1//===- ValueMap.h - Safe map from Values to data ----------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the ValueMap class.  ValueMap maps Value* or any subclass
11// to an arbitrary other type.  It provides the DenseMap interface but updates
12// itself to remain safe when keys are RAUWed or deleted.  By default, when a
13// key is RAUWed from V1 to V2, the old mapping V1->target is removed, and a new
14// mapping V2->target is added.  If V2 already existed, its old target is
15// overwritten.  When a key is deleted, its mapping is removed.
16//
17// You can override a ValueMap's Config parameter to control exactly what
18// happens on RAUW and destruction and to get called back on each event.  It's
19// legal to call back into the ValueMap from a Config's callbacks.  Config
20// parameters should inherit from ValueMapConfig<KeyT> to get default
21// implementations of all the methods ValueMap uses.  See ValueMapConfig for
22// documentation of the functions you can override.
23//
24//===----------------------------------------------------------------------===//
25
26#ifndef LLVM_IR_VALUEMAP_H
27#define LLVM_IR_VALUEMAP_H
28
29#include "llvm/ADT/DenseMap.h"
30#include "llvm/ADT/DenseMapInfo.h"
31#include "llvm/ADT/None.h"
32#include "llvm/ADT/Optional.h"
33#include "llvm/IR/TrackingMDRef.h"
34#include "llvm/IR/ValueHandle.h"
35#include "llvm/Support/Casting.h"
36#include "llvm/Support/Mutex.h"
37#include "llvm/Support/UniqueLock.h"
38#include <algorithm>
39#include <cassert>
40#include <cstddef>
41#include <iterator>
42#include <type_traits>
43#include <utility>
44
45namespace llvm {
46
47template<typename KeyT, typename ValueT, typename Config>
48class ValueMapCallbackVH;
49template<typename DenseMapT, typename KeyT>
50class ValueMapIterator;
51template<typename DenseMapT, typename KeyT>
52class ValueMapConstIterator;
53
54/// This class defines the default behavior for configurable aspects of
55/// ValueMap<>.  User Configs should inherit from this class to be as compatible
56/// as possible with future versions of ValueMap.
57template<typename KeyT, typename MutexT = sys::Mutex>
58struct ValueMapConfig {
59  using mutex_type = MutexT;
60
61  /// If FollowRAUW is true, the ValueMap will update mappings on RAUW. If it's
62  /// false, the ValueMap will leave the original mapping in place.
63  enum { FollowRAUW = true };
64
65  // All methods will be called with a first argument of type ExtraData.  The
66  // default implementations in this class take a templated first argument so
67  // that users' subclasses can use any type they want without having to
68  // override all the defaults.
69  struct ExtraData {};
70
71  template<typename ExtraDataT>
72  static void onRAUW(const ExtraDataT & /*Data*/, KeyT /*Old*/, KeyT /*New*/) {}
73  template<typename ExtraDataT>
74  static void onDelete(const ExtraDataT &/*Data*/, KeyT /*Old*/) {}
75
76  /// Returns a mutex that should be acquired around any changes to the map.
77  /// This is only acquired from the CallbackVH (and held around calls to onRAUW
78  /// and onDelete) and not inside other ValueMap methods.  NULL means that no
79  /// mutex is necessary.
80  template<typename ExtraDataT>
81  static mutex_type *getMutex(const ExtraDataT &/*Data*/) { return nullptr; }
82};
83
84/// See the file comment.
