1//===- llvm/ADT/DenseMap.h - Dense probed hash table ------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the DenseMap class.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_ADT_DENSEMAP_H
15#define LLVM_ADT_DENSEMAP_H
16
17#include "llvm/ADT/DenseMapInfo.h"
18#include "llvm/ADT/EpochTracker.h"
19#include "llvm/Support/AlignOf.h"
20#include "llvm/Support/Compiler.h"
21#include "llvm/Support/MathExtras.h"
22#include "llvm/Support/ReverseIteration.h"
23#include "llvm/Support/type_traits.h"
24#include <algorithm>
25#include <cassert>
26#include <cstddef>
27#include <cstring>
28#include <iterator>
29#include <new>
30#include <type_traits>
31#include <utility>
32
33namespace llvm {
34
35namespace detail {
36
37// We extend a pair to allow users to override the bucket type with their own
38// implementation without requiring two members.
39template <typename KeyT, typename ValueT>
40struct DenseMapPair : public std::pair<KeyT, ValueT> {
41  KeyT &getFirst() { return std::pair<KeyT, ValueT>::first; }
42  const KeyT &getFirst() const { return std::pair<KeyT, ValueT>::first; }
43  ValueT &getSecond() { return std::pair<KeyT, ValueT>::second; }
44  const ValueT &getSecond() const { return std::pair<KeyT, ValueT>::second; }
45};
46
47} // end namespace detail
48
49template <
50    typename KeyT, typename ValueT, typename KeyInfoT = DenseMapInfo<KeyT>,
51    typename Bucket = detail::DenseMapPair<KeyT, ValueT>, bool IsConst = false>
52class DenseMapIterator;
53
54template <typename DerivedT, typename KeyT, typename ValueT, typename KeyInfoT,
55          typename BucketT>
56class DenseMapBase : public DebugEpochBase {
57  template <typename T>
58  using const_arg_type_t = typename const_pointer_or_const_ref<T>::type;
59
60public:
61  using size_type = unsigned;
62  using key_type = KeyT;
63  using mapped_type = ValueT;
64  using value_type = BucketT;
65
66  using iterator = DenseMapIterator<KeyT, ValueT, KeyInfoT, BucketT>;
67  using const_iterator =
68      DenseMapIterator<KeyT, ValueT, KeyInfoT, BucketT, true>;
69
70  inline iterator begin() {
71    // When the map is empty, avoid the overhead of advancing/retreating past
72    // empty buckets.
73    if (empty())
74      return end();
75    if (shouldReverseIterate<KeyT>())
76      return makeIterator(getBucketsEnd() - 1, getBuckets(), *this);
77    return makeIterator(getBuckets(), getBucketsEnd(), *this);
78  }
79  inline iterator end() {
80    return makeIterator(getBucketsEnd(), getBucketsEnd(), *this, true);
81  }
82  inline const_iterator begin() const {
83    if (empty())
84      return end();
85    if (shouldReverseIterate<KeyT>())
86      return makeConstIterator(getBucketsEnd() - 1, getBuckets(), *this);
87    return makeConstIterator(getBuckets(), getBucketsEnd(), *this);
88  }
89  inline const_iterator end() const {
90    return makeConstIterator(getBucketsEnd(), getBucketsEnd(), *this, true);
91  }
92
93  LLVM_NODISCARD bool empty() const {
94    return getNumEntries() == 0;
95  }
96  unsigned size() const { return getNumEntries(); }
97
98  /// Grow the densemap so that it can contain at least \p NumEntries items
99  /// before resizing again.
100  void reserve(size_type NumEntries) {
101    auto NumBuckets = getMinBucketToReserveForEntries(NumEntries);
102    incrementEpoch();
103    if (NumBuckets > getNumBuckets())
104      grow(NumBuckets);
105  }
106
107  void clear() {
108    incrementEpoch();
109    if (getNumEntries() == 0 && getNumTombstones() == 0) return;
110
111    // If the capacity of the array is huge, and the # elements used is small,
112    // shrink the array.
113    if (getNumEntries() * 4 < getNumBuckets() && getNumBuckets() > 64) {
114      shrink_and_clear();
115      return;
116    }
117
118    const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey();
119    if (isPodLike<KeyT>::value && isPodLike<ValueT>::value) {
120      // Use a simpler loop when these are trivial types.
121      for (BucketT *P = getBuckets(), *E = getBucketsEnd(); P != E; ++P)
122        P->getFirst() = EmptyKey;
123    } else {
124      unsigned NumEntries = getNumEntries();
125      for (BucketT *P = getBuckets(), *E = getBucketsEnd(); P != E; ++P) {
126        if (!KeyInfoT::isEqual(P->getFirst(), EmptyKey)) {
127          if (!KeyInfoT::isEqual(P->getFirst(), TombstoneKey)) {
128            P->getSecond().~ValueT();
129            --NumEntries;
130          }
131          P->getFirst() = EmptyKey;
132        }
133      }
134      assert(NumEntries == 0 && "Node count imbalance!");
135    }
136    setNumEntries(0);
137    setNumTombstones(0);
138  }
139
140  /// Return 1 if the specified key is in the map, 0 otherwise.
141  size_type count(const_arg_type_t<KeyT> Val) const {
142    const BucketT *TheBucket;
143    return LookupBucketFor(Val, TheBucket) ? 1 : 0;
144  }
145
146  iterator find(const_arg_type_t<KeyT> Val) {
147    BucketT *TheBucket;
148    if (LookupBucketFor(Val, TheBucket))
149      return makeIterator(TheBucket, getBucketsEnd(), *this, true);
150    return end();
151  }
152  const_iterator find(const_arg_type_t<KeyT> Val) const {
153    const BucketT *TheBucket;
154    if (LookupBucketFor(Val, TheBucket))
155      return makeConstIterator(TheBucket, getBucketsEnd(), *this, true);
156    return end();
157  }
158
159  /// Alternate version of find() which allows a different, and possibly
160  /// less expensive, key type.
161  /// The DenseMapInfo is responsible for supplying methods
162  /// getHashValue(LookupKeyT) and isEqual(LookupKeyT, KeyT) for each key
163  /// type used.
