1//===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9/// 10/// \file 11/// \brief This file implements a class to represent arbitrary precision 12/// integral constant values and operations on them. 13/// 14//===----------------------------------------------------------------------===// 15 16#ifndef LLVM_ADT_APINT_H 17#define LLVM_ADT_APINT_H 18 19#include "llvm/Support/Compiler.h" 20#include "llvm/Support/MathExtras.h" 21#include <cassert> 22#include <climits> 23#include <cstring> 24#include <string> 25 26namespace llvm { 27class FoldingSetNodeID; 28class StringRef; 29class hash_code; 30class raw_ostream; 31 32template <typename T> class SmallVectorImpl; 33template <typename T> class ArrayRef; 34 35class APInt; 36 37inline APInt operator-(APInt); 38 39//===----------------------------------------------------------------------===// 40// APInt Class 41//===----------------------------------------------------------------------===// 42 43/// \brief Class for arbitrary precision integers. 44/// 45/// APInt is a functional replacement for common case unsigned integer type like 46/// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width 47/// integer sizes and large integer value types such as 3-bits, 15-bits, or more 48/// than 64-bits of precision. APInt provides a variety of arithmetic operators 49/// and methods to manipulate integer values of any bit-width. It supports both 50/// the typical integer arithmetic and comparison operations as well as bitwise 51/// manipulation. 52/// 53/// The class has several invariants worth noting: 54/// * All bit, byte, and word positions are zero-based. 55/// * Once the bit width is set, it doesn't change except by the Truncate, 56/// SignExtend, or ZeroExtend operations. 57/// * All binary operators must be on APInt instances of the same bit width. 58/// Attempting to use these operators on instances with different bit 59/// widths will yield an assertion. 60/// * The value is stored canonically as an unsigned value. For operations 61/// where it makes a difference, there are both signed and unsigned variants 62/// of the operation. For example, sdiv and udiv. However, because the bit 63/// widths must be the same, operations such as Mul and Add produce the same 64/// results regardless of whether the values are interpreted as signed or 65/// not. 66/// * In general, the class tries to follow the style of computation that LLVM 67/// uses in its IR. This simplifies its use for LLVM. 68/// 69class LLVM_NODISCARD APInt { 70public: 71 typedef uint64_t WordType; 72 73 /// This enum is used to hold the constants we needed for APInt. 74 enum : unsigned { 75 /// Byte size of a word. 76 APINT_WORD_SIZE = sizeof(WordType), 77 /// Bits in a word. 78 APINT_BITS_PER_WORD = APINT_WORD_SIZE * CHAR_BIT 79 }; 80 81 static const WordType WORD_MAX = ~WordType(0); 82 83private: 84 /// This union is used to store the integer value. When the 85 /// integer bit-width <= 64, it uses VAL, otherwise it uses pVal. 86 union { 87 uint64_t VAL; ///< Used to store the <= 64 bits integer value. 88 uint64_t *pVal; ///< Used to store the >64 bits integer value. 89 } U; 90 91 unsigned BitWidth; ///< The number of bits in this APInt. 92 93 friend struct DenseMapAPIntKeyInfo; 94 95 friend class APSInt; 96 97 /// \brief Fast internal constructor 98 /// 99 /// This constructor is used only internally for speed of construction of 100 /// temporaries. It is unsafe for general use so it is not public. 101 APInt(uint64_t *val, unsigned bits) : BitWidth(bits) { 102 U.pVal = val; 103 } 104 105 /// \brief Determine if this APInt just has one word to store value. 106 /// 107 /// \returns true if the number of bits <= 64, false otherwise. 108 bool isSingleWord() const { return BitWidth <= APINT_BITS_PER_WORD; } 109 110 /// \brief Determine which word a bit is in. 111 /// 112 /// \returns the word position for the specified bit position. 113 static unsigned whichWord(unsigned bitPosition) { 114 return bitPosition / APINT_BITS_PER_WORD; 115 } 116 117 /// \brief Determine which bit in a word a bit is in. 118 /// 119 /// \returns the bit position in a word for the specified bit position 120 /// in the APInt. 121 static unsigned whichBit(unsigned bitPosition) { 122 return bitPosition % APINT_BITS_PER_WORD; 123 } 124 125 /// \brief Get a single bit mask. 126 /// 127 /// \returns a uint64_t with only bit at "whichBit(bitPosition)" set 128 /// This method generates and returns a uint64_t (word) mask for a single 129 /// bit at a specific bit position. This is used to mask the bit in the 130 /// corresponding word. 131 static uint64_t maskBit(unsigned bitPosition) { 132 return 1ULL << whichBit(bitPosition); 133 } 134 135 /// \brief Clear unused high order bits 136 /// 137 /// This method is used internally to clear the top "N" bits in the high order 138 /// word that are not used by the APInt. This is needed after the most 139 /// significant word is assigned a value to ensure that those bits are 140 /// zero'd out. 141 APInt &clearUnusedBits() { 142 // Compute how many bits are used in the final word 143 unsigned WordBits = ((BitWidth-1) % APINT_BITS_PER_WORD) + 1; 144 145 // Mask out the high bits. 146 uint64_t mask = WORD_MAX >> (APINT_BITS_PER_WORD - WordBits); 147 if (isSingleWord()) 148 U.VAL &= mask; 149 else 150 U.pVal[getNumWords() - 1] &= mask; 151 return *this; 152 } 153 154 /// \brief Get the word corresponding to a bit position 155 /// \returns the corresponding word for the specified bit position. 156 uint64_t getWord(unsigned bitPosition) const { 157 return isSingleWord() ? U.VAL : U.pVal[whichWord(bitPosition)]; 158 } 159 160 /// Utility method to change the bit width of this APInt to new bit width, 161 /// allocating and/or deallocating as necessary. There is no guarantee on the 162 /// value of any bits upon return. Caller should populate the bits after. 163 void reallocate(unsigned NewBitWidth); 164 165 /// \brief Convert a char array into an APInt 166 /// 167 /// \param radix 2, 8, 10, 16, or 36 168 /// Converts a string into a number. The string must be non-empty 169 /// and well-formed as a number of the given base. The bit-width 170 /// must be sufficient to hold the result. 171 /// 172 /// This is used by the constructors that take string arguments. 173 /// 174 /// StringRef::getAsInteger is superficially similar but (1) does 175 /// not assume that the string is well-formed and (2) grows the 176 /// result to hold the input. 177 void fromString(unsigned numBits, StringRef str, uint8_t radix); 178 179 /// \brief An internal division function for dividing APInts. 180 /// 181 /// This is used by the toString method to divide by the radix. It simply 182 /// provides a more convenient form of divide for internal use since KnuthDiv 183 /// has specific constraints on its inputs. If those constraints are not met 184 /// then it provides a simpler form of divide. 185 static void divide(const WordType *LHS, unsigned lhsWords, 186 const WordType *RHS, unsigned rhsWords, WordType *Quotient, 187 WordType *Remainder); 188 189 /// out-of-line slow case for inline constructor 190 void initSlowCase(uint64_t val, bool isSigned); 191 192 /// shared code between two array constructors 193 void initFromArray(ArrayRef<uint64_t> array); 194 195 /// out-of-line slow case for inline copy constructor 196 void initSlowCase(const APInt &that); 197 198 /// out-of-line slow case for shl 199 void shlSlowCase(unsigned ShiftAmt); 200 201 /// out-of-line slow case for lshr. 202 void lshrSlowCase(unsigned ShiftAmt); 203 204 /// out-of-line slow case for ashr. 205 void ashrSlowCase(unsigned ShiftAmt); 206 207 /// out-of-line slow case for operator= 208 void AssignSlowCase(const APInt &RHS); 209 210 /// out-of-line slow case for operator== 211 bool EqualSlowCase(const APInt &RHS) const LLVM_READONLY; 212 213 /// out-of-line slow case for countLeadingZeros 214 unsigned countLeadingZerosSlowCase() const LLVM_READONLY; 215 216 /// out-of-line slow case for countLeadingOnes. 217 unsigned countLeadingOnesSlowCase() const LLVM_READONLY; 218 219 /// out-of-line slow case for countTrailingZeros. 220 unsigned countTrailingZerosSlowCase() const LLVM_READONLY; 221 222 /// out-of-line slow case for countTrailingOnes 223 unsigned countTrailingOnesSlowCase() const LLVM_READONLY; 224 225 /// out-of-line slow case for countPopulation 226 unsigned countPopulationSlowCase() const LLVM_READONLY; 227 228 /// out-of-line slow case for intersects. 229 bool intersectsSlowCase(const APInt &RHS) const LLVM_READONLY; 230 231 /// out-of-line slow case for isSubsetOf. 232 bool isSubsetOfSlowCase(const APInt &RHS) const LLVM_READONLY; 233 234 /// out-of-line slow case for setBits. 235 void setBitsSlowCase(unsigned loBit, unsigned hiBit); 236 237 /// out-of-line slow case for flipAllBits. 238 void flipAllBitsSlowCase(); 239 240 /// out-of-line slow case for operator&=. 241 void AndAssignSlowCase(const APInt& RHS); 242 243 /// out-of-line slow case for operator|=. 244 void OrAssignSlowCase(const APInt& RHS); 245 246 /// out-of-line slow case for operator^=. 