85template<typename KeyT, typename ValueT, typename Config =ValueMapConfig<KeyT>>
86class ValueMap {
87  friend class ValueMapCallbackVH<KeyT, ValueT, Config>;
88
89  using ValueMapCVH = ValueMapCallbackVH<KeyT, ValueT, Config>;
90  using MapT = DenseMap<ValueMapCVH, ValueT, DenseMapInfo<ValueMapCVH>>;
91  using MDMapT = DenseMap<const Metadata *, TrackingMDRef>;
92  using ExtraData = typename Config::ExtraData;
93
94  MapT Map;
95  Optional<MDMapT> MDMap;
96  ExtraData Data;
97  bool MayMapMetadata = true;
98
99public:
100  using key_type = KeyT;
101  using mapped_type = ValueT;
102  using value_type = std::pair<KeyT, ValueT>;
103  using size_type = unsigned;
104
105  explicit ValueMap(unsigned NumInitBuckets = 64)
106      : Map(NumInitBuckets), Data() {}
107  explicit ValueMap(const ExtraData &Data, unsigned NumInitBuckets = 64)
108      : Map(NumInitBuckets), Data(Data) {}
109  ValueMap(const ValueMap &) = delete;
110  ValueMap &operator=(const ValueMap &) = delete;
111
112  bool hasMD() const { return bool(MDMap); }
113  MDMapT &MD() {
114    if (!MDMap)
115      MDMap.emplace();
116    return *MDMap;
117  }
118  Optional<MDMapT> &getMDMap() { return MDMap; }
119
120  bool mayMapMetadata() const { return MayMapMetadata; }
121  void enableMapMetadata() { MayMapMetadata = true; }
122  void disableMapMetadata() { MayMapMetadata = false; }
123
124  /// Get the mapped metadata, if it's in the map.
125  Optional<Metadata *> getMappedMD(const Metadata *MD) const {
126    if (!MDMap)
127      return None;
128    auto Where = MDMap->find(MD);
129    if (Where == MDMap->end())
130      return None;
131    return Where->second.get();
132  }
133
134  using iterator = ValueMapIterator<MapT, KeyT>;
135  using const_iterator = ValueMapConstIterator<MapT, KeyT>;
136
137  inline iterator begin() { return iterator(Map.begin()); }
138  inline iterator end() { return iterator(Map.end()); }
139  inline const_iterator begin() const { return const_iterator(Map.begin()); }
140  inline const_iterator end() const { return const_iterator(Map.end()); }
141
142  bool empty() const { return Map.empty(); }
143  size_type size() const { return Map.size(); }
144
145  /// Grow the map so that it has at least Size buckets. Does not shrink
146  void resize(size_t Size) { Map.resize(Size); }
147
148  void clear() {
149    Map.clear();
150    MDMap.reset();
151  }
152
153  /// Return 1 if the specified key is in the map, 0 otherwise.
154  size_type count(const KeyT &Val) const {
155    return Map.find_as(Val) == Map.end() ? 0 : 1;
156  }
157
158  iterator find(const KeyT &Val) {
159    return iterator(Map.find_as(Val));
160  }
161  const_iterator find(const KeyT &Val) const {
162    return const_iterator(Map.find_as(Val));
163  }
164
165  /// lookup - Return the entry for the specified key, or a default
166  /// constructed value if no such entry exists.
167  ValueT lookup(const KeyT &Val) const {
168    typename MapT::const_iterator I = Map.find_as(Val);
169    return I != Map.end() ? I->second : ValueT();
170  }
171
172  // Inserts key,value pair into the map if the key isn't already in the map.
173  // If the key is already in the map, it returns false and doesn't update the
174  // value.
175  std::pair<iterator, bool> insert(const std::pair<KeyT, ValueT> &KV) {
176    auto MapResult = Map.insert(std::make_pair(Wrap(KV.first), KV.second));
177    return std::make_pair(iterator(MapResult.first), MapResult.second);
178  }
179
180  std::pair<iterator, bool> insert(std::pair<KeyT, ValueT> &&KV) {
181    auto MapResult =
182        Map.insert(std::make_pair(Wrap(KV.first), std::move(KV.second)));
183    return std::make_pair(iterator(MapResult.first), MapResult.second);
184  }
185
186  /// insert - Range insertion of pairs.
187  template<typename InputIt>
188  void insert(InputIt I, InputIt E) {
189    for (; I != E; ++I)
190      insert(*I);
191  }
192
193  bool erase(const KeyT &Val) {
194    typename MapT::iterator I = Map.find_as(Val);
195    if (I == Map.end())
196      return false;
197
198    Map.erase(I);
199    return true;
200  }
201  void erase(iterator I) {
202    return Map.erase(I.base());
203  }
204
205  value_type& FindAndConstruct(const KeyT &Key) {
206    return Map.FindAndConstruct(Wrap(Key));
207  }
208
209  ValueT &operator[](const KeyT &Key) {
210    return Map[Wrap(Key)];
211  }
212
213  /// isPointerIntoBucketsArray - Return true if the specified pointer points
214  /// somewhere into the ValueMap's array of buckets (i.e. either to a key or
215  /// value in the ValueMap).