164  template<class LookupKeyT>
165  iterator find_as(const LookupKeyT &Val) {
166    BucketT *TheBucket;
167    if (LookupBucketFor(Val, TheBucket))
168      return makeIterator(TheBucket, getBucketsEnd(), *this, true);
169    return end();
170  }
171  template<class LookupKeyT>
172  const_iterator find_as(const LookupKeyT &Val) const {
173    const BucketT *TheBucket;
174    if (LookupBucketFor(Val, TheBucket))
175      return makeConstIterator(TheBucket, getBucketsEnd(), *this, true);
176    return end();
177  }
178
179  /// lookup - Return the entry for the specified key, or a default
180  /// constructed value if no such entry exists.
181  ValueT lookup(const_arg_type_t<KeyT> Val) const {
182    const BucketT *TheBucket;
183    if (LookupBucketFor(Val, TheBucket))
184      return TheBucket->getSecond();
185    return ValueT();
186  }
187
188  // Inserts key,value pair into the map if the key isn't already in the map.
189  // If the key is already in the map, it returns false and doesn't update the
190  // value.
191  std::pair<iterator, bool> insert(const std::pair<KeyT, ValueT> &KV) {
192    return try_emplace(KV.first, KV.second);
193  }
194
195  // Inserts key,value pair into the map if the key isn't already in the map.
196  // If the key is already in the map, it returns false and doesn't update the
197  // value.
198  std::pair<iterator, bool> insert(std::pair<KeyT, ValueT> &&KV) {
199    return try_emplace(std::move(KV.first), std::move(KV.second));
200  }
201
202  // Inserts key,value pair into the map if the key isn't already in the map.
203  // The value is constructed in-place if the key is not in the map, otherwise
204  // it is not moved.
205  template <typename... Ts>
206  std::pair<iterator, bool> try_emplace(KeyT &&Key, Ts &&... Args) {
207    BucketT *TheBucket;
208    if (LookupBucketFor(Key, TheBucket))
209      return std::make_pair(
210               makeIterator(TheBucket, getBucketsEnd(), *this, true),
211               false); // Already in map.
212
213    // Otherwise, insert the new element.
214    TheBucket =
215        InsertIntoBucket(TheBucket, std::move(Key), std::forward<Ts>(Args)...);
216    return std::make_pair(
217             makeIterator(TheBucket, getBucketsEnd(), *this, true),
218             true);
219  }
220
221  // Inserts key,value pair into the map if the key isn't already in the map.
222  // The value is constructed in-place if the key is not in the map, otherwise
223  // it is not moved.
224  template <typename... Ts>
225  std::pair<iterator, bool> try_emplace(const KeyT &Key, Ts &&... Args) {
226    BucketT *TheBucket;
227    if (LookupBucketFor(Key, TheBucket))
228      return std::make_pair(
229               makeIterator(TheBucket, getBucketsEnd(), *this, true),
230               false); // Already in map.
231
232    // Otherwise, insert the new element.
233    TheBucket = InsertIntoBucket(TheBucket, Key, std::forward<Ts>(Args)...);
234    return std::make_pair(
235             makeIterator(TheBucket, getBucketsEnd(), *this, true),
236             true);
237  }
238
239  /// Alternate version of insert() which allows a different, and possibly
240  /// less expensive, key type.
241  /// The DenseMapInfo is responsible for supplying methods
242  /// getHashValue(LookupKeyT) and isEqual(LookupKeyT, KeyT) for each key
243  /// type used.
244  template <typename LookupKeyT>
245  std::pair<iterator, bool> insert_as(std::pair<KeyT, ValueT> &&KV,
246                                      const LookupKeyT &Val) {
247    BucketT *TheBucket;
248    if (LookupBucketFor(Val, TheBucket))
249      return std::make_pair(
250               makeIterator(TheBucket, getBucketsEnd(), *this, true),
251               false); // Already in map.
252
253    // Otherwise, insert the new element.
254    TheBucket = InsertIntoBucketWithLookup(TheBucket, std::move(KV.first),
255                                           std::move(KV.second), Val);
256    return std::make_pair(
257             makeIterator(TheBucket, getBucketsEnd(), *this, true),
258             true);
259  }
260
261  /// insert - Range insertion of pairs.
262  template<typename InputIt>
263  void insert(InputIt I, InputIt E) {
264    for (; I != E; ++I)
265      insert(*I);
266  }
267
268  bool erase(const KeyT &Val) {
269    BucketT *TheBucket;
270    if (!LookupBucketFor(Val, TheBucket))
271      return false; // not in map.
272
273    TheBucket->getSecond().~ValueT();
274    TheBucket->getFirst() = getTombstoneKey();
275    decrementNumEntries();
276    incrementNumTombstones();
277    return true;
278  }
279  void erase(iterator I) {
280    BucketT *TheBucket = &*I;
281    TheBucket->getSecond().~ValueT();
282    TheBucket->getFirst() = getTombstoneKey();
283    decrementNumEntries();
284    incrementNumTombstones();
285  }
286
287  value_type& FindAndConstruct(const KeyT &Key) {
288    BucketT *TheBucket;
289    if (LookupBucketFor(Key, TheBucket))
290      return *TheBucket;
291
292    return *InsertIntoBucket(TheBucket, Key);
293  }
294
295  ValueT &operator[](const KeyT &Key) {
296    return FindAndConstruct(Key).second;
297  }
298
299  value_type& FindAndConstruct(KeyT &&Key) {
300    BucketT *TheBucket;
301    if (LookupBucketFor(Key, TheBucket))
302      return *TheBucket;
303
304    return *InsertIntoBucket(TheBucket, std::move(Key));
305  }
306
307  ValueT &operator[](KeyT &&Key) {
308    return FindAndConstruct(std::move(Key)).second;
309  }
310
311  /// isPointerIntoBucketsArray - Return true if the specified pointer points
312  /// somewhere into the DenseMap's array of buckets (i.e. either to a key or
313  /// value in the DenseMap).