247 void XorAssignSlowCase(const APInt& RHS); 248 249 /// Unsigned comparison. Returns -1, 0, or 1 if this APInt is less than, equal 250 /// to, or greater than RHS. 251 int compare(const APInt &RHS) const LLVM_READONLY; 252 253 /// Signed comparison. Returns -1, 0, or 1 if this APInt is less than, equal 254 /// to, or greater than RHS. 255 int compareSigned(const APInt &RHS) const LLVM_READONLY; 256 257public: 258 /// \name Constructors 259 /// @{ 260 261 /// \brief Create a new APInt of numBits width, initialized as val. 262 /// 263 /// If isSigned is true then val is treated as if it were a signed value 264 /// (i.e. as an int64_t) and the appropriate sign extension to the bit width 265 /// will be done. Otherwise, no sign extension occurs (high order bits beyond 266 /// the range of val are zero filled). 267 /// 268 /// \param numBits the bit width of the constructed APInt 269 /// \param val the initial value of the APInt 270 /// \param isSigned how to treat signedness of val 271 APInt(unsigned numBits, uint64_t val, bool isSigned = false) 272 : BitWidth(numBits) { 273 assert(BitWidth && "bitwidth too small"); 274 if (isSingleWord()) { 275 U.VAL = val; 276 clearUnusedBits(); 277 } else { 278 initSlowCase(val, isSigned); 279 } 280 } 281 282 /// \brief Construct an APInt of numBits width, initialized as bigVal[]. 283 /// 284 /// Note that bigVal.size() can be smaller or larger than the corresponding 285 /// bit width but any extraneous bits will be dropped. 286 /// 287 /// \param numBits the bit width of the constructed APInt 288 /// \param bigVal a sequence of words to form the initial value of the APInt 289 APInt(unsigned numBits, ArrayRef<uint64_t> bigVal); 290 291 /// Equivalent to APInt(numBits, ArrayRef<uint64_t>(bigVal, numWords)), but 292 /// deprecated because this constructor is prone to ambiguity with the 293 /// APInt(unsigned, uint64_t, bool) constructor. 294 /// 295 /// If this overload is ever deleted, care should be taken to prevent calls 296 /// from being incorrectly captured by the APInt(unsigned, uint64_t, bool) 297 /// constructor. 298 APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]); 299 300 /// \brief Construct an APInt from a string representation. 301 /// 302 /// This constructor interprets the string \p str in the given radix. The 303 /// interpretation stops when the first character that is not suitable for the 304 /// radix is encountered, or the end of the string. Acceptable radix values 305 /// are 2, 8, 10, 16, and 36. It is an error for the value implied by the 306 /// string to require more bits than numBits. 307 /// 308 /// \param numBits the bit width of the constructed APInt 309 /// \param str the string to be interpreted 310 /// \param radix the radix to use for the conversion 311 APInt(unsigned numBits, StringRef str, uint8_t radix); 312 313 /// Simply makes *this a copy of that. 314 /// @brief Copy Constructor. 315 APInt(const APInt &that) : BitWidth(that.BitWidth) { 316 if (isSingleWord()) 317 U.VAL = that.U.VAL; 318 else 319 initSlowCase(that); 320 } 321 322 /// \brief Move Constructor. 323 APInt(APInt &&that) : BitWidth(that.BitWidth) { 324 memcpy(&U, &that.U, sizeof(U)); 325 that.BitWidth = 0; 326 } 327 328 /// \brief Destructor. 329 ~APInt() { 330 if (needsCleanup()) 331 delete[] U.pVal; 332 } 333 334 /// \brief Default constructor that creates an uninteresting APInt 335 /// representing a 1-bit zero value. 336 /// 337 /// This is useful for object deserialization (pair this with the static 338 /// method Read). 339 explicit APInt() : BitWidth(1) { U.VAL = 0; } 340 341 /// \brief Returns whether this instance allocated memory. 342 bool needsCleanup() const { return !isSingleWord(); } 343 344 /// Used to insert APInt objects, or objects that contain APInt objects, into 345 /// FoldingSets. 346 void Profile(FoldingSetNodeID &id) const; 347 348 /// @} 349 /// \name Value Tests 350 /// @{ 351 352 /// \brief Determine sign of this APInt. 353 /// 354 /// This tests the high bit of this APInt to determine if it is set. 355 /// 356 /// \returns true if this APInt is negative, false otherwise 357 bool isNegative() const { return (*this)[BitWidth - 1]; } 358 359 /// \brief Determine if this APInt Value is non-negative (>= 0) 360 /// 361 /// This tests the high bit of the APInt to determine if it is unset. 362 bool isNonNegative() const { return !isNegative(); } 363 364 /// \brief Determine if sign bit of this APInt is set. 365 /// 366 /// This tests the high bit of this APInt to determine if it is set. 367 /// 368 /// \returns true if this APInt has its sign bit set, false otherwise. 369 bool isSignBitSet() const { return (*this)[BitWidth-1]; } 370 371 /// \brief Determine if sign bit of this APInt is clear. 372 /// 373 /// This tests the high bit of this APInt to determine if it is clear. 374 /// 375 /// \returns true if this APInt has its sign bit clear, false otherwise. 376 bool isSignBitClear() const { return !isSignBitSet(); } 377 378 /// \brief Determine if this APInt Value is positive. 379 /// 380 /// This tests if the value of this APInt is positive (> 0). Note 381 /// that 0 is not a positive value. 382 /// 383 /// \returns true if this APInt is positive. 384 bool isStrictlyPositive() const { return isNonNegative() && !isNullValue(); } 385 386 /// \brief Determine if all bits are set 387 /// 388 /// This checks to see if the value has all bits of the APInt are set or not. 389 bool isAllOnesValue() const { 390 if (isSingleWord()) 391 return U.VAL == WORD_MAX >> (APINT_BITS_PER_WORD - BitWidth); 392 return countTrailingOnesSlowCase() == BitWidth; 393 } 394 395 /// \brief Determine if all bits are clear 396 /// 397 /// This checks to see if the value has all bits of the APInt are clear or 398 /// not. 399 bool isNullValue() const { return !*this; } 400 401 /// \brief Determine if this is a value of 1. 402 /// 403 /// This checks to see if the value of this APInt is one. 404 bool isOneValue() const { 405 if (isSingleWord()) 406 return U.VAL == 1; 407 return countLeadingZerosSlowCase() == BitWidth - 1; 408 } 409 410 /// \brief Determine if this is the largest unsigned value. 411 /// 412 /// This checks to see if the value of this APInt is the maximum unsigned 413 /// value for the APInt's bit width. 414 bool isMaxValue() const { return isAllOnesValue(); } 415 416 /// \brief Determine if this is the largest signed value. 417 /// 418 /// This checks to see if the value of this APInt is the maximum signed 419 /// value for the APInt's bit width. 420 bool isMaxSignedValue() const { 421 if (isSingleWord()) 422 return U.VAL == ((WordType(1) << (BitWidth - 1)) - 1); 423 return !isNegative() && countTrailingOnesSlowCase() == BitWidth - 1; 424 } 425 426 /// \brief Determine if this is the smallest unsigned value. 427 /// 428 /// This checks to see if the value of this APInt is the minimum unsigned 429 /// value for the APInt's bit width. 430 bool isMinValue() const { return isNullValue(); } 431 432 /// \brief Determine if this is the smallest signed value. 433 /// 434 /// This checks to see if the value of this APInt is the minimum signed 435 /// value for the APInt's bit width. 436 bool isMinSignedValue() const { 437 if (isSingleWord()) 438 return U.VAL == (WordType(1) << (BitWidth - 1)); 439 return isNegative() && countTrailingZerosSlowCase() == BitWidth - 1; 440 } 441 442 /// \brief Check if this APInt has an N-bits unsigned integer value. 443 bool isIntN(unsigned N) const { 444 assert(N && "N == 0 ???"); 445 return getActiveBits() <= N; 446 } 447 448 /// \brief Check if this APInt has an N-bits signed integer value. 449 bool isSignedIntN(unsigned N) const { 450 assert(N && "N == 0 ???"); 451 return getMinSignedBits() <= N; 452 } 453 454 /// \brief Check if this APInt's value is a power of two greater than zero. 455 /// 456 /// \returns true if the argument APInt value is a power of two > 0. 457 bool isPowerOf2() const { 458 if (isSingleWord()) 459 return isPowerOf2_64(U.VAL); 460 return countPopulationSlowCase() == 1; 461 } 462 463 /// \brief Check if the APInt's value is returned by getSignMask. 464 /// 465 /// \returns true if this is the value returned by getSignMask. 466 bool isSignMask() const { return isMinSignedValue(); } 467 468 /// \brief Convert APInt to a boolean value. 469 /// 470 /// This converts the APInt to a boolean value as a test against zero. 471 bool getBoolValue() const { return !!*this; } 472 473 /// If this value is smaller than the specified limit, return it, otherwise 474 /// return the limit value. This causes the value to saturate to the limit. 475 uint64_t getLimitedValue(uint64_t Limit = UINT64_MAX) const { 476 return ugt(Limit) ? Limit : getZExtValue(); 477 } 478 479 /// \brief Check if the APInt consists of a repeated bit pattern. 480 /// 481 /// e.g. 0x01010101 satisfies isSplat(8). 482 /// \param SplatSizeInBits The size of the pattern in bits. Must divide bit 483 /// width without remainder. 484 bool isSplat(unsigned SplatSizeInBits) const; 485 486 /// \returns true if this APInt value is a sequence of \param numBits ones 487 /// starting at the least significant bit with the remainder zero. 488 bool isMask(unsigned numBits) const { 489 assert(numBits != 0 && "numBits must be non-zero"); 490 assert(numBits <= BitWidth && "numBits out of range"); 491 if (isSingleWord()) 492 return U.VAL == (WORD_MAX >> (APINT_BITS_PER_WORD - numBits)); 493 unsigned Ones = countTrailingOnesSlowCase(); 494 return (numBits == Ones) && 495 ((Ones + countLeadingZerosSlowCase()) == BitWidth); 496 } 497 498 /// \returns true if this APInt is a non-empty sequence of ones starting at 499 /// the least significant bit with the remainder zero. 500 /// Ex. isMask(0x0000FFFFU) == true. 501 bool isMask() const { 502 if (isSingleWord()) 503 return isMask_64(U.VAL); 504 unsigned Ones = countTrailingOnesSlowCase(); 505 return (Ones > 0) && ((Ones + countLeadingZerosSlowCase()) == BitWidth); 506 } 507 508 /// \brief Return true if this APInt value contains a sequence of ones with 509 /// the remainder zero. 510 bool isShiftedMask() const { 511 if (isSingleWord()) 512 return isShiftedMask_64(U.VAL); 513 unsigned Ones = countPopulationSlowCase(); 514 unsigned LeadZ = countLeadingZerosSlowCase(); 515 return (Ones + LeadZ + countTrailingZeros()) == BitWidth; 516 } 517 518 /// @} 519 /// \name Value Generators 520 /// @{ 521 522 /// \brief Gets maximum unsigned value of APInt for specific bit width. 