1//===- RegionInfo.h - SESE region analysis ----------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Calculate a program structure tree built out of single entry single exit
11// regions.
12// The basic ideas are taken from "The Program Structure Tree - Richard Johnson,
13// David Pearson, Keshav Pingali - 1994", however enriched with ideas from "The
14// Refined Process Structure Tree - Jussi Vanhatalo, Hagen Voelyer, Jana
15// Koehler - 2009".
16// The algorithm to calculate these data structures however is completely
17// different, as it takes advantage of existing information already available
18// in (Post)dominace tree and dominance frontier passes. This leads to a simpler
19// and in practice hopefully better performing algorithm. The runtime of the
20// algorithms described in the papers above are both linear in graph size,
21// O(V+E), whereas this algorithm is not, as the dominance frontier information
22// itself is not, but in practice runtime seems to be in the order of magnitude
23// of dominance tree calculation.
24//
25// WARNING: LLVM is generally very concerned about compile time such that
26//          the use of additional analysis passes in the default
27//          optimization sequence is avoided as much as possible.
28//          Specifically, if you do not need the RegionInfo, but dominance
29//          information could be sufficient please base your work only on
30//          the dominator tree. Most passes maintain it, such that using
31//          it has often near zero cost. In contrast RegionInfo is by
32//          default not available, is not maintained by existing
33//          transformations and there is no intention to do so.
34//
35//===----------------------------------------------------------------------===//
36
37#ifndef LLVM_ANALYSIS_REGIONINFO_H
38#define LLVM_ANALYSIS_REGIONINFO_H
39
40#include "llvm/ADT/DepthFirstIterator.h"
41#include "llvm/ADT/PointerIntPair.h"
42#include "llvm/ADT/iterator_range.h"
43#include "llvm/IR/CFG.h"
44#include "llvm/IR/Dominators.h"
45#include "llvm/IR/PassManager.h"
46#include <map>
47#include <memory>
48#include <set>
49
50namespace llvm {
51
52// Class to be specialized for different users of RegionInfo
53// (i.e. BasicBlocks or MachineBasicBlocks). This is only to avoid needing to
54// pass around an unreasonable number of template parameters.
55template <class FuncT_>
56struct RegionTraits {
57  // FuncT
58  // BlockT
59  // RegionT
60  // RegionNodeT
61  // RegionInfoT
62  typedef typename FuncT_::UnknownRegionTypeError BrokenT;
63};
64
65class DominatorTree;
66class DominanceFrontier;
67class Loop;
68class LoopInfo;
69struct PostDominatorTree;
70class raw_ostream;
71class Region;
72template <class RegionTr>
73class RegionBase;
74class RegionNode;
75class RegionInfo;
76template <class RegionTr>
77class RegionInfoBase;
78
79template <>
80struct RegionTraits<Function> {
81  typedef Function FuncT;
82  typedef BasicBlock BlockT;
83  typedef Region RegionT;
84  typedef RegionNode RegionNodeT;
85  typedef RegionInfo RegionInfoT;
86  typedef DominatorTree DomTreeT;
87  typedef DomTreeNode DomTreeNodeT;
88  typedef DominanceFrontier DomFrontierT;
89  typedef PostDominatorTree PostDomTreeT;
90  typedef Instruction InstT;
91  typedef Loop LoopT;
92  typedef LoopInfo LoopInfoT;
93
94  static unsigned getNumSuccessors(BasicBlock *BB) {
95    return BB->getTerminator()->getNumSuccessors();
96  }
97};
98
99/// @brief Marker class to iterate over the elements of a Region in flat mode.
100///
101/// The class is used to either iterate in Flat mode or by not using it to not
102/// iterate in Flat mode.  During a Flat mode iteration all Regions are entered
103/// and the iteration returns every BasicBlock.  If the Flat mode is not
104/// selected for SubRegions just one RegionNode containing the subregion is
105/// returned.
106template <class GraphType>
107class FlatIt {};
108
109/// @brief A RegionNode represents a subregion or a BasicBlock that is part of a
110/// Region.
111template <class Tr>
112class RegionNodeBase {
113  friend class RegionBase<Tr>;
114
115public:
116  typedef typename Tr::BlockT BlockT;
117  typedef typename Tr::RegionT RegionT;
118
119private:
120  RegionNodeBase(const RegionNodeBase &) = delete;
121  const RegionNodeBase &operator=(const RegionNodeBase &) = delete;
122
123  /// This is the entry basic block that starts this region node.  If this is a
124  /// BasicBlock RegionNode, then entry is just the basic block, that this
125  /// RegionNode represents.  Otherwise it is the entry of this (Sub)RegionNode.
126  ///
127  /// In the BBtoRegionNode map of the parent of this node, BB will always map
128  /// to this node no matter which kind of node this one is.
129  ///
130  /// The node can hold either a Region or a BasicBlock.
131  /// Use one bit to save, if this RegionNode is a subregion or BasicBlock
132  /// RegionNode.