314  bool isPointerIntoBucketsArray(const void *Ptr) const {
315    return Ptr >= getBuckets() && Ptr < getBucketsEnd();
316  }
317
318  /// getPointerIntoBucketsArray() - Return an opaque pointer into the buckets
319  /// array.  In conjunction with the previous method, this can be used to
320  /// determine whether an insertion caused the DenseMap to reallocate.
321  const void *getPointerIntoBucketsArray() const { return getBuckets(); }
322
323protected:
324  DenseMapBase() = default;
325
326  void destroyAll() {
327    if (getNumBuckets() == 0) // Nothing to do.
328      return;
329
330    const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey();
331    for (BucketT *P = getBuckets(), *E = getBucketsEnd(); P != E; ++P) {
332      if (!KeyInfoT::isEqual(P->getFirst(), EmptyKey) &&
333          !KeyInfoT::isEqual(P->getFirst(), TombstoneKey))
334        P->getSecond().~ValueT();
335      P->getFirst().~KeyT();
336    }
337  }
338
339  void initEmpty() {
340    setNumEntries(0);
341    setNumTombstones(0);
342
343    assert((getNumBuckets() & (getNumBuckets()-1)) == 0 &&
344           "# initial buckets must be a power of two!");
345    const KeyT EmptyKey = getEmptyKey();
346    for (BucketT *B = getBuckets(), *E = getBucketsEnd(); B != E; ++B)
347      ::new (&B->getFirst()) KeyT(EmptyKey);
348  }
349
350  /// Returns the number of buckets to allocate to ensure that the DenseMap can
351  /// accommodate \p NumEntries without need to grow().
352  unsigned getMinBucketToReserveForEntries(unsigned NumEntries) {
353    // Ensure that "NumEntries * 4 < NumBuckets * 3"
354    if (NumEntries == 0)
355      return 0;
356    // +1 is required because of the strict equality.
357    // For example if NumEntries is 48, we need to return 401.
358    return NextPowerOf2(NumEntries * 4 / 3 + 1);
359  }
360
361  void moveFromOldBuckets(BucketT *OldBucketsBegin, BucketT *OldBucketsEnd) {
362    initEmpty();
363
364    // Insert all the old elements.
365    const KeyT EmptyKey = getEmptyKey();
366    const KeyT TombstoneKey = getTombstoneKey();
367    for (BucketT *B = OldBucketsBegin, *E = OldBucketsEnd; B != E; ++B) {
368      if (!KeyInfoT::isEqual(B->getFirst(), EmptyKey) &&
369          !KeyInfoT::isEqual(B->getFirst(), TombstoneKey)) {
370        // Insert the key/value into the new table.
371        BucketT *DestBucket;
372        bool FoundVal = LookupBucketFor(B->getFirst(), DestBucket);
373        (void)FoundVal; // silence warning.
374        assert(!FoundVal && "Key already in new map?");
375        DestBucket->getFirst() = std::move(B->getFirst());
376        ::new (&DestBucket->getSecond()) ValueT(std::move(B->getSecond()));
377        incrementNumEntries();
378
379        // Free the value.
380        B->getSecond().~ValueT();
381      }
382      B->getFirst().~KeyT();
383    }
384  }
385
386  template <typename OtherBaseT>
387  void copyFrom(
388      const DenseMapBase<OtherBaseT, KeyT, ValueT, KeyInfoT, BucketT> &other) {
389    assert(&other != this);
390    assert(getNumBuckets() == other.getNumBuckets());
391
392    setNumEntries(other.getNumEntries());
393    setNumTombstones(other.getNumTombstones());
394
395    if (isPodLike<KeyT>::value && isPodLike<ValueT>::value)
396      memcpy(getBuckets(), other.getBuckets(),
397             getNumBuckets() * sizeof(BucketT));
398    else
399      for (size_t i = 0; i < getNumBuckets(); ++i) {
400        ::new (&getBuckets()[i].getFirst())
401            KeyT(other.getBuckets()[i].getFirst());
402        if (!KeyInfoT::isEqual(getBuckets()[i].getFirst(), getEmptyKey()) &&
403            !KeyInfoT::isEqual(getBuckets()[i].getFirst(), getTombstoneKey()))
404          ::new (&getBuckets()[i].getSecond())
405              ValueT(other.getBuckets()[i].getSecond());
406      }
407  }
408
409  static unsigned getHashValue(const KeyT &Val) {
410    return KeyInfoT::getHashValue(Val);
411  }
412
413  template<typename LookupKeyT>
414  static unsigned getHashValue(const LookupKeyT &Val) {
415    return KeyInfoT::getHashValue(Val);
416  }
417
418  static const KeyT getEmptyKey() {
419    static_assert(std::is_base_of<DenseMapBase, DerivedT>::value,
420                  "Must pass the derived type to this template!");
421    return KeyInfoT::getEmptyKey();
422  }
423
424  static const KeyT getTombstoneKey() {
425    return KeyInfoT::getTombstoneKey();
426  }
427
428private:
429  iterator makeIterator(BucketT *P, BucketT *E,
430                        DebugEpochBase &Epoch,
431                        bool NoAdvance=false) {
432    if (shouldReverseIterate<KeyT>()) {
433      BucketT *B = P == getBucketsEnd() ? getBuckets() : P + 1;
434      return iterator(B, E, Epoch, NoAdvance);
435    }
436    return iterator(P, E, Epoch, NoAdvance);
437  }
438
439  const_iterator makeConstIterator(const BucketT *P, const BucketT *E,
440                                   const DebugEpochBase &Epoch,
441                                   const bool NoAdvance=false) const {
442    if (shouldReverseIterate<KeyT>()) {
443      const BucketT *B = P == getBucketsEnd() ? getBuckets() : P + 1;
444      return const_iterator(B, E, Epoch, NoAdvance);
445    }
446    return const_iterator(P, E, Epoch, NoAdvance);
447  }
448
449  unsigned getNumEntries() const {
450    return static_cast<const DerivedT *>(this)->getNumEntries();
451  }
452
453  void setNumEntries(unsigned Num) {
454    static_cast<DerivedT *>(this)->setNumEntries(Num);
455  }
456
457  void incrementNumEntries() {
458    setNumEntries(getNumEntries() + 1);
459  }
460