523 static APInt getMaxValue(unsigned numBits) { 524 return getAllOnesValue(numBits); 525 } 526 527 /// \brief Gets maximum signed value of APInt for a specific bit width. 528 static APInt getSignedMaxValue(unsigned numBits) { 529 APInt API = getAllOnesValue(numBits); 530 API.clearBit(numBits - 1); 531 return API; 532 } 533 534 /// \brief Gets minimum unsigned value of APInt for a specific bit width. 535 static APInt getMinValue(unsigned numBits) { return APInt(numBits, 0); } 536 537 /// \brief Gets minimum signed value of APInt for a specific bit width. 538 static APInt getSignedMinValue(unsigned numBits) { 539 APInt API(numBits, 0); 540 API.setBit(numBits - 1); 541 return API; 542 } 543 544 /// \brief Get the SignMask for a specific bit width. 545 /// 546 /// This is just a wrapper function of getSignedMinValue(), and it helps code 547 /// readability when we want to get a SignMask. 548 static APInt getSignMask(unsigned BitWidth) { 549 return getSignedMinValue(BitWidth); 550 } 551 552 /// \brief Get the all-ones value. 553 /// 554 /// \returns the all-ones value for an APInt of the specified bit-width. 555 static APInt getAllOnesValue(unsigned numBits) { 556 return APInt(numBits, WORD_MAX, true); 557 } 558 559 /// \brief Get the '0' value. 560 /// 561 /// \returns the '0' value for an APInt of the specified bit-width. 562 static APInt getNullValue(unsigned numBits) { return APInt(numBits, 0); } 563 564 /// \brief Compute an APInt containing numBits highbits from this APInt. 565 /// 566 /// Get an APInt with the same BitWidth as this APInt, just zero mask 567 /// the low bits and right shift to the least significant bit. 568 /// 569 /// \returns the high "numBits" bits of this APInt. 570 APInt getHiBits(unsigned numBits) const; 571 572 /// \brief Compute an APInt containing numBits lowbits from this APInt. 573 /// 574 /// Get an APInt with the same BitWidth as this APInt, just zero mask 575 /// the high bits. 576 /// 577 /// \returns the low "numBits" bits of this APInt. 578 APInt getLoBits(unsigned numBits) const; 579 580 /// \brief Return an APInt with exactly one bit set in the result. 581 static APInt getOneBitSet(unsigned numBits, unsigned BitNo) { 582 APInt Res(numBits, 0); 583 Res.setBit(BitNo); 584 return Res; 585 } 586 587 /// \brief Get a value with a block of bits set. 588 /// 589 /// Constructs an APInt value that has a contiguous range of bits set. The 590 /// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other 591 /// bits will be zero. For example, with parameters(32, 0, 16) you would get 592 /// 0x0000FFFF. If hiBit is less than loBit then the set bits "wrap". For 593 /// example, with parameters (32, 28, 4), you would get 0xF000000F. 594 /// 595 /// \param numBits the intended bit width of the result 596 /// \param loBit the index of the lowest bit set. 597 /// \param hiBit the index of the highest bit set. 598 /// 599 /// \returns An APInt value with the requested bits set. 600 static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit) { 601 APInt Res(numBits, 0); 602 Res.setBits(loBit, hiBit); 603 return Res; 604 } 605 606 /// \brief Get a value with upper bits starting at loBit set. 607 /// 608 /// Constructs an APInt value that has a contiguous range of bits set. The 609 /// bits from loBit (inclusive) to numBits (exclusive) will be set. All other 610 /// bits will be zero. For example, with parameters(32, 12) you would get 611 /// 0xFFFFF000. 612 /// 613 /// \param numBits the intended bit width of the result 614 /// \param loBit the index of the lowest bit to set. 615 /// 616 /// \returns An APInt value with the requested bits set. 617 static APInt getBitsSetFrom(unsigned numBits, unsigned loBit) { 618 APInt Res(numBits, 0); 619 Res.setBitsFrom(loBit); 620 return Res; 621 } 622 623 /// \brief Get a value with high bits set 624 /// 625 /// Constructs an APInt value that has the top hiBitsSet bits set. 626 /// 627 /// \param numBits the bitwidth of the result 628 /// \param hiBitsSet the number of high-order bits set in the result. 629 static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet) { 630 APInt Res(numBits, 0); 631 Res.setHighBits(hiBitsSet); 632 return Res; 633 } 634 635 /// \brief Get a value with low bits set 636 /// 637 /// Constructs an APInt value that has the bottom loBitsSet bits set. 638 /// 639 /// \param numBits the bitwidth of the result 640 /// \param loBitsSet the number of low-order bits set in the result. 641 static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet) { 642 APInt Res(numBits, 0); 643 Res.setLowBits(loBitsSet); 644 return Res; 645 } 646 647 /// \brief Return a value containing V broadcasted over NewLen bits. 648 static APInt getSplat(unsigned NewLen, const APInt &V); 649 650 /// \brief Determine if two APInts have the same value, after zero-extending 651 /// one of them (if needed!) to ensure that the bit-widths match. 652 static bool isSameValue(const APInt &I1, const APInt &I2) { 653 if (I1.getBitWidth() == I2.getBitWidth()) 654 return I1 == I2; 655 656 if (I1.getBitWidth() > I2.getBitWidth()) 657 return I1 == I2.zext(I1.getBitWidth()); 658 659 return I1.zext(I2.getBitWidth()) == I2; 660 } 661 662 /// \brief Overload to compute a hash_code for an APInt value. 663 friend hash_code hash_value(const APInt &Arg); 664 665 /// This function returns a pointer to the internal storage of the APInt. 666 /// This is useful for writing out the APInt in binary form without any 667 /// conversions. 668 const uint64_t *getRawData() const { 669 if (isSingleWord()) 670 return &U.VAL; 671 return &U.pVal[0]; 672 } 673 674 /// @} 675 /// \name Unary Operators 676 /// @{ 677 678 /// \brief Postfix increment operator. 679 /// 680 /// Increments *this by 1. 681 /// 682 /// \returns a new APInt value representing the original value of *this. 683 const APInt operator++(int) { 684 APInt API(*this); 685 ++(*this); 686 return API; 687 } 688 689 /// \brief Prefix increment operator. 690 /// 691 /// \returns *this incremented by one 692 APInt &operator++(); 693 694 /// \brief Postfix decrement operator. 695 /// 696 /// Decrements *this by 1. 697 /// 698 /// \returns a new APInt value representing the original value of *this. 699 const APInt operator--(int) { 700 APInt API(*this); 701 --(*this); 702 return API; 703 } 704 705 /// \brief Prefix decrement operator. 706 /// 707 /// \returns *this decremented by one. 708 APInt &operator--(); 709 710 /// \brief Logical negation operator. 711 /// 712 /// Performs logical negation operation on this APInt. 713 /// 714 /// \returns true if *this is zero, false otherwise. 715 bool operator!() const { 716 if (isSingleWord()) 717 return U.VAL == 0; 718 return countLeadingZerosSlowCase() == BitWidth; 719 } 720 721 /// @} 722 /// \name Assignment Operators 723 /// @{ 724 725 /// \brief Copy assignment operator. 726 /// 727 /// \returns *this after assignment of RHS. 728 APInt &operator=(const APInt &RHS) { 729 // If the bitwidths are the same, we can avoid mucking with memory 730 if (isSingleWord() && RHS.isSingleWord()) { 731 U.VAL = RHS.U.VAL; 732 BitWidth = RHS.BitWidth; 733 return clearUnusedBits(); 734 } 735 736 AssignSlowCase(RHS); 737 return *this; 738 } 739 740 /// @brief Move assignment operator. 741 APInt &operator=(APInt &&that) { 742 assert(this != &that && "Self-move not supported"); 743 if (!isSingleWord()) 744 delete[] U.pVal; 745 746 // Use memcpy so that type based alias analysis sees both VAL and pVal 747 // as modified. 748 memcpy(&U, &that.U, sizeof(U)); 749 750 BitWidth = that.BitWidth; 751 that.BitWidth = 0; 752 753 return *this; 754 } 755 756 /// \brief Assignment operator. 757 /// 758 /// The RHS value is assigned to *this. If the significant bits in RHS exceed 759 /// the bit width, the excess bits are truncated. If the bit width is larger 760 /// than 64, the value is zero filled in the unspecified high order bits. 761 /// 762 /// \returns *this after assignment of RHS value. 763 APInt &operator=(uint64_t RHS) { 764 if (isSingleWord()) { 765 U.VAL = RHS; 766 clearUnusedBits(); 767 } else { 768 U.pVal[0] = RHS; 769 memset(U.pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE); 770 } 771 return *this; 772 } 773 774 /// \brief Bitwise AND assignment operator. 775 /// 776 /// Performs a bitwise AND operation on this APInt and RHS. The result is 777 /// assigned to *this. 778 /// 779 /// \returns *this after ANDing with RHS. 780 APInt &operator&=(const APInt &RHS) { 781 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 782 if (isSingleWord()) 783 U.VAL &= RHS.U.VAL; 784 else 785 AndAssignSlowCase(RHS); 786 return *this; 787 } 788 789 /// \brief Bitwise AND assignment operator. 