1//===- llvm/IR/Metadata.h - Metadata definitions ----------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10/// @file
11/// This file contains the declarations for metadata subclasses.
12/// They represent the different flavors of metadata that live in LLVM.
13//
14//===----------------------------------------------------------------------===//
15
16#ifndef LLVM_IR_METADATA_H
17#define LLVM_IR_METADATA_H
18
19#include "llvm/ADT/ArrayRef.h"
20#include "llvm/ADT/DenseMap.h"
21#include "llvm/ADT/DenseMapInfo.h"
22#include "llvm/ADT/None.h"
23#include "llvm/ADT/PointerUnion.h"
24#include "llvm/ADT/STLExtras.h"
25#include "llvm/ADT/SmallVector.h"
26#include "llvm/ADT/StringRef.h"
27#include "llvm/ADT/ilist_node.h"
28#include "llvm/ADT/iterator_range.h"
29#include "llvm/IR/Constant.h"
30#include "llvm/IR/LLVMContext.h"
31#include "llvm/IR/Value.h"
32#include "llvm/Support/CBindingWrapping.h"
33#include "llvm/Support/Casting.h"
34#include "llvm/Support/ErrorHandling.h"
35#include <cassert>
36#include <cstddef>
37#include <cstdint>
38#include <iterator>
39#include <memory>
40#include <string>
41#include <type_traits>
42#include <utility>
43
44namespace llvm {
45
46class Module;
47class ModuleSlotTracker;
48class raw_ostream;
49class Type;
50
51enum LLVMConstants : uint32_t {
52  DEBUG_METADATA_VERSION = 3 // Current debug info version number.
53};
54
55/// \brief Root of the metadata hierarchy.
56///
57/// This is a root class for typeless data in the IR.
58class Metadata {
59  friend class ReplaceableMetadataImpl;
60
61  /// \brief RTTI.
62  const unsigned char SubclassID;
63
64protected:
65  /// \brief Active type of storage.
66  enum StorageType { Uniqued, Distinct, Temporary };
67
68  /// \brief Storage flag for non-uniqued, otherwise unowned, metadata.
69  unsigned char Storage;
70  // TODO: expose remaining bits to subclasses.
71
72  unsigned short SubclassData16 = 0;
73  unsigned SubclassData32 = 0;
74
75public:
76  enum MetadataKind {
77#define HANDLE_METADATA_LEAF(CLASS) CLASS##Kind,
78#include "llvm/IR/Metadata.def"
79  };
80
81protected:
82  Metadata(unsigned ID, StorageType Storage)
83      : SubclassID(ID), Storage(Storage) {
84    static_assert(sizeof(*this) == 8, "Metadata fields poorly packed");
85  }
86
87  ~Metadata() = default;
88
89  /// \brief Default handling of a changed operand, which asserts.
90  ///
91  /// If subclasses pass themselves in as owners to a tracking node reference,
92  /// they must provide an implementation of this method.
93  void handleChangedOperand(void *, Metadata *) {
94    llvm_unreachable("Unimplemented in Metadata subclass");
95  }
96
97public:
98  unsigned getMetadataID() const { return SubclassID; }
99
100  /// \brief User-friendly dump.
101  ///
102  /// If \c M is provided, metadata nodes will be numbered canonically;
103  /// otherwise, pointer addresses are substituted.
104  ///
105  /// Note: this uses an explicit overload instead of default arguments so that
106  /// the nullptr version is easy to call from a debugger.
107  ///
108  /// @{
109  void dump() const;
110  void dump(const Module *M) const;
111  /// @}
112
113  /// \brief Print.
114  ///
115  /// Prints definition of \c this.
116  ///
117  /// If \c M is provided, metadata nodes will be numbered canonically;
118  /// otherwise, pointer addresses are substituted.
119  /// @{
120  void print(raw_ostream &OS, const Module *M = nullptr,
121             bool IsForDebug = false) const;
122  void print(raw_ostream &OS, ModuleSlotTracker &MST, const Module *M = nullptr,
123             bool IsForDebug = false) const;
124  /// @}
125
126  /// \brief Print as operand.
127  ///
128  /// Prints reference of \c this.
129  ///
130  /// If \c M is provided, metadata nodes will be numbered canonically;
131  /// otherwise, pointer addresses are substituted.
132  /// @{
133  void printAsOperand(raw_ostream &OS, const Module *M = nullptr) const;
134  void printAsOperand(raw_ostream &OS, ModuleSlotTracker &MST,
135                      const Module *M = nullptr) const;
136  /// @}
137};
138
139// Create wrappers for C Binding types (see CBindingWrapping.h).
140DEFINE_ISA_CONVERSION_FUNCTIONS(Metadata, LLVMMetadataRef)
141
142// Specialized opaque metadata conversions.
143inline Metadata **unwrap(LLVMMetadataRef *MDs) {
144  return reinterpret_cast<Metadata**>(MDs);
145}
146
147#define HANDLE_METADATA(CLASS) class CLASS;
148#include "llvm/IR/Metadata.def"
149
150// Provide specializations of isa so that we don't need definitions of
151// subclasses to see if the metadata is a subclass.
152#define HANDLE_METADATA_LEAF(CLASS)                                            \
153  template <> struct isa_impl<CLASS, Metadata> {                               \
154    static inline bool doit(const Metadata &MD) {                              \
155      return MD.getMetadataID() == Metadata::CLASS##Kind;                      \
156    }                                                                          \
157  };
158#include "llvm/IR/Metadata.def"
159
160inline raw_ostream &operator<<(raw_ostream &OS, const Metadata &MD) {
161  MD.print(OS);
162  return OS;
163}
164
165/// \brief Metadata wrapper in the Value hierarchy.
166///
167/// A member of the \a Value hierarchy to represent a reference to metadata.
168/// This allows, e.g., instrinsics to have metadata as operands.
169///
170/// Notably, this is the only thing in either hierarchy that is allowed to
171/// reference \a LocalAsMetadata.
172class MetadataAsValue : public Value {
173  friend class ReplaceableMetadataImpl;
174  friend class LLVMContextImpl;
175
176  Metadata *MD;
177
178  MetadataAsValue(Type *Ty, Metadata *MD);
179
180  /// \brief Drop use of metadata (during teardown).
181  void dropUse() { MD = nullptr; }
182
183public:
184  ~MetadataAsValue();
185
186  static MetadataAsValue *get(LLVMContext &Context, Metadata *MD);
187  static MetadataAsValue *getIfExists(LLVMContext &Context, Metadata *MD);
188
189  Metadata *getMetadata() const { return MD; }
190
191  static bool classof(const Value *V) {
192    return V->getValueID() == MetadataAsValueVal;
193  }
194
195private:
196  void handleChangedMetadata(Metadata *MD);
197  void track();
198  void untrack();
199};
200
201/// \brief API for tracking metadata references through RAUW and deletion.