461  void decrementNumEntries() {
462    setNumEntries(getNumEntries() - 1);
463  }
464
465  unsigned getNumTombstones() const {
466    return static_cast<const DerivedT *>(this)->getNumTombstones();
467  }
468
469  void setNumTombstones(unsigned Num) {
470    static_cast<DerivedT *>(this)->setNumTombstones(Num);
471  }
472
473  void incrementNumTombstones() {
474    setNumTombstones(getNumTombstones() + 1);
475  }
476
477  void decrementNumTombstones() {
478    setNumTombstones(getNumTombstones() - 1);
479  }
480
481  const BucketT *getBuckets() const {
482    return static_cast<const DerivedT *>(this)->getBuckets();
483  }
484
485  BucketT *getBuckets() {
486    return static_cast<DerivedT *>(this)->getBuckets();
487  }
488
489  unsigned getNumBuckets() const {
490    return static_cast<const DerivedT *>(this)->getNumBuckets();
491  }
492
493  BucketT *getBucketsEnd() {
494    return getBuckets() + getNumBuckets();
495  }
496
497  const BucketT *getBucketsEnd() const {
498    return getBuckets() + getNumBuckets();
499  }
500
501  void grow(unsigned AtLeast) {
502    static_cast<DerivedT *>(this)->grow(AtLeast);
503  }
504
505  void shrink_and_clear() {
506    static_cast<DerivedT *>(this)->shrink_and_clear();
507  }
508
509  template <typename KeyArg, typename... ValueArgs>
510  BucketT *InsertIntoBucket(BucketT *TheBucket, KeyArg &&Key,
511                            ValueArgs &&... Values) {
512    TheBucket = InsertIntoBucketImpl(Key, Key, TheBucket);
513
514    TheBucket->getFirst() = std::forward<KeyArg>(Key);
515    ::new (&TheBucket->getSecond()) ValueT(std::forward<ValueArgs>(Values)...);
516    return TheBucket;
517  }
518
519  template <typename LookupKeyT>
520  BucketT *InsertIntoBucketWithLookup(BucketT *TheBucket, KeyT &&Key,
521                                      ValueT &&Value, LookupKeyT &Lookup) {
522    TheBucket = InsertIntoBucketImpl(Key, Lookup, TheBucket);
523
524    TheBucket->getFirst() = std::move(Key);
525    ::new (&TheBucket->getSecond()) ValueT(std::move(Value));
526    return TheBucket;
527  }
528
529  template <typename LookupKeyT>
530  BucketT *InsertIntoBucketImpl(const KeyT &Key, const LookupKeyT &Lookup,
531                                BucketT *TheBucket) {
532    incrementEpoch();
533
534    // If the load of the hash table is more than 3/4, or if fewer than 1/8 of
535    // the buckets are empty (meaning that many are filled with tombstones),
536    // grow the table.
537    //
538    // The later case is tricky.  For example, if we had one empty bucket with
539    // tons of tombstones, failing lookups (e.g. for insertion) would have to
540    // probe almost the entire table until it found the empty bucket.  If the
541    // table completely filled with tombstones, no lookup would ever succeed,
542    // causing infinite loops in lookup.
543    unsigned NewNumEntries = getNumEntries() + 1;
544    unsigned NumBuckets = getNumBuckets();
545    if (LLVM_UNLIKELY(NewNumEntries * 4 >= NumBuckets * 3)) {
546      this->grow(NumBuckets * 2);
547      LookupBucketFor(Lookup, TheBucket);
548      NumBuckets = getNumBuckets();
549    } else if (LLVM_UNLIKELY(NumBuckets-(NewNumEntries+getNumTombstones()) <=
550                             NumBuckets/8)) {
551      this->grow(NumBuckets);
552      LookupBucketFor(Lookup, TheBucket);
553    }
554    assert(TheBucket);
555
556    // Only update the state after we've grown our bucket space appropriately
557    // so that when growing buckets we have self-consistent entry count.
558    incrementNumEntries();
559
560    // If we are writing over a tombstone, remember this.
561    const KeyT EmptyKey = getEmptyKey();
562    if (!KeyInfoT::isEqual(TheBucket->getFirst(), EmptyKey))
563      decrementNumTombstones();
564
565    return TheBucket;
566  }
567
568  /// LookupBucketFor - Lookup the appropriate bucket for Val, returning it in
569  /// FoundBucket.  If the bucket contains the key and a value, this returns
570  /// true, otherwise it returns a bucket with an empty marker or tombstone and
571  /// returns false.
572  template<typename LookupKeyT>
573  bool LookupBucketFor(const LookupKeyT &Val,
574                       const BucketT *&FoundBucket) const {
575    const BucketT *BucketsPtr = getBuckets();
576    const unsigned NumBuckets = getNumBuckets();
577
578    if (NumBuckets == 0) {
579      FoundBucket = nullptr;
580      return false;
581    }
582
583    // FoundTombstone - Keep track of whether we find a tombstone while probing.
584    const BucketT *FoundTombstone = nullptr;
585    const KeyT EmptyKey = getEmptyKey();
586    const KeyT TombstoneKey = getTombstoneKey();
587    assert(!KeyInfoT::isEqual(Val, EmptyKey) &&
588           !KeyInfoT::isEqual(Val, TombstoneKey) &&
589           "Empty/Tombstone value shouldn't be inserted into map!");
590
591    unsigned BucketNo = getHashValue(Val) & (NumBuckets-1);
592    unsigned ProbeAmt = 1;
593    while (true) {
594      const BucketT *ThisBucket = BucketsPtr + BucketNo;
595      // Found Val's bucket?  If so, return it.
596      if (LLVM_LIKELY(KeyInfoT::isEqual(Val, ThisBucket->getFirst()))) {
597        FoundBucket = ThisBucket;
598        return true;
599      }
600
601      // If we found an empty bucket, the key doesn't exist in the set.
602      // Insert it and return the default value.
603      if (LLVM_LIKELY(KeyInfoT::isEqual(ThisBucket->getFirst(), EmptyKey))) {
604        // If we've already seen a tombstone while probing, fill it in instead
605        // of the empty bucket we eventually probed to.