790 /// 791 /// Performs a bitwise AND operation on this APInt and RHS. RHS is 792 /// logically zero-extended or truncated to match the bit-width of 793 /// the LHS. 794 APInt &operator&=(uint64_t RHS) { 795 if (isSingleWord()) { 796 U.VAL &= RHS; 797 return *this; 798 } 799 U.pVal[0] &= RHS; 800 memset(U.pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE); 801 return *this; 802 } 803 804 /// \brief Bitwise OR assignment operator. 805 /// 806 /// Performs a bitwise OR operation on this APInt and RHS. The result is 807 /// assigned *this; 808 /// 809 /// \returns *this after ORing with RHS. 810 APInt &operator|=(const APInt &RHS) { 811 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 812 if (isSingleWord()) 813 U.VAL |= RHS.U.VAL; 814 else 815 OrAssignSlowCase(RHS); 816 return *this; 817 } 818 819 /// \brief Bitwise OR assignment operator. 820 /// 821 /// Performs a bitwise OR operation on this APInt and RHS. RHS is 822 /// logically zero-extended or truncated to match the bit-width of 823 /// the LHS. 824 APInt &operator|=(uint64_t RHS) { 825 if (isSingleWord()) { 826 U.VAL |= RHS; 827 clearUnusedBits(); 828 } else { 829 U.pVal[0] |= RHS; 830 } 831 return *this; 832 } 833 834 /// \brief Bitwise XOR assignment operator. 835 /// 836 /// Performs a bitwise XOR operation on this APInt and RHS. The result is 837 /// assigned to *this. 838 /// 839 /// \returns *this after XORing with RHS. 840 APInt &operator^=(const APInt &RHS) { 841 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 842 if (isSingleWord()) 843 U.VAL ^= RHS.U.VAL; 844 else 845 XorAssignSlowCase(RHS); 846 return *this; 847 } 848 849 /// \brief Bitwise XOR assignment operator. 850 /// 851 /// Performs a bitwise XOR operation on this APInt and RHS. RHS is 852 /// logically zero-extended or truncated to match the bit-width of 853 /// the LHS. 854 APInt &operator^=(uint64_t RHS) { 855 if (isSingleWord()) { 856 U.VAL ^= RHS; 857 clearUnusedBits(); 858 } else { 859 U.pVal[0] ^= RHS; 860 } 861 return *this; 862 } 863 864 /// \brief Multiplication assignment operator. 865 /// 866 /// Multiplies this APInt by RHS and assigns the result to *this. 867 /// 868 /// \returns *this 869 APInt &operator*=(const APInt &RHS); 870 APInt &operator*=(uint64_t RHS); 871 872 /// \brief Addition assignment operator. 873 /// 874 /// Adds RHS to *this and assigns the result to *this. 875 /// 876 /// \returns *this 877 APInt &operator+=(const APInt &RHS); 878 APInt &operator+=(uint64_t RHS); 879 880 /// \brief Subtraction assignment operator. 881 /// 882 /// Subtracts RHS from *this and assigns the result to *this. 883 /// 884 /// \returns *this 885 APInt &operator-=(const APInt &RHS); 886 APInt &operator-=(uint64_t RHS); 887 888 /// \brief Left-shift assignment function. 889 /// 890 /// Shifts *this left by shiftAmt and assigns the result to *this. 891 /// 892 /// \returns *this after shifting left by ShiftAmt 893 APInt &operator<<=(unsigned ShiftAmt) { 894 assert(ShiftAmt <= BitWidth && "Invalid shift amount"); 895 if (isSingleWord()) { 896 if (ShiftAmt == BitWidth) 897 U.VAL = 0; 898 else 899 U.VAL <<= ShiftAmt; 900 return clearUnusedBits(); 901 } 902 shlSlowCase(ShiftAmt); 903 return *this; 904 } 905 906 /// \brief Left-shift assignment function. 907 /// 908 /// Shifts *this left by shiftAmt and assigns the result to *this. 909 /// 910 /// \returns *this after shifting left by ShiftAmt 911 APInt &operator<<=(const APInt &ShiftAmt); 912 913 /// @} 914 /// \name Binary Operators 915 /// @{ 916 917 /// \brief Multiplication operator. 918 /// 919 /// Multiplies this APInt by RHS and returns the result. 920 APInt operator*(const APInt &RHS) const; 921 922 /// \brief Left logical shift operator. 923 /// 924 /// Shifts this APInt left by \p Bits and returns the result. 925 APInt operator<<(unsigned Bits) const { return shl(Bits); } 926 927 /// \brief Left logical shift operator. 928 /// 929 /// Shifts this APInt left by \p Bits and returns the result. 930 APInt operator<<(const APInt &Bits) const { return shl(Bits); } 931 932 /// \brief Arithmetic right-shift function. 933 /// 934 /// Arithmetic right-shift this APInt by shiftAmt. 935 APInt ashr(unsigned ShiftAmt) const { 936 APInt R(*this); 937 R.ashrInPlace(ShiftAmt); 938 return R; 939 } 940 941 /// Arithmetic right-shift this APInt by ShiftAmt in place. 942 void ashrInPlace(unsigned ShiftAmt) { 943 assert(ShiftAmt <= BitWidth && "Invalid shift amount"); 944 if (isSingleWord()) { 945 int64_t SExtVAL = SignExtend64(U.VAL, BitWidth); 946 if (ShiftAmt == BitWidth) 947 U.VAL = SExtVAL >> (APINT_BITS_PER_WORD - 1); // Fill with sign bit. 948 else 949 U.VAL = SExtVAL >> ShiftAmt; 950 clearUnusedBits(); 951 return; 952 } 953 ashrSlowCase(ShiftAmt); 954 } 955 956 /// \brief Logical right-shift function. 957 /// 958 /// Logical right-shift this APInt by shiftAmt. 959 APInt lshr(unsigned shiftAmt) const { 960 APInt R(*this); 961 R.lshrInPlace(shiftAmt); 962 return R; 963 } 964 965 /// Logical right-shift this APInt by ShiftAmt in place. 966 void lshrInPlace(unsigned ShiftAmt) { 967 assert(ShiftAmt <= BitWidth && "Invalid shift amount"); 968 if (isSingleWord()) { 969 if (ShiftAmt == BitWidth) 970 U.VAL = 0; 971 else 972 U.VAL >>= ShiftAmt; 973 return; 974 } 975 lshrSlowCase(ShiftAmt); 976 } 977 978 /// \brief Left-shift function. 979 /// 980 /// Left-shift this APInt by shiftAmt. 981 APInt shl(unsigned shiftAmt) const { 982 APInt R(*this); 983 R <<= shiftAmt; 984 return R; 985 } 986 987 /// \brief Rotate left by rotateAmt. 988 APInt rotl(unsigned rotateAmt) const; 989 990 /// \brief Rotate right by rotateAmt. 991 APInt rotr(unsigned rotateAmt) const; 992 993 /// \brief Arithmetic right-shift function. 994 /// 995 /// Arithmetic right-shift this APInt by shiftAmt. 996 APInt ashr(const APInt &ShiftAmt) const { 997 APInt R(*this); 998 R.ashrInPlace(ShiftAmt); 999 return R; 1000 } 1001 1002 /// Arithmetic right-shift this APInt by shiftAmt in place. 1003 void ashrInPlace(const APInt &shiftAmt); 1004 1005 /// \brief Logical right-shift function. 1006 /// 1007 /// Logical right-shift this APInt by shiftAmt. 1008 APInt lshr(const APInt &ShiftAmt) const { 1009 APInt R(*this); 1010 R.lshrInPlace(ShiftAmt); 1011 return R; 1012 } 1013 1014 /// Logical right-shift this APInt by ShiftAmt in place. 1015 void lshrInPlace(const APInt &ShiftAmt); 1016 1017 /// \brief Left-shift function. 1018 /// 1019 /// Left-shift this APInt by shiftAmt. 1020 APInt shl(const APInt &ShiftAmt) const { 1021 APInt R(*this); 1022 R <<= ShiftAmt; 1023 return R; 1024 } 1025 1026 /// \brief Rotate left by rotateAmt. 1027 APInt rotl(const APInt &rotateAmt) const; 1028 1029 /// \brief Rotate right by rotateAmt. 1030 APInt rotr(const APInt &rotateAmt) const; 1031 1032 /// \brief Unsigned division operation. 1033 /// 1034 /// Perform an unsigned divide operation on this APInt by RHS. Both this and 1035 /// RHS are treated as unsigned quantities for purposes of this division. 1036 /// 1037 /// \returns a new APInt value containing the division result 1038 APInt udiv(const APInt &RHS) const; 1039 APInt udiv(uint64_t RHS) const; 1040 1041 /// \brief Signed division function for APInt. 1042 /// 1043 /// Signed divide this APInt by APInt RHS. 1044 APInt sdiv(const APInt &RHS) const; 1045 APInt sdiv(int64_t RHS) const; 1046 1047 /// \brief Unsigned remainder operation. 1048 /// 1049 /// Perform an unsigned remainder operation on this APInt with RHS being the 1050 /// divisor. Both this and RHS are treated as unsigned quantities for purposes 1051 /// of this operation. Note that this is a true remainder operation and not a 1052 /// modulo operation because the sign follows the sign of the dividend which 1053 /// is *this. 1054 /// 1055 /// \returns a new APInt value containing the remainder result 1056 APInt urem(const APInt &RHS) const; 1057 uint64_t urem(uint64_t RHS) const; 1058 1059 /// \brief Function for signed remainder operation. 1060 /// 1061 /// Signed remainder operation on APInt. 1062 APInt srem(const APInt &RHS) const; 1063 int64_t srem(int64_t RHS) const; 1064 1065 /// \brief Dual division/remainder interface. 1066 /// 1067 /// Sometimes it is convenient to divide two APInt values and obtain both the 1068 /// quotient and remainder. This function does both operations in the same 1069 /// computation making it a little more efficient. The pair of input arguments 1070 /// may overlap with the pair of output arguments. It is safe to call 1071 /// udivrem(X, Y, X, Y), for example. 1072 static void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient, 1073 APInt &Remainder); 1074 static void udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient, 1075 uint64_t &Remainder); 1076 1077 static void sdivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient, 1078 APInt &Remainder); 1079 static void sdivrem(const APInt &LHS, int64_t RHS, APInt &Quotient, 1080 int64_t &Remainder); 1081 1082 // Operations that return overflow indicators. 1083 APInt sadd_ov(const APInt &RHS, bool &Overflow) const; 1084 APInt uadd_ov(const APInt &RHS, bool &Overflow) const; 1085 APInt ssub_ov(const APInt &RHS, bool &Overflow) const; 1086 APInt usub_ov(const APInt &RHS, bool &Overflow) const; 1087 APInt sdiv_ov(const APInt &RHS, bool &Overflow) const; 1088 APInt smul_ov(const APInt &RHS, bool &Overflow) const; 1089 APInt umul_ov(const APInt &RHS, bool &Overflow) const; 1090 APInt sshl_ov(const APInt &Amt, bool &Overflow) const; 1091 APInt ushl_ov(const APInt &Amt, bool &Overflow) const; 1092 1093 /// \brief Array-indexing support. 