133  PointerIntPair<BlockT *, 1, bool> entry;
134
135  /// @brief The parent Region of this RegionNode.
136  /// @see getParent()
137  RegionT *parent;
138
139protected:
140  /// @brief Create a RegionNode.
141  ///
142  /// @param Parent      The parent of this RegionNode.
143  /// @param Entry       The entry BasicBlock of the RegionNode.  If this
144  ///                    RegionNode represents a BasicBlock, this is the
145  ///                    BasicBlock itself.  If it represents a subregion, this
146  ///                    is the entry BasicBlock of the subregion.
147  /// @param isSubRegion If this RegionNode represents a SubRegion.
148  inline RegionNodeBase(RegionT *Parent, BlockT *Entry,
149                        bool isSubRegion = false)
150      : entry(Entry, isSubRegion), parent(Parent) {}
151
152public:
153  /// @brief Get the parent Region of this RegionNode.
154  ///
155  /// The parent Region is the Region this RegionNode belongs to. If for
156  /// example a BasicBlock is element of two Regions, there exist two
157  /// RegionNodes for this BasicBlock. Each with the getParent() function
158  /// pointing to the Region this RegionNode belongs to.
159  ///
160  /// @return Get the parent Region of this RegionNode.
161  inline RegionT *getParent() const { return parent; }
162
163  /// @brief Get the entry BasicBlock of this RegionNode.
164  ///
165  /// If this RegionNode represents a BasicBlock this is just the BasicBlock
166  /// itself, otherwise we return the entry BasicBlock of the Subregion
167  ///
168  /// @return The entry BasicBlock of this RegionNode.
169  inline BlockT *getEntry() const { return entry.getPointer(); }
170
171  /// @brief Get the content of this RegionNode.
172  ///
173  /// This can be either a BasicBlock or a subregion. Before calling getNodeAs()
174  /// check the type of the content with the isSubRegion() function call.
175  ///
176  /// @return The content of this RegionNode.
177  template <class T> inline T *getNodeAs() const;
178
179  /// @brief Is this RegionNode a subregion?
180  ///
181  /// @return True if it contains a subregion. False if it contains a
182  ///         BasicBlock.
183  inline bool isSubRegion() const { return entry.getInt(); }
184};
185
186//===----------------------------------------------------------------------===//
187/// @brief A single entry single exit Region.
188///
189/// A Region is a connected subgraph of a control flow graph that has exactly
190/// two connections to the remaining graph. It can be used to analyze or
191/// optimize parts of the control flow graph.
192///
193/// A <em> simple Region </em> is connected to the remaining graph by just two
194/// edges. One edge entering the Region and another one leaving the Region.
195///
196/// An <em> extended Region </em> (or just Region) is a subgraph that can be
197/// transform into a simple Region. The transformation is done by adding
198/// BasicBlocks that merge several entry or exit edges so that after the merge
199/// just one entry and one exit edge exists.
200///
201/// The \e Entry of a Region is the first BasicBlock that is passed after
202/// entering the Region. It is an element of the Region. The entry BasicBlock
203/// dominates all BasicBlocks in the Region.
204///
205/// The \e Exit of a Region is the first BasicBlock that is passed after
206/// leaving the Region. It is not an element of the Region. The exit BasicBlock,
207/// postdominates all BasicBlocks in the Region.
208///
209/// A <em> canonical Region </em> cannot be constructed by combining smaller
210/// Regions.
211///
212/// Region A is the \e parent of Region B, if B is completely contained in A.
213///
214/// Two canonical Regions either do not intersect at all or one is
215/// the parent of the other.
216///
217/// The <em> Program Structure Tree</em> is a graph (V, E) where V is the set of
218/// Regions in the control flow graph and E is the \e parent relation of these
219/// Regions.
220///
221/// Example:
222///
223/// \verbatim
224/// A simple control flow graph, that contains two regions.
225///
226///        1
227///       / |
228///      2   |
229///     / \   3
230///    4   5  |
231///    |   |  |
232///    6   7  8
233///     \  | /
234///      \ |/       Region A: 1 -> 9 {1,2,3,4,5,6,7,8}
235///        9        Region B: 2 -> 9 {2,4,5,6,7}
236/// \endverbatim
237///
238/// You can obtain more examples by either calling
239///
240/// <tt> "opt -regions -analyze anyprogram.ll" </tt>
241/// or
242/// <tt> "opt -view-regions-only anyprogram.ll" </tt>
243///
244/// on any LLVM file you are interested in.
245///
246/// The first call returns a textual representation of the program structure
247/// tree, the second one creates a graphical representation using graphviz.