606        FoundBucket = FoundTombstone ? FoundTombstone : ThisBucket;
607        return false;
608      }
609
610      // If this is a tombstone, remember it.  If Val ends up not in the map, we
611      // prefer to return it than something that would require more probing.
612      if (KeyInfoT::isEqual(ThisBucket->getFirst(), TombstoneKey) &&
613          !FoundTombstone)
614        FoundTombstone = ThisBucket;  // Remember the first tombstone found.
615
616      // Otherwise, it's a hash collision or a tombstone, continue quadratic
617      // probing.
618      BucketNo += ProbeAmt++;
619      BucketNo &= (NumBuckets-1);
620    }
621  }
622
623  template <typename LookupKeyT>
624  bool LookupBucketFor(const LookupKeyT &Val, BucketT *&FoundBucket) {
625    const BucketT *ConstFoundBucket;
626    bool Result = const_cast<const DenseMapBase *>(this)
627      ->LookupBucketFor(Val, ConstFoundBucket);
628    FoundBucket = const_cast<BucketT *>(ConstFoundBucket);
629    return Result;
630  }
631
632public:
633  /// Return the approximate size (in bytes) of the actual map.
634  /// This is just the raw memory used by DenseMap.
635  /// If entries are pointers to objects, the size of the referenced objects
636  /// are not included.
637  size_t getMemorySize() const {
638    return getNumBuckets() * sizeof(BucketT);
639  }
640};
641
642template <typename KeyT, typename ValueT,
643          typename KeyInfoT = DenseMapInfo<KeyT>,
644          typename BucketT = detail::DenseMapPair<KeyT, ValueT>>
645class DenseMap : public DenseMapBase<DenseMap<KeyT, ValueT, KeyInfoT, BucketT>,
646                                     KeyT, ValueT, KeyInfoT, BucketT> {
647  friend class DenseMapBase<DenseMap, KeyT, ValueT, KeyInfoT, BucketT>;
648
649  // Lift some types from the dependent base class into this class for
650  // simplicity of referring to them.
651  using BaseT = DenseMapBase<DenseMap, KeyT, ValueT, KeyInfoT, BucketT>;
652
653  BucketT *Buckets;
654  unsigned NumEntries;
655  unsigned NumTombstones;
656  unsigned NumBuckets;
657
658public:
659  /// Create a DenseMap wth an optional \p InitialReserve that guarantee that
660  /// this number of elements can be inserted in the map without grow()
661  explicit DenseMap(unsigned InitialReserve = 0) { init(InitialReserve); }
662
663  DenseMap(const DenseMap &other) : BaseT() {
664    init(0);
665    copyFrom(other);
666  }
667
668  DenseMap(DenseMap &&other) : BaseT() {
669    init(0);
670    swap(other);
671  }
672
673  template<typename InputIt>
674  DenseMap(const InputIt &I, const InputIt &E) {
675    init(std::distance(I, E));
676    this->insert(I, E);
677  }
678
679  ~DenseMap() {
680    this->destroyAll();
681    operator delete(Buckets);
682  }
683
684  void swap(DenseMap& RHS) {
685    this->incrementEpoch();
686    RHS.incrementEpoch();
687    std::swap(Buckets, RHS.Buckets);
688    std::swap(NumEntries, RHS.NumEntries);
689    std::swap(NumTombstones, RHS.NumTombstones);
690    std::swap(NumBuckets, RHS.NumBuckets);
691  }
692
693  DenseMap& operator=(const DenseMap& other) {
694    if (&other != this)
695      copyFrom(other);
696    return *this;
697  }
698
699  DenseMap& operator=(DenseMap &&other) {
700    this->destroyAll();
701    operator delete(Buckets);
702    init(0);
703    swap(other);
704    return *this;
705  }
706
707  void copyFrom(const DenseMap& other) {
708    this->destroyAll();
709    operator delete(Buckets);
710    if (allocateBuckets(other.NumBuckets)) {
711      this->BaseT::copyFrom(other);
712    } else {
713      NumEntries = 0;
714      NumTombstones = 0;
715    }
716  }
717
718  void init(unsigned InitNumEntries) {
719    auto InitBuckets = BaseT::getMinBucketToReserveForEntries(InitNumEntries);
720    if (allocateBuckets(InitBuckets)) {
721      this->BaseT::initEmpty();
722    } else {
723      NumEntries = 0;
724      NumTombstones = 0;
725    }
726  }
727
728  void grow(unsigned AtLeast) {
729    unsigned OldNumBuckets = NumBuckets;
730    BucketT *OldBuckets = Buckets;
731
732    allocateBuckets(std::max<unsigned>(64, static_cast<unsigned>(NextPowerOf2(AtLeast-1))));
733    assert(Buckets);
734    if (!OldBuckets) {
735      this->BaseT::initEmpty();
736      return;
737    }
738
739    this->moveFromOldBuckets(OldBuckets, OldBuckets+OldNumBuckets);
740
741    // Free the old table.
742    operator delete(OldBuckets);
743  }
744
745  void shrink_and_clear() {
746    unsigned OldNumEntries = NumEntries;
747    this->destroyAll();
748
749    // Reduce the number of buckets.
750    unsigned NewNumBuckets = 0;
751    if (OldNumEntries)
752      NewNumBuckets = std::max(64, 1 << (Log2_32_Ceil(OldNumEntries) + 1));
753    if (NewNumBuckets == NumBuckets) {
754      this->BaseT::initEmpty();
755      return;
756    }
757
758    operator delete(Buckets);
759    init(NewNumBuckets);
760  }
761
762private:
763  unsigned getNumEntries() const {
764    return NumEntries;
765  }
766
767  void setNumEntries(unsigned Num) {
768    NumEntries = Num;
769  }
770
771  unsigned getNumTombstones() const {
772    return NumTombstones;
773  }
774
775  void setNumTombstones(unsigned Num) {
776    NumTombstones = Num;
777  }
778
779  BucketT *getBuckets() const {
780    return Buckets;
781  }
782
783  unsigned getNumBuckets() const {
784    return NumBuckets;
785  }
786
787  bool allocateBuckets(unsigned Num) {
788    NumBuckets = Num;
789    if (NumBuckets == 0) {
790      Buckets = nullptr;
791      return false;
792    }
793
794    Buckets = static_cast<BucketT*>(operator new(sizeof(BucketT) * NumBuckets));
795    return true;
796  }
797};
798
799template <typename KeyT, typename ValueT, unsigned InlineBuckets = 4,
800          typename KeyInfoT = DenseMapInfo<KeyT>,
801          typename BucketT = detail::DenseMapPair<KeyT, ValueT>>
802class SmallDenseMap
803    : public DenseMapBase<
804          SmallDenseMap<KeyT, ValueT, InlineBuckets, KeyInfoT, BucketT>, KeyT,
805          ValueT, KeyInfoT, BucketT> {
806  friend class DenseMapBase<SmallDenseMap, KeyT, ValueT, KeyInfoT, BucketT>;
807
808  // Lift some types from the dependent base class into this class for
809  // simplicity of referring to them.