1094 /// 1095 /// \returns the bit value at bitPosition 1096 bool operator[](unsigned bitPosition) const { 1097 assert(bitPosition < getBitWidth() && "Bit position out of bounds!"); 1098 return (maskBit(bitPosition) & getWord(bitPosition)) != 0; 1099 } 1100 1101 /// @} 1102 /// \name Comparison Operators 1103 /// @{ 1104 1105 /// \brief Equality operator. 1106 /// 1107 /// Compares this APInt with RHS for the validity of the equality 1108 /// relationship. 1109 bool operator==(const APInt &RHS) const { 1110 assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths"); 1111 if (isSingleWord()) 1112 return U.VAL == RHS.U.VAL; 1113 return EqualSlowCase(RHS); 1114 } 1115 1116 /// \brief Equality operator. 1117 /// 1118 /// Compares this APInt with a uint64_t for the validity of the equality 1119 /// relationship. 1120 /// 1121 /// \returns true if *this == Val 1122 bool operator==(uint64_t Val) const { 1123 return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() == Val; 1124 } 1125 1126 /// \brief Equality comparison. 1127 /// 1128 /// Compares this APInt with RHS for the validity of the equality 1129 /// relationship. 1130 /// 1131 /// \returns true if *this == Val 1132 bool eq(const APInt &RHS) const { return (*this) == RHS; } 1133 1134 /// \brief Inequality operator. 1135 /// 1136 /// Compares this APInt with RHS for the validity of the inequality 1137 /// relationship. 1138 /// 1139 /// \returns true if *this != Val 1140 bool operator!=(const APInt &RHS) const { return !((*this) == RHS); } 1141 1142 /// \brief Inequality operator. 1143 /// 1144 /// Compares this APInt with a uint64_t for the validity of the inequality 1145 /// relationship. 1146 /// 1147 /// \returns true if *this != Val 1148 bool operator!=(uint64_t Val) const { return !((*this) == Val); } 1149 1150 /// \brief Inequality comparison 1151 /// 1152 /// Compares this APInt with RHS for the validity of the inequality 1153 /// relationship. 1154 /// 1155 /// \returns true if *this != Val 1156 bool ne(const APInt &RHS) const { return !((*this) == RHS); } 1157 1158 /// \brief Unsigned less than comparison 1159 /// 1160 /// Regards both *this and RHS as unsigned quantities and compares them for 1161 /// the validity of the less-than relationship. 1162 /// 1163 /// \returns true if *this < RHS when both are considered unsigned. 1164 bool ult(const APInt &RHS) const { return compare(RHS) < 0; } 1165 1166 /// \brief Unsigned less than comparison 1167 /// 1168 /// Regards both *this as an unsigned quantity and compares it with RHS for 1169 /// the validity of the less-than relationship. 1170 /// 1171 /// \returns true if *this < RHS when considered unsigned. 1172 bool ult(uint64_t RHS) const { 1173 // Only need to check active bits if not a single word. 1174 return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() < RHS; 1175 } 1176 1177 /// \brief Signed less than comparison 1178 /// 1179 /// Regards both *this and RHS as signed quantities and compares them for 1180 /// validity of the less-than relationship. 1181 /// 1182 /// \returns true if *this < RHS when both are considered signed. 1183 bool slt(const APInt &RHS) const { return compareSigned(RHS) < 0; } 1184 1185 /// \brief Signed less than comparison 1186 /// 1187 /// Regards both *this as a signed quantity and compares it with RHS for 1188 /// the validity of the less-than relationship. 1189 /// 1190 /// \returns true if *this < RHS when considered signed. 1191 bool slt(int64_t RHS) const { 1192 return (!isSingleWord() && getMinSignedBits() > 64) ? isNegative() 1193 : getSExtValue() < RHS; 1194 } 1195 1196 /// \brief Unsigned less or equal comparison 1197 /// 1198 /// Regards both *this and RHS as unsigned quantities and compares them for 1199 /// validity of the less-or-equal relationship. 1200 /// 1201 /// \returns true if *this <= RHS when both are considered unsigned. 1202 bool ule(const APInt &RHS) const { return compare(RHS) <= 0; } 1203 1204 /// \brief Unsigned less or equal comparison 1205 /// 1206 /// Regards both *this as an unsigned quantity and compares it with RHS for 1207 /// the validity of the less-or-equal relationship. 1208 /// 1209 /// \returns true if *this <= RHS when considered unsigned. 1210 bool ule(uint64_t RHS) const { return !ugt(RHS); } 1211 1212 /// \brief Signed less or equal comparison 1213 /// 1214 /// Regards both *this and RHS as signed quantities and compares them for 1215 /// validity of the less-or-equal relationship. 1216 /// 1217 /// \returns true if *this <= RHS when both are considered signed. 1218 bool sle(const APInt &RHS) const { return compareSigned(RHS) <= 0; } 1219 1220 /// \brief Signed less or equal comparison 1221 /// 1222 /// Regards both *this as a signed quantity and compares it with RHS for the 1223 /// validity of the less-or-equal relationship. 1224 /// 1225 /// \returns true if *this <= RHS when considered signed. 1226 bool sle(uint64_t RHS) const { return !sgt(RHS); } 1227 1228 /// \brief Unsigned greather than comparison 1229 /// 1230 /// Regards both *this and RHS as unsigned quantities and compares them for 1231 /// the validity of the greater-than relationship. 1232 /// 1233 /// \returns true if *this > RHS when both are considered unsigned. 1234 bool ugt(const APInt &RHS) const { return !ule(RHS); } 1235 1236 /// \brief Unsigned greater than comparison 1237 /// 1238 /// Regards both *this as an unsigned quantity and compares it with RHS for 1239 /// the validity of the greater-than relationship. 1240 /// 1241 /// \returns true if *this > RHS when considered unsigned. 1242 bool ugt(uint64_t RHS) const { 1243 // Only need to check active bits if not a single word. 1244 return (!isSingleWord() && getActiveBits() > 64) || getZExtValue() > RHS; 1245 } 1246 1247 /// \brief Signed greather than comparison 1248 /// 1249 /// Regards both *this and RHS as signed quantities and compares them for the 1250 /// validity of the greater-than relationship. 1251 /// 1252 /// \returns true if *this > RHS when both are considered signed. 1253 bool sgt(const APInt &RHS) const { return !sle(RHS); } 1254 1255 /// \brief Signed greater than comparison 1256 /// 1257 /// Regards both *this as a signed quantity and compares it with RHS for 1258 /// the validity of the greater-than relationship. 1259 /// 1260 /// \returns true if *this > RHS when considered signed. 1261 bool sgt(int64_t RHS) const { 1262 return (!isSingleWord() && getMinSignedBits() > 64) ? !isNegative() 1263 : getSExtValue() > RHS; 1264 } 1265 1266 /// \brief Unsigned greater or equal comparison 1267 /// 1268 /// Regards both *this and RHS as unsigned quantities and compares them for 1269 /// validity of the greater-or-equal relationship. 1270 /// 1271 /// \returns true if *this >= RHS when both are considered unsigned. 1272 bool uge(const APInt &RHS) const { return !ult(RHS); } 1273 1274 /// \brief Unsigned greater or equal comparison 1275 /// 1276 /// Regards both *this as an unsigned quantity and compares it with RHS for 1277 /// the validity of the greater-or-equal relationship. 1278 /// 1279 /// \returns true if *this >= RHS when considered unsigned. 1280 bool uge(uint64_t RHS) const { return !ult(RHS); } 1281 1282 /// \brief Signed greather or equal comparison 1283 /// 1284 /// Regards both *this and RHS as signed quantities and compares them for 1285 /// validity of the greater-or-equal relationship. 1286 /// 1287 /// \returns true if *this >= RHS when both are considered signed. 1288 bool sge(const APInt &RHS) const { return !slt(RHS); } 1289 1290 /// \brief Signed greater or equal comparison 1291 /// 1292 /// Regards both *this as a signed quantity and compares it with RHS for 1293 /// the validity of the greater-or-equal relationship. 1294 /// 1295 /// \returns true if *this >= RHS when considered signed. 1296 bool sge(int64_t RHS) const { return !slt(RHS); } 1297 1298 /// This operation tests if there are any pairs of corresponding bits 1299 /// between this APInt and RHS that are both set. 1300 bool intersects(const APInt &RHS) const { 1301 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 1302 if (isSingleWord()) 1303 return (U.VAL & RHS.U.VAL) != 0; 1304 return intersectsSlowCase(RHS); 1305 } 1306 1307 /// This operation checks that all bits set in this APInt are also set in RHS. 1308 bool isSubsetOf(const APInt &RHS) const { 1309 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 1310 if (isSingleWord()) 1311 return (U.VAL & ~RHS.U.VAL) == 0; 1312 return isSubsetOfSlowCase(RHS); 1313 } 1314 1315 /// @} 1316 /// \name Resizing Operators 1317 /// @{ 1318 1319 /// \brief Truncate to new width. 1320 /// 1321 /// Truncate the APInt to a specified width. It is an error to specify a width 1322 /// that is greater than or equal to the current width. 1323 APInt trunc(unsigned width) const; 1324 1325 /// \brief Sign extend to a new width. 1326 /// 1327 /// This operation sign extends the APInt to a new width. If the high order 1328 /// bit is set, the fill on the left will be done with 1 bits, otherwise zero. 1329 /// It is an error to specify a width that is less than or equal to the 1330 /// current width. 1331 APInt sext(unsigned width) const; 1332 1333 /// \brief Zero extend to a new width. 