202///
203/// Shared API for updating \a Metadata pointers in subclasses that support
204/// RAUW.
205///
206/// This API is not meant to be used directly.  See \a TrackingMDRef for a
207/// user-friendly tracking reference.
208class MetadataTracking {
209public:
210  /// \brief Track the reference to metadata.
211  ///
212  /// Register \c MD with \c *MD, if the subclass supports tracking.  If \c *MD
213  /// gets RAUW'ed, \c MD will be updated to the new address.  If \c *MD gets
214  /// deleted, \c MD will be set to \c nullptr.
215  ///
216  /// If tracking isn't supported, \c *MD will not change.
217  ///
218  /// \return true iff tracking is supported by \c MD.
219  static bool track(Metadata *&MD) {
220    return track(&MD, *MD, static_cast<Metadata *>(nullptr));
221  }
222
223  /// \brief Track the reference to metadata for \a Metadata.
224  ///
225  /// As \a track(Metadata*&), but with support for calling back to \c Owner to
226  /// tell it that its operand changed.  This could trigger \c Owner being
227  /// re-uniqued.
228  static bool track(void *Ref, Metadata &MD, Metadata &Owner) {
229    return track(Ref, MD, &Owner);
230  }
231
232  /// \brief Track the reference to metadata for \a MetadataAsValue.
233  ///
234  /// As \a track(Metadata*&), but with support for calling back to \c Owner to
235  /// tell it that its operand changed.  This could trigger \c Owner being
236  /// re-uniqued.
237  static bool track(void *Ref, Metadata &MD, MetadataAsValue &Owner) {
238    return track(Ref, MD, &Owner);
239  }
240
241  /// \brief Stop tracking a reference to metadata.
242  ///
243  /// Stops \c *MD from tracking \c MD.
244  static void untrack(Metadata *&MD) { untrack(&MD, *MD); }
245  static void untrack(void *Ref, Metadata &MD);
246
247  /// \brief Move tracking from one reference to another.
248  ///
249  /// Semantically equivalent to \c untrack(MD) followed by \c track(New),
250  /// except that ownership callbacks are maintained.
251  ///
252  /// Note: it is an error if \c *MD does not equal \c New.
253  ///
254  /// \return true iff tracking is supported by \c MD.
255  static bool retrack(Metadata *&MD, Metadata *&New) {
256    return retrack(&MD, *MD, &New);
257  }
258  static bool retrack(void *Ref, Metadata &MD, void *New);
259
260  /// \brief Check whether metadata is replaceable.
261  static bool isReplaceable(const Metadata &MD);
262
263  using OwnerTy = PointerUnion<MetadataAsValue *, Metadata *>;
264
265private:
266  /// \brief Track a reference to metadata for an owner.
267  ///
268  /// Generalized version of tracking.
269  static bool track(void *Ref, Metadata &MD, OwnerTy Owner);
270};
271
272/// \brief Shared implementation of use-lists for replaceable metadata.
273///
274/// Most metadata cannot be RAUW'ed.  This is a shared implementation of
275/// use-lists and associated API for the two that support it (\a ValueAsMetadata
276/// and \a TempMDNode).
277class ReplaceableMetadataImpl {
278  friend class MetadataTracking;
279
280public:
281  using OwnerTy = MetadataTracking::OwnerTy;
282
283private:
284  LLVMContext &Context;
285  uint64_t NextIndex = 0;
286  SmallDenseMap<void *, std::pair<OwnerTy, uint64_t>, 4> UseMap;
287
288public:
289  ReplaceableMetadataImpl(LLVMContext &Context) : Context(Context) {}
290
291  ~ReplaceableMetadataImpl() {
292    assert(UseMap.empty() && "Cannot destroy in-use replaceable metadata");
293  }
294
295  LLVMContext &getContext() const { return Context; }
296
297  /// \brief Replace all uses of this with MD.
298  ///
299  /// Replace all uses of this with \c MD, which is allowed to be null.
300  void replaceAllUsesWith(Metadata *MD);
301
302  /// \brief Resolve all uses of this.
303  ///
304  /// Resolve all uses of this, turning off RAUW permanently.  If \c
305  /// ResolveUsers, call \a MDNode::resolve() on any users whose last operand
306  /// is resolved.
307  void resolveAllUses(bool ResolveUsers = true);
308
309private:
310  void addRef(void *Ref, OwnerTy Owner);
311  void dropRef(void *Ref);
312  void moveRef(void *Ref, void *New, const Metadata &MD);
313
314  /// Lazily construct RAUW support on MD.
315  ///
316  /// If this is an unresolved MDNode, RAUW support will be created on-demand.
317  /// ValueAsMetadata always has RAUW support.
318  static ReplaceableMetadataImpl *getOrCreate(Metadata &MD);
319
320  /// Get RAUW support on MD, if it exists.
321  static ReplaceableMetadataImpl *getIfExists(Metadata &MD);
322
323  /// Check whether this node will support RAUW.
324  ///
325  /// Returns \c true unless getOrCreate() would return null.
326  static bool isReplaceable(const Metadata &MD);
327};
328
329/// \brief Value wrapper in the Metadata hierarchy.
330///
331/// This is a custom value handle that allows other metadata to refer to
332/// classes in the Value hierarchy.
333///
334/// Because of full uniquing support, each value is only wrapped by a single \a
335/// ValueAsMetadata object, so the lookup maps are far more efficient than
336/// those using ValueHandleBase.
337class ValueAsMetadata : public Metadata, ReplaceableMetadataImpl {
338  friend class ReplaceableMetadataImpl;
339  friend class LLVMContextImpl;
340
341  Value *V;
342
343  /// \brief Drop users without RAUW (during teardown).
344  void dropUsers() {
345    ReplaceableMetadataImpl::resolveAllUses(/* ResolveUsers */ false);
346  }
347
348protected:
349  ValueAsMetadata(unsigned ID, Value *V)
350      : Metadata(ID, Uniqued), ReplaceableMetadataImpl(V->getContext()), V(V) {
351    assert(V && "Expected valid value");
352  }
353
354  ~ValueAsMetadata() = default;
355
356public:
357  static ValueAsMetadata *get(Value *V);
358
359  static ConstantAsMetadata *getConstant(Value *C) {
360    return cast<ConstantAsMetadata>(get(C));
361  }
362
363  static LocalAsMetadata *getLocal(Value *Local) {
364    return cast<LocalAsMetadata>(get(Local));
365  }
366
367  static ValueAsMetadata *getIfExists(Value *V);
368
369  static ConstantAsMetadata *getConstantIfExists(Value *C) {
370    return cast_or_null<ConstantAsMetadata>(getIfExists(C));
371  }
372
373  static LocalAsMetadata *getLocalIfExists(Value *Local) {
374    return cast_or_null<LocalAsMetadata>(getIfExists(Local));
375  }
376
377  Value *getValue() const { return V; }
378  Type *getType() const { return V->getType(); }
379  LLVMContext &getContext() const { return V->getContext(); }
380
381  static void handleDeletion(Value *V);
382  static void handleRAUW(Value *From, Value *To);
383
384protected:
385  /// \brief Handle collisions after \a Value::replaceAllUsesWith().