810  using BaseT = DenseMapBase<SmallDenseMap, KeyT, ValueT, KeyInfoT, BucketT>;
811
812  static_assert(isPowerOf2_64(InlineBuckets),
813                "InlineBuckets must be a power of 2.");
814
815  unsigned Small : 1;
816  unsigned NumEntries : 31;
817  unsigned NumTombstones;
818
819  struct LargeRep {
820    BucketT *Buckets;
821    unsigned NumBuckets;
822  };
823
824  /// A "union" of an inline bucket array and the struct representing
825  /// a large bucket. This union will be discriminated by the 'Small' bit.
826  AlignedCharArrayUnion<BucketT[InlineBuckets], LargeRep> storage;
827
828public:
829  explicit SmallDenseMap(unsigned NumInitBuckets = 0) {
830    init(NumInitBuckets);
831  }
832
833  SmallDenseMap(const SmallDenseMap &other) : BaseT() {
834    init(0);
835    copyFrom(other);
836  }
837
838  SmallDenseMap(SmallDenseMap &&other) : BaseT() {
839    init(0);
840    swap(other);
841  }
842
843  template<typename InputIt>
844  SmallDenseMap(const InputIt &I, const InputIt &E) {
845    init(NextPowerOf2(std::distance(I, E)));
846    this->insert(I, E);
847  }
848
849  ~SmallDenseMap() {
850    this->destroyAll();
851    deallocateBuckets();
852  }
853
854  void swap(SmallDenseMap& RHS) {
855    unsigned TmpNumEntries = RHS.NumEntries;
856    RHS.NumEntries = NumEntries;
857    NumEntries = TmpNumEntries;
858    std::swap(NumTombstones, RHS.NumTombstones);
859
860    const KeyT EmptyKey = this->getEmptyKey();
861    const KeyT TombstoneKey = this->getTombstoneKey();
862    if (Small && RHS.Small) {
863      // If we're swapping inline bucket arrays, we have to cope with some of
864      // the tricky bits of DenseMap's storage system: the buckets are not
865      // fully initialized. Thus we swap every key, but we may have
866      // a one-directional move of the value.
867      for (unsigned i = 0, e = InlineBuckets; i != e; ++i) {
868        BucketT *LHSB = &getInlineBuckets()[i],
869                *RHSB = &RHS.getInlineBuckets()[i];
870        bool hasLHSValue = (!KeyInfoT::isEqual(LHSB->getFirst(), EmptyKey) &&
871                            !KeyInfoT::isEqual(LHSB->getFirst(), TombstoneKey));
872        bool hasRHSValue = (!KeyInfoT::isEqual(RHSB->getFirst(), EmptyKey) &&
873                            !KeyInfoT::isEqual(RHSB->getFirst(), TombstoneKey));
874        if (hasLHSValue && hasRHSValue) {
875          // Swap together if we can...
876          std::swap(*LHSB, *RHSB);
877          continue;
878        }
879        // Swap separately and handle any assymetry.
880        std::swap(LHSB->getFirst(), RHSB->getFirst());
881        if (hasLHSValue) {
882          ::new (&RHSB->getSecond()) ValueT(std::move(LHSB->getSecond()));
883          LHSB->getSecond().~ValueT();
884        } else if (hasRHSValue) {
885          ::new (&LHSB->getSecond()) ValueT(std::move(RHSB->getSecond()));
886          RHSB->getSecond().~ValueT();
887        }
888      }
889      return;
890    }
891    if (!Small && !RHS.Small) {
892      std::swap(getLargeRep()->Buckets, RHS.getLargeRep()->Buckets);
893      std::swap(getLargeRep()->NumBuckets, RHS.getLargeRep()->NumBuckets);
894      return;
895    }
896
897    SmallDenseMap &SmallSide = Small ? *this : RHS;
898    SmallDenseMap &LargeSide = Small ? RHS : *this;
899
900    // First stash the large side's rep and move the small side across.
901    LargeRep TmpRep = std::move(*LargeSide.getLargeRep());
902    LargeSide.getLargeRep()->~LargeRep();
903    LargeSide.Small = true;
904    // This is similar to the standard move-from-old-buckets, but the bucket
905    // count hasn't actually rotated in this case. So we have to carefully
906    // move construct the keys and values into their new locations, but there
907    // is no need to re-hash things.
908    for (unsigned i = 0, e = InlineBuckets; i != e; ++i) {
909      BucketT *NewB = &LargeSide.getInlineBuckets()[i],
910              *OldB = &SmallSide.getInlineBuckets()[i];
911      ::new (&NewB->getFirst()) KeyT(std::move(OldB->getFirst()));
912      OldB->getFirst().~KeyT();
913      if (!KeyInfoT::isEqual(NewB->getFirst(), EmptyKey) &&
914          !KeyInfoT::isEqual(NewB->getFirst(), TombstoneKey)) {
915        ::new (&NewB->getSecond()) ValueT(std::move(OldB->getSecond()));
916        OldB->getSecond().~ValueT();
917      }
918    }
919
920    // The hard part of moving the small buckets across is done, just move
921    // the TmpRep into its new home.
