1//===- llvm/CodeGen/MachineRegisterInfo.h -----------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the MachineRegisterInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CODEGEN_MACHINEREGISTERINFO_H
15#define LLVM_CODEGEN_MACHINEREGISTERINFO_H
16
17#include "llvm/ADT/ArrayRef.h"
18#include "llvm/ADT/BitVector.h"
19#include "llvm/ADT/DenseMap.h"
20#include "llvm/ADT/IndexedMap.h"
21#include "llvm/ADT/PointerUnion.h"
22#include "llvm/ADT/SmallVector.h"
23#include "llvm/ADT/iterator_range.h"
24#include "llvm/CodeGen/GlobalISel/RegisterBank.h"
25#include "llvm/CodeGen/LowLevelType.h"
26#include "llvm/CodeGen/MachineBasicBlock.h"
27#include "llvm/CodeGen/MachineFunction.h"
28#include "llvm/CodeGen/MachineInstrBundle.h"
29#include "llvm/CodeGen/MachineOperand.h"
30#include "llvm/MC/LaneBitmask.h"
31#include "llvm/Target/TargetRegisterInfo.h"
32#include "llvm/Target/TargetSubtargetInfo.h"
33#include <cassert>
34#include <cstddef>
35#include <cstdint>
36#include <iterator>
37#include <memory>
38#include <utility>
39#include <vector>
40
41namespace llvm {
42
43class PSetIterator;
44
45/// Convenient type to represent either a register class or a register bank.
46using RegClassOrRegBank =
47    PointerUnion<const TargetRegisterClass *, const RegisterBank *>;
48
49/// MachineRegisterInfo - Keep track of information for virtual and physical
50/// registers, including vreg register classes, use/def chains for registers,
51/// etc.
52class MachineRegisterInfo {
53public:
54  class Delegate {
55    virtual void anchor();
56
57  public:
58    virtual ~Delegate() = default;
59
60    virtual void MRI_NoteNewVirtualRegister(unsigned Reg) = 0;
61  };
62
63private:
64  MachineFunction *MF;
65  Delegate *TheDelegate = nullptr;
66
67  /// True if subregister liveness is tracked.
68  const bool TracksSubRegLiveness;
69
70  /// VRegInfo - Information we keep for each virtual register.
71  ///
72  /// Each element in this list contains the register class of the vreg and the
73  /// start of the use/def list for the register.
74  IndexedMap<std::pair<RegClassOrRegBank, MachineOperand *>,
75             VirtReg2IndexFunctor>
76      VRegInfo;
77
78  /// The flag is true upon \p UpdatedCSRs initialization
79  /// and false otherwise.
80  bool IsUpdatedCSRsInitialized;
81
82  /// Contains the updated callee saved register list.
83  /// As opposed to the static list defined in register info,
84  /// all registers that were disabled are removed from the list.
85  SmallVector<MCPhysReg, 16> UpdatedCSRs;
86
87  /// RegAllocHints - This vector records register allocation hints for virtual
88  /// registers. For each virtual register, it keeps a register and hint type
89  /// pair making up the allocation hint. Hint type is target specific except
90  /// for the value 0 which means the second value of the pair is the preferred
91  /// register for allocation. For example, if the hint is <0, 1024>, it means
92  /// the allocator should prefer the physical register allocated to the virtual
93  /// register of the hint.
94  IndexedMap<std::pair<unsigned, unsigned>, VirtReg2IndexFunctor> RegAllocHints;
95
96  /// PhysRegUseDefLists - This is an array of the head of the use/def list for
97  /// physical registers.
98  std::unique_ptr<MachineOperand *[]> PhysRegUseDefLists;
99
100  /// getRegUseDefListHead - Return the head pointer for the register use/def
101  /// list for the specified virtual or physical register.
102  MachineOperand *&getRegUseDefListHead(unsigned RegNo) {
103    if (TargetRegisterInfo::isVirtualRegister(RegNo))
104      return VRegInfo[RegNo].second;
105    return PhysRegUseDefLists[RegNo];
106  }
107
108  MachineOperand *getRegUseDefListHead(unsigned RegNo) const {
109    if (TargetRegisterInfo::isVirtualRegister(RegNo))
110      return VRegInfo[RegNo].second;
111    return PhysRegUseDefLists[RegNo];
112  }
113
114  /// Get the next element in the use-def chain.
115  static MachineOperand *getNextOperandForReg(const MachineOperand *MO) {
116    assert(MO && MO->isReg() && "This is not a register operand!");
117    return MO->Contents.Reg.Next;
118  }
119
120  /// UsedPhysRegMask - Additional used physregs including aliases.
121  /// This bit vector represents all the registers clobbered by function calls.
122  BitVector UsedPhysRegMask;
123
124  /// ReservedRegs - This is a bit vector of reserved registers.  The target
125  /// may change its mind about which registers should be reserved.  This
126  /// vector is the frozen set of reserved registers when register allocation
127  /// started.
128  BitVector ReservedRegs;
129
130  using VRegToTypeMap = DenseMap<unsigned, LLT>;
131  /// Map generic virtual registers to their actual size.
132  mutable std::unique_ptr<VRegToTypeMap> VRegToType;
133
134  /// Keep track of the physical registers that are live in to the function.
135  /// Live in values are typically arguments in registers.  LiveIn values are
136  /// allowed to have virtual registers associated with them, stored in the
137  /// second element.
138  std::vector<std::pair<unsigned, unsigned>> LiveIns;
139
140public:
141  explicit MachineRegisterInfo(MachineFunction *MF);
142  MachineRegisterInfo(const MachineRegisterInfo &) = delete;
143  MachineRegisterInfo &operator=(const MachineRegisterInfo &) = delete;
144
145  const TargetRegisterInfo *getTargetRegisterInfo() const {
146    return MF->getSubtarget().getRegisterInfo();
147  }
148
149  void resetDelegate(Delegate *delegate) {
150    // Ensure another delegate does not take over unless the current
151    // delegate first unattaches itself. If we ever need to multicast
152    // notifications, we will need to change to using a list.