248template <class Tr>
249class RegionBase : public RegionNodeBase<Tr> {
250  typedef typename Tr::FuncT FuncT;
251  typedef typename Tr::BlockT BlockT;
252  typedef typename Tr::RegionInfoT RegionInfoT;
253  typedef typename Tr::RegionT RegionT;
254  typedef typename Tr::RegionNodeT RegionNodeT;
255  typedef typename Tr::DomTreeT DomTreeT;
256  typedef typename Tr::LoopT LoopT;
257  typedef typename Tr::LoopInfoT LoopInfoT;
258  typedef typename Tr::InstT InstT;
259
260  typedef GraphTraits<BlockT *> BlockTraits;
261  typedef GraphTraits<Inverse<BlockT *>> InvBlockTraits;
262  typedef typename BlockTraits::ChildIteratorType SuccIterTy;
263  typedef typename InvBlockTraits::ChildIteratorType PredIterTy;
264
265  friend class RegionInfoBase<Tr>;
266  RegionBase(const RegionBase &) = delete;
267  const RegionBase &operator=(const RegionBase &) = delete;
268
269  // Information necessary to manage this Region.
270  RegionInfoT *RI;
271  DomTreeT *DT;
272
273  // The exit BasicBlock of this region.
274  // (The entry BasicBlock is part of RegionNode)
275  BlockT *exit;
276
277  typedef std::vector<std::unique_ptr<RegionT>> RegionSet;
278
279  // The subregions of this region.
280  RegionSet children;
281
282  typedef std::map<BlockT *, std::unique_ptr<RegionNodeT>> BBNodeMapT;
283
284  // Save the BasicBlock RegionNodes that are element of this Region.
285  mutable BBNodeMapT BBNodeMap;
286
287  /// Check if a BB is in this Region. This check also works
288  /// if the region is incorrectly built. (EXPENSIVE!)
289  void verifyBBInRegion(BlockT *BB) const;
290
291  /// Walk over all the BBs of the region starting from BB and
292  /// verify that all reachable basic blocks are elements of the region.
293  /// (EXPENSIVE!)
294  void verifyWalk(BlockT *BB, std::set<BlockT *> *visitedBB) const;
295
296  /// Verify if the region and its children are valid regions (EXPENSIVE!)
297  void verifyRegionNest() const;
298
299public:
300  /// @brief Create a new region.
301  ///
302  /// @param Entry  The entry basic block of the region.
303  /// @param Exit   The exit basic block of the region.
304  /// @param RI     The region info object that is managing this region.
305  /// @param DT     The dominator tree of the current function.
306  /// @param Parent The surrounding region or NULL if this is a top level
307  ///               region.
308  RegionBase(BlockT *Entry, BlockT *Exit, RegionInfoT *RI, DomTreeT *DT,
309             RegionT *Parent = nullptr);
310
311  /// Delete the Region and all its subregions.
312  ~RegionBase();
313
314  /// @brief Get the entry BasicBlock of the Region.
315  /// @return The entry BasicBlock of the region.
316  BlockT *getEntry() const {
317    return RegionNodeBase<Tr>::getEntry();
318  }
319
320  /// @brief Replace the entry basic block of the region with the new basic
321  ///        block.
322  ///
323  /// @param BB  The new entry basic block of the region.
324  void replaceEntry(BlockT *BB);
325
326  /// @brief Replace the exit basic block of the region with the new basic
327  ///        block.
328  ///
329  /// @param BB  The new exit basic block of the region.
330  void replaceExit(BlockT *BB);
331
332  /// @brief Recursively replace the entry basic block of the region.
333  ///
334  /// This function replaces the entry basic block with a new basic block. It
335  /// also updates all child regions that have the same entry basic block as
336  /// this region.
337  ///
338  /// @param NewEntry The new entry basic block.
339  void replaceEntryRecursive(BlockT *NewEntry);
340
341  /// @brief Recursively replace the exit basic block of the region.
342  ///
343  /// This function replaces the exit basic block with a new basic block. It
344  /// also updates all child regions that have the same exit basic block as
345  /// this region.
346  ///
347  /// @param NewExit The new exit basic block.
348  void replaceExitRecursive(BlockT *NewExit);
349
350  /// @brief Get the exit BasicBlock of the Region.
351  /// @return The exit BasicBlock of the Region, NULL if this is the TopLevel
352  ///         Region.
353  BlockT *getExit() const { return exit; }
354
355  /// @brief Get the parent of the Region.
356  /// @return The parent of the Region or NULL if this is a top level
357  ///         Region.
358  RegionT *getParent() const {
359    return RegionNodeBase<Tr>::getParent();
360  }
361
362  /// @brief Get the RegionNode representing the current Region.
363  /// @return The RegionNode representing the current Region.
364  RegionNodeT *getNode() const {
365    return const_cast<RegionNodeT *>(
366        reinterpret_cast<const RegionNodeT *>(this));
367  }
368
369  /// @brief Get the nesting level of this Region.
370  ///
371  /// An toplevel Region has depth 0.
372  ///
373  /// @return The depth of the region.
374  unsigned getDepth() const;
375
376  /// @brief Check if a Region is the TopLevel region.
377  ///
378  /// The toplevel region represents the whole function.
