1//===-- llvm/Instruction.h - Instruction class definition -------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the declaration of the Instruction class, which is the
11// base class for all of the LLVM instructions.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_IR_INSTRUCTION_H
16#define LLVM_IR_INSTRUCTION_H
17
18#include "llvm/ADT/ArrayRef.h"
19#include "llvm/ADT/None.h"
20#include "llvm/ADT/StringRef.h"
21#include "llvm/ADT/ilist_node.h"
22#include "llvm/IR/DebugLoc.h"
23#include "llvm/IR/SymbolTableListTraits.h"
24#include "llvm/IR/User.h"
25#include "llvm/IR/Value.h"
26#include "llvm/Support/Casting.h"
27#include <algorithm>
28#include <cassert>
29#include <cstdint>
30#include <utility>
31
32namespace llvm {
33
34class BasicBlock;
35class FastMathFlags;
36class MDNode;
37struct AAMDNodes;
38
39template <> struct ilist_alloc_traits<Instruction> {
40  static inline void deleteNode(Instruction *V);
41};
42
43class Instruction : public User,
44                    public ilist_node_with_parent<Instruction, BasicBlock> {
45  BasicBlock *Parent;
46  DebugLoc DbgLoc;                         // 'dbg' Metadata cache.
47
48  enum {
49    /// This is a bit stored in the SubClassData field which indicates whether
50    /// this instruction has metadata attached to it or not.
51    HasMetadataBit = 1 << 15
52  };
53
54protected:
55  ~Instruction(); // Use deleteValue() to delete a generic Instruction.
56
57public:
58  Instruction(const Instruction &) = delete;
59  Instruction &operator=(const Instruction &) = delete;
60
61  /// Specialize the methods defined in Value, as we know that an instruction
62  /// can only be used by other instructions.
63  Instruction       *user_back()       { return cast<Instruction>(*user_begin());}
64  const Instruction *user_back() const { return cast<Instruction>(*user_begin());}
65
66  inline const BasicBlock *getParent() const { return Parent; }
67  inline       BasicBlock *getParent()       { return Parent; }
68
69  /// Return the module owning the function this instruction belongs to
70  /// or nullptr it the function does not have a module.
71  ///
72  /// Note: this is undefined behavior if the instruction does not have a
73  /// parent, or the parent basic block does not have a parent function.
74  const Module *getModule() const;
75  Module *getModule() {
76    return const_cast<Module *>(
77                           static_cast<const Instruction *>(this)->getModule());
78  }
79
80  /// Return the function this instruction belongs to.
81  ///
82  /// Note: it is undefined behavior to call this on an instruction not
83  /// currently inserted into a function.
84  const Function *getFunction() const;
85  Function *getFunction() {
86    return const_cast<Function *>(
87                         static_cast<const Instruction *>(this)->getFunction());
88  }
89
90  /// This method unlinks 'this' from the containing basic block, but does not
91  /// delete it.
92  void removeFromParent();
93
94  /// This method unlinks 'this' from the containing basic block and deletes it.
95  ///
96  /// \returns an iterator pointing to the element after the erased one
97  SymbolTableList<Instruction>::iterator eraseFromParent();
98
99  /// Insert an unlinked instruction into a basic block immediately before
100  /// the specified instruction.
101  void insertBefore(Instruction *InsertPos);
102
103  /// Insert an unlinked instruction into a basic block immediately after the
104  /// specified instruction.
105  void insertAfter(Instruction *InsertPos);
106
107  /// Unlink this instruction from its current basic block and insert it into
108  /// the basic block that MovePos lives in, right before MovePos.
109  void moveBefore(Instruction *MovePos);
110
111  /// Unlink this instruction and insert into BB before I.
112  ///
113  /// \pre I is a valid iterator into BB.
114  void moveBefore(BasicBlock &BB, SymbolTableList<Instruction>::iterator I);
115
116  /// Unlink this instruction from its current basic block and insert it into
117  /// the basic block that MovePos lives in, right after MovePos.