386  ///
387  /// RAUW isn't supported directly for \a ValueAsMetadata, but if the wrapped
388  /// \a Value gets RAUW'ed and the target already exists, this is used to
389  /// merge the two metadata nodes.
390  void replaceAllUsesWith(Metadata *MD) {
391    ReplaceableMetadataImpl::replaceAllUsesWith(MD);
392  }
393
394public:
395  static bool classof(const Metadata *MD) {
396    return MD->getMetadataID() == LocalAsMetadataKind ||
397           MD->getMetadataID() == ConstantAsMetadataKind;
398  }
399};
400
401class ConstantAsMetadata : public ValueAsMetadata {
402  friend class ValueAsMetadata;
403
404  ConstantAsMetadata(Constant *C)
405      : ValueAsMetadata(ConstantAsMetadataKind, C) {}
406
407public:
408  static ConstantAsMetadata *get(Constant *C) {
409    return ValueAsMetadata::getConstant(C);
410  }
411
412  static ConstantAsMetadata *getIfExists(Constant *C) {
413    return ValueAsMetadata::getConstantIfExists(C);
414  }
415
416  Constant *getValue() const {
417    return cast<Constant>(ValueAsMetadata::getValue());
418  }
419
420  static bool classof(const Metadata *MD) {
421    return MD->getMetadataID() == ConstantAsMetadataKind;
422  }
423};
424
425class LocalAsMetadata : public ValueAsMetadata {
426  friend class ValueAsMetadata;
427
428  LocalAsMetadata(Value *Local)
429      : ValueAsMetadata(LocalAsMetadataKind, Local) {
430    assert(!isa<Constant>(Local) && "Expected local value");
431  }
432
433public:
434  static LocalAsMetadata *get(Value *Local) {
435    return ValueAsMetadata::getLocal(Local);
436  }
437
438  static LocalAsMetadata *getIfExists(Value *Local) {
439    return ValueAsMetadata::getLocalIfExists(Local);
440  }
441
442  static bool classof(const Metadata *MD) {
443    return MD->getMetadataID() == LocalAsMetadataKind;
444  }
445};
446
447/// \brief Transitional API for extracting constants from Metadata.
448///
449/// This namespace contains transitional functions for metadata that points to
450/// \a Constants.
451///
452/// In prehistory -- when metadata was a subclass of \a Value -- \a MDNode
453/// operands could refer to any \a Value.  There's was a lot of code like this:
454///
455/// \code
456///     MDNode *N = ...;
457///     auto *CI = dyn_cast<ConstantInt>(N->getOperand(2));
458/// \endcode
459///
460/// Now that \a Value and \a Metadata are in separate hierarchies, maintaining
461/// the semantics for \a isa(), \a cast(), \a dyn_cast() (etc.) requires three
462/// steps: cast in the \a Metadata hierarchy, extraction of the \a Value, and
463/// cast in the \a Value hierarchy.  Besides creating boiler-plate, this
464/// requires subtle control flow changes.
465///
466/// The end-goal is to create a new type of metadata, called (e.g.) \a MDInt,
467/// so that metadata can refer to numbers without traversing a bridge to the \a
468/// Value hierarchy.  In this final state, the code above would look like this:
469///
470/// \code
471///     MDNode *N = ...;
472///     auto *MI = dyn_cast<MDInt>(N->getOperand(2));
473/// \endcode
474///
475/// The API in this namespace supports the transition.  \a MDInt doesn't exist
476/// yet, and even once it does, changing each metadata schema to use it is its
477/// own mini-project.  In the meantime this API prevents us from introducing
478/// complex and bug-prone control flow that will disappear in the end.  In
479/// particular, the above code looks like this:
480///
481/// \code
482///     MDNode *N = ...;
483///     auto *CI = mdconst::dyn_extract<ConstantInt>(N->getOperand(2));
484/// \endcode
485///
486/// The full set of provided functions includes:
487///
488///   mdconst::hasa                <=> isa
489///   mdconst::extract             <=> cast
490///   mdconst::extract_or_null     <=> cast_or_null
491///   mdconst::dyn_extract         <=> dyn_cast
492///   mdconst::dyn_extract_or_null <=> dyn_cast_or_null
493///
494/// The target of the cast must be a subclass of \a Constant.
495namespace mdconst {
496
497namespace detail {
498
499template <class T> T &make();
500template <class T, class Result> struct HasDereference {
501  using Yes = char[1];
502  using No = char[2];
503  template <size_t N> struct SFINAE {};
504
505  template <class U, class V>
506  static Yes &hasDereference(SFINAE<sizeof(static_cast<V>(*make<U>()))> * = 0);
507  template <class U, class V> static No &hasDereference(...);
508
509  static const bool value =
510      sizeof(hasDereference<T, Result>(nullptr)) == sizeof(Yes);
511};
512template <class V, class M> struct IsValidPointer {
513  static const bool value = std::is_base_of<Constant, V>::value &&
514                            HasDereference<M, const Metadata &>::value;
515};
516template <class V, class M> struct IsValidReference {
517  static const bool value = std::is_base_of<Constant, V>::value &&
518                            std::is_convertible<M, const Metadata &>::value;
519};
520
521} // end namespace detail
522
523/// \brief Check whether Metadata has a Value.
524///
525/// As an analogue to \a isa(), check whether \c MD has an \a Value inside of
526/// type \c X.
527template <class X, class Y>
528inline typename std::enable_if<detail::IsValidPointer<X, Y>::value, bool>::type
529hasa(Y &&MD) {
530  assert(MD && "Null pointer sent into hasa");
531  if (auto *V = dyn_cast<ConstantAsMetadata>(MD))
532    return isa<X>(V->getValue());
533  return false;
534}
535template <class X, class Y>
536inline
537    typename std::enable_if<detail::IsValidReference<X, Y &>::value, bool>::type
538    hasa(Y &MD) {
539  return hasa(&MD);
540}
541
542/// \brief Extract a Value from Metadata.
543///
544/// As an analogue to \a cast(), extract the \a Value subclass \c X from \c MD.
545template <class X, class Y>
546inline typename std::enable_if<detail::IsValidPointer<X, Y>::value, X *>::type
547extract(Y &&MD) {
548  return cast<X>(cast<ConstantAsMetadata>(MD)->getValue());
549}
550template <class X, class Y>
551inline
552    typename std::enable_if<detail::IsValidReference<X, Y &>::value, X *>::type
553    extract(Y &MD) {
554  return extract(&MD);
555}
556
557/// \brief Extract a Value from Metadata, allowing null.
558///
559/// As an analogue to \a cast_or_null(), extract the \a Value subclass \c X
560/// from \c MD, allowing \c MD to be null.