153    assert(TheDelegate == delegate &&
154           "Only the current delegate can perform reset!");
155    TheDelegate = nullptr;
156  }
157
158  void setDelegate(Delegate *delegate) {
159    assert(delegate && !TheDelegate &&
160           "Attempted to set delegate to null, or to change it without "
161           "first resetting it!");
162
163    TheDelegate = delegate;
164  }
165
166  //===--------------------------------------------------------------------===//
167  // Function State
168  //===--------------------------------------------------------------------===//
169
170  // isSSA - Returns true when the machine function is in SSA form. Early
171  // passes require the machine function to be in SSA form where every virtual
172  // register has a single defining instruction.
173  //
174  // The TwoAddressInstructionPass and PHIElimination passes take the machine
175  // function out of SSA form when they introduce multiple defs per virtual
176  // register.
177  bool isSSA() const {
178    return MF->getProperties().hasProperty(
179        MachineFunctionProperties::Property::IsSSA);
180  }
181
182  // leaveSSA - Indicates that the machine function is no longer in SSA form.
183  void leaveSSA() {
184    MF->getProperties().reset(MachineFunctionProperties::Property::IsSSA);
185  }
186
187  /// tracksLiveness - Returns true when tracking register liveness accurately.
188  /// (see MachineFUnctionProperties::Property description for details)
189  bool tracksLiveness() const {
190    return MF->getProperties().hasProperty(
191        MachineFunctionProperties::Property::TracksLiveness);
192  }
193
194  /// invalidateLiveness - Indicates that register liveness is no longer being
195  /// tracked accurately.
196  ///
197  /// This should be called by late passes that invalidate the liveness
198  /// information.
199  void invalidateLiveness() {
200    MF->getProperties().reset(
201        MachineFunctionProperties::Property::TracksLiveness);
202  }
203
204  /// Returns true if liveness for register class @p RC should be tracked at
205  /// the subregister level.
206  bool shouldTrackSubRegLiveness(const TargetRegisterClass &RC) const {
207    return subRegLivenessEnabled() && RC.HasDisjunctSubRegs;
208  }
209  bool shouldTrackSubRegLiveness(unsigned VReg) const {
210    assert(TargetRegisterInfo::isVirtualRegister(VReg) && "Must pass a VReg");
211    return shouldTrackSubRegLiveness(*getRegClass(VReg));
212  }
213  bool subRegLivenessEnabled() const {
214    return TracksSubRegLiveness;
215  }
216
217  //===--------------------------------------------------------------------===//
218  // Register Info
219  //===--------------------------------------------------------------------===//
220
221  /// Returns true if the updated CSR list was initialized and false otherwise.
222  bool isUpdatedCSRsInitialized() const { return IsUpdatedCSRsInitialized; }
223
224  /// Disables the register from the list of CSRs.
225  /// I.e. the register will not appear as part of the CSR mask.
226  /// \see UpdatedCalleeSavedRegs.
227  void disableCalleeSavedRegister(unsigned Reg);
228
229  /// Returns list of callee saved registers.
230  /// The function returns the updated CSR list (after taking into account
231  /// registers that are disabled from the CSR list).
232  const MCPhysReg *getCalleeSavedRegs() const;
233
234  /// Sets the updated Callee Saved Registers list.
235  /// Notice that it will override ant previously disabled/saved CSRs.
236  void setCalleeSavedRegs(ArrayRef<MCPhysReg> CSRs);
237
238  // Strictly for use by MachineInstr.cpp.
239  void addRegOperandToUseList(MachineOperand *MO);
240
241  // Strictly for use by MachineInstr.cpp.
242  void removeRegOperandFromUseList(MachineOperand *MO);
243
244  // Strictly for use by MachineInstr.cpp.
245  void moveOperands(MachineOperand *Dst, MachineOperand *Src, unsigned NumOps);
246
247  /// Verify the sanity of the use list for Reg.
248  void verifyUseList(unsigned Reg) const;
249
250  /// Verify the use list of all registers.
251  void verifyUseLists() const;
252
253  /// reg_begin/reg_end - Provide iteration support to walk over all definitions
254  /// and uses of a register within the MachineFunction that corresponds to this
255  /// MachineRegisterInfo object.
256  template<bool Uses, bool Defs, bool SkipDebug,
257           bool ByOperand, bool ByInstr, bool ByBundle>
258  class defusechain_iterator;
259  template<bool Uses, bool Defs, bool SkipDebug,
260           bool ByOperand, bool ByInstr, bool ByBundle>
261  class defusechain_instr_iterator;
262
263  // Make it a friend so it can access getNextOperandForReg().
264  template<bool, bool, bool, bool, bool, bool>
265    friend class defusechain_iterator;
266  template<bool, bool, bool, bool, bool, bool>
267    friend class defusechain_instr_iterator;
268
269  /// reg_iterator/reg_begin/reg_end - Walk all defs and uses of the specified
270  /// register.
271  using reg_iterator =
272      defusechain_iterator<true, true, false, true, false, false>;
273  reg_iterator reg_begin(unsigned RegNo) const {
274    return reg_iterator(getRegUseDefListHead(RegNo));
275  }
276  static reg_iterator reg_end() { return reg_iterator(nullptr); }
277
278  inline iterator_range<reg_iterator>  reg_operands(unsigned Reg) const {
279    return make_range(reg_begin(Reg), reg_end());
280  }
281
282  /// reg_instr_iterator/reg_instr_begin/reg_instr_end - Walk all defs and uses
283  /// of the specified register, stepping by MachineInstr.