118  void moveAfter(Instruction *MovePos);
119
120  //===--------------------------------------------------------------------===//
121  // Subclass classification.
122  //===--------------------------------------------------------------------===//
123
124  /// Returns a member of one of the enums like Instruction::Add.
125  unsigned getOpcode() const { return getValueID() - InstructionVal; }
126
127  const char *getOpcodeName() const { return getOpcodeName(getOpcode()); }
128  bool isTerminator() const { return isTerminator(getOpcode()); }
129  bool isBinaryOp() const { return isBinaryOp(getOpcode()); }
130  bool isShift() { return isShift(getOpcode()); }
131  bool isCast() const { return isCast(getOpcode()); }
132  bool isFuncletPad() const { return isFuncletPad(getOpcode()); }
133
134  static const char* getOpcodeName(unsigned OpCode);
135
136  static inline bool isTerminator(unsigned OpCode) {
137    return OpCode >= TermOpsBegin && OpCode < TermOpsEnd;
138  }
139
140  static inline bool isBinaryOp(unsigned Opcode) {
141    return Opcode >= BinaryOpsBegin && Opcode < BinaryOpsEnd;
142  }
143
144  /// Determine if the Opcode is one of the shift instructions.
145  static inline bool isShift(unsigned Opcode) {
146    return Opcode >= Shl && Opcode <= AShr;
147  }
148
149  /// Return true if this is a logical shift left or a logical shift right.
150  inline bool isLogicalShift() const {
151    return getOpcode() == Shl || getOpcode() == LShr;
152  }
153
154  /// Return true if this is an arithmetic shift right.
155  inline bool isArithmeticShift() const {
156    return getOpcode() == AShr;
157  }
158
159  /// Determine if the Opcode is and/or/xor.
160  static inline bool isBitwiseLogicOp(unsigned Opcode) {
161    return Opcode == And || Opcode == Or || Opcode == Xor;
162  }
163
164  /// Return true if this is and/or/xor.
165  inline bool isBitwiseLogicOp() const {
166    return isBitwiseLogicOp(getOpcode());
167  }
168
169  /// Determine if the OpCode is one of the CastInst instructions.
170  static inline bool isCast(unsigned OpCode) {
171    return OpCode >= CastOpsBegin && OpCode < CastOpsEnd;
172  }
173
174  /// Determine if the OpCode is one of the FuncletPadInst instructions.
175  static inline bool isFuncletPad(unsigned OpCode) {
176    return OpCode >= FuncletPadOpsBegin && OpCode < FuncletPadOpsEnd;
177  }
178
179  //===--------------------------------------------------------------------===//
180  // Metadata manipulation.
181  //===--------------------------------------------------------------------===//
182
183  /// Return true if this instruction has any metadata attached to it.
184  bool hasMetadata() const { return DbgLoc || hasMetadataHashEntry(); }
185
186  /// Return true if this instruction has metadata attached to it other than a
187  /// debug location.
188  bool hasMetadataOtherThanDebugLoc() const {
189    return hasMetadataHashEntry();
190  }
191
192  /// Get the metadata of given kind attached to this Instruction.
193  /// If the metadata is not found then return null.
194  MDNode *getMetadata(unsigned KindID) const {
195    if (!hasMetadata()) return nullptr;
196    return getMetadataImpl(KindID);
197  }
198
199  /// Get the metadata of given kind attached to this Instruction.
200  /// If the metadata is not found then return null.
201  MDNode *getMetadata(StringRef Kind) const {
202    if (!hasMetadata()) return nullptr;
203    return getMetadataImpl(Kind);
204  }
205
206  /// Get all metadata attached to this Instruction. The first element of each
207  /// pair returned is the KindID, the second element is the metadata value.
208  /// This list is returned sorted by the KindID.