1334 /// 1335 /// This operation zero extends the APInt to a new width. The high order bits 1336 /// are filled with 0 bits. It is an error to specify a width that is less 1337 /// than or equal to the current width. 1338 APInt zext(unsigned width) const; 1339 1340 /// \brief Sign extend or truncate to width 1341 /// 1342 /// Make this APInt have the bit width given by \p width. The value is sign 1343 /// extended, truncated, or left alone to make it that width. 1344 APInt sextOrTrunc(unsigned width) const; 1345 1346 /// \brief Zero extend or truncate to width 1347 /// 1348 /// Make this APInt have the bit width given by \p width. The value is zero 1349 /// extended, truncated, or left alone to make it that width. 1350 APInt zextOrTrunc(unsigned width) const; 1351 1352 /// \brief Sign extend or truncate to width 1353 /// 1354 /// Make this APInt have the bit width given by \p width. The value is sign 1355 /// extended, or left alone to make it that width. 1356 APInt sextOrSelf(unsigned width) const; 1357 1358 /// \brief Zero extend or truncate to width 1359 /// 1360 /// Make this APInt have the bit width given by \p width. The value is zero 1361 /// extended, or left alone to make it that width. 1362 APInt zextOrSelf(unsigned width) const; 1363 1364 /// @} 1365 /// \name Bit Manipulation Operators 1366 /// @{ 1367 1368 /// \brief Set every bit to 1. 1369 void setAllBits() { 1370 if (isSingleWord()) 1371 U.VAL = WORD_MAX; 1372 else 1373 // Set all the bits in all the words. 1374 memset(U.pVal, -1, getNumWords() * APINT_WORD_SIZE); 1375 // Clear the unused ones 1376 clearUnusedBits(); 1377 } 1378 1379 /// \brief Set a given bit to 1. 1380 /// 1381 /// Set the given bit to 1 whose position is given as "bitPosition". 1382 void setBit(unsigned BitPosition) { 1383 assert(BitPosition <= BitWidth && "BitPosition out of range"); 1384 WordType Mask = maskBit(BitPosition); 1385 if (isSingleWord()) 1386 U.VAL |= Mask; 1387 else 1388 U.pVal[whichWord(BitPosition)] |= Mask; 1389 } 1390 1391 /// Set the sign bit to 1. 1392 void setSignBit() { 1393 setBit(BitWidth - 1); 1394 } 1395 1396 /// Set the bits from loBit (inclusive) to hiBit (exclusive) to 1. 1397 void setBits(unsigned loBit, unsigned hiBit) { 1398 assert(hiBit <= BitWidth && "hiBit out of range"); 1399 assert(loBit <= BitWidth && "loBit out of range"); 1400 assert(loBit <= hiBit && "loBit greater than hiBit"); 1401 if (loBit == hiBit) 1402 return; 1403 if (loBit < APINT_BITS_PER_WORD && hiBit <= APINT_BITS_PER_WORD) { 1404 uint64_t mask = WORD_MAX >> (APINT_BITS_PER_WORD - (hiBit - loBit)); 1405 mask <<= loBit; 1406 if (isSingleWord()) 1407 U.VAL |= mask; 1408 else 1409 U.pVal[0] |= mask; 1410 } else { 1411 setBitsSlowCase(loBit, hiBit); 1412 } 1413 } 1414 1415 /// Set the top bits starting from loBit. 1416 void setBitsFrom(unsigned loBit) { 1417 return setBits(loBit, BitWidth); 1418 } 1419 1420 /// Set the bottom loBits bits. 1421 void setLowBits(unsigned loBits) { 1422 return setBits(0, loBits); 1423 } 1424 1425 /// Set the top hiBits bits. 1426 void setHighBits(unsigned hiBits) { 1427 return setBits(BitWidth - hiBits, BitWidth); 1428 } 1429 1430 /// \brief Set every bit to 0. 1431 void clearAllBits() { 1432 if (isSingleWord()) 1433 U.VAL = 0; 1434 else 1435 memset(U.pVal, 0, getNumWords() * APINT_WORD_SIZE); 1436 } 1437 1438 /// \brief Set a given bit to 0. 1439 /// 1440 /// Set the given bit to 0 whose position is given as "bitPosition". 1441 void clearBit(unsigned BitPosition) { 1442 assert(BitPosition <= BitWidth && "BitPosition out of range"); 1443 WordType Mask = ~maskBit(BitPosition); 1444 if (isSingleWord()) 1445 U.VAL &= Mask; 1446 else 1447 U.pVal[whichWord(BitPosition)] &= Mask; 1448 } 1449 1450 /// Set the sign bit to 0. 1451 void clearSignBit() { 1452 clearBit(BitWidth - 1); 1453 } 1454 1455 /// \brief Toggle every bit to its opposite value. 1456 void flipAllBits() { 1457 if (isSingleWord()) { 1458 U.VAL ^= WORD_MAX; 1459 clearUnusedBits(); 1460 } else { 1461 flipAllBitsSlowCase(); 1462 } 1463 } 1464 1465 /// \brief Toggles a given bit to its opposite value. 1466 /// 1467 /// Toggle a given bit to its opposite value whose position is given 1468 /// as "bitPosition". 1469 void flipBit(unsigned bitPosition); 1470 1471 /// Negate this APInt in place. 1472 void negate() { 1473 flipAllBits(); 1474 ++(*this); 1475 } 1476 1477 /// Insert the bits from a smaller APInt starting at bitPosition. 1478 void insertBits(const APInt &SubBits, unsigned bitPosition); 1479 1480 /// Return an APInt with the extracted bits [bitPosition,bitPosition+numBits). 1481 APInt extractBits(unsigned numBits, unsigned bitPosition) const; 1482 1483 /// @} 1484 /// \name Value Characterization Functions 1485 /// @{ 1486 1487 /// \brief Return the number of bits in the APInt. 1488 unsigned getBitWidth() const { return BitWidth; } 1489 1490 /// \brief Get the number of words. 1491 /// 1492 /// Here one word's bitwidth equals to that of uint64_t. 1493 /// 1494 /// \returns the number of words to hold the integer value of this APInt. 1495 unsigned getNumWords() const { return getNumWords(BitWidth); } 1496 1497 /// \brief Get the number of words. 1498 /// 1499 /// *NOTE* Here one word's bitwidth equals to that of uint64_t. 1500 /// 1501 /// \returns the number of words to hold the integer value with a given bit 1502 /// width. 1503 static unsigned getNumWords(unsigned BitWidth) { 1504 return ((uint64_t)BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD; 1505 } 1506 1507 /// \brief Compute the number of active bits in the value 1508 /// 1509 /// This function returns the number of active bits which is defined as the 1510 /// bit width minus the number of leading zeros. This is used in several 1511 /// computations to see how "wide" the value is. 1512 unsigned getActiveBits() const { return BitWidth - countLeadingZeros(); } 1513 1514 /// \brief Compute the number of active words in the value of this APInt. 1515 /// 1516 /// This is used in conjunction with getActiveData to extract the raw value of 1517 /// the APInt. 1518 unsigned getActiveWords() const { 1519 unsigned numActiveBits = getActiveBits(); 1520 return numActiveBits ? whichWord(numActiveBits - 1) + 1 : 1; 1521 } 1522 1523 /// \brief Get the minimum bit size for this signed APInt 1524 /// 1525 /// Computes the minimum bit width for this APInt while considering it to be a 1526 /// signed (and probably negative) value. If the value is not negative, this 1527 /// function returns the same value as getActiveBits()+1. Otherwise, it 1528 /// returns the smallest bit width that will retain the negative value. For 1529 /// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so 1530 /// for -1, this function will always return 1. 1531 unsigned getMinSignedBits() const { 1532 if (isNegative()) 1533 return BitWidth - countLeadingOnes() + 1; 1534 return getActiveBits() + 1; 1535 } 1536 1537 /// \brief Get zero extended value 1538 /// 1539 /// This method attempts to return the value of this APInt as a zero extended 1540 /// uint64_t. The bitwidth must be <= 64 or the value must fit within a 1541 /// uint64_t. Otherwise an assertion will result. 1542 uint64_t getZExtValue() const { 1543 if (isSingleWord()) 1544 return U.VAL; 1545 assert(getActiveBits() <= 64 && "Too many bits for uint64_t"); 1546 return U.pVal[0]; 1547 } 1548 1549 /// \brief Get sign extended value 1550 /// 1551 /// This method attempts to return the value of this APInt as a sign extended 1552 /// int64_t. The bit width must be <= 64 or the value must fit within an 1553 /// int64_t. Otherwise an assertion will result. 1554 int64_t getSExtValue() const { 1555 if (isSingleWord()) 1556 return SignExtend64(U.VAL, BitWidth); 1557 assert(getMinSignedBits() <= 64 && "Too many bits for int64_t"); 1558 return int64_t(U.pVal[0]); 1559 } 1560 1561 /// \brief Get bits required for string value. 1562 /// 1563 /// This method determines how many bits are required to hold the APInt 1564 /// equivalent of the string given by \p str. 1565 static unsigned getBitsNeeded(StringRef str, uint8_t radix); 1566 1567 /// \brief The APInt version of the countLeadingZeros functions in 1568 /// MathExtras.h. 1569 /// 1570 /// It counts the number of zeros from the most significant bit to the first 1571 /// one bit. 1572 /// 1573 /// \returns BitWidth if the value is zero, otherwise returns the number of 1574 /// zeros from the most significant bit to the first one bits. 1575 unsigned countLeadingZeros() const { 1576 if (isSingleWord()) { 1577 unsigned unusedBits = APINT_BITS_PER_WORD - BitWidth; 1578 return llvm::countLeadingZeros(U.VAL) - unusedBits; 1579 } 1580 return countLeadingZerosSlowCase(); 1581 } 1582 1583 /// \brief Count the number of leading one bits. 1584 /// 1585 /// This function is an APInt version of the countLeadingOnes 1586 /// functions in MathExtras.h. It counts the number of ones from the most 1587 /// significant bit to the first zero bit. 1588 /// 1589 /// \returns 0 if the high order bit is not set, otherwise returns the number 1590 /// of 1 bits from the most significant to the least 1591 unsigned countLeadingOnes() const { 1592 if (isSingleWord()) 1593 return llvm::countLeadingOnes(U.VAL << (APINT_BITS_PER_WORD - BitWidth)); 1594 return countLeadingOnesSlowCase(); 1595 } 1596 1597 /// Computes the number of leading bits of this APInt that are equal to its 1598 /// sign bit. 1599 unsigned getNumSignBits() const { 1600 return