561template <class X, class Y>
562inline typename std::enable_if<detail::IsValidPointer<X, Y>::value, X *>::type
563extract_or_null(Y &&MD) {
564  if (auto *V = cast_or_null<ConstantAsMetadata>(MD))
565    return cast<X>(V->getValue());
566  return nullptr;
567}
568
569/// \brief Extract a Value from Metadata, if any.
570///
571/// As an analogue to \a dyn_cast_or_null(), extract the \a Value subclass \c X
572/// from \c MD, return null if \c MD doesn't contain a \a Value or if the \a
573/// Value it does contain is of the wrong subclass.
574template <class X, class Y>
575inline typename std::enable_if<detail::IsValidPointer<X, Y>::value, X *>::type
576dyn_extract(Y &&MD) {
577  if (auto *V = dyn_cast<ConstantAsMetadata>(MD))
578    return dyn_cast<X>(V->getValue());
579  return nullptr;
580}
581
582/// \brief Extract a Value from Metadata, if any, allowing null.
583///
584/// As an analogue to \a dyn_cast_or_null(), extract the \a Value subclass \c X
585/// from \c MD, return null if \c MD doesn't contain a \a Value or if the \a
586/// Value it does contain is of the wrong subclass, allowing \c MD to be null.
587template <class X, class Y>
588inline typename std::enable_if<detail::IsValidPointer<X, Y>::value, X *>::type
589dyn_extract_or_null(Y &&MD) {
590  if (auto *V = dyn_cast_or_null<ConstantAsMetadata>(MD))
591    return dyn_cast<X>(V->getValue());
592  return nullptr;
593}
594
595} // end namespace mdconst
596
597//===----------------------------------------------------------------------===//
598/// \brief A single uniqued string.
599///
600/// These are used to efficiently contain a byte sequence for metadata.
601/// MDString is always unnamed.
602class MDString : public Metadata {
603  friend class StringMapEntry<MDString>;
604
605  StringMapEntry<MDString> *Entry = nullptr;
606
607  MDString() : Metadata(MDStringKind, Uniqued) {}
608
609public:
610  MDString(const MDString &) = delete;
611  MDString &operator=(MDString &&) = delete;
612  MDString &operator=(const MDString &) = delete;
613
614  static MDString *get(LLVMContext &Context, StringRef Str);
615  static MDString *get(LLVMContext &Context, const char *Str) {
616    return get(Context, Str ? StringRef(Str) : StringRef());
617  }
618
619  StringRef getString() const;
620
621  unsigned getLength() const { return (unsigned)getString().size(); }
622
623  using iterator = StringRef::iterator;
624
625  /// \brief Pointer to the first byte of the string.
626  iterator begin() const { return getString().begin(); }
627
628  /// \brief Pointer to one byte past the end of the string.
629  iterator end() const { return getString().end(); }
630
631  const unsigned char *bytes_begin() const { return getString().bytes_begin(); }
632  const unsigned char *bytes_end() const { return getString().bytes_end(); }
633
634  /// \brief Methods for support type inquiry through isa, cast, and dyn_cast.
635  static bool classof(const Metadata *MD) {
636    return MD->getMetadataID() == MDStringKind;
637  }
638};
639
640/// \brief A collection of metadata nodes that might be associated with a
641/// memory access used by the alias-analysis infrastructure.
642struct AAMDNodes {
643  explicit AAMDNodes(MDNode *T = nullptr, MDNode *S = nullptr,
644                     MDNode *N = nullptr)
645      : TBAA(T), Scope(S), NoAlias(N) {}
646
647  bool operator==(const AAMDNodes &A) const {
648    return TBAA == A.TBAA && Scope == A.Scope && NoAlias == A.NoAlias;
649  }
650
651  bool operator!=(const AAMDNodes &A) const { return !(*this == A); }
652
653  explicit operator bool() const { return TBAA || Scope || NoAlias; }
654
655  /// \brief The tag for type-based alias analysis.
656  MDNode *TBAA;
657
658  /// \brief The tag for alias scope specification (used with noalias).
659  MDNode *Scope;
660
661  /// \brief The tag specifying the noalias scope.
662  MDNode *NoAlias;
663
664  /// \brief Given two sets of AAMDNodes that apply to the same pointer,
665  /// give the best AAMDNodes that are compatible with both (i.e. a set of
666  /// nodes whose allowable aliasing conclusions are a subset of those
667  /// allowable by both of the inputs). However, for efficiency
668  /// reasons, do not create any new MDNodes.
669  AAMDNodes intersect(const AAMDNodes &Other) {
670    AAMDNodes Result;
671    Result.TBAA = Other.TBAA == TBAA ? TBAA : nullptr;
672    Result.Scope = Other.Scope == Scope ? Scope : nullptr;
673    Result.NoAlias = Other.NoAlias == NoAlias ? NoAlias : nullptr;
674    return Result;
675  }
676};
677
678// Specialize DenseMapInfo for AAMDNodes.
679template<>
680struct DenseMapInfo<AAMDNodes> {
681  static inline AAMDNodes getEmptyKey() {
682    return AAMDNodes(DenseMapInfo<MDNode *>::getEmptyKey(),
683                     nullptr, nullptr);
684  }
685
686  static inline AAMDNodes getTombstoneKey() {
687    return AAMDNodes(DenseMapInfo<MDNode *>::getTombstoneKey(),
688                     nullptr, nullptr);
689  }
690
691  static unsigned getHashValue(const AAMDNodes &Val) {
692    return DenseMapInfo<MDNode *>::getHashValue(Val.TBAA) ^
693           DenseMapInfo<MDNode *>::getHashValue(Val.Scope) ^
694           DenseMapInfo<MDNode *>::getHashValue(Val.NoAlias);
695  }
696
697  static bool isEqual(const AAMDNodes &LHS, const AAMDNodes &RHS) {
698    return LHS == RHS;
699  }
700};
701
702/// \brief Tracking metadata reference owned by Metadata.
703///
704/// Similar to \a TrackingMDRef, but it's expected to be owned by an instance
705/// of \a Metadata, which has the option of registering itself for callbacks to
706/// re-unique itself.
707///
708/// In particular, this is used by \a MDNode.