209  void
210  getAllMetadata(SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs) const {
211    if (hasMetadata())
212      getAllMetadataImpl(MDs);
213  }
214
215  /// This does the same thing as getAllMetadata, except that it filters out the
216  /// debug location.
217  void getAllMetadataOtherThanDebugLoc(
218      SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs) const {
219    if (hasMetadataOtherThanDebugLoc())
220      getAllMetadataOtherThanDebugLocImpl(MDs);
221  }
222
223  /// Fills the AAMDNodes structure with AA metadata from this instruction.
224  /// When Merge is true, the existing AA metadata is merged with that from this
225  /// instruction providing the most-general result.
226  void getAAMetadata(AAMDNodes &N, bool Merge = false) const;
227
228  /// Set the metadata of the specified kind to the specified node. This updates
229  /// or replaces metadata if already present, or removes it if Node is null.
230  void setMetadata(unsigned KindID, MDNode *Node);
231  void setMetadata(StringRef Kind, MDNode *Node);
232
233  /// Copy metadata from \p SrcInst to this instruction. \p WL, if not empty,
234  /// specifies the list of meta data that needs to be copied. If \p WL is
235  /// empty, all meta data will be copied.
236  void copyMetadata(const Instruction &SrcInst,
237                    ArrayRef<unsigned> WL = ArrayRef<unsigned>());
238
239  /// If the instruction has "branch_weights" MD_prof metadata and the MDNode
240  /// has three operands (including name string), swap the order of the
241  /// metadata.
242  void swapProfMetadata();
243
244  /// Drop all unknown metadata except for debug locations.
245  /// @{
246  /// Passes are required to drop metadata they don't understand. This is a
247  /// convenience method for passes to do so.
248  void dropUnknownNonDebugMetadata(ArrayRef<unsigned> KnownIDs);
249  void dropUnknownNonDebugMetadata() {
250    return dropUnknownNonDebugMetadata(None);
251  }
252  void dropUnknownNonDebugMetadata(unsigned ID1) {
253    return dropUnknownNonDebugMetadata(makeArrayRef(ID1));
254  }
255  void dropUnknownNonDebugMetadata(unsigned ID1, unsigned ID2) {
256    unsigned IDs[] = {ID1, ID2};
257    return dropUnknownNonDebugMetadata(IDs);
258  }
259  /// @}
260
261  /// Sets the metadata on this instruction from the AAMDNodes structure.
262  void setAAMetadata(const AAMDNodes &N);
263
264  /// Retrieve the raw weight values of a conditional branch or select.
265  /// Returns true on success with profile weights filled in.
266  /// Returns false if no metadata or invalid metadata was found.
267  bool extractProfMetadata(uint64_t &TrueVal, uint64_t &FalseVal) const;
268
269  /// Retrieve total raw weight values of a branch.
270  /// Returns true on success with profile total weights filled in.
271  /// Returns false if no metadata was found.
272  bool extractProfTotalWeight(uint64_t &TotalVal) const;
273
274  /// Updates branch_weights metadata by scaling it by \p S / \p T.
275  void updateProfWeight(uint64_t S, uint64_t T);
276
277  /// Sets the branch_weights metadata to \p W for CallInst.
278  void setProfWeight(uint64_t W);
279
280  /// Set the debug location information for this instruction.
281  void setDebugLoc(DebugLoc Loc) { DbgLoc = std::move(Loc); }
282
283  /// Return the debug location for this node as a DebugLoc.
284  const DebugLoc &getDebugLoc() const { return DbgLoc; }
285
286  /// Set or clear the nsw flag on this instruction, which must be an operator
287  /// which supports this flag. See LangRef.html for the meaning of this flag.
288  void setHasNoUnsignedWrap(bool b = true);
289
290  /// Set or clear the nsw flag on this instruction, which must be an operator
291  /// which supports this flag. See LangRef.html for the meaning of this flag.
292  void setHasNoSignedWrap(bool b = true);
293
294  /// Set or clear the exact flag on this instruction, which must be an operator
295  /// which supports this flag. See LangRef.html for the meaning of this flag.