284  using reg_instr_iterator =
285      defusechain_instr_iterator<true, true, false, false, true, false>;
286  reg_instr_iterator reg_instr_begin(unsigned RegNo) const {
287    return reg_instr_iterator(getRegUseDefListHead(RegNo));
288  }
289  static reg_instr_iterator reg_instr_end() {
290    return reg_instr_iterator(nullptr);
291  }
292
293  inline iterator_range<reg_instr_iterator>
294  reg_instructions(unsigned Reg) const {
295    return make_range(reg_instr_begin(Reg), reg_instr_end());
296  }
297
298  /// reg_bundle_iterator/reg_bundle_begin/reg_bundle_end - Walk all defs and uses
299  /// of the specified register, stepping by bundle.
300  using reg_bundle_iterator =
301      defusechain_instr_iterator<true, true, false, false, false, true>;
302  reg_bundle_iterator reg_bundle_begin(unsigned RegNo) const {
303    return reg_bundle_iterator(getRegUseDefListHead(RegNo));
304  }
305  static reg_bundle_iterator reg_bundle_end() {
306    return reg_bundle_iterator(nullptr);
307  }
308
309  inline iterator_range<reg_bundle_iterator> reg_bundles(unsigned Reg) const {
310    return make_range(reg_bundle_begin(Reg), reg_bundle_end());
311  }
312
313  /// reg_empty - Return true if there are no instructions using or defining the
314  /// specified register (it may be live-in).
315  bool reg_empty(unsigned RegNo) const { return reg_begin(RegNo) == reg_end(); }
316
317  /// reg_nodbg_iterator/reg_nodbg_begin/reg_nodbg_end - Walk all defs and uses
318  /// of the specified register, skipping those marked as Debug.
319  using reg_nodbg_iterator =
320      defusechain_iterator<true, true, true, true, false, false>;
321  reg_nodbg_iterator reg_nodbg_begin(unsigned RegNo) const {
322    return reg_nodbg_iterator(getRegUseDefListHead(RegNo));
323  }
324  static reg_nodbg_iterator reg_nodbg_end() {
325    return reg_nodbg_iterator(nullptr);
326  }
327
328  inline iterator_range<reg_nodbg_iterator>
329  reg_nodbg_operands(unsigned Reg) const {
330    return make_range(reg_nodbg_begin(Reg), reg_nodbg_end());
331  }
332
333  /// reg_instr_nodbg_iterator/reg_instr_nodbg_begin/reg_instr_nodbg_end - Walk
334  /// all defs and uses of the specified register, stepping by MachineInstr,
335  /// skipping those marked as Debug.
336  using reg_instr_nodbg_iterator =
337      defusechain_instr_iterator<true, true, true, false, true, false>;
338  reg_instr_nodbg_iterator reg_instr_nodbg_begin(unsigned RegNo) const {
339    return reg_instr_nodbg_iterator(getRegUseDefListHead(RegNo));
340  }
341  static reg_instr_nodbg_iterator reg_instr_nodbg_end() {
342    return reg_instr_nodbg_iterator(nullptr);
343  }
344
345  inline iterator_range<reg_instr_nodbg_iterator>
346  reg_nodbg_instructions(unsigned Reg) const {
347    return make_range(reg_instr_nodbg_begin(Reg), reg_instr_nodbg_end());
348  }
349
350  /// reg_bundle_nodbg_iterator/reg_bundle_nodbg_begin/reg_bundle_nodbg_end - Walk
351  /// all defs and uses of the specified register, stepping by bundle,
352  /// skipping those marked as Debug.
353  using reg_bundle_nodbg_iterator =
354      defusechain_instr_iterator<true, true, true, false, false, true>;
355  reg_bundle_nodbg_iterator reg_bundle_nodbg_begin(unsigned RegNo) const {
356    return reg_bundle_nodbg_iterator(getRegUseDefListHead(RegNo));
357  }
358  static reg_bundle_nodbg_iterator reg_bundle_nodbg_end() {
359    return reg_bundle_nodbg_iterator(nullptr);
360  }
361
362  inline iterator_range<reg_bundle_nodbg_iterator>
363  reg_nodbg_bundles(unsigned Reg) const {
364    return make_range(reg_bundle_nodbg_begin(Reg), reg_bundle_nodbg_end());
365  }
366
367  /// reg_nodbg_empty - Return true if the only instructions using or defining
368  /// Reg are Debug instructions.
369  bool reg_nodbg_empty(unsigned RegNo) const {
370    return reg_nodbg_begin(RegNo) == reg_nodbg_end();
371  }
372
373  /// def_iterator/def_begin/def_end - Walk all defs of the specified register.
374  using def_iterator =
375      defusechain_iterator<false, true, false, true, false, false>;
376  def_iterator def_begin(unsigned RegNo) const {
377    return def_iterator(getRegUseDefListHead(RegNo));
378  }
379  static def_iterator def_end() { return def_iterator(nullptr); }
380
381  inline iterator_range<def_iterator> def_operands(unsigned Reg) const {
382    return make_range(def_begin(Reg), def_end());
383  }
384
385  /// def_instr_iterator/def_instr_begin/def_instr_end - Walk all defs of the
386  /// specified register, stepping by MachineInst.
387  using def_instr_iterator =
388      defusechain_instr_iterator<false, true, false, false, true, false>;
389  def_instr_iterator def_instr_begin(unsigned RegNo) const {
390    return def_instr_iterator(getRegUseDefListHead(RegNo));
391  }
392  static def_instr_iterator def_instr_end() {
393    return def_instr_iterator(nullptr);
394  }
395
396  inline iterator_range<def_instr_iterator>
397  def_instructions(unsigned Reg) const {
398    return make_range(def_instr_begin(Reg), def_instr_end());
399  }
400
401  /// def_bundle_iterator/def_bundle_begin/def_bundle_end - Walk all defs of the
402  /// specified register, stepping by bundle.
403  using def_bundle_iterator =
404      defusechain_instr_iterator<false, true, false, false, false, true>;
405  def_bundle_iterator def_bundle_begin(unsigned RegNo) const {
406    return def_bundle_iterator(getRegUseDefListHead(RegNo));
407  }
408  static def_bundle_iterator def_bundle_end() {
409    return def_bundle_iterator(nullptr);
410  }
411
412  inline iterator_range<def_bundle_iterator> def_bundles(unsigned Reg) const {
413    return make_range(def_bundle_begin(Reg), def_bundle_end());
414  }
415
416  /// def_empty - Return true if there are no instructions defining the
417  /// specified register (it may be live-in).