379  bool isTopLevelRegion() const { return exit == nullptr; }
380
381  /// @brief Return a new (non-canonical) region, that is obtained by joining
382  ///        this region with its predecessors.
383  ///
384  /// @return A region also starting at getEntry(), but reaching to the next
385  ///         basic block that forms with getEntry() a (non-canonical) region.
386  ///         NULL if such a basic block does not exist.
387  RegionT *getExpandedRegion() const;
388
389  /// @brief Return the first block of this region's single entry edge,
390  ///        if existing.
391  ///
392  /// @return The BasicBlock starting this region's single entry edge,
393  ///         else NULL.
394  BlockT *getEnteringBlock() const;
395
396  /// @brief Return the first block of this region's single exit edge,
397  ///        if existing.
398  ///
399  /// @return The BasicBlock starting this region's single exit edge,
400  ///         else NULL.
401  BlockT *getExitingBlock() const;
402
403  /// @brief Is this a simple region?
404  ///
405  /// A region is simple if it has exactly one exit and one entry edge.
406  ///
407  /// @return True if the Region is simple.
408  bool isSimple() const;
409
410  /// @brief Returns the name of the Region.
411  /// @return The Name of the Region.
412  std::string getNameStr() const;
413
414  /// @brief Return the RegionInfo object, that belongs to this Region.
415  RegionInfoT *getRegionInfo() const { return RI; }
416
417  /// PrintStyle - Print region in difference ways.
418  enum PrintStyle { PrintNone, PrintBB, PrintRN };
419
420  /// @brief Print the region.
421  ///
422  /// @param OS The output stream the Region is printed to.
423  /// @param printTree Print also the tree of subregions.
424  /// @param level The indentation level used for printing.
425  void print(raw_ostream &OS, bool printTree = true, unsigned level = 0,
426             PrintStyle Style = PrintNone) const;
427
428#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
429  /// @brief Print the region to stderr.
430  void dump() const;
431#endif
432
433  /// @brief Check if the region contains a BasicBlock.
434  ///
435  /// @param BB The BasicBlock that might be contained in this Region.
436  /// @return True if the block is contained in the region otherwise false.
437  bool contains(const BlockT *BB) const;
438
439  /// @brief Check if the region contains another region.
440  ///
441  /// @param SubRegion The region that might be contained in this Region.
442  /// @return True if SubRegion is contained in the region otherwise false.
443  bool contains(const RegionT *SubRegion) const {
444    // Toplevel Region.
445    if (!getExit())
446      return true;
447
448    return contains(SubRegion->getEntry()) &&
449           (contains(SubRegion->getExit()) ||
450            SubRegion->getExit() == getExit());
451  }
452
453  /// @brief Check if the region contains an Instruction.
454  ///
455  /// @param Inst The Instruction that might be contained in this region.
456  /// @return True if the Instruction is contained in the region otherwise
457  /// false.
458  bool contains(const InstT *Inst) const { return contains(Inst->getParent()); }
459
460  /// @brief Check if the region contains a loop.
461  ///
462  /// @param L The loop that might be contained in this region.
463  /// @return True if the loop is contained in the region otherwise false.
464  ///         In case a NULL pointer is passed to this function the result
465  ///         is false, except for the region that describes the whole function.
466  ///         In that case true is returned.
467  bool contains(const LoopT *L) const;
468
469  /// @brief Get the outermost loop in the region that contains a loop.
470  ///
471  /// Find for a Loop L the outermost loop OuterL that is a parent loop of L
472  /// and is itself contained in the region.
473  ///
474  /// @param L The loop the lookup is started.
475  /// @return The outermost loop in the region, NULL if such a loop does not
476  ///         exist or if the region describes the whole function.
477  LoopT *outermostLoopInRegion(LoopT *L) const;
478
479  /// @brief Get the outermost loop in the region that contains a basic block.
480  ///
481  /// Find for a basic block BB the outermost loop L that contains BB and is
482  /// itself contained in the region.
483  ///
484  /// @param LI A pointer to a LoopInfo analysis.
485  /// @param BB The basic block surrounded by the loop.
486  /// @return The outermost loop in the region, NULL if such a loop does not
487  ///         exist or if the region describes the whole function.
488  LoopT *outermostLoopInRegion(LoopInfoT *LI, BlockT *BB) const;
489
490  /// @brief Get the subregion that starts at a BasicBlock
491  ///
492  /// @param BB The BasicBlock the subregion should start.
493  /// @return The Subregion if available, otherwise NULL.
494  RegionT *getSubRegionNode(BlockT *BB) const;
495
496  /// @brief Get the RegionNode for a BasicBlock
497  ///
498  /// @param BB The BasicBlock at which the RegionNode should start.
499  /// @return If available, the RegionNode that represents the subregion
500  ///         starting at BB. If no subregion starts at BB, the RegionNode
501  ///         representing BB.
