructions. 1201 1202 /// Add the specified operand to the instruction. If it is an implicit 1203 /// operand, it is added to the end of the operand list. If it is an 1204 /// explicit operand it is added at the end of the explicit operand list 1205 /// (before the first implicit operand). 1206 /// 1207 /// MF must be the machine function that was used to allocate this 1208 /// instruction. 1209 /// 1210 /// MachineInstrBuilder provides a more convenient interface for creating 1211 /// instructions and adding operands. 1212 void addOperand(MachineFunction &MF, const MachineOperand &Op); 1213 1214 /// Add an operand without providing an MF reference. This only works for 1215 /// instructions that are inserted in a basic block. 1216 /// 1217 /// MachineInstrBuilder and the two-argument addOperand(MF, MO) should be 1218 /// preferred. 1219 void addOperand(const MachineOperand &Op); 1220 1221 /// Replace the instruction descriptor (thus opcode) of 1222 /// the current instruction with a new one. 1223 void setDesc(const MCInstrDesc &tid) { MCID = &tid; } 1224 1225 /// Replace current source information with new such. 1226 /// Avoid using this, the constructor argument is preferable. 1227 void setDebugLoc(DebugLoc dl) { 1228 debugLoc = std::move(dl); 1229 assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor"); 1230 } 1231 1232 /// Erase an operand from an instruction, leaving it with one 1233 /// fewer operand than it started with. 1234 void RemoveOperand(unsigned i); 1235 1236 /// Add a MachineMemOperand to the machine instruction. 1237 /// This function should be used only occasionally. The setMemRefs function 1238 /// is the primary method for setting up a MachineInstr's MemRefs list. 1239 void addMemOperand(MachineFunction &MF, MachineMemOperand *MO); 1240 1241 /// Assign this MachineInstr's memory reference descriptor list. 1242 /// This does not transfer ownership. 1243 void setMemRefs(mmo_iterator NewMemRefs, mmo_iterator NewMemRefsEnd) { 1244 setMemRefs(std::make_pair(NewMemRefs, NewMemRefsEnd-NewMemRefs)); 1245 } 1246 1247 /// Assign this MachineInstr's memory reference descriptor list. First 1248 /// element in the pair is the begin iterator/pointer to the array; the 1249 /// second is the number of MemoryOperands. This does not transfer ownership 1250 /// of the underlying memory. 1251 void setMemRefs(std::pair<mmo_iterator, unsigned> NewMemRefs) { 1252 MemRefs = NewMemRefs.first; 1253 NumMemRefs = uint8_t(NewMemRefs.second); 1254 assert(NumMemRefs == NewMemRefs.second && 1255 "Too many memrefs - must drop memory operands"); 1256 } 1257 1258 /// Return a set of memrefs (begin iterator, size) which conservatively 1259 /// describe the memory behavior of both MachineInstrs. This is appropriate 1260 /// for use when merging two MachineInstrs into one. This routine does not 1261 /// modify the memrefs of the this MachineInstr. 1262 std::pair<mmo_iterator, unsigned> mergeMemRefsWith(const MachineInstr& Other); 1263 1264 /// Clear this MachineInstr's memory reference descriptor list. This resets 1265 /// the memrefs to their most conservative state. This should be used only 1266 /// as a last resort since it greatly pessimizes our knowledge of the memory 1267 /// access performed by the instruction. 1268 void dropMemRefs() { 1269 MemRefs = nullptr; 1270 NumMemRefs = 0; 1271 } 1272 1273 /// Break any tie involving OpIdx. 1274 void untieRegOperand(unsigned OpIdx) { 1275 MachineOperand &MO = getOperand(OpIdx); 1276 if (MO.isReg() && MO.isTied()) { 1277 getOperand(findTiedOperandIdx(OpIdx)).TiedTo = 0; 1278 MO.TiedTo = 0; 1279 } 1280 } 1281 1282 /// Add all implicit def and use operands to this instruction. 1283 void addImplicitDefUseOperands(MachineFunction &MF); 1284 1285private: 1286 /// If this instruction is embedded into a MachineFunction, return the 1287 /// MachineRegisterInfo object for the current function, otherwise 1288 /// return null. 1289 MachineRegisterInfo *getRegInfo(); 1290 1291 /// Unlink all of the register operands in this instruction from their 1292 /// respective use lists. This requires that the operands already be on their 1293 /// use lists. 1294 void RemoveRegOperandsFromUseLists(MachineRegisterInfo&); 1295 1296 /// Add all of the register operands in this instruction from their 1297 /// respective use lists. This requires that the operands not be on their 1298 /// use lists yet. 1299 void AddRegOperandsToUseLists(MachineRegisterInfo&); 1300 1301 /// Slow path for hasProperty when we're dealing with a bundle. 1302 bool hasPropertyInBundle(unsigned Mask, QueryType Type) const; 1303 1304 /// \brief Implements the logic of getRegClassConstraintEffectForVReg for the 1305 /// this MI and the given operand index \p OpIdx. 1306 /// If the related operand does not constrained Reg, this returns CurRC. 1307 const TargetRegisterClass *getRegClassConstraintEffectForVRegImpl( 1308 unsigned OpIdx, unsigned Reg, const TargetRegisterClass *CurRC, 1309 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const; 1310}; 1311 1312/// Special DenseMapInfo traits to compare MachineInstr* by *value* of the 1313/// instruction rather than by pointer value. 1314/// The hashing and equality testing functions ignore definitions so this is 1315/// useful for CSE, etc. 1316struct MachineInstrExpressionTrait : DenseMapInfo<MachineInstr*> { 1317 static inline MachineInstr *getEmptyKey() { 1318 return nullptr; 1319 } 1320 1321 static inline MachineInstr *getTombstoneKey() { 1322 return reinterpret_cast<MachineInstr*>(-1); 1323 } 1324 1325 static unsigned getHashValue(const MachineInstr* const &MI); 1326 1327 static bool isEqual(const MachineInstr* const &LHS, 1328 const MachineInstr* const &RHS) { 1329 if (RHS == getEmptyKey() || RHS == getTombstoneKey() || 1330 LHS == getEmptyKey() || LHS == getTombstoneKey()) 1331 return LHS == RHS; 1332 return LHS->isIdenticalTo(*RHS, MachineInstr::IgnoreVRegDefs); 1333 } 1334}; 1335 1336//===----------------------------------------------------------------------===// 1337// Debugging Support 1338 1339inline raw_ostream& operator<<(raw_ostream &OS, const MachineInstr &MI) { 1340 MI.print(OS); 1341 return OS; 1342} 1343 1344} // end namespace llvm 1345 1346#endif // LLVM_CODEGEN_MACHINEINSTR_H 1347