418  bool def_empty(unsigned RegNo) const { return def_begin(RegNo) == def_end(); }
419
420  /// Return true if there is exactly one operand defining the specified
421  /// register.
422  bool hasOneDef(unsigned RegNo) const {
423    def_iterator DI = def_begin(RegNo);
424    if (DI == def_end())
425      return false;
426    return ++DI == def_end();
427  }
428
429  /// use_iterator/use_begin/use_end - Walk all uses of the specified register.
430  using use_iterator =
431      defusechain_iterator<true, false, false, true, false, false>;
432  use_iterator use_begin(unsigned RegNo) const {
433    return use_iterator(getRegUseDefListHead(RegNo));
434  }
435  static use_iterator use_end() { return use_iterator(nullptr); }
436
437  inline iterator_range<use_iterator> use_operands(unsigned Reg) const {
438    return make_range(use_begin(Reg), use_end());
439  }
440
441  /// use_instr_iterator/use_instr_begin/use_instr_end - Walk all uses of the
442  /// specified register, stepping by MachineInstr.
443  using use_instr_iterator =
444      defusechain_instr_iterator<true, false, false, false, true, false>;
445  use_instr_iterator use_instr_begin(unsigned RegNo) const {
446    return use_instr_iterator(getRegUseDefListHead(RegNo));
447  }
448  static use_instr_iterator use_instr_end() {
449    return use_instr_iterator(nullptr);
450  }
451
452  inline iterator_range<use_instr_iterator>
453  use_instructions(unsigned Reg) const {
454    return make_range(use_instr_begin(Reg), use_instr_end());
455  }
456
457  /// use_bundle_iterator/use_bundle_begin/use_bundle_end - Walk all uses of the
458  /// specified register, stepping by bundle.
459  using use_bundle_iterator =
460      defusechain_instr_iterator<true, false, false, false, false, true>;
461  use_bundle_iterator use_bundle_begin(unsigned RegNo) const {
462    return use_bundle_iterator(getRegUseDefListHead(RegNo));
463  }
464  static use_bundle_iterator use_bundle_end() {
465    return use_bundle_iterator(nullptr);
466  }
467
468  inline iterator_range<use_bundle_iterator> use_bundles(unsigned Reg) const {
469    return make_range(use_bundle_begin(Reg), use_bundle_end());
470  }
471
472  /// use_empty - Return true if there are no instructions using the specified
473  /// register.
474  bool use_empty(unsigned RegNo) const { return use_begin(RegNo) == use_end(); }
475
476  /// hasOneUse - Return true if there is exactly one instruction using the
477  /// specified register.
478  bool hasOneUse(unsigned RegNo) const {
479    use_iterator UI = use_begin(RegNo);
480    if (UI == use_end())
481      return false;
482    return ++UI == use_end();
483  }
484
485  /// use_nodbg_iterator/use_nodbg_begin/use_nodbg_end - Walk all uses of the
486  /// specified register, skipping those marked as Debug.
487  using use_nodbg_iterator =
488      defusechain_iterator<true, false, true, true, false, false>;
489  use_nodbg_iterator use_nodbg_begin(unsigned RegNo) const {
490    return use_nodbg_iterator(getRegUseDefListHead(RegNo));
491  }
492  static use_nodbg_iterator use_nodbg_end() {
493    return use_nodbg_iterator(nullptr);
494  }
495
496  inline iterator_range<use_nodbg_iterator>
497  use_nodbg_operands(unsigned Reg) const {
498    return make_range(use_nodbg_begin(Reg), use_nodbg_end());
499  }
500
501  /// use_instr_nodbg_iterator/use_instr_nodbg_begin/use_instr_nodbg_end - Walk
502  /// all uses of the specified register, stepping by MachineInstr, skipping
503  /// those marked as Debug.
504  using use_instr_nodbg_iterator =
505      defusechain_instr_iterator<true, false, true, false, true, false>;
506  use_instr_nodbg_iterator use_instr_nodbg_begin(unsigned RegNo) const {
507    return use_instr_nodbg_iterator(getRegUseDefListHead(RegNo));
508  }
509  static use_instr_nodbg_iterator use_instr_nodbg_end() {
510    return use_instr_nodbg_iterator(nullptr);
511  }
512
513  inline iterator_range<use_instr_nodbg_iterator>
514  use_nodbg_instructions(unsigned Reg) const {
515    return make_range(use_instr_nodbg_begin(Reg), use_instr_nodbg_end());
516  }
517
518  /// use_bundle_nodbg_iterator/use_bundle_nodbg_begin/use_bundle_nodbg_end - Walk
519  /// all uses of the specified register, stepping by bundle, skipping
520  /// those marked as Debug.
521  using use_bundle_nodbg_iterator =
522      defusechain_instr_iterator<true, false, true, false, false, true>;
523  use_bundle_nodbg_iterator use_bundle_nodbg_begin(unsigned RegNo) const {
524    return use_bundle_nodbg_iterator(getRegUseDefListHead(RegNo));
525  }
526  static use_bundle_nodbg_iterator use_bundle_nodbg_end() {
527    return use_bundle_nodbg_iterator(nullptr);
528  }
529
530  inline iterator_range<use_bundle_nodbg_iterator>
531  use_nodbg_bundles(unsigned Reg) const {
532    return make_range(use_bundle_nodbg_begin(Reg), use_bundle_nodbg_end());
533  }
534
535  /// use_nodbg_empty - Return true if there are no non-Debug instructions
536  /// using the specified register.
537  bool use_nodbg_empty(unsigned RegNo) const {
538    return use_nodbg_begin(RegNo) == use_nodbg_end();
539  }
540
541  /// hasOneNonDBGUse - Return true if there is exactly one non-Debug
542  /// instruction using the specified register.