296  void setIsExact(bool b = true);
297
298  /// Determine whether the no unsigned wrap flag is set.
299  bool hasNoUnsignedWrap() const;
300
301  /// Determine whether the no signed wrap flag is set.
302  bool hasNoSignedWrap() const;
303
304  /// Drops flags that may cause this instruction to evaluate to poison despite
305  /// having non-poison inputs.
306  void dropPoisonGeneratingFlags();
307
308  /// Determine whether the exact flag is set.
309  bool isExact() const;
310
311  /// Set or clear the unsafe-algebra flag on this instruction, which must be an
312  /// operator which supports this flag. See LangRef.html for the meaning of
313  /// this flag.
314  void setHasUnsafeAlgebra(bool B);
315
316  /// Set or clear the no-nans flag on this instruction, which must be an
317  /// operator which supports this flag. See LangRef.html for the meaning of
318  /// this flag.
319  void setHasNoNaNs(bool B);
320
321  /// Set or clear the no-infs flag on this instruction, which must be an
322  /// operator which supports this flag. See LangRef.html for the meaning of
323  /// this flag.
324  void setHasNoInfs(bool B);
325
326  /// Set or clear the no-signed-zeros flag on this instruction, which must be
327  /// an operator which supports this flag. See LangRef.html for the meaning of
328  /// this flag.
329  void setHasNoSignedZeros(bool B);
330
331  /// Set or clear the allow-reciprocal flag on this instruction, which must be
332  /// an operator which supports this flag. See LangRef.html for the meaning of
333  /// this flag.
334  void setHasAllowReciprocal(bool B);
335
336  /// Convenience function for setting multiple fast-math flags on this
337  /// instruction, which must be an operator which supports these flags. See
338  /// LangRef.html for the meaning of these flags.
339  void setFastMathFlags(FastMathFlags FMF);
340
341  /// Convenience function for transferring all fast-math flag values to this
342  /// instruction, which must be an operator which supports these flags. See
343  /// LangRef.html for the meaning of these flags.
344  void copyFastMathFlags(FastMathFlags FMF);
345
346  /// Determine whether the unsafe-algebra flag is set.
347  bool hasUnsafeAlgebra() const;
348
349  /// Determine whether the no-NaNs flag is set.
350  bool hasNoNaNs() const;
351
352  /// Determine whether the no-infs flag is set.
353  bool hasNoInfs() const;
354
355  /// Determine whether the no-signed-zeros flag is set.
356  bool hasNoSignedZeros() const;
357
358  /// Determine whether the allow-reciprocal flag is set.
359  bool hasAllowReciprocal() const;
360
361  /// Determine whether the allow-contract flag is set.
362  bool hasAllowContract() const;
363
364  /// Convenience function for getting all the fast-math flags, which must be an
365  /// operator which supports these flags. See LangRef.html for the meaning of
366  /// these flags.
367  FastMathFlags getFastMathFlags() const;
368
369  /// Copy I's fast-math flags
370  void copyFastMathFlags(const Instruction *I);
371
372  /// Convenience method to copy supported exact, fast-math, and (optionally)
373  /// wrapping flags from V to this instruction.
374  void copyIRFlags(const Value *V, bool IncludeWrapFlags = true);
375
376  /// Logical 'and' of any supported wrapping, exact, and fast-math flags of
377  /// V and this instruction.
378  void andIRFlags(const Value *V);
379
380  /// Merge 2 debug locations and apply it to the Instruction. If the
381  /// instruction is a CallIns, we need to traverse the inline chain to find
382  /// the common scope. This is not efficient for N-way merging as each time
383  /// you merge 2 iterations, you need to rebuild the hashmap to find the
384  /// common scope. However, we still choose this API because:
385  ///  1) Simplicity: it takes 2 locations instead of a list of locations.