isNegative() ? countLeadingOnes() : countLeadingZeros(); 1601 } 1602 1603 /// \brief Count the number of trailing zero bits. 1604 /// 1605 /// This function is an APInt version of the countTrailingZeros 1606 /// functions in MathExtras.h. It counts the number of zeros from the least 1607 /// significant bit to the first set bit. 1608 /// 1609 /// \returns BitWidth if the value is zero, otherwise returns the number of 1610 /// zeros from the least significant bit to the first one bit. 1611 unsigned countTrailingZeros() const { 1612 if (isSingleWord()) 1613 return std::min(unsigned(llvm::countTrailingZeros(U.VAL)), BitWidth); 1614 return countTrailingZerosSlowCase(); 1615 } 1616 1617 /// \brief Count the number of trailing one bits. 1618 /// 1619 /// This function is an APInt version of the countTrailingOnes 1620 /// functions in MathExtras.h. It counts the number of ones from the least 1621 /// significant bit to the first zero bit. 1622 /// 1623 /// \returns BitWidth if the value is all ones, otherwise returns the number 1624 /// of ones from the least significant bit to the first zero bit. 1625 unsigned countTrailingOnes() const { 1626 if (isSingleWord()) 1627 return llvm::countTrailingOnes(U.VAL); 1628 return countTrailingOnesSlowCase(); 1629 } 1630 1631 /// \brief Count the number of bits set. 1632 /// 1633 /// This function is an APInt version of the countPopulation functions 1634 /// in MathExtras.h. It counts the number of 1 bits in the APInt value. 1635 /// 1636 /// \returns 0 if the value is zero, otherwise returns the number of set bits. 1637 unsigned countPopulation() const { 1638 if (isSingleWord()) 1639 return llvm::countPopulation(U.VAL); 1640 return countPopulationSlowCase(); 1641 } 1642 1643 /// @} 1644 /// \name Conversion Functions 1645 /// @{ 1646 void print(raw_ostream &OS, bool isSigned) const; 1647 1648 /// Converts an APInt to a string and append it to Str. Str is commonly a 1649 /// SmallString. 1650 void toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed, 1651 bool formatAsCLiteral = false) const; 1652 1653 /// Considers the APInt to be unsigned and converts it into a string in the 1654 /// radix given. The radix can be 2, 8, 10 16, or 36. 1655 void toStringUnsigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const { 1656 toString(Str, Radix, false, false); 1657 } 1658 1659 /// Considers the APInt to be signed and converts it into a string in the 1660 /// radix given. The radix can be 2, 8, 10, 16, or 36. 1661 void toStringSigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const { 1662 toString(Str, Radix, true, false); 1663 } 1664 1665 /// \brief Return the APInt as a std::string. 1666 /// 1667 /// Note that this is an inefficient method. It is better to pass in a 1668 /// SmallVector/SmallString to the methods above to avoid thrashing the heap 1669 /// for the string. 1670 std::string toString(unsigned Radix, bool Signed) const; 1671 1672 /// \returns a byte-swapped representation of this APInt Value. 1673 APInt byteSwap() const; 1674 1675 /// \returns the value with the bit representation reversed of this APInt 1676 /// Value. 1677 APInt reverseBits() const; 1678 1679 /// \brief Converts this APInt to a double value. 1680 double roundToDouble(bool isSigned) const; 1681 1682 /// \brief Converts this unsigned APInt to a double value. 1683 double roundToDouble() const { return roundToDouble(false); } 1684 1685 /// \brief Converts this signed APInt to a double value. 1686 double signedRoundToDouble() const { return roundToDouble(true); } 1687 1688 /// \brief Converts APInt bits to a double 1689 /// 1690 /// The conversion does not do a translation from integer to double, it just 1691 /// re-interprets the bits as a double. Note that it is valid to do this on 1692 /// any bit width. Exactly 64 bits will be translated. 1693 double bitsToDouble() const { 1694 return BitsToDouble(getWord(0)); 1695 } 1696 1697 /// \brief Converts APInt bits to a double 1698 /// 1699 /// The conversion does not do a translation from integer to float, it just 1700 /// re-interprets the bits as a float. Note that it is valid to do this on 1701 /// any bit width. Exactly 32 bits will be translated. 1702 float bitsToFloat() const { 1703 return BitsToFloat(getWord(0)); 1704 } 1705 1706 /// \brief Converts a double to APInt bits. 1707 /// 1708 /// The conversion does not do a translation from double to integer, it just 1709 /// re-interprets the bits of the double. 1710 static APInt doubleToBits(double V) { 1711 return APInt(sizeof(double) * CHAR_BIT, DoubleToBits(V)); 1712 } 1713 1714 /// \brief Converts a float to APInt bits. 1715 /// 1716 /// The conversion does not do a translation from float to integer, it just 1717 /// re-interprets the bits of the float. 1718 static APInt floatToBits(float V) { 1719 return APInt(sizeof(float) * CHAR_BIT, FloatToBits(V)); 1720 } 1721 1722 /// @} 1723 /// \name Mathematics Operations 1724 /// @{ 1725 1726 /// \returns the floor log base 2 of this APInt. 1727 unsigned logBase2() const { return getActiveBits() - 1; } 1728 1729 /// \returns the ceil log base 2 of this APInt. 1730 unsigned ceilLogBase2() const { 1731 APInt temp(*this); 1732 --temp; 1733 return temp.getActiveBits(); 1734 } 1735 1736 /// \returns the nearest log base 2 of this APInt. Ties round up. 1737 /// 1738 /// NOTE: When we have a BitWidth of 1, we define: 1739 /// 1740 /// log2(0) = UINT32_MAX 1741 /// log2(1) = 0 1742 /// 1743 /// to get around any mathematical concerns resulting from 1744 /// referencing 2 in a space where 2 does no exist. 1745 unsigned nearestLogBase2() const { 1746 // Special case when we have a bitwidth of 1. If VAL is 1, then we 1747 // get 0. If VAL is 0, we get WORD_MAX which gets truncated to 1748 // UINT32_MAX. 1749 if (BitWidth == 1) 1750 return U.VAL - 1; 1751 1752 // Handle the zero case. 1753 if (isNullValue()) 1754 return UINT32_MAX; 1755 1756 // The non-zero case is handled by computing: 1757 // 1758 // nearestLogBase2(x) = logBase2(x) + x[logBase2(x)-1]. 1759 // 1760 // where x[i] is referring to the value of the ith bit of x. 1761 unsigned lg = logBase2(); 1762 return lg + unsigned((*this)[lg - 1]); 1763 } 1764 1765 /// \returns the log base 2 of this APInt if its an exact power of two, -1 1766 /// otherwise 1767 int32_t exactLogBase2() const { 1768 if (!isPowerOf2()) 1769 return -1; 1770 return logBase2(); 1771 } 1772 1773 /// \brief Compute the square root 1774 APInt sqrt() const; 1775 1776 /// \brief Get the absolute value; 1777 /// 1778 /// If *this is < 0 then return -(*this), otherwise *this; 1779 APInt abs() const { 1780 if (isNegative()) 1781 return -(*this); 1782 return *this; 1783 } 1784 1785 /// \returns the multiplicative inverse for a given modulo. 1786 APInt multiplicativeInverse(const APInt &modulo) const; 1787 1788 /// @} 1789 /// \name Support for division by constant 1790 /// @{ 1791 1792 /// Calculate the magic number for signed division by a constant. 1793 struct ms; 1794 ms magic() const; 1795 1796 /// Calculate the magic number for unsigned division by a constant. 1797 struct mu; 1798 mu magicu(unsigned LeadingZeros = 0) const; 1799 1800 /// @} 1801 /// \name Building-block Operations for APInt and APFloat 1802 /// @{ 1803 1804 // These building block operations operate on a representation of arbitrary 1805 // precision, two's-complement, bignum integer values. They should be 1806 // sufficient to implement APInt and APFloat bignum requirements. Inputs are 1807 // generally a pointer to the base of an array of integer parts, representing 1808 // an unsigned bignum, and a count of how many parts there are. 1809 1810 /// Sets the least significant part of a bignum to the input value, and zeroes 1811 /// out higher parts. 1812 static void tcSet(WordType *, WordType, unsigned); 1813 1814 /// Assign one bignum to another. 1815 static void tcAssign(WordType *, const WordType *, unsigned); 1816 1817 /// Returns true if a bignum is zero, false otherwise. 1818 static bool tcIsZero(const WordType *, unsigned); 1819 1820 /// Extract the given bit of a bignum; returns 0 or 1. Zero-based. 1821 static int tcExtractBit(const WordType *, unsigned bit); 1822 1823 /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to 1824 /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least 1825 /// significant bit of DST. All high bits above srcBITS in DST are 1826 /// zero-filled. 1827 static void tcExtract(WordType *, unsigned dstCount, 1828 const WordType *, unsigned srcBits, 1829 unsigned srcLSB); 1830 1831 /// Set the given bit of a bignum. Zero-based. 1832 static void tcSetBit(WordType *, unsigned bit); 1833 1834 /// Clear the given bit of a bignum. Zero-based. 1835 static void tcClearBit(WordType *, unsigned bit); 1836 1837 /// Returns the bit number of the least or most significant set bit of a 1838 /// number. If the input number has no bits set -1U is returned. 1839 static unsigned tcLSB(const WordType *, unsigned n); 1840 static unsigned tcMSB(const WordType *parts, unsigned n); 1841 1842 /// Negate a bignum in-place. 