543  bool hasOneNonDBGUse(unsigned RegNo) const;
544
545  /// replaceRegWith - Replace all instances of FromReg with ToReg in the
546  /// machine function.  This is like llvm-level X->replaceAllUsesWith(Y),
547  /// except that it also changes any definitions of the register as well.
548  ///
549  /// Note that it is usually necessary to first constrain ToReg's register
550  /// class to match the FromReg constraints using:
551  ///
552  ///   constrainRegClass(ToReg, getRegClass(FromReg))
553  ///
554  /// That function will return NULL if the virtual registers have incompatible
555  /// constraints.
556  ///
557  /// Note that if ToReg is a physical register the function will replace and
558  /// apply sub registers to ToReg in order to obtain a final/proper physical
559  /// register.
560  void replaceRegWith(unsigned FromReg, unsigned ToReg);
561
562  /// getVRegDef - Return the machine instr that defines the specified virtual
563  /// register or null if none is found.  This assumes that the code is in SSA
564  /// form, so there should only be one definition.
565  MachineInstr *getVRegDef(unsigned Reg) const;
566
567  /// getUniqueVRegDef - Return the unique machine instr that defines the
568  /// specified virtual register or null if none is found.  If there are
569  /// multiple definitions or no definition, return null.
570  MachineInstr *getUniqueVRegDef(unsigned Reg) const;
571
572  /// clearKillFlags - Iterate over all the uses of the given register and
573  /// clear the kill flag from the MachineOperand. This function is used by
574  /// optimization passes which extend register lifetimes and need only
575  /// preserve conservative kill flag information.
576  void clearKillFlags(unsigned Reg) const;
577
578#ifndef NDEBUG
579  void dumpUses(unsigned RegNo) const;
580#endif
581
582  /// Returns true if PhysReg is unallocatable and constant throughout the
583  /// function. Writing to a constant register has no effect.
584  bool isConstantPhysReg(unsigned PhysReg) const;
585
586  /// Get an iterator over the pressure sets affected by the given physical or
587  /// virtual register. If RegUnit is physical, it must be a register unit (from
588  /// MCRegUnitIterator).
589  PSetIterator getPressureSets(unsigned RegUnit) const;
590
591  //===--------------------------------------------------------------------===//
592  // Virtual Register Info
593  //===--------------------------------------------------------------------===//
594
595  /// Return the register class of the specified virtual register.
596  /// This shouldn't be used directly unless \p Reg has a register class.
597  /// \see getRegClassOrNull when this might happen.
598  const TargetRegisterClass *getRegClass(unsigned Reg) const {
599    assert(VRegInfo[Reg].first.is<const TargetRegisterClass *>() &&
600           "Register class not set, wrong accessor");
601    return VRegInfo[Reg].first.get<const TargetRegisterClass *>();
602  }
603
604  /// Return the register class of \p Reg, or null if Reg has not been assigned
605  /// a register class yet.
606  ///
607  /// \note A null register class can only happen when these two
608  /// conditions are met:
609  /// 1. Generic virtual registers are created.
610  /// 2. The machine function has not completely been through the
611  ///    instruction selection process.
612  /// None of this condition is possible without GlobalISel for now.
613  /// In other words, if GlobalISel is not used or if the query happens after
614  /// the select pass, using getRegClass is safe.
615  const TargetRegisterClass *getRegClassOrNull(unsigned Reg) const {
616    const RegClassOrRegBank &Val = VRegInfo[Reg].first;
617    return Val.dyn_cast<const TargetRegisterClass *>();
618  }
619
620  /// Return the register bank of \p Reg, or null if Reg has not been assigned
621  /// a register bank or has been assigned a register class.
622  /// \note It is possible to get the register bank from the register class via
623  /// RegisterBankInfo::getRegBankFromRegClass.
624  const RegisterBank *getRegBankOrNull(unsigned Reg) const {
625    const RegClassOrRegBank &Val = VRegInfo[Reg].first;
626    return Val.dyn_cast<const RegisterBank *>();
627  }
628
629  /// Return the register bank or register class of \p Reg.
630  /// \note Before the register bank gets assigned (i.e., before the
631  /// RegBankSelect pass) \p Reg may not have either.
632  const RegClassOrRegBank &getRegClassOrRegBank(unsigned Reg) const {
633    return VRegInfo[Reg].first;
634  }
635
636  /// setRegClass - Set the register class of the specified virtual register.
637  void setRegClass(unsigned Reg, const TargetRegisterClass *RC);
638
639  /// Set the register bank to \p RegBank for \p Reg.
640  void setRegBank(unsigned Reg, const RegisterBank &RegBank);
641
642  void setRegClassOrRegBank(unsigned Reg,
643                            const RegClassOrRegBank &RCOrRB){
644    VRegInfo[Reg].first = RCOrRB;
645  }
646
647  /// constrainRegClass - Constrain the register class of the specified virtual
648  /// register to be a common subclass of RC and the current register class,
649  /// but only if the new class has at least MinNumRegs registers.  Return the
650  /// new register class, or NULL if no such class exists.
651  /// This should only be used when the constraint is known to be trivial, like
652  /// GR32 -> GR32_NOSP. Beware of increasing register pressure.
653  const TargetRegisterClass *constrainRegClass(unsigned Reg,
654                                               const TargetRegisterClass *RC,
655                                               unsigned MinNumRegs = 0);
656
657  /// recomputeRegClass - Try to find a legal super-class of Reg's register
658  /// class that still satisfies the constraints from the instructions using
659  /// Reg.  Returns true if Reg was upgraded.
660  ///
661  /// This method can be used after constraints have been removed from a
662  /// virtual register, for example after removing instructions or splitting
663  /// the live range.
664  bool recomputeRegClass(unsigned Reg);
665
666  /// createVirtualRegister - Create and return a new virtual register in the
667  /// function with the specified register class.
668  unsigned createVirtualRegister(const TargetRegisterClass *RegClass);
669
670  /// Accessor for VRegToType. This accessor should only be used
671  /// by global-isel related work.