386  ///  2) In worst case, it increases the complexity from O(N*I) to
387  ///     O(2*N*I), where N is # of Instructions to merge, and I is the
388  ///     maximum level of inline stack. So it is still linear.
389  ///  3) Merging of call instructions should be extremely rare in real
390  ///     applications, thus the N-way merging should be in code path.
391  /// The DebugLoc attached to this instruction will be overwritten by the
392  /// merged DebugLoc.
393  void applyMergedLocation(const DILocation *LocA, const DILocation *LocB);
394
395private:
396  /// Return true if we have an entry in the on-the-side metadata hash.
397  bool hasMetadataHashEntry() const {
398    return (getSubclassDataFromValue() & HasMetadataBit) != 0;
399  }
400
401  // These are all implemented in Metadata.cpp.
402  MDNode *getMetadataImpl(unsigned KindID) const;
403  MDNode *getMetadataImpl(StringRef Kind) const;
404  void
405  getAllMetadataImpl(SmallVectorImpl<std::pair<unsigned, MDNode *>> &) const;
406  void getAllMetadataOtherThanDebugLocImpl(
407      SmallVectorImpl<std::pair<unsigned, MDNode *>> &) const;
408  /// Clear all hashtable-based metadata from this instruction.
409  void clearMetadataHashEntries();
410
411public:
412  //===--------------------------------------------------------------------===//
413  // Predicates and helper methods.
414  //===--------------------------------------------------------------------===//
415
416  /// Return true if the instruction is associative:
417  ///
418  ///   Associative operators satisfy:  x op (y op z) === (x op y) op z
419  ///
420  /// In LLVM, the Add, Mul, And, Or, and Xor operators are associative.
421  ///
422  bool isAssociative() const LLVM_READONLY;
423  static bool isAssociative(unsigned Opcode) {
424    return Opcode == And || Opcode == Or || Opcode == Xor ||
425           Opcode == Add || Opcode == Mul;
426  }
427
428  /// Return true if the instruction is commutative:
429  ///
430  ///   Commutative operators satisfy: (x op y) === (y op x)
431  ///
432  /// In LLVM, these are the commutative operators, plus SetEQ and SetNE, when
433  /// applied to any type.
434  ///
435  bool isCommutative() const { return isCommutative(getOpcode()); }
436  static bool isCommutative(unsigned Opcode) {
437    switch (Opcode) {
438    case Add: case FAdd:
439    case Mul: case FMul:
440    case And: case Or: case Xor:
441      return true;
442    default:
443      return false;
444  }
445  }
446
447  /// Return true if the instruction is idempotent:
448  ///
449  ///   Idempotent operators satisfy:  x op x === x
450  ///
451  /// In LLVM, the And and Or operators are idempotent.
452  ///
453  bool isIdempotent() const { return isIdempotent(getOpcode()); }
454  static bool isIdempotent(unsigned Opcode) {
455    return Opcode == And || Opcode == Or;
456  }
457
458  /// Return true if the instruction is nilpotent:
459  ///
460  ///   Nilpotent operators satisfy:  x op x === Id,
461  ///
462  ///   where Id is the identity for the operator, i.e. a constant such that
463  ///     x op Id === x and Id op x === x for all x.
464  ///
465  /// In LLVM, the Xor operator is nilpotent.
466  ///
467  bool isNilpotent() const { return isNilpotent(getOpcode()); }
468  static bool isNilpotent(unsigned Opcode) {
469    return Opcode == Xor;
470  }
471
472  /// Return true if this instruction may modify memory.
473  bool mayWriteToMemory() const;
474
475  /// Return true if this instruction may read memory.
476  bool mayReadFromMemory() const;
477
478  /// Return true if this instruction may read or write memory.
479  bool mayReadOrWriteMemory() const {
480    return mayReadFromMemory() || mayWriteToMemory();
481  }
482
483  /// Return true if this instruction has an AtomicOrdering of unordered or
484  /// higher.