216  bool isPointerIntoBucketsArray(const void *Ptr) const {
217    return Map.isPointerIntoBucketsArray(Ptr);
218  }
219
220  /// getPointerIntoBucketsArray() - Return an opaque pointer into the buckets
221  /// array.  In conjunction with the previous method, this can be used to
222  /// determine whether an insertion caused the ValueMap to reallocate.
223  const void *getPointerIntoBucketsArray() const {
224    return Map.getPointerIntoBucketsArray();
225  }
226
227private:
228  // Takes a key being looked up in the map and wraps it into a
229  // ValueMapCallbackVH, the actual key type of the map.  We use a helper
230  // function because ValueMapCVH is constructed with a second parameter.
231  ValueMapCVH Wrap(KeyT key) const {
232    // The only way the resulting CallbackVH could try to modify *this (making
233    // the const_cast incorrect) is if it gets inserted into the map.  But then
234    // this function must have been called from a non-const method, making the
235    // const_cast ok.
236    return ValueMapCVH(key, const_cast<ValueMap*>(this));
237  }
238};
239
240// This CallbackVH updates its ValueMap when the contained Value changes,
241// according to the user's preferences expressed through the Config object.
242template <typename KeyT, typename ValueT, typename Config>
243class ValueMapCallbackVH final : public CallbackVH {
244  friend class ValueMap<KeyT, ValueT, Config>;
245  friend struct DenseMapInfo<ValueMapCallbackVH>;
246
247  using ValueMapT = ValueMap<KeyT, ValueT, Config>;
248  using KeySansPointerT = typename std::remove_pointer<KeyT>::type;
249
250  ValueMapT *Map;
251
252  ValueMapCallbackVH(KeyT Key, ValueMapT *Map)
253      : CallbackVH(const_cast<Value*>(static_cast<const Value*>(Key))),
254        Map(Map) {}
255
256  // Private constructor used to create empty/tombstone DenseMap keys.
257  ValueMapCallbackVH(Value *V) : CallbackVH(V), Map(nullptr) {}
258
259public:
260  KeyT Unwrap() const { return cast_or_null<KeySansPointerT>(getValPtr()); }
261
262  void deleted() override {
263    // Make a copy that won't get changed even when *this is destroyed.
264    ValueMapCallbackVH Copy(*this);
265    typename Config::mutex_type *M = Config::getMutex(Copy.Map->Data);
266    unique_lock<typename Config::mutex_type> Guard;
267    if (M)
268      Guard = unique_lock<typename Config::mutex_type>(*M);
269    Config::onDelete(Copy.Map->Data, Copy.Unwrap());  // May destroy *this.
270    Copy.Map->Map.erase(Copy);  // Definitely destroys *this.
271  }
272
273  void allUsesReplacedWith(Value *new_key) override {
274    assert(isa<KeySansPointerT>(new_key) &&
275           "Invalid RAUW on key of ValueMap<>");
276    // Make a copy that won't get changed even when *this is destroyed.
277    ValueMapCallbackVH Copy(*this);
278    typename Config::mutex_type *M = Config::getMutex(Copy.Map->Data);
279    unique_lock<typename Config::mutex_type> Guard;
280    if (M)
281      Guard = unique_lock<typename Config::mutex_type>(*M);
282
283    KeyT typed_new_key = cast<KeySansPointerT>(new_key);
284    // Can destroy *this:
285    Config::onRAUW(Copy.Map->Data, Copy.Unwrap(), typed_new_key);
286    if (Config::FollowRAUW) {
287      typename ValueMapT::MapT::iterator I = Copy.Map->Map.find(Copy);
288      // I could == Copy.Map->Map.end() if the onRAUW callback already
289      // removed the old mapping.