672  VRegToTypeMap &getVRegToType() const {
673    if (!VRegToType)
674      VRegToType.reset(new VRegToTypeMap);
675    return *VRegToType.get();
676  }
677
678  /// Get the low-level type of \p VReg or LLT{} if VReg is not a generic
679  /// (target independent) virtual register.
680  LLT getType(unsigned VReg) const;
681
682  /// Set the low-level type of \p VReg to \p Ty.
683  void setType(unsigned VReg, LLT Ty);
684
685  /// Create and return a new generic virtual register with low-level
686  /// type \p Ty.
687  unsigned createGenericVirtualRegister(LLT Ty);
688
689  /// Remove all types associated to virtual registers (after instruction
690  /// selection and constraining of all generic virtual registers).
691  void clearVirtRegTypes();
692
693  /// Creates a new virtual register that has no register class, register bank
694  /// or size assigned yet. This is only allowed to be used
695  /// temporarily while constructing machine instructions. Most operations are
696  /// undefined on an incomplete register until one of setRegClass(),
697  /// setRegBank() or setSize() has been called on it.
698  unsigned createIncompleteVirtualRegister();
699
700  /// getNumVirtRegs - Return the number of virtual registers created.
701  unsigned getNumVirtRegs() const { return VRegInfo.size(); }
702
703  /// clearVirtRegs - Remove all virtual registers (after physreg assignment).
704  void clearVirtRegs();
705
706  /// setRegAllocationHint - Specify a register allocation hint for the
707  /// specified virtual register.
708  void setRegAllocationHint(unsigned VReg, unsigned Type, unsigned PrefReg) {
709    assert(TargetRegisterInfo::isVirtualRegister(VReg));
710    RegAllocHints[VReg].first  = Type;
711    RegAllocHints[VReg].second = PrefReg;
712  }
713
714  /// Specify the preferred register allocation hint for the specified virtual
715  /// register.
716  void setSimpleHint(unsigned VReg, unsigned PrefReg) {
717    setRegAllocationHint(VReg, /*Type=*/0, PrefReg);
718  }
719
720  /// getRegAllocationHint - Return the register allocation hint for the
721  /// specified virtual register.
722  std::pair<unsigned, unsigned>
723  getRegAllocationHint(unsigned VReg) const {
724    assert(TargetRegisterInfo::isVirtualRegister(VReg));
725    return RegAllocHints[VReg];
726  }
727
728  /// getSimpleHint - Return the preferred register allocation hint, or 0 if a
729  /// standard simple hint (Type == 0) is not set.
730  unsigned getSimpleHint(unsigned VReg) const {
731    assert(TargetRegisterInfo::isVirtualRegister(VReg));
732    std::pair<unsigned, unsigned> Hint = getRegAllocationHint(VReg);
733    return Hint.first ? 0 : Hint.second;
734  }
735
736  /// markUsesInDebugValueAsUndef - Mark every DBG_VALUE referencing the
737  /// specified register as undefined which causes the DBG_VALUE to be
738  /// deleted during LiveDebugVariables analysis.
739  void markUsesInDebugValueAsUndef(unsigned Reg) const;
740
741  /// Return true if the specified register is modified in this function.
742  /// This checks that no defining machine operands exist for the register or
743  /// any of its aliases. Definitions found on functions marked noreturn are
744  /// ignored, to consider them pass 'true' for optional parameter
745  /// SkipNoReturnDef. The register is also considered modified when it is set
746  /// in the UsedPhysRegMask.
747  bool isPhysRegModified(unsigned PhysReg, bool SkipNoReturnDef = false) const;
748
749  /// Return true if the specified register is modified or read in this
750  /// function. This checks that no machine operands exist for the register or
751  /// any of its aliases. The register is also considered used when it is set
752  /// in the UsedPhysRegMask.
753  bool isPhysRegUsed(unsigned PhysReg) const;
754
755  /// addPhysRegsUsedFromRegMask - Mark any registers not in RegMask as used.
756  /// This corresponds to the bit mask attached to register mask operands.
757  void addPhysRegsUsedFromRegMask(const uint32_t *RegMask) {
758    UsedPhysRegMask.setBitsNotInMask(RegMask);
759  }
760
761  const BitVector &getUsedPhysRegsMask() const { return UsedPhysRegMask; }
762
763  //===--------------------------------------------------------------------===//
764  // Reserved Register Info
765  //===--------------------------------------------------------------------===//
766  //
767  // The set of reserved registers must be invariant during register
768  // allocation.  For example, the target cannot suddenly decide it needs a
769  // frame pointer when the register allocator has already used the frame
770  // pointer register for something else.
771  //
772  // These methods can be used by target hooks like hasFP() to avoid changing
773  // the reserved register set during register allocation.
774
775  /// freezeReservedRegs - Called by the register allocator to freeze the set
776  /// of reserved registers before allocation begins.
777  void freezeReservedRegs(const MachineFunction&);
778
779  /// reservedRegsFrozen - Returns true after freezeReservedRegs() was called
780  /// to ensure the set of reserved registers stays constant.
781  bool reservedRegsFrozen() const {
782    return !ReservedRegs.empty();
783  }
784
785  /// canReserveReg - Returns true if PhysReg can be used as a reserved
786  /// register.  Any register can be reserved before freezeReservedRegs() is
787  /// called.
788  bool canReserveReg(unsigned PhysReg) const {
789    return !reservedRegsFrozen() || ReservedRegs.test(PhysReg);
790  }
791
792  /// getReservedRegs - Returns a reference to the frozen set of reserved
793  /// registers. This method should always be preferred to calling
794  /// TRI::getReservedRegs() when possible.
795  const BitVector &getReservedRegs() const {
796    assert(reservedRegsFrozen() &&
797           "Reserved registers haven't been frozen yet. "
798           "Use TRI::getReservedRegs().");
799    return ReservedRegs;
800  }
801
802  /// isReserved - Returns true when PhysReg is a reserved register.