485  bool isAtomic() const;
486
487  /// Return true if this atomic instruction loads from memory.
488  bool hasAtomicLoad() const;
489
490  /// Return true if this atomic instruction stores to memory.
491  bool hasAtomicStore() const;
492
493  /// Return true if this instruction may throw an exception.
494  bool mayThrow() const;
495
496  /// Return true if this instruction behaves like a memory fence: it can load
497  /// or store to memory location without being given a memory location.
498  bool isFenceLike() const {
499    switch (getOpcode()) {
500    default:
501      return false;
502    // This list should be kept in sync with the list in mayWriteToMemory for
503    // all opcodes which don't have a memory location.
504    case Instruction::Fence:
505    case Instruction::CatchPad:
506    case Instruction::CatchRet:
507    case Instruction::Call:
508    case Instruction::Invoke:
509      return true;
510    }
511  }
512
513  /// Return true if the instruction may have side effects.
514  ///
515  /// Note that this does not consider malloc and alloca to have side
516  /// effects because the newly allocated memory is completely invisible to
517  /// instructions which don't use the returned value.  For cases where this
518  /// matters, isSafeToSpeculativelyExecute may be more appropriate.
519  bool mayHaveSideEffects() const { return mayWriteToMemory() || mayThrow(); }
520
521  /// Return true if the instruction is a variety of EH-block.
522  bool isEHPad() const {
523    switch (getOpcode()) {
524    case Instruction::CatchSwitch:
525    case Instruction::CatchPad:
526    case Instruction::CleanupPad:
527    case Instruction::LandingPad:
528      return true;
529    default:
530      return false;
531    }
532  }
533
534  /// Create a copy of 'this' instruction that is identical in all ways except
535  /// the following:
536  ///   * The instruction has no parent
537  ///   * The instruction has no name
538  ///
539  Instruction *clone() const;
540
541  /// Return true if the specified instruction is exactly identical to the
542  /// current one. This means that all operands match and any extra information
543  /// (e.g. load is volatile) agree.
544  bool isIdenticalTo(const Instruction *I) const;
545
546  /// This is like isIdenticalTo, except that it ignores the
547  /// SubclassOptionalData flags, which may specify conditions under which the
548  /// instruction's result is undefined.
549  bool isIdenticalToWhenDefined(const Instruction *I) const;
550
551  /// When checking for operation equivalence (using isSameOperationAs) it is
552  /// sometimes useful to ignore certain attributes.
553  enum OperationEquivalenceFlags {
554    /// Check for equivalence ignoring load/store alignment.
555    CompareIgnoringAlignment = 1<<0,
556    /// Check for equivalence treating a type and a vector of that type
557    /// as equivalent.
558    CompareUsingScalarTypes = 1<<1
559  };
560
561  /// This function determines if the specified instruction executes the same
562  /// operation as the current one. This means that the opcodes, type, operand
563  /// types and any other factors affecting the operation must be the same. This
564  /// is similar to isIdenticalTo except the operands themselves don't have to
565  /// be identical.
566  /// @returns true if the specified instruction is the same operation as
567  /// the current one.
568  /// @brief Determine if one instruction is the same operation as another.
569  bool isSameOperationAs(const Instruction *I, unsigned flags = 0) const;
570
571  /// Return true if there are any uses of this instruction in blocks other than
572  /// the specified block. Note that PHI nodes are considered to evaluate their
573  /// operands in the corresponding predecessor block.
574  bool isUsedOutsideOfBlock(const BasicBlock *BB) const;
575
576
577  /// Methods for support type inquiry through isa, cast, and dyn_cast:
578  static bool classof(const Value *V) {
579    return V->getValueID() >= Value::InstructionVal;
580  }
581
582  //----------------------------------------------------------------------
583  // Exported enumerations.