709class MDOperand {
710  Metadata *MD = nullptr;
711
712public:
713  MDOperand() = default;
714  MDOperand(MDOperand &&) = delete;
715  MDOperand(const MDOperand &) = delete;
716  MDOperand &operator=(MDOperand &&) = delete;
717  MDOperand &operator=(const MDOperand &) = delete;
718  ~MDOperand() { untrack(); }
719
720  Metadata *get() const { return MD; }
721  operator Metadata *() const { return get(); }
722  Metadata *operator->() const { return get(); }
723  Metadata &operator*() const { return *get(); }
724
725  void reset() {
726    untrack();
727    MD = nullptr;
728  }
729  void reset(Metadata *MD, Metadata *Owner) {
730    untrack();
731    this->MD = MD;
732    track(Owner);
733  }
734
735private:
736  void track(Metadata *Owner) {
737    if (MD) {
738      if (Owner)
739        MetadataTracking::track(this, *MD, *Owner);
740      else
741        MetadataTracking::track(MD);
742    }
743  }
744
745  void untrack() {
746    assert(static_cast<void *>(this) == &MD && "Expected same address");
747    if (MD)
748      MetadataTracking::untrack(MD);
749  }
750};
751
752template <> struct simplify_type<MDOperand> {
753  using SimpleType = Metadata *;
754
755  static SimpleType getSimplifiedValue(MDOperand &MD) { return MD.get(); }
756};
757
758template <> struct simplify_type<const MDOperand> {
759  using SimpleType = Metadata *;
760
761  static SimpleType getSimplifiedValue(const MDOperand &MD) { return MD.get(); }
762};
763
764/// \brief Pointer to the context, with optional RAUW support.
765///
766/// Either a raw (non-null) pointer to the \a LLVMContext, or an owned pointer
767/// to \a ReplaceableMetadataImpl (which has a reference to \a LLVMContext).
768class ContextAndReplaceableUses {
769  PointerUnion<LLVMContext *, ReplaceableMetadataImpl *> Ptr;
770
771public:
772  ContextAndReplaceableUses(LLVMContext &Context) : Ptr(&Context) {}
773  ContextAndReplaceableUses(
774      std::unique_ptr<ReplaceableMetadataImpl> ReplaceableUses)
775      : Ptr(ReplaceableUses.release()) {
776    assert(getReplaceableUses() && "Expected non-null replaceable uses");
777  }
778  ContextAndReplaceableUses() = delete;
779  ContextAndReplaceableUses(ContextAndReplaceableUses &&) = delete;
780  ContextAndReplaceableUses(const ContextAndReplaceableUses &) = delete;
781  ContextAndReplaceableUses &operator=(ContextAndReplaceableUses &&) = delete;
782  ContextAndReplaceableUses &
783  operator=(const ContextAndReplaceableUses &) = delete;
784  ~ContextAndReplaceableUses() { delete getReplaceableUses(); }
785
786  operator LLVMContext &() { return getContext(); }
787
788  /// \brief Whether this contains RAUW support.
789  bool hasReplaceableUses() const {
790    return Ptr.is<ReplaceableMetadataImpl *>();
791  }
792
793  LLVMContext &getContext() const {
794    if (hasReplaceableUses())
795      return getReplaceableUses()->getContext();
796    return *Ptr.get<LLVMContext *>();
797  }
798
799  ReplaceableMetadataImpl *getReplaceableUses() const {
800    if (hasReplaceableUses())
801      return Ptr.get<ReplaceableMetadataImpl *>();
802    return nullptr;
803  }
804
805  /// Ensure that this has RAUW support, and then return it.
806  ReplaceableMetadataImpl *getOrCreateReplaceableUses() {
807    if (!hasReplaceableUses())
808      makeReplaceable(llvm::make_unique<ReplaceableMetadataImpl>(getContext()));
809    return getReplaceableUses();
810  }
811
812  /// \brief Assign RAUW support to this.
813  ///
814  /// Make this replaceable, taking ownership of \c ReplaceableUses (which must
815  /// not be null).
816  void
817  makeReplaceable(std::unique_ptr<ReplaceableMetadataImpl> ReplaceableUses) {
818    assert(ReplaceableUses && "Expected non-null replaceable uses");
819    assert(&ReplaceableUses->getContext() == &getContext() &&
820           "Expected same context");
821    delete getReplaceableUses();
822    Ptr = ReplaceableUses.release();
823  }
824
825  /// \brief Drop RAUW support.
826  ///
827  /// Cede ownership of RAUW support, returning it.
828  std::unique_ptr<ReplaceableMetadataImpl> takeReplaceableUses() {
829    assert(hasReplaceableUses() && "Expected to own replaceable uses");
830    std::unique_ptr<ReplaceableMetadataImpl> ReplaceableUses(
831        getReplaceableUses());
832    Ptr = &ReplaceableUses->getContext();
833    return ReplaceableUses;
834  }
835};
836
837struct TempMDNodeDeleter {
838  inline void operator()(MDNode *Node) const;
839};
840
841#define HANDLE_MDNODE_LEAF(CLASS)                                              \
842  using Temp##CLASS = std::unique_ptr<CLASS, TempMDNodeDeleter>;
843#define HANDLE_MDNODE_BRANCH(CLASS) HANDLE_MDNODE_LEAF(CLASS)
844#include "llvm/IR/Metadata.def"
845
846/// \brief Metadata node.
847///
848/// Metadata nodes can be uniqued, like constants, or distinct.  Temporary
849/// metadata nodes (with full support for RAUW) can be used to delay uniquing
850/// until forward references are known.  The basic metadata node is an \a
851/// MDTuple.
852///
853/// There is limited support for RAUW at construction time.  At construction
854/// time, if any operand is a temporary node (or an unresolved uniqued node,
855/// which indicates a transitive temporary operand), the node itself will be
856/// unresolved.  As soon as all operands become resolved, it will drop RAUW
857/// support permanently.
858///
859/// If an unresolved node is part of a cycle, \a resolveCycles() needs
860/// to be called on some member of the cycle once all temporary nodes have been
861/// replaced.
862class MDNode : public Metadata {
863  friend class ReplaceableMetadataImpl;
864  friend class LLVMContextImpl;
865
866  unsigned NumOperands;
867  unsigned NumUnresolved;
868
869  ContextAndReplaceableUses Context;
870
871protected:
872  MDNode(LLVMContext &Context, unsigned ID, StorageType Storage,
873         ArrayRef<Metadata *> Ops1, ArrayRef<Metadata *> Ops2 = None);
874  ~MDNode() = default;
875
876  void *operator new(size_t Size, unsigned NumOps);
877  void operator delete(void *Mem);
878
879  /// \brief Required by std, but never called.
880  void operator delete(void *, unsigned) {
881    llvm_unreachable("Constructor throws?");
882  }
883
884  /// \brief Required by std, but never called.
885  void operator delete(void *, unsigned, bool) {
886    llvm_unreachable("Constructor throws?");
887  }
888
889  void dropAllReferences();
890
891  MDOperand *mutable_begin() { return mutable_end() - NumOperands; }
892  MDOperand *mutable_end() { return reinterpret_cast<MDOperand *>(this); }
893
894  using mutable_op_range = iterator_range<MDOperand *>;
895
896  mutable_op_range mutable_operands() {
897    return mutable_op_range(mutable_begin(), mutable_end());
898  }
899
900public:
901  MDNode(const MDNode &) = delete;
902  void operator=(const MDNode &) = delete;
903  void *operator new(size_t) = delete;
904
905  static inline MDTuple *get(LLVMContext &Context, ArrayRef<Metadata *> MDs);
906  static inline MDTuple *getIfExists(LLVMContext &Context,
907                                     ArrayRef<Metadata *> MDs);
908  static inline MDTuple *getDistinct(LLVMContext &Context,
909                                     ArrayRef<Metadata *> MDs);
910  static inline TempMDTuple getTemporary(LLVMContext &Context,
911                                         ArrayRef<Metadata *> MDs);
912
913  /// \brief Create a (temporary) clone of this.