922    SmallSide.Small = false;
923    new (SmallSide.getLargeRep()) LargeRep(std::move(TmpRep));
924  }
925
926  SmallDenseMap& operator=(const SmallDenseMap& other) {
927    if (&other != this)
928      copyFrom(other);
929    return *this;
930  }
931
932  SmallDenseMap& operator=(SmallDenseMap &&other) {
933    this->destroyAll();
934    deallocateBuckets();
935    init(0);
936    swap(other);
937    return *this;
938  }
939
940  void copyFrom(const SmallDenseMap& other) {
941    this->destroyAll();
942    deallocateBuckets();
943    Small = true;
944    if (other.getNumBuckets() > InlineBuckets) {
945      Small = false;
946      new (getLargeRep()) LargeRep(allocateBuckets(other.getNumBuckets()));
947    }
948    this->BaseT::copyFrom(other);
949  }
950
951  void init(unsigned InitBuckets) {
952    Small = true;
953    if (InitBuckets > InlineBuckets) {
954      Small = false;
955      new (getLargeRep()) LargeRep(allocateBuckets(InitBuckets));
956    }
957    this->BaseT::initEmpty();
958  }
959
960  void grow(unsigned AtLeast) {
961    if (AtLeast >= InlineBuckets)
962      AtLeast = std::max<unsigned>(64, NextPowerOf2(AtLeast-1));
963
964    if (Small) {
965      if (AtLeast < InlineBuckets)
966        return; // Nothing to do.
967
968      // First move the inline buckets into a temporary storage.
969      AlignedCharArrayUnion<BucketT[InlineBuckets]> TmpStorage;
970      BucketT *TmpBegin = reinterpret_cast<BucketT *>(TmpStorage.buffer);
971      BucketT *TmpEnd = TmpBegin;
972
973      // Loop over the buckets, moving non-empty, non-tombstones into the
974      // temporary storage. Have the loop move the TmpEnd forward as it goes.
975      const KeyT EmptyKey = this->getEmptyKey();
976      const KeyT TombstoneKey = this->getTombstoneKey();
977      for (BucketT *P = getBuckets(), *E = P + InlineBuckets; P != E; ++P) {
978        if (!KeyInfoT::isEqual(P->getFirst(), EmptyKey) &&
979            !KeyInfoT::isEqual(P->getFirst(), TombstoneKey)) {
980          assert(size_t(TmpEnd - TmpBegin) < InlineBuckets &&
981                 "Too many inline buckets!");
982          ::new (&TmpEnd->getFirst()) KeyT(std::move(P->getFirst()));
983          ::new (&TmpEnd->getSecond()) ValueT(std::move(P->getSecond()));
984          ++TmpEnd;
985          P->getSecond().~ValueT();
986        }
987        P->getFirst().~KeyT();
988      }
989
990      // Now make this map use the large rep, and move all the entries back
991      // into it.
992      Small = false;
993      new (getLargeRep()) LargeRep(allocateBuckets(AtLeast));
994      this->moveFromOldBuckets(TmpBegin, TmpEnd);
995      return;
996    }
997
998    LargeRep OldRep = std::move(*getLargeRep());
999    getLargeRep()->~LargeRep();
1000    if (AtLeast <= InlineBuckets) {
1001      Small = true;
1002    } else {
1003      new (getLargeRep()) LargeRep(allocateBuckets(AtLeast));
1004    }
1005
1006    this->moveFromOldBuckets(OldRep.Buckets, OldRep.Buckets+OldRep.NumBuckets);
1007
1008    // Free the old table.
1009    operator delete(OldRep.Buckets);
1010  }
1011
1012  void shrink_and_clear() {
1013    unsigned OldSize = this->size();
1014    this->destroyAll();
1015
1016    // Reduce the number of buckets.
1017    unsigned NewNumBuckets = 0;
1018    if (OldSize) {
1019      NewNumBuckets = 1 << (Log2_32_Ceil(OldSize) + 1);
1020      if (NewNumBuckets > InlineBuckets && NewNumBuckets < 64u)
1021        NewNumBuckets = 64;
1022    }
1023    if ((Small && NewNumBuckets <= InlineBuckets) ||
1024        (!Small && NewNumBuckets == getLargeRep()->NumBuckets)) {
1025      this->BaseT::initEmpty();
1026      return;
1027    }
1028
1029    deallocateBuckets();
1030    init(NewNumBuckets);
1031  }
1032
1033private:
1034  unsigned getNumEntries() const {
1035    return NumEntries;
1036  }
1037
1038  void setNumEntries(unsigned Num) {
1039    // NumEntries is hardcoded to be 31 bits wide.
1040    assert(Num < (1U << 31) && "Cannot support more than 1<<31 entries");
1041    NumEntries = Num;
1042  }
1043
1044  unsigned getNumTombstones() const {
1045    return NumTombstones;
1046  }
1047
1048  void setNumTombstones(unsigned Num) {
1049    NumTombstones = Num;
1050  }
1051
1052  const BucketT *getInlineBuckets() const {
1053    assert(Small);
1054    // Note that this cast does not violate aliasing rules as we assert that
1055    // the memory's dynamic type is the small, inline bucket buffer, and the
1056    // 'storage.buffer' static type is 'char *'.
1057    return reinterpret_cast<const BucketT *>(storage.buffer);
1058  }
1059
1060  BucketT *getInlineBuckets() {
1061    return const_cast<BucketT *>(
1062      const_cast<const SmallDenseMap *>(this)->getInlineBuckets());
1063  }
1064
1065  const LargeRep *getLargeRep() const {
1066    assert(!Small);
1067    // Note, same rule about aliasing as with getInlineBuckets.