584  //
585  enum TermOps {       // These terminate basic blocks
586#define  FIRST_TERM_INST(N)             TermOpsBegin = N,
587#define HANDLE_TERM_INST(N, OPC, CLASS) OPC = N,
588#define   LAST_TERM_INST(N)             TermOpsEnd = N+1
589#include "llvm/IR/Instruction.def"
590  };
591
592  enum BinaryOps {
593#define  FIRST_BINARY_INST(N)             BinaryOpsBegin = N,
594#define HANDLE_BINARY_INST(N, OPC, CLASS) OPC = N,
595#define   LAST_BINARY_INST(N)             BinaryOpsEnd = N+1
596#include "llvm/IR/Instruction.def"
597  };
598
599  enum MemoryOps {
600#define  FIRST_MEMORY_INST(N)             MemoryOpsBegin = N,
601#define HANDLE_MEMORY_INST(N, OPC, CLASS) OPC = N,
602#define   LAST_MEMORY_INST(N)             MemoryOpsEnd = N+1
603#include "llvm/IR/Instruction.def"
604  };
605
606  enum CastOps {
607#define  FIRST_CAST_INST(N)             CastOpsBegin = N,
608#define HANDLE_CAST_INST(N, OPC, CLASS) OPC = N,
609#define   LAST_CAST_INST(N)             CastOpsEnd = N+1
610#include "llvm/IR/Instruction.def"
611  };
612
613  enum FuncletPadOps {
614#define  FIRST_FUNCLETPAD_INST(N)             FuncletPadOpsBegin = N,
615#define HANDLE_FUNCLETPAD_INST(N, OPC, CLASS) OPC = N,
616#define   LAST_FUNCLETPAD_INST(N)             FuncletPadOpsEnd = N+1
617#include "llvm/IR/Instruction.def"
618  };
619
620  enum OtherOps {
621#define  FIRST_OTHER_INST(N)             OtherOpsBegin = N,
622#define HANDLE_OTHER_INST(N, OPC, CLASS) OPC = N,
623#define   LAST_OTHER_INST(N)             OtherOpsEnd = N+1
624#include "llvm/IR/Instruction.def"
625  };
626
627private:
628  friend class SymbolTableListTraits<Instruction>;
629
630  // Shadow Value::setValueSubclassData with a private forwarding method so that
631  // subclasses cannot accidentally use it.
632  void setValueSubclassData(unsigned short D) {
633    Value::setValueSubclassData(D);
634  }
635
636  unsigned short getSubclassDataFromValue() const {
637    return Value::getSubclassDataFromValue();
638  }
639
640  void setHasMetadataHashEntry(bool V) {
641    setValueSubclassData((getSubclassDataFromValue() & ~HasMetadataBit) |
642                         (V ? HasMetadataBit : 0));
643  }
644
645  void setParent(BasicBlock *P);
646
647protected:
648  // Instruction subclasses can stick up to 15 bits of stuff into the
649  // SubclassData field of instruction with these members.
650
651  // Verify that only the low 15 bits are used.
652  void setInstructionSubclassData(unsigned short D) {
653    assert((D & HasMetadataBit) == 0 && "Out of range value put into field");
654    setValueSubclassData((getSubclassDataFromValue() & HasMetadataBit) | D);
655  }
656
657  unsigned getSubclassDataFromInstruction() const {
658    return getSubclassDataFromValue() & ~HasMetadataBit;
659  }
660
661  Instruction(Type *Ty, unsigned iType, Use *Ops, unsigned NumOps,
662              Instruction *InsertBefore = nullptr);
663  Instruction(Type *Ty, unsigned iType, Use *Ops, unsigned NumOps,
664              BasicBlock *InsertAtEnd);
665
666private:
667  /// Create a copy of this instruction.
668  Instruction *cloneImpl() const;
669};
670
671inline void ilist_alloc_traits<Instruction>::deleteNode(Instruction *V) {
672  V->deleteValue();
673}
674
675} // end namespace llvm
676
677#endif // LLVM_IR_INSTRUCTION_H
678