914  TempMDNode clone() const;
915
916  /// \brief Deallocate a node created by getTemporary.
917  ///
918  /// Calls \c replaceAllUsesWith(nullptr) before deleting, so any remaining
919  /// references will be reset.
920  static void deleteTemporary(MDNode *N);
921
922  LLVMContext &getContext() const { return Context.getContext(); }
923
924  /// \brief Replace a specific operand.
925  void replaceOperandWith(unsigned I, Metadata *New);
926
927  /// \brief Check if node is fully resolved.
928  ///
929  /// If \a isTemporary(), this always returns \c false; if \a isDistinct(),
930  /// this always returns \c true.
931  ///
932  /// If \a isUniqued(), returns \c true if this has already dropped RAUW
933  /// support (because all operands are resolved).
934  ///
935  /// As forward declarations are resolved, their containers should get
936  /// resolved automatically.  However, if this (or one of its operands) is
937  /// involved in a cycle, \a resolveCycles() needs to be called explicitly.
938  bool isResolved() const { return !isTemporary() && !NumUnresolved; }
939
940  bool isUniqued() const { return Storage == Uniqued; }
941  bool isDistinct() const { return Storage == Distinct; }
942  bool isTemporary() const { return Storage == Temporary; }
943
944  /// \brief RAUW a temporary.
945  ///
946  /// \pre \a isTemporary() must be \c true.
947  void replaceAllUsesWith(Metadata *MD) {
948    assert(isTemporary() && "Expected temporary node");
949    if (Context.hasReplaceableUses())
950      Context.getReplaceableUses()->replaceAllUsesWith(MD);
951  }
952
953  /// \brief Resolve cycles.
954  ///
955  /// Once all forward declarations have been resolved, force cycles to be
956  /// resolved.
957  ///
958  /// \pre No operands (or operands' operands, etc.) have \a isTemporary().
959  void resolveCycles();
960
961  /// \brief Replace a temporary node with a permanent one.
962  ///
963  /// Try to create a uniqued version of \c N -- in place, if possible -- and
964  /// return it.  If \c N cannot be uniqued, return a distinct node instead.
965  template <class T>
966  static typename std::enable_if<std::is_base_of<MDNode, T>::value, T *>::type
967  replaceWithPermanent(std::unique_ptr<T, TempMDNodeDeleter> N) {
968    return cast<T>(N.release()->replaceWithPermanentImpl());
969  }
970
971  /// \brief Replace a temporary node with a uniqued one.
972  ///
973  /// Create a uniqued version of \c N -- in place, if possible -- and return
974  /// it.  Takes ownership of the temporary node.
975  ///
976  /// \pre N does not self-reference.
977  template <class T>
978  static typename std::enable_if<std::is_base_of<MDNode, T>::value, T *>::type
979  replaceWithUniqued(std::unique_ptr<T, TempMDNodeDeleter> N) {
980    return cast<T>(N.release()->replaceWithUniquedImpl());
981  }
982
983  /// \brief Replace a temporary node with a distinct one.
984  ///
985  /// Create a distinct version of \c N -- in place, if possible -- and return
986  /// it.  Takes ownership of the temporary node.
987  template <class T>
988  static typename std::enable_if<std::is_base_of<MDNode, T>::value, T *>::type
989  replaceWithDistinct(std::unique_ptr<T, TempMDNodeDeleter> N) {
990    return cast<T>(N.release()->replaceWithDistinctImpl());
991  }
992
993private:
994  MDNode *replaceWithPermanentImpl();
995  MDNode *replaceWithUniquedImpl();
996  MDNode *replaceWithDistinctImpl();
997
998protected:
999  /// \brief Set an operand.
1000  ///
1001  /// Sets the operand directly, without worrying about uniquing.
1002  void setOperand(unsigned I, Metadata *New);
1003
1004  void storeDistinctInContext();
1005  template <class T, class StoreT>
1006  static T *storeImpl(T *N, StorageType Storage, StoreT &Store);
1007  template <class T> static T *storeImpl(T *N, StorageType Storage);
1008
1009private:
1010  void handleChangedOperand(void *Ref, Metadata *New);
1011
1012  /// Resolve a unique, unresolved node.
1013  void resolve();
1014
1015  /// Drop RAUW support, if any.
1016  void dropReplaceableUses();
1017
1018  void resolveAfterOperandChange(Metadata *Old, Metadata *New);
1019  void decrementUnresolvedOperandCount();
1020  void countUnresolvedOperands();
1021
1022  /// \brief Mutate this to be "uniqued".
1023  ///
1024  /// Mutate this so that \a isUniqued().
1025  /// \pre \a isTemporary().
1026  /// \pre already added to uniquing set.
1027  void makeUniqued();
1028
1029  /// \brief Mutate this to be "distinct".
1030  ///
1031  /// Mutate this so that \a isDistinct().
1032  /// \pre \a isTemporary().
1033  void makeDistinct();
1034
1035  void deleteAsSubclass();
1036  MDNode *uniquify();
1037  void eraseFromStore();
1038
1039  template <class NodeTy> struct HasCachedHash;
1040  template <class NodeTy>
1041  static void dispatchRecalculateHash(NodeTy *N, std::true_type) {
1042    N->recalculateHash();
1043  }
1044  template <class NodeTy>
1045  static void dispatchRecalculateHash(NodeTy *, std::false_type) {}
1046  template <class NodeTy>
1047  static void dispatchResetHash(NodeTy *N, std::true_type) {
1048    N->setHash(0);
1049  }
1050  template <class NodeTy>
1051  static void dispatchResetHash(NodeTy *, std::false_type) {}
1052
1053public:
1054  using op_iterator = const MDOperand *;
1055  using op_range = iterator_range<op_iterator>;
1056
1057  op_iterator op_begin() const {
1058    return const_cast<MDNode *>(this)->mutable_begin();
1059  }
1060
1061  op_iterator op_end() const {
1062    return const_cast<MDNode *>(this)->mutable_end();
1063  }
1064
1065  op_range operands() const { return op_range(op_begin(), op_end()); }
1066
1067  const MDOperand &getOperand(unsigned I) const {
1068    assert(I < NumOperands && "Out of range");
1069    return op_begin()[I];
1070  }
1071
1072  /// \brief Return number of MDNode operands.