1843 static void tcNegate(WordType *, unsigned); 1844 1845 /// DST += RHS + CARRY where CARRY is zero or one. Returns the carry flag. 1846 static WordType tcAdd(WordType *, const WordType *, 1847 WordType carry, unsigned); 1848 /// DST += RHS. Returns the carry flag. 1849 static WordType tcAddPart(WordType *, WordType, unsigned); 1850 1851 /// DST -= RHS + CARRY where CARRY is zero or one. Returns the carry flag. 1852 static WordType tcSubtract(WordType *, const WordType *, 1853 WordType carry, unsigned); 1854 /// DST -= RHS. Returns the carry flag. 1855 static WordType tcSubtractPart(WordType *, WordType, unsigned); 1856 1857 /// DST += SRC * MULTIPLIER + PART if add is true 1858 /// DST = SRC * MULTIPLIER + PART if add is false 1859 /// 1860 /// Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC they must 1861 /// start at the same point, i.e. DST == SRC. 1862 /// 1863 /// If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is returned. 1864 /// Otherwise DST is filled with the least significant DSTPARTS parts of the 1865 /// result, and if all of the omitted higher parts were zero return zero, 1866 /// otherwise overflow occurred and return one. 1867 static int tcMultiplyPart(WordType *dst, const WordType *src, 1868 WordType multiplier, WordType carry, 1869 unsigned srcParts, unsigned dstParts, 1870 bool add); 1871 1872 /// DST = LHS * RHS, where DST has the same width as the operands and is 1873 /// filled with the least significant parts of the result. Returns one if 1874 /// overflow occurred, otherwise zero. DST must be disjoint from both 1875 /// operands. 1876 static int tcMultiply(WordType *, const WordType *, const WordType *, 1877 unsigned); 1878 1879 /// DST = LHS * RHS, where DST has width the sum of the widths of the 1880 /// operands. No overflow occurs. DST must be disjoint from both operands. 1881 static void tcFullMultiply(WordType *, const WordType *, 1882 const WordType *, unsigned, unsigned); 1883 1884 /// If RHS is zero LHS and REMAINDER are left unchanged, return one. 1885 /// Otherwise set LHS to LHS / RHS with the fractional part discarded, set 1886 /// REMAINDER to the remainder, return zero. i.e. 1887 /// 1888 /// OLD_LHS = RHS * LHS + REMAINDER 1889 /// 1890 /// SCRATCH is a bignum of the same size as the operands and result for use by 1891 /// the routine; its contents need not be initialized and are destroyed. LHS, 1892 /// REMAINDER and SCRATCH must be distinct. 1893 static int tcDivide(WordType *lhs, const WordType *rhs, 1894 WordType *remainder, WordType *scratch, 1895 unsigned parts); 1896 1897 /// Shift a bignum left Count bits. Shifted in bits are zero. There are no 1898 /// restrictions on Count. 1899 static void tcShiftLeft(WordType *, unsigned Words, unsigned Count); 1900 1901 /// Shift a bignum right Count bits. Shifted in bits are zero. There are no 1902 /// restrictions on Count. 1903 static void tcShiftRight(WordType *, unsigned Words, unsigned Count); 1904 1905 /// The obvious AND, OR and XOR and complement operations. 1906 static void tcAnd(WordType *, const WordType *, unsigned); 1907 static void tcOr(WordType *, const WordType *, unsigned); 1908 static void tcXor(WordType *, const WordType *, unsigned); 1909 static void tcComplement(WordType *, unsigned); 1910 1911 /// Comparison (unsigned) of two bignums. 1912 static int tcCompare(const WordType *, const WordType *, unsigned); 1913 1914 /// Increment a bignum in-place. Return the carry flag. 1915 static WordType tcIncrement(WordType *dst, unsigned parts) { 1916 return tcAddPart(dst, 1, parts); 1917 } 1918 1919 /// Decrement a bignum in-place. Return the borrow flag. 1920 static WordType tcDecrement(WordType *dst, unsigned parts) { 1921 return tcSubtractPart(dst, 1, parts); 1922 } 1923 1924 /// Set the least significant BITS and clear the rest. 1925 static void tcSetLeastSignificantBits(WordType *, unsigned, unsigned bits); 1926 1927 /// \brief debug method 1928 void dump() const; 1929 1930 /// @} 1931}; 1932 1933/// Magic data for optimising signed division by a constant. 1934struct APInt::ms { 1935 APInt m; ///< magic number 1936 unsigned s; ///< shift amount 1937}; 1938 1939/// Magic data for optimising unsigned division by a constant. 1940struct APInt::mu { 1941 APInt m; ///< magic number 1942 bool a; ///< add indicator 1943 unsigned s; ///< shift amount 1944}; 1945 1946inline bool operator==(uint64_t V1, const APInt &V2) { return V2 == V1; } 1947 1948inline bool operator!=(uint64_t V1, const APInt &V2) { return V2 != V1; } 1949 1950/// \brief Unary bitwise complement operator. 1951/// 1952/// \returns an APInt that is the bitwise complement of \p v. 1953inline APInt operator~(APInt v) { 1954 v.flipAllBits(); 1955 return v; 1956} 1957 1958inline APInt operator&(APInt a, const APInt &b) { 1959 a &= b; 1960 return a; 1961} 1962 1963inline APInt operator&(const APInt &a, APInt &&b) { 1964 b &= a; 1965 return std::move(b); 1966} 1967 1968inline APInt operator&(APInt a, uint64_t RHS) { 1969 a &= RHS; 1970 return a; 1971} 1972 1973inline APInt operator&(uint64_t LHS, APInt b) { 1974 b &= LHS; 1975 return b; 1976} 1977 1978inline APInt operator|(APInt a, const APInt &b) { 1979 a |= b; 1980 return a; 1981} 1982 1983inline APInt operator|(const APInt &a, APInt &&b) { 1984 b |= a; 1985 return std::move(b); 1986} 1987 1988inline APInt operator|(APInt a, uint64_t RHS) { 1989 a |= RHS; 1990 return a; 1991} 1992 1993inline APInt operator|(uint64_t LHS, APInt b) { 1994 b |= LHS; 1995 return b; 1996} 1997 1998inline APInt operator^(APInt a, const APInt &b) { 1999 a ^= b; 2000 return a; 2001} 2002 2003inline APInt operator^(const APInt &a, APInt &&b) { 2004 b ^= a; 2005 return std::move(b); 2006} 2007 2008inline APInt operator^(APInt a, uint64_t RHS) { 2009 a ^= RHS; 2010 return a; 2011} 2012 2013inline APInt operator^(uint64_t LHS, APInt b) { 2014 b ^= LHS; 2015 return b; 2016} 2017 2018inline raw_ostream &operator<<(raw_ostream &OS, const APInt &I) { 2019 I.print(OS, true); 2020 return OS; 2021} 2022 2023inline APInt operator-(APInt v) { 2024 v.negate(); 2025 return v; 2026} 2027 2028inline APInt operator+(APInt a, const APInt &b) { 2029 a += b; 2030 return a; 2031} 2032 2033inline APInt operator+(const APInt &a, APInt &&b) { 2034 b += a; 2035 return std::move(b); 2036} 2037 2038inline APInt operator+(APInt a, uint64_t RHS) { 2039 a += RHS; 2040 return a; 2041} 2042 2043inline APInt operator+(uint64_t LHS, APInt b) { 2044 b += LHS; 2045 return b; 2046} 2047 2048inline APInt operator-(APInt a, const APInt &b) { 2049 a -= b; 2050 return a; 2051} 2052 2053inline APInt operator-(const APInt &a, APInt &&b) { 2054 b.negate(); 2055 b += a; 2056 return std::move(b); 2057} 2058 2059inline APInt operator-(APInt a, uint64_t RHS) { 2060 a -= RHS; 2061 return a; 2062} 2063 2064inline APInt operator-(uint64_t LHS, APInt b) { 2065 b.negate(); 2066 b += LHS; 2067 return b; 2068} 2069 2070inline APInt operator*(APInt a, uint64_t RHS) { 2071 a *= RHS; 2072 return a; 2073} 2074 2075inline APInt operator*(uint64_t LHS, APInt b) { 2076 b *= LHS; 2077 return b; 2078} 2079 2080 2081namespace APIntOps { 2082 2083/// \brief Determine the smaller of two APInts considered to be signed. 2084inline const APInt &smin(const APInt &A, const APInt &B) { 2085 return A.slt(B) ? A : B; 2086} 2087 2088/// \brief Determine the larger of two APInts considered to be signed. 2089inline const APInt &smax(const APInt &A, const APInt &B) { 2090 return A.sgt(B) ? A : B; 2091} 2092 2093/// \brief Determine the smaller of two APInts considered to be signed. 2094inline const APInt &umin(const APInt &A, const APInt &B) { 2095 return A.ult(B) ? A : B; 2096} 2097 2098/// \brief Determine the larger of two APInts considered to be unsigned. 2099inline const APInt &umax(const APInt &A, const APInt &B) { 2100 return A.ugt(B) ? A : B; 2101} 2102 2103/// \brief Compute GCD of two unsigned APInt values. 2104/// 2105/// This function returns the greatest common divisor of the two APInt values 2106/// using Stein's algorithm. 2107/// 2108/// \returns the greatest common divisor of A and B. 2109APInt GreatestCommonDivisor(APInt A, APInt B); 2110 2111/// \brief Converts the given APInt to a double value. 2112/// 2113/// Treats the APInt as an unsigned value for conversion purposes. 2114inline double RoundAPIntToDouble(const APInt &APIVal) { 2115 return APIVal.roundToDouble(); 2116} 2117 2118/// \brief Converts the given APInt to a double value. 2119/// 2120/// Treats the APInt as a signed value for conversion purposes. 2121inline double RoundSignedAPIntToDouble(const APInt &APIVal) { 2122 return APIVal.signedRoundToDouble(); 2123} 2124 2125/// \brief Converts the given APInt to a float vlalue. 2126inline float RoundAPIntToFloat(const APInt &APIVal) { 2127 return float(RoundAPIntToDouble(APIVal)); 2128} 2129 2130/// \brief Converts the given APInt to a float value. 2131/// 2132/// Treast the APInt as a signed value for conversion purposes. 2133inline float RoundSignedAPIntToFloat(const APInt &APIVal) { 2134 return float(APIVal.signedRoundToDouble()); 2135} 2136 2137/// \brief Converts the given double value into a APInt. 2138/// 2139/// This function convert a double value to an APInt value. 2140APInt RoundDoubleToAPInt(double Double, unsigned width); 2141 2142/// \brief Converts a float value into a APInt. 2143/// 2144/// Converts a float value into an APInt value. 2145inline APInt RoundFloatToAPInt(float Float, unsigned width) { 2146 return RoundDoubleToAPInt(double(Float), width); 2147} 2148 2149} // End of APIntOps namespace 2150 2151// See friend declaration above. This additional declaration is required in 2152// order to compile LLVM with IBM xlC compiler. 2153hash_code hash_value(const APInt &Arg); 2154} // End of llvm namespace 2155 2156#endif 2157