502  RegionNodeT *getNode(BlockT *BB) const;
503
504  /// @brief Get the BasicBlock RegionNode for a BasicBlock
505  ///
506  /// @param BB The BasicBlock for which the RegionNode is requested.
507  /// @return The RegionNode representing the BB.
508  RegionNodeT *getBBNode(BlockT *BB) const;
509
510  /// @brief Add a new subregion to this Region.
511  ///
512  /// @param SubRegion The new subregion that will be added.
513  /// @param moveChildren Move the children of this region, that are also
514  ///                     contained in SubRegion into SubRegion.
515  void addSubRegion(RegionT *SubRegion, bool moveChildren = false);
516
517  /// @brief Remove a subregion from this Region.
518  ///
519  /// The subregion is not deleted, as it will probably be inserted into another
520  /// region.
521  /// @param SubRegion The SubRegion that will be removed.
522  RegionT *removeSubRegion(RegionT *SubRegion);
523
524  /// @brief Move all direct child nodes of this Region to another Region.
525  ///
526  /// @param To The Region the child nodes will be transferred to.
527  void transferChildrenTo(RegionT *To);
528
529  /// @brief Verify if the region is a correct region.
530  ///
531  /// Check if this is a correctly build Region. This is an expensive check, as
532  /// the complete CFG of the Region will be walked.
533  void verifyRegion() const;
534
535  /// @brief Clear the cache for BB RegionNodes.
536  ///
537  /// After calling this function the BasicBlock RegionNodes will be stored at
538  /// different memory locations. RegionNodes obtained before this function is
539  /// called are therefore not comparable to RegionNodes abtained afterwords.
540  void clearNodeCache();
541
542  /// @name Subregion Iterators
543  ///
544  /// These iterators iterator over all subregions of this Region.
545  //@{
546  typedef typename RegionSet::iterator iterator;
547  typedef typename RegionSet::const_iterator const_iterator;
548
549  iterator begin() { return children.begin(); }
550  iterator end() { return children.end(); }
551
552  const_iterator begin() const { return children.begin(); }
553  const_iterator end() const { return children.end(); }
554  //@}
555
556  /// @name BasicBlock Iterators
557  ///
558  /// These iterators iterate over all BasicBlocks that are contained in this
559  /// Region. The iterator also iterates over BasicBlocks that are elements of
560  /// a subregion of this Region. It is therefore called a flat iterator.
561  //@{
562  template <bool IsConst>
563  class block_iterator_wrapper
564      : public df_iterator<
565            typename std::conditional<IsConst, const BlockT, BlockT>::type *> {
566    typedef df_iterator<
567        typename std::conditional<IsConst, const BlockT, BlockT>::type *> super;
568
569  public:
570    typedef block_iterator_wrapper<IsConst> Self;
571    typedef typename super::value_type value_type;
572
573    // Construct the begin iterator.
574    block_iterator_wrapper(value_type Entry, value_type Exit)
575        : super(df_begin(Entry)) {
576      // Mark the exit of the region as visited, so that the children of the
577      // exit and the exit itself, i.e. the block outside the region will never
578      // be visited.
579      super::Visited.insert(Exit);
580    }
581
582    // Construct the end iterator.
583    block_iterator_wrapper() : super(df_end<value_type>((BlockT *)nullptr)) {}
584
585    /*implicit*/ block_iterator_wrapper(super I) : super(I) {}
586
587    // FIXME: Even a const_iterator returns a non-const BasicBlock pointer.
588    //        This was introduced for backwards compatibility, but should
589    //        be removed as soon as all users are fixed.
590    BlockT *operator*() const {
591      return const_cast<BlockT *>(super::operator*());
592    }
593  };
594
595  typedef block_iterator_wrapper<false> block_iterator;
596  typedef block_iterator_wrapper<true> const_block_iterator;
597
598  block_iterator block_begin() { return block_iterator(getEntry(), getExit()); }
599
600  block_iterator block_end() { return block_iterator(); }
601
602  const_block_iterator block_begin() const {
603    return const_block_iterator(getEntry(), getExit());
604  }
605  const_block_iterator block_end() const { return const_block_iterator(); }
606
607  typedef iterator_range<block_iterator> block_range;
608  typedef iterator_range<const_block_iterator> const_block_range;
609
610  /// @brief Returns a range view of the basic blocks in the region.
611  inline block_range blocks() {
612    return block_range(block_begin(), block_end());
613  }
614
615  /// @brief Returns a range view of the basic blocks in the region.
616  ///
617  /// This is the 'const' version of the range view.
618  inline const_block_range blocks() const {
619    return const_block_range(block_begin(), block_end());
620  }
621  //@}
622
623  /// @name Element Iterators
624  ///
625  /// These iterators iterate over all BasicBlock and subregion RegionNodes that
626  /// are direct children of this Region. It does not iterate over any
627  /// RegionNodes that are also element of a subregion of this Region.