290      if (I != Copy.Map->Map.end()) {
291        ValueT Target(std::move(I->second));
292        Copy.Map->Map.erase(I);  // Definitely destroys *this.
293        Copy.Map->insert(std::make_pair(typed_new_key, std::move(Target)));
294      }
295    }
296  }
297};
298
299template<typename KeyT, typename ValueT, typename Config>
300struct DenseMapInfo<ValueMapCallbackVH<KeyT, ValueT, Config>> {
301  using VH = ValueMapCallbackVH<KeyT, ValueT, Config>;
302
303  static inline VH getEmptyKey() {
304    return VH(DenseMapInfo<Value *>::getEmptyKey());
305  }
306
307  static inline VH getTombstoneKey() {
308    return VH(DenseMapInfo<Value *>::getTombstoneKey());
309  }
310
311  static unsigned getHashValue(const VH &Val) {
312    return DenseMapInfo<KeyT>::getHashValue(Val.Unwrap());
313  }
314
315  static unsigned getHashValue(const KeyT &Val) {
316    return DenseMapInfo<KeyT>::getHashValue(Val);
317  }
318
319  static bool isEqual(const VH &LHS, const VH &RHS) {
320    return LHS == RHS;
321  }
322
323  static bool isEqual(const KeyT &LHS, const VH &RHS) {
324    return LHS == RHS.getValPtr();
325  }
326};
327
328template<typename DenseMapT, typename KeyT>
329class ValueMapIterator :
330    public std::iterator<std::forward_iterator_tag,
331                         std::pair<KeyT, typename DenseMapT::mapped_type>,
332                         ptrdiff_t> {
333  using BaseT = typename DenseMapT::iterator;
334  using ValueT = typename DenseMapT::mapped_type;
335
336  BaseT I;
337
338public:
339  ValueMapIterator() : I() {}
340  ValueMapIterator(BaseT I) : I(I) {}
341
342  BaseT base() const { return I; }
343
344  struct ValueTypeProxy {
345    const KeyT first;
346    ValueT& second;
347
348    ValueTypeProxy *operator->() { return this; }
349
350    operator std::pair<KeyT, ValueT>() const {
351      return std::make_pair(first, second);
352    }
353  };
354
355  ValueTypeProxy operator*() const {
356    ValueTypeProxy Result = {I->first.Unwrap(), I->second};
357    return Result;
358  }
359
360  ValueTypeProxy operator->() const {
361    return operator*();
362  }
363
364  bool operator==(const ValueMapIterator &RHS) const {
365    return I == RHS.I;
366  }
367  bool operator!=(const ValueMapIterator &RHS) const {
368    return I != RHS.I;
369  }
370
371  inline ValueMapIterator& operator++() {  // Preincrement
372    ++I;
373    return *this;
374  }
375  ValueMapIterator operator++(int) {  // Postincrement
376    ValueMapIterator tmp = *this; ++*this; return tmp;
377  }
378};
379
380template<typename DenseMapT, typename KeyT>
381class ValueMapConstIterator :
382    public std::iterator<std::forward_iterator_tag,
383                         std::pair<KeyT, typename DenseMapT::mapped_type>,
384                         ptrdiff_t> {
385  using BaseT = typename DenseMapT::const_iterator;
386  using ValueT = typename DenseMapT::mapped_type;
387
388  BaseT I;
389
390public:
391  ValueMapConstIterator() : I() {}
392  ValueMapConstIterator(BaseT I) : I(I) {}
393  ValueMapConstIterator(ValueMapIterator<DenseMapT, KeyT> Other)
394    : I(Other.base()) {}
395
396  BaseT base() const { return I; }
397
398  struct ValueTypeProxy {
399    const KeyT first;
400    const ValueT& second;
401    ValueTypeProxy *operator->() { return this; }
402    operator std::pair<KeyT, ValueT>() const {
403      return std::make_pair(first, second);
404    }
405  };
406
407  ValueTypeProxy operator*() const {
408    ValueTypeProxy Result = {I->first.Unwrap(), I->second};
409    return Result;
410  }
411
412  ValueTypeProxy operator->() const {
413    return operator*();
414  }
415
416  bool operator==(const ValueMapConstIterator &RHS) const {
417    return I == RHS.I;
418  }
419  bool operator!=(const ValueMapConstIterator &RHS) const {
420    return I != RHS.I;
421  }
422
423  inline ValueMapConstIterator& operator++() {  // Preincrement
424    ++I;
425    return *this;
426  }
427  ValueMapConstIterator operator++(int) {  // Postincrement
428    ValueMapConstIterator tmp = *this; ++*this; return tmp;
429  }
430};
431
432} // end namespace llvm
433
434#endif // LLVM_IR_VALUEMAP_H
435