1073  unsigned getNumOperands() const { return NumOperands; }
1074
1075  /// \brief Methods for support type inquiry through isa, cast, and dyn_cast:
1076  static bool classof(const Metadata *MD) {
1077    switch (MD->getMetadataID()) {
1078    default:
1079      return false;
1080#define HANDLE_MDNODE_LEAF(CLASS)                                              \
1081  case CLASS##Kind:                                                            \
1082    return true;
1083#include "llvm/IR/Metadata.def"
1084    }
1085  }
1086
1087  /// \brief Check whether MDNode is a vtable access.
1088  bool isTBAAVtableAccess() const;
1089
1090  /// \brief Methods for metadata merging.
1091  static MDNode *concatenate(MDNode *A, MDNode *B);
1092  static MDNode *intersect(MDNode *A, MDNode *B);
1093  static MDNode *getMostGenericTBAA(MDNode *A, MDNode *B);
1094  static MDNode *getMostGenericFPMath(MDNode *A, MDNode *B);
1095  static MDNode *getMostGenericRange(MDNode *A, MDNode *B);
1096  static MDNode *getMostGenericAliasScope(MDNode *A, MDNode *B);
1097  static MDNode *getMostGenericAlignmentOrDereferenceable(MDNode *A, MDNode *B);
1098};
1099
1100/// \brief Tuple of metadata.
1101///
1102/// This is the simple \a MDNode arbitrary tuple.  Nodes are uniqued by
1103/// default based on their operands.
1104class MDTuple : public MDNode {
1105  friend class LLVMContextImpl;
1106  friend class MDNode;
1107
1108  MDTuple(LLVMContext &C, StorageType Storage, unsigned Hash,
1109          ArrayRef<Metadata *> Vals)
1110      : MDNode(C, MDTupleKind, Storage, Vals) {
1111    setHash(Hash);
1112  }
1113
1114  ~MDTuple() { dropAllReferences(); }
1115
1116  void setHash(unsigned Hash) { SubclassData32 = Hash; }
1117  void recalculateHash();
1118
1119  static MDTuple *getImpl(LLVMContext &Context, ArrayRef<Metadata *> MDs,
1120                          StorageType Storage, bool ShouldCreate = true);
1121
1122  TempMDTuple cloneImpl() const {
1123    return getTemporary(getContext(),
1124                        SmallVector<Metadata *, 4>(op_begin(), op_end()));
1125  }
1126
1127public:
1128  /// \brief Get the hash, if any.
1129  unsigned getHash() const { return SubclassData32; }
1130
1131  static MDTuple *get(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1132    return getImpl(Context, MDs, Uniqued);
1133  }
1134
1135  static MDTuple *getIfExists(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1136    return getImpl(Context, MDs, Uniqued, /* ShouldCreate */ false);
1137  }
1138
1139  /// \brief Return a distinct node.
1140  ///
1141  /// Return a distinct node -- i.e., a node that is not uniqued.
1142  static MDTuple *getDistinct(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1143    return getImpl(Context, MDs, Distinct);
1144  }
1145
1146  /// \brief Return a temporary node.
1147  ///
1148  /// For use in constructing cyclic MDNode structures. A temporary MDNode is
1149  /// not uniqued, may be RAUW'd, and must be manually deleted with
1150  /// deleteTemporary.
1151  static TempMDTuple getTemporary(LLVMContext &Context,
1152                                  ArrayRef<Metadata *> MDs) {
1153    return TempMDTuple(getImpl(Context, MDs, Temporary));
1154  }
1155
1156  /// \brief Return a (temporary) clone of this.
1157  TempMDTuple clone() const { return cloneImpl(); }
1158
1159  static bool classof(const Metadata *MD) {
1160    return MD->getMetadataID() == MDTupleKind;
1161  }
1162};
1163
1164MDTuple *MDNode::get(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1165  return MDTuple::get(Context, MDs);
1166}
1167
1168MDTuple *MDNode::getIfExists(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1169  return MDTuple::getIfExists(Context, MDs);
1170}
1171
1172MDTuple *MDNode::getDistinct(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1173  return MDTuple::getDistinct(Context, MDs);
1174}
1175
1176TempMDTuple MDNode::getTemporary(LLVMContext &Context,
1177                                 ArrayRef<Metadata *> MDs) {
1178  return MDTuple::getTemporary(Context, MDs);
1179}
1180
1181void TempMDNodeDeleter::operator()(MDNode *Node) const {
1182  MDNode::deleteTemporary(Node);
1183}
1184
1185/// \brief Typed iterator through MDNode operands.
1186///
1187/// An iterator that transforms an \a MDNode::iterator into an iterator over a
1188/// particular Metadata subclass.
1189template <class T>
1190class TypedMDOperandIterator
1191    : public std::iterator<std::input_iterator_tag, T *, std::ptrdiff_t, void,
1192                           T *> {
1193  MDNode::op_iterator I = nullptr;
1194
1195public:
1196  TypedMDOperandIterator() = default;
1197  explicit TypedMDOperandIterator(MDNode::op_iterator I) : I(I) {}
1198
1199  T *operator*() const { return cast_or_null<T>(*I); }
1200
1201  TypedMDOperandIterator &operator++() {
1202    ++I;
1203    return *this;
1204  }
1205
1206  TypedMDOperandIterator operator++(int) {
1207    TypedMDOperandIterator Temp(*this);
1208    ++I;
1209    return Temp;
1210  }
1211
1212  bool operator==(const TypedMDOperandIterator &X) const { return I == X.I; }
1213  bool operator!=(const TypedMDOperandIterator &X) const { return I != X.I; }
1214};
1215
1216/// \brief Typed, array-like tuple of metadata.
1217///
1218/// This is a wrapper for \a MDTuple that makes it act like an array holding a
1219/// particular type of metadata.
1220template <class T> class MDTupleTypedArrayWrapper {
1221  const MDTuple *N = nullptr;
1222
1223public:
1224  MDTupleTypedArrayWrapper() = default;
1225  MDTupleTypedArrayWrapper(const MDTuple *N) : N(N) {}
1226
1227  template <class U>
1228  MDTupleTypedArrayWrapper(
1229      const MDTupleTypedArrayWrapper<U> &Other,
1230      typename std::enable_if<std::is_convertible<U *, T *>::value>::type * =
1231          nullptr)
1232      : N(Other.get()) {}
1233
1234  template <class U>
1235  explicit MDTupleTypedArrayWrapper(
1236      const MDTupleTypedArrayWrapper<U> &Other,
1237      typename std::enable_if<!std::is_convertible<U *, T *>::value>::type * =
1238          nullptr)
1239      : N(Other.get()) {}
1240
1241  explicit operator bool() const { return get(); }
1242  explicit operator MDTuple *() const { return get(); }
1243
1244  MDTuple *get() const { return const_cast<MDTuple *>(N); }
1245  MDTuple *operator->() const { return get(); }
1246  MDTuple &operator*() const { return *get(); }
1247
1248  // FIXME: Fix callers and remove condition on N.