1068    return reinterpret_cast<const LargeRep *>(storage.buffer);
1069  }
1070
1071  LargeRep *getLargeRep() {
1072    return const_cast<LargeRep *>(
1073      const_cast<const SmallDenseMap *>(this)->getLargeRep());
1074  }
1075
1076  const BucketT *getBuckets() const {
1077    return Small ? getInlineBuckets() : getLargeRep()->Buckets;
1078  }
1079
1080  BucketT *getBuckets() {
1081    return const_cast<BucketT *>(
1082      const_cast<const SmallDenseMap *>(this)->getBuckets());
1083  }
1084
1085  unsigned getNumBuckets() const {
1086    return Small ? InlineBuckets : getLargeRep()->NumBuckets;
1087  }
1088
1089  void deallocateBuckets() {
1090    if (Small)
1091      return;
1092
1093    operator delete(getLargeRep()->Buckets);
1094    getLargeRep()->~LargeRep();
1095  }
1096
1097  LargeRep allocateBuckets(unsigned Num) {
1098    assert(Num > InlineBuckets && "Must allocate more buckets than are inline");
1099    LargeRep Rep = {
1100      static_cast<BucketT*>(operator new(sizeof(BucketT) * Num)), Num
1101    };
1102    return Rep;
1103  }
1104};
1105
1106template <typename KeyT, typename ValueT, typename KeyInfoT, typename Bucket,
1107          bool IsConst>
1108class DenseMapIterator : DebugEpochBase::HandleBase {
1109  friend class DenseMapIterator<KeyT, ValueT, KeyInfoT, Bucket, true>;
1110  friend class DenseMapIterator<KeyT, ValueT, KeyInfoT, Bucket, false>;
1111
1112  using ConstIterator = DenseMapIterator<KeyT, ValueT, KeyInfoT, Bucket, true>;
1113
1114public:
1115  using difference_type = ptrdiff_t;
1116  using value_type =
1117      typename std::conditional<IsConst, const Bucket, Bucket>::type;
1118  using pointer = value_type *;
1119  using reference = value_type &;
1120  using iterator_category = std::forward_iterator_tag;
1121
1122private:
1123  pointer Ptr = nullptr;
1124  pointer End = nullptr;
1125
1126public:
1127  DenseMapIterator() = default;
1128
1129  DenseMapIterator(pointer Pos, pointer E, const DebugEpochBase &Epoch,
1130                   bool NoAdvance = false)
1131      : DebugEpochBase::HandleBase(&Epoch), Ptr(Pos), End(E) {
1132    assert(isHandleInSync() && "invalid construction!");
1133
1134    if (NoAdvance) return;
1135    if (shouldReverseIterate<KeyT>()) {
1136      RetreatPastEmptyBuckets();
1137      return;
1138    }
1139    AdvancePastEmptyBuckets();
1140  }
1141
1142  // Converting ctor from non-const iterators to const iterators. SFINAE'd out
1143  // for const iterator destinations so it doesn't end up as a user defined copy
1144  // constructor.
1145  template <bool IsConstSrc,
1146            typename = typename std::enable_if<!IsConstSrc && IsConst>::type>
1147  DenseMapIterator(
1148      const DenseMapIterator<KeyT, ValueT, KeyInfoT, Bucket, IsConstSrc> &I)
1149      : DebugEpochBase::HandleBase(I), Ptr(I.Ptr), End(I.End) {}
1150
1151  reference operator*() const {
1152    assert(isHandleInSync() && "invalid iterator access!");
1153    if (shouldReverseIterate<KeyT>())
1154      return Ptr[-1];
1155    return *Ptr;
1156  }
1157  pointer operator->() const {
1158    assert(isHandleInSync() && "invalid iterator access!");
1159    if (shouldReverseIterate<KeyT>())
1160      return &(Ptr[-1]);
1161    return Ptr;
1162  }
1163
1164  bool operator==(const ConstIterator &RHS) const {
1165    assert((!Ptr || isHandleInSync()) && "handle not in sync!");
1166    assert((!RHS.Ptr || RHS.isHandleInSync()) && "handle not in sync!");
1167    assert(getEpochAddress() == RHS.getEpochAddress() &&
1168           "comparing incomparable iterators!");
1169    return Ptr == RHS.Ptr;
1170  }
1171  bool operator!=(const ConstIterator &RHS) const {
1172    assert((!Ptr || isHandleInSync()) && "handle not in sync!");
1173    assert((!RHS.Ptr || RHS.isHandleInSync()) && "handle not in sync!");
1174    assert(getEpochAddress() == RHS.getEpochAddress() &&
1175           "comparing incomparable iterators!");
1176    return Ptr != RHS.Ptr;
1177  }
1178
1179  inline DenseMapIterator& operator++() {  // Preincrement
1180    assert(isHandleInSync() && "invalid iterator access!");
1181    if (shouldReverseIterate<KeyT>()) {
1182      --Ptr;
1183      RetreatPastEmptyBuckets();
1184      return *this;
1185    }
1186    ++Ptr;
1187    AdvancePastEmptyBuckets();
1188    return *this;
1189  }
1190  DenseMapIterator operator++(int) {  // Postincrement
1191    assert(isHandleInSync() && "invalid iterator access!");
1192    DenseMapIterator tmp = *this; ++*this; return tmp;
1193  }
1194
1195private:
1196  void AdvancePastEmptyBuckets() {
1197    assert(Ptr <= End);
1198    const KeyT Empty = KeyInfoT::getEmptyKey();
1199    const KeyT Tombstone = KeyInfoT::getTombstoneKey();
1200
1201    while (Ptr != End && (KeyInfoT::isEqual(Ptr->getFirst(), Empty) ||
1202                          KeyInfoT::isEqual(Ptr->getFirst(), Tombstone)))
1203      ++Ptr;
1204  }
1205
1206  void RetreatPastEmptyBuckets() {
1207    assert(Ptr >= End);
1208    const KeyT Empty = KeyInfoT::getEmptyKey();
1209    const KeyT Tombstone = KeyInfoT::getTombstoneKey();
1210
1211    while (Ptr != End && (KeyInfoT::isEqual(Ptr[-1].getFirst(), Empty) ||
1212                          KeyInfoT::isEqual(Ptr[-1].getFirst(), Tombstone)))
1213      --Ptr;
1214  }
1215};
1216
1217template<typename KeyT, typename ValueT, typename KeyInfoT>
1218static inline size_t
1219capacity_in_bytes(const DenseMap<KeyT, ValueT, KeyInfoT> &X) {
1220  return X.getMemorySize();
1221}
1222
1223} // end namespace llvm
1224
1225#endif // LLVM_ADT_DENSEMAP_H
1226