628  //@{
629  typedef df_iterator<RegionNodeT *, df_iterator_default_set<RegionNodeT *>,
630                      false, GraphTraits<RegionNodeT *>>
631      element_iterator;
632
633  typedef df_iterator<const RegionNodeT *,
634                      df_iterator_default_set<const RegionNodeT *>, false,
635                      GraphTraits<const RegionNodeT *>>
636      const_element_iterator;
637
638  element_iterator element_begin();
639  element_iterator element_end();
640  iterator_range<element_iterator> elements() {
641    return make_range(element_begin(), element_end());
642  }
643
644  const_element_iterator element_begin() const;
645  const_element_iterator element_end() const;
646  iterator_range<const_element_iterator> elements() const {
647    return make_range(element_begin(), element_end());
648  }
649  //@}
650};
651
652/// Print a RegionNode.
653template <class Tr>
654inline raw_ostream &operator<<(raw_ostream &OS, const RegionNodeBase<Tr> &Node);
655
656//===----------------------------------------------------------------------===//
657/// @brief Analysis that detects all canonical Regions.
658///
659/// The RegionInfo pass detects all canonical regions in a function. The Regions
660/// are connected using the parent relation. This builds a Program Structure
661/// Tree.
662template <class Tr>
663class RegionInfoBase {
664  typedef typename Tr::BlockT BlockT;
665  typedef typename Tr::FuncT FuncT;
666  typedef typename Tr::RegionT RegionT;
667  typedef typename Tr::RegionInfoT RegionInfoT;
668  typedef typename Tr::DomTreeT DomTreeT;
669  typedef typename Tr::DomTreeNodeT DomTreeNodeT;
670  typedef typename Tr::PostDomTreeT PostDomTreeT;
671  typedef typename Tr::DomFrontierT DomFrontierT;
672  typedef GraphTraits<BlockT *> BlockTraits;
673  typedef GraphTraits<Inverse<BlockT *>> InvBlockTraits;
674  typedef typename BlockTraits::ChildIteratorType SuccIterTy;
675  typedef typename InvBlockTraits::ChildIteratorType PredIterTy;
676
677  friend class RegionInfo;
678  friend class MachineRegionInfo;
679  typedef DenseMap<BlockT *, BlockT *> BBtoBBMap;
680  typedef DenseMap<BlockT *, RegionT *> BBtoRegionMap;
681
682  RegionInfoBase();
683  virtual ~RegionInfoBase();
684
685  RegionInfoBase(const RegionInfoBase &) = delete;
686  const RegionInfoBase &operator=(const RegionInfoBase &) = delete;
687
688  RegionInfoBase(RegionInfoBase &&Arg)
689    : DT(std::move(Arg.DT)), PDT(std::move(Arg.PDT)), DF(std::move(Arg.DF)),
690      TopLevelRegion(std::move(Arg.TopLevelRegion)),
691      BBtoRegion(std::move(Arg.BBtoRegion)) {
692    Arg.wipe();
693  }
694  RegionInfoBase &operator=(RegionInfoBase &&RHS) {
695    DT = std::move(RHS.DT);
696    PDT = std::move(RHS.PDT);
697    DF = std::move(RHS.DF);
698    TopLevelRegion = std::move(RHS.TopLevelRegion);
699    BBtoRegion = std::move(RHS.BBtoRegion);
700    RHS.wipe();
701    return *this;
702  }
703
704  DomTreeT *DT;
705  PostDomTreeT *PDT;
706  DomFrontierT *DF;
707
708  /// The top level region.
709  RegionT *TopLevelRegion;
710
711  /// Map every BB to the smallest region, that contains BB.
712  BBtoRegionMap BBtoRegion;
713
714protected:
715  /// \brief Update refences to a RegionInfoT held by the RegionT managed here
716  ///
717  /// This is a post-move helper. Regions hold references to the owning
718  /// RegionInfo object. After a move these need to be fixed.
719  template<typename TheRegionT>
720  void updateRegionTree(RegionInfoT &RI, TheRegionT *R) {
721    if (!R)
722      return;
723    R->RI = &RI;
724    for (auto &SubR : *R)
725      updateRegionTree(RI, SubR.get());
726  }
727
728private:
729  /// \brief Wipe this region tree's state without releasing any resources.
730  ///
731  /// This is essentially a post-move helper only. It leaves the object in an
732  /// assignable and destroyable state, but otherwise invalid.
733  void wipe() {
734    DT = nullptr;
735    PDT = nullptr;
736    DF = nullptr;
737    TopLevelRegion = nullptr;
738    BBtoRegion.clear();
739  }
740
741  // Check whether the entries of BBtoRegion for the BBs of region
742  // SR are correct. Triggers an assertion if not. Calls itself recursively for
743  // subregions.
744  void verifyBBMap(const RegionT *SR) const;
745
746  // Returns true if BB is in the dominance frontier of
747  // entry, because it was inherited from exit. In the other case there is an
748  // edge going from entry to BB without passing exit.