1249  unsigned size() const { return N ? N->getNumOperands() : 0u; }
1250  bool empty() const { return N ? N->getNumOperands() == 0 : true; }
1251  T *operator[](unsigned I) const { return cast_or_null<T>(N->getOperand(I)); }
1252
1253  // FIXME: Fix callers and remove condition on N.
1254  using iterator = TypedMDOperandIterator<T>;
1255
1256  iterator begin() const { return N ? iterator(N->op_begin()) : iterator(); }
1257  iterator end() const { return N ? iterator(N->op_end()) : iterator(); }
1258};
1259
1260#define HANDLE_METADATA(CLASS)                                                 \
1261  using CLASS##Array = MDTupleTypedArrayWrapper<CLASS>;
1262#include "llvm/IR/Metadata.def"
1263
1264/// Placeholder metadata for operands of distinct MDNodes.
1265///
1266/// This is a lightweight placeholder for an operand of a distinct node.  It's
1267/// purpose is to help track forward references when creating a distinct node.
1268/// This allows distinct nodes involved in a cycle to be constructed before
1269/// their operands without requiring a heavyweight temporary node with
1270/// full-blown RAUW support.
1271///
1272/// Each placeholder supports only a single MDNode user.  Clients should pass
1273/// an ID, retrieved via \a getID(), to indicate the "real" operand that this
1274/// should be replaced with.
1275///
1276/// While it would be possible to implement move operators, they would be
1277/// fairly expensive.  Leave them unimplemented to discourage their use
1278/// (clients can use std::deque, std::list, BumpPtrAllocator, etc.).
1279class DistinctMDOperandPlaceholder : public Metadata {
1280  friend class MetadataTracking;
1281
1282  Metadata **Use = nullptr;
1283
1284public:
1285  explicit DistinctMDOperandPlaceholder(unsigned ID)
1286      : Metadata(DistinctMDOperandPlaceholderKind, Distinct) {
1287    SubclassData32 = ID;
1288  }
1289
1290  DistinctMDOperandPlaceholder() = delete;
1291  DistinctMDOperandPlaceholder(DistinctMDOperandPlaceholder &&) = delete;
1292  DistinctMDOperandPlaceholder(const DistinctMDOperandPlaceholder &) = delete;
1293
1294  ~DistinctMDOperandPlaceholder() {
1295    if (Use)
1296      *Use = nullptr;
1297  }
1298
1299  unsigned getID() const { return SubclassData32; }
1300
1301  /// Replace the use of this with MD.
1302  void replaceUseWith(Metadata *MD) {
1303    if (!Use)
1304      return;
1305    *Use = MD;
1306
1307    if (*Use)
1308      MetadataTracking::track(*Use);
1309
1310    Metadata *T = cast<Metadata>(this);
1311    MetadataTracking::untrack(T);
1312    assert(!Use && "Use is still being tracked despite being untracked!");
1313  }
1314};
1315
1316//===----------------------------------------------------------------------===//
1317/// \brief A tuple of MDNodes.
1318///
1319/// Despite its name, a NamedMDNode isn't itself an MDNode. NamedMDNodes belong
1320/// to modules, have names, and contain lists of MDNodes.
1321///
1322/// TODO: Inherit from Metadata.
1323class NamedMDNode : public ilist_node<NamedMDNode> {
1324  friend class LLVMContextImpl;
1325  friend class Module;
1326
1327  std::string Name;
1328  Module *Parent = nullptr;
1329  void *Operands; // SmallVector<TrackingMDRef, 4>
1330
1331  void setParent(Module *M) { Parent = M; }
1332
1333  explicit NamedMDNode(const Twine &N);
1334
1335  template<class T1, class T2>
1336  class op_iterator_impl :
1337      public std::iterator<std::bidirectional_iterator_tag, T2> {
1338    friend class NamedMDNode;
1339
1340    const NamedMDNode *Node = nullptr;
1341    unsigned Idx = 0;
1342
1343    op_iterator_impl(const NamedMDNode *N, unsigned i) : Node(N), Idx(i) {}
1344
1345  public:
1346    op_iterator_impl() = default;
1347
1348    bool operator==(const op_iterator_impl &o) const { return Idx == o.Idx; }
1349    bool operator!=(const op_iterator_impl &o) const { return Idx != o.Idx; }
1350
1351    op_iterator_impl &operator++() {
1352      ++Idx;
1353      return *this;
1354    }
1355
1356    op_iterator_impl operator++(int) {
1357      op_iterator_impl tmp(*this);
1358      operator++();
1359      return tmp;
1360    }
1361
1362    op_iterator_impl &operator--() {
1363      --Idx;
1364      return *this;
1365    }
1366
1367    op_iterator_impl operator--(int) {
1368      op_iterator_impl tmp(*this);
1369      operator--();
1370      return tmp;
1371    }
1372
1373    T1 operator*() const { return Node->getOperand(Idx); }
1374  };
1375
1376public:
1377  NamedMDNode(const NamedMDNode &) = delete;
1378  ~NamedMDNode();
1379
1380  /// \brief Drop all references and remove the node from parent module.
1381  void eraseFromParent();
1382
1383  /// Remove all uses and clear node vector.
1384  void dropAllReferences() { clearOperands(); }
1385  /// Drop all references to this node's operands.
1386  void clearOperands();
1387
1388  /// \brief Get the module that holds this named metadata collection.
1389  inline Module *getParent() { return Parent; }
1390  inline const Module *getParent() const { return Parent; }
1391
1392  MDNode *getOperand(unsigned i) const;
1393  unsigned getNumOperands() const;
1394  void addOperand(MDNode *M);
1395  void setOperand(unsigned I, MDNode *New);
1396  StringRef getName() const;
1397  void print(raw_ostream &ROS, bool IsForDebug = false) const;
1398  void print(raw_ostream &ROS, ModuleSlotTracker &MST,
1399             bool IsForDebug = false) const;
1400  void dump() const;
1401
1402  // ---------------------------------------------------------------------------
1403  // Operand Iterator interface...
1404  //
1405  using op_iterator = op_iterator_impl<MDNode *, MDNode>;
1406
1407  op_iterator op_begin() { return op_iterator(this, 0); }
1408  op_iterator op_end()   { return op_iterator(this, getNumOperands()); }
1409
1410  using const_op_iterator = op_iterator_impl<const MDNode *, MDNode>;
1411
1412  const_op_iterator op_begin() const { return const_op_iterator(this, 0); }
1413  const_op_iterator op_end()   const { return const_op_iterator(this, getNumOperands()); }
1414
1415  inline iterator_range<op_iterator>  operands() {
1416    return make_range(op_begin(), op_end());
1417  }
1418  inline iterator_range<const_op_iterator> operands() const {
1419    return make_range(op_begin(), op_end());
1420  }
1421};
1422
1423} // end namespace llvm
1424
1425#endif // LLVM_IR_METADATA_H
1426