803  ///
804  /// Reserved registers may belong to an allocatable register class, but the
805  /// target has explicitly requested that they are not used.
806  bool isReserved(unsigned PhysReg) const {
807    return getReservedRegs().test(PhysReg);
808  }
809
810  /// isAllocatable - Returns true when PhysReg belongs to an allocatable
811  /// register class and it hasn't been reserved.
812  ///
813  /// Allocatable registers may show up in the allocation order of some virtual
814  /// register, so a register allocator needs to track its liveness and
815  /// availability.
816  bool isAllocatable(unsigned PhysReg) const {
817    return getTargetRegisterInfo()->isInAllocatableClass(PhysReg) &&
818      !isReserved(PhysReg);
819  }
820
821  //===--------------------------------------------------------------------===//
822  // LiveIn Management
823  //===--------------------------------------------------------------------===//
824
825  /// addLiveIn - Add the specified register as a live-in.  Note that it
826  /// is an error to add the same register to the same set more than once.
827  void addLiveIn(unsigned Reg, unsigned vreg = 0) {
828    LiveIns.push_back(std::make_pair(Reg, vreg));
829  }
830
831  // Iteration support for the live-ins set.  It's kept in sorted order
832  // by register number.
833  using livein_iterator =
834      std::vector<std::pair<unsigned,unsigned>>::const_iterator;
835  livein_iterator livein_begin() const { return LiveIns.begin(); }
836  livein_iterator livein_end()   const { return LiveIns.end(); }
837  bool            livein_empty() const { return LiveIns.empty(); }
838
839  bool isLiveIn(unsigned Reg) const;
840
841  /// getLiveInPhysReg - If VReg is a live-in virtual register, return the
842  /// corresponding live-in physical register.
843  unsigned getLiveInPhysReg(unsigned VReg) const;
844
845  /// getLiveInVirtReg - If PReg is a live-in physical register, return the
846  /// corresponding live-in physical register.
847  unsigned getLiveInVirtReg(unsigned PReg) const;
848
849  /// EmitLiveInCopies - Emit copies to initialize livein virtual registers
850  /// into the given entry block.
851  void EmitLiveInCopies(MachineBasicBlock *EntryMBB,
852                        const TargetRegisterInfo &TRI,
853                        const TargetInstrInfo &TII);
854
855  /// Returns a mask covering all bits that can appear in lane masks of
856  /// subregisters of the virtual register @p Reg.
857  LaneBitmask getMaxLaneMaskForVReg(unsigned Reg) const;
858
859  /// defusechain_iterator - This class provides iterator support for machine
860  /// operands in the function that use or define a specific register.  If
861  /// ReturnUses is true it returns uses of registers, if ReturnDefs is true it
862  /// returns defs.  If neither are true then you are silly and it always
863  /// returns end().  If SkipDebug is true it skips uses marked Debug
864  /// when incrementing.
865  template<bool ReturnUses, bool ReturnDefs, bool SkipDebug,
866           bool ByOperand, bool ByInstr, bool ByBundle>
867  class defusechain_iterator
868    : public std::iterator<std::forward_iterator_tag, MachineInstr, ptrdiff_t> {
869    friend class MachineRegisterInfo;
870
871    MachineOperand *Op = nullptr;
872
873    explicit defusechain_iterator(MachineOperand *op) : Op(op) {
874      // If the first node isn't one we're interested in, advance to one that
875      // we are interested in.
876      if (op) {
877        if ((!ReturnUses && op->isUse()) ||
878            (!ReturnDefs && op->isDef()) ||
879            (SkipDebug && op->isDebug()))
880          advance();
881      }
882    }
883
884    void advance() {
885      assert(Op && "Cannot increment end iterator!");
886      Op = getNextOperandForReg(Op);
887
888      // All defs come before the uses, so stop def_iterator early.
889      if (!ReturnUses) {
890        if (Op) {
891          if (Op->isUse())
892            Op = nullptr;
893          else
894            assert(!Op->isDebug() && "Can't have debug defs");
895        }
896      } else {
897        // If this is an operand we don't care about, skip it.
898        while (Op && ((!ReturnDefs && Op->isDef()) ||
899                      (SkipDebug && Op->isDebug())))
900          Op = getNextOperandForReg(Op);
901      }
902    }
903
904  public:
905    using reference = std::iterator<std::forward_iterator_tag,
906                                    MachineInstr, ptrdiff_t>::reference;
907    using pointer = std::iterator<std::forward_iterator_tag,
908                                  MachineInstr, ptrdiff_t>::pointer;
909
910    defusechain_iterator() = default;
911
912    bool operator==(const defusechain_iterator &x) const {
913      return Op == x.Op;
914    }
915    bool operator!=(const defusechain_iterator &x) const {
916      return !operator==(x);
917    }
918
919    /// atEnd - return true if this iterator is equal to reg_end() on the value.
920    bool atEnd() const { return Op == nullptr; }
921
922    // Iterator traversal: forward iteration only
923    defusechain_iterator &operator++() {          // Preincrement
924      assert(Op && "Cannot increment end iterator!");
925      if (ByOperand)
926        advance();
927      else if (ByInstr) {
928        MachineInstr *P = Op->getParent();
929        do {
930          advance();
931        } while (Op && Op->getParent() == P);
932      } else if (ByBundle) {
933        MachineBasicBlock::instr_iterator P =
934            getBundleStart(Op->getParent()->getIterator());
935        do {
936          advance();
937        } while (Op && getBundleStart(Op->getParent()->getIterator()) == P);
938      }
939
940      return *this;
941    }
942    defusechain_iterator operator++(int) {        // Postincrement
943      defusechain_iterator tmp = *this; ++*this; return tmp;
944    }
945
946    /// getOperandNo - Return the operand # of this MachineOperand in its
947    /// MachineInstr.