749  bool isCommonDomFrontier(BlockT *BB, BlockT *entry, BlockT *exit) const;
750
751  // Check if entry and exit surround a valid region, based on
752  // dominance tree and dominance frontier.
753  bool isRegion(BlockT *entry, BlockT *exit) const;
754
755  // Saves a shortcut pointing from entry to exit.
756  // This function may extend this shortcut if possible.
757  void insertShortCut(BlockT *entry, BlockT *exit, BBtoBBMap *ShortCut) const;
758
759  // Returns the next BB that postdominates N, while skipping
760  // all post dominators that cannot finish a canonical region.
761  DomTreeNodeT *getNextPostDom(DomTreeNodeT *N, BBtoBBMap *ShortCut) const;
762
763  // A region is trivial, if it contains only one BB.
764  bool isTrivialRegion(BlockT *entry, BlockT *exit) const;
765
766  // Creates a single entry single exit region.
767  RegionT *createRegion(BlockT *entry, BlockT *exit);
768
769  // Detect all regions starting with bb 'entry'.
770  void findRegionsWithEntry(BlockT *entry, BBtoBBMap *ShortCut);
771
772  // Detects regions in F.
773  void scanForRegions(FuncT &F, BBtoBBMap *ShortCut);
774
775  // Get the top most parent with the same entry block.
776  RegionT *getTopMostParent(RegionT *region);
777
778  // Build the region hierarchy after all region detected.
779  void buildRegionsTree(DomTreeNodeT *N, RegionT *region);
780
781  // Update statistic about created regions.
782  virtual void updateStatistics(RegionT *R) = 0;
783
784  // Detect all regions in function and build the region tree.
785  void calculate(FuncT &F);
786
787public:
788  static bool VerifyRegionInfo;
789  static typename RegionT::PrintStyle printStyle;
790
791  void print(raw_ostream &OS) const;
792#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
793  void dump() const;
794#endif
795
796  void releaseMemory();
797
798  /// @brief Get the smallest region that contains a BasicBlock.
799  ///
800  /// @param BB The basic block.
801  /// @return The smallest region, that contains BB or NULL, if there is no
802  /// region containing BB.
803  RegionT *getRegionFor(BlockT *BB) const;
804
805  /// @brief  Set the smallest region that surrounds a basic block.
806  ///
807  /// @param BB The basic block surrounded by a region.
808  /// @param R The smallest region that surrounds BB.
809  void setRegionFor(BlockT *BB, RegionT *R);
810
811  /// @brief A shortcut for getRegionFor().
812  ///
813  /// @param BB The basic block.
814  /// @return The smallest region, that contains BB or NULL, if there is no
815  /// region containing BB.
816  RegionT *operator[](BlockT *BB) const;
817
818  /// @brief Return the exit of the maximal refined region, that starts at a
819  /// BasicBlock.
820  ///
821  /// @param BB The BasicBlock the refined region starts.
822  BlockT *getMaxRegionExit(BlockT *BB) const;
823
824  /// @brief Find the smallest region that contains two regions.
825  ///
826  /// @param A The first region.
827  /// @param B The second region.
828  /// @return The smallest region containing A and B.
829  RegionT *getCommonRegion(RegionT *A, RegionT *B) const;
830
831  /// @brief Find the smallest region that contains two basic blocks.
832  ///
833  /// @param A The first basic block.
834  /// @param B The second basic block.
835  /// @return The smallest region that contains A and B.
836  RegionT *getCommonRegion(BlockT *A, BlockT *B) const {
837    return getCommonRegion(getRegionFor(A), getRegionFor(B));
838  }
839
840  /// @brief Find the smallest region that contains a set of regions.
841  ///
842  /// @param Regions A vector of regions.
843  /// @return The smallest region that contains all regions in Regions.
844  RegionT *getCommonRegion(SmallVectorImpl<RegionT *> &Regions) const;
845
846  /// @brief Find the smallest region that contains a set of basic blocks.
847  ///
848  /// @param BBs A vector of basic blocks.
849  /// @return The smallest region that contains all basic blocks in BBS.
850  RegionT *getCommonRegion(SmallVectorImpl<BlockT *> &BBs) const;
851
852  RegionT *getTopLevelRegion() const { return TopLevelRegion; }
853
854  /// @brief Clear the Node Cache for all Regions.
855  ///
856  /// @see Region::clearNodeCache()
857  void clearNodeCache() {
858    if (TopLevelRegion)
859      TopLevelRegion->clearNodeCache();
860  }
861
862  void verifyAnalysis() const;
863};
864
865class Region;
866
867class RegionNode : public RegionNodeBase<RegionTraits<Function>> {
868public:
869  inline RegionNode(Region *Parent, BasicBlock *Entry, bool isSubRegion = false)
870      : RegionNodeBase<RegionTraits<Function>>(Parent, Entry, isSubRegion) {}
871
872  bool operator==(const Region &RN) const {
873    return this == reinterpret_cast<const RegionNode *>(&RN);
874  }
875};
876
877class Region : public RegionBase<RegionTraits<Function>> {
878public:
879  Region(BasicBlock *Entry, BasicBlock *Exit, RegionInfo *RI, DominatorTree *DT,
880         Region *Parent = nullptr);
881  ~Region();
882
883  bool operator==(const RegionNode &RN) const {
884    return &RN == reinterpret_cast<const RegionNode *>(this);
885  }
886};
887
888class RegionInfo : public RegionInfoBase<RegionTraits<Function>> {
889public:
890  typedef RegionInfoBase<RegionTraits<Function>> Base;
891
892  explicit RegionInfo();
893
894  ~RegionInfo() override;
895
896  RegionInfo(RegionInfo &&Arg) : Base(std::move(static_cast<Base &>(Arg))) {
897    updateRegionTree(*this, TopLevelRegion);
898  }
899  RegionInfo &operator=(RegionInfo &&RHS) {
900    Base::operator=(std::move(static_cast<Base &>(RHS)));
901    updateRegionTree(*this, TopLevelRegion);
902    return *this;
903  }
904
905  /// Handle invalidation explicitly.
906  bool invalidate(Function &F, const PreservedAnalyses &PA,
907                  FunctionAnalysisManager::Invalidator &);
908
909  // updateStatistics - Update statistic about created regions.
910  void updateStatistics(Region *R) final;
911
912  void recalculate(Function &F, DominatorTree *DT, PostDominatorTree *PDT,
913                   DominanceFrontier *DF);
914
915#ifndef NDEBUG
916  /// @brief Opens a viewer to show the GraphViz visualization of the regions.
917  ///
918  /// Useful during debugging as an alternative to dump().
919  void view();
920
921  /// @brief Opens a viewer to show the GraphViz visualization of this region
922  /// without instructions in the BasicBlocks.
923  ///
924  /// Useful during debugging as an alternative to dump().
925  void viewOnly();
926#endif
927};
928
929class RegionInfoPass : public FunctionPass {
930  RegionInfo RI;
931
932public:
933  static char ID;
934  explicit RegionInfoPass();
935
936  ~RegionInfoPass() override;
937
938  RegionInfo &getRegionInfo() { return RI; }
939
940  const RegionInfo &getRegionInfo() const { return RI; }
941
942  /// @name FunctionPass interface
943  //@{
944  bool runOnFunction(Function &F) override;
945  void releaseMemory() override;
946  void verifyAnalysis() const override;
947  void getAnalysisUsage(AnalysisUsage &AU) const override;
948  void print(raw_ostream &OS, const Module *) const override;
949  void dump() const;
950  //@}
951};
952
953/// \brief Analysis pass that exposes the \c RegionInfo for a function.
954class RegionInfoAnalysis : public AnalysisInfoMixin<RegionInfoAnalysis> {
955  friend AnalysisInfoMixin<RegionInfoAnalysis>;
956  static AnalysisKey Key;
957
958public:
959  typedef RegionInfo Result;
960
961  RegionInfo run(Function &F, FunctionAnalysisManager &AM);
962};
963
964/// \brief Printer pass for the \c RegionInfo.
965class RegionInfoPrinterPass : public PassInfoMixin<RegionInfoPrinterPass> {
966  raw_ostream &OS;
967
968public:
969  explicit RegionInfoPrinterPass(raw_ostream &OS);
970  PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
971};
972
973/// \brief Verifier pass for the \c RegionInfo.
974struct RegionInfoVerifierPass : PassInfoMixin<RegionInfoVerifierPass> {
975  PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
976};
977
978template <>
979template <>
980inline BasicBlock *
981RegionNodeBase<RegionTraits<Function>>::getNodeAs<BasicBlock>() const {
982  assert(!isSubRegion() && "This is not a BasicBlock RegionNode!");
983  return getEntry();
984}
985
986template <>
987template <>
988inline Region *
989RegionNodeBase<RegionTraits<Function>>::getNodeAs<Region>() const {
990  assert(isSubRegion() && "This is not a subregion RegionNode!");
991  auto Unconst = const_cast<RegionNodeBase<RegionTraits<Function>> *>(this);
992  return reinterpret_cast<Region *>(Unconst);
993}
994
995template <class Tr>
996inline raw_ostream &operator<<(raw_ostream &OS,
997                               const RegionNodeBase<Tr> &Node) {
998  typedef typename Tr::BlockT BlockT;
999  typedef typename Tr::RegionT RegionT;
1000
1001  if (Node.isSubRegion())
1002    return OS << Node.template getNodeAs<RegionT>()->getNameStr();
1003  else
1004    return OS << Node.template getNodeAs<BlockT>()->getName();
1005}
1006
1007extern template class RegionBase<RegionTraits<Function>>;
1008extern template class RegionNodeBase<RegionTraits<Function>>;
1009extern template class RegionInfoBase<RegionTraits<Function>>;
1010
1011} // End llvm namespace
1012#endif
1013