948    unsigned getOperandNo() const {
949      assert(Op && "Cannot dereference end iterator!");
950      return Op - &Op->getParent()->getOperand(0);
951    }
952
953    // Retrieve a reference to the current operand.
954    MachineOperand &operator*() const {
955      assert(Op && "Cannot dereference end iterator!");
956      return *Op;
957    }
958
959    MachineOperand *operator->() const {
960      assert(Op && "Cannot dereference end iterator!");
961      return Op;
962    }
963  };
964
965  /// defusechain_iterator - This class provides iterator support for machine
966  /// operands in the function that use or define a specific register.  If
967  /// ReturnUses is true it returns uses of registers, if ReturnDefs is true it
968  /// returns defs.  If neither are true then you are silly and it always
969  /// returns end().  If SkipDebug is true it skips uses marked Debug
970  /// when incrementing.
971  template<bool ReturnUses, bool ReturnDefs, bool SkipDebug,
972           bool ByOperand, bool ByInstr, bool ByBundle>
973  class defusechain_instr_iterator
974    : public std::iterator<std::forward_iterator_tag, MachineInstr, ptrdiff_t> {
975    friend class MachineRegisterInfo;
976
977    MachineOperand *Op = nullptr;
978
979    explicit defusechain_instr_iterator(MachineOperand *op) : Op(op) {
980      // If the first node isn't one we're interested in, advance to one that
981      // we are interested in.
982      if (op) {
983        if ((!ReturnUses && op->isUse()) ||
984            (!ReturnDefs && op->isDef()) ||
985            (SkipDebug && op->isDebug()))
986          advance();
987      }
988    }
989
990    void advance() {
991      assert(Op && "Cannot increment end iterator!");
992      Op = getNextOperandForReg(Op);
993
994      // All defs come before the uses, so stop def_iterator early.
995      if (!ReturnUses) {
996        if (Op) {
997          if (Op->isUse())
998            Op = nullptr;
999          else
1000            assert(!Op->isDebug() && "Can't have debug defs");
1001        }
1002      } else {
1003        // If this is an operand we don't care about, skip it.
1004        while (Op && ((!ReturnDefs && Op->isDef()) ||
1005                      (SkipDebug && Op->isDebug())))
1006          Op = getNextOperandForReg(Op);
1007      }
1008    }
1009
1010  public:
1011    using reference = std::iterator<std::forward_iterator_tag,
1012                                    MachineInstr, ptrdiff_t>::reference;
1013    using pointer = std::iterator<std::forward_iterator_tag,
1014                                  MachineInstr, ptrdiff_t>::pointer;
1015
1016    defusechain_instr_iterator() = default;
1017
1018    bool operator==(const defusechain_instr_iterator &x) const {
1019      return Op == x.Op;
1020    }
1021    bool operator!=(const defusechain_instr_iterator &x) const {
1022      return !operator==(x);
1023    }
1024
1025    /// atEnd - return true if this iterator is equal to reg_end() on the value.
1026    bool atEnd() const { return Op == nullptr; }
1027
1028    // Iterator traversal: forward iteration only
1029    defusechain_instr_iterator &operator++() {          // Preincrement
1030      assert(Op && "Cannot increment end iterator!");
1031      if (ByOperand)
1032        advance();
1033      else if (ByInstr) {
1034        MachineInstr *P = Op->getParent();
1035        do {
1036          advance();
1037        } while (Op && Op->getParent() == P);
1038      } else if (ByBundle) {
1039        MachineBasicBlock::instr_iterator P =
1040            getBundleStart(Op->getParent()->getIterator());
1041        do {
1042          advance();
1043        } while (Op && getBundleStart(Op->getParent()->getIterator()) == P);
1044      }
1045
1046      return *this;
1047    }
1048    defusechain_instr_iterator operator++(int) {        // Postincrement
1049      defusechain_instr_iterator tmp = *this; ++*this; return tmp;
1050    }
1051
1052    // Retrieve a reference to the current operand.
1053    MachineInstr &operator*() const {
1054      assert(Op && "Cannot dereference end iterator!");
1055      if (ByBundle)
1056        return *getBundleStart(Op->getParent()->getIterator());
1057      return *Op->getParent();
1058    }
1059
1060    MachineInstr *operator->() const { return &operator*(); }
1061  };
1062};
1063
1064/// Iterate over the pressure sets affected by the given physical or virtual
1065/// register. If Reg is physical, it must be a register unit (from
1066/// MCRegUnitIterator).
1067class PSetIterator {
1068  const int *PSet = nullptr;
1069  unsigned Weight = 0;
1070
1071public:
1072  PSetIterator() = default;
1073
1074  PSetIterator(unsigned RegUnit, const MachineRegisterInfo *MRI) {
1075    const TargetRegisterInfo *TRI = MRI->getTargetRegisterInfo();
1076    if (TargetRegisterInfo::isVirtualRegister(RegUnit)) {
1077      const TargetRegisterClass *RC = MRI->getRegClass(RegUnit);
1078      PSet = TRI->getRegClassPressureSets(RC);
1079      Weight = TRI->getRegClassWeight(RC).RegWeight;
1080    }
1081    else {
1082      PSet = TRI->getRegUnitPressureSets(RegUnit);
1083      Weight = TRI->getRegUnitWeight(RegUnit);
1084    }
1085    if (*PSet == -1)
1086      PSet = nullptr;
1087  }
1088
1089  bool isValid() const { return PSet; }
1090
1091  unsigned getWeight() const { return Weight; }
1092
1093  unsigned operator*() const { return *PSet; }
1094
1095  void operator++() {
1096    assert(isValid() && "Invalid PSetIterator.");
1097    ++PSet;
1098    if (*PSet == -1)
1099      PSet = nullptr;
1100  }
1101};
1102
1103inline PSetIterator MachineRegisterInfo::
1104getPressureSets(unsigned RegUnit) const {
1105  return PSetIterator(RegUnit, this);
1106}
1107
1108} // end namespace llvm
1109
1110#endif // LLVM_CODEGEN_MACHINEREGISTERINFO_H
1111