1//===- llvm/Analysis/LoopInfoImpl.h - Natural Loop Calculator ---*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This is the generic implementation of LoopInfo used for both Loops and
11// MachineLoops.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_ANALYSIS_LOOPINFOIMPL_H
16#define LLVM_ANALYSIS_LOOPINFOIMPL_H
17
18#include "llvm/ADT/DepthFirstIterator.h"
19#include "llvm/ADT/PostOrderIterator.h"
20#include "llvm/ADT/STLExtras.h"
21#include "llvm/ADT/SetVector.h"
22#include "llvm/Analysis/LoopInfo.h"
23#include "llvm/IR/Dominators.h"
24
25namespace llvm {
26
27//===----------------------------------------------------------------------===//
28// APIs for simple analysis of the loop. See header notes.
29
30/// getExitingBlocks - Return all blocks inside the loop that have successors
31/// outside of the loop.  These are the blocks _inside of the current loop_
32/// which branch out.  The returned list is always unique.
33///
34template <class BlockT, class LoopT>
35void LoopBase<BlockT, LoopT>::getExitingBlocks(
36    SmallVectorImpl<BlockT *> &ExitingBlocks) const {
37  assert(!isInvalid() && "Loop not in a valid state!");
38  for (const auto BB : blocks())
39    for (const auto &Succ : children<BlockT *>(BB))
40      if (!contains(Succ)) {
41        // Not in current loop? It must be an exit block.
42        ExitingBlocks.push_back(BB);
43        break;
44      }
45}
46
47/// getExitingBlock - If getExitingBlocks would return exactly one block,
48/// return that block. Otherwise return null.
49template <class BlockT, class LoopT>
50BlockT *LoopBase<BlockT, LoopT>::getExitingBlock() const {
51  assert(!isInvalid() && "Loop not in a valid state!");
52  SmallVector<BlockT *, 8> ExitingBlocks;
53  getExitingBlocks(ExitingBlocks);
54  if (ExitingBlocks.size() == 1)
55    return ExitingBlocks[0];
56  return nullptr;
57}
58
59/// getExitBlocks - Return all of the successor blocks of this loop.  These
60/// are the blocks _outside of the current loop_ which are branched to.
61///
62template <class BlockT, class LoopT>
63void LoopBase<BlockT, LoopT>::getExitBlocks(
64    SmallVectorImpl<BlockT *> &ExitBlocks) const {
65  assert(!isInvalid() && "Loop not in a valid state!");
66  for (const auto BB : blocks())
67    for (const auto &Succ : children<BlockT *>(BB))
68      if (!contains(Succ))
69        // Not in current loop? It must be an exit block.
70        ExitBlocks.push_back(Succ);
71}
72
73/// getExitBlock - If getExitBlocks would return exactly one block,
74/// return that block. Otherwise return null.
75template <class BlockT, class LoopT>
76BlockT *LoopBase<BlockT, LoopT>::getExitBlock() const {
77  assert(!isInvalid() && "Loop not in a valid state!");
78  SmallVector<BlockT *, 8> ExitBlocks;
79  getExitBlocks(ExitBlocks);
80  if (ExitBlocks.size() == 1)
81    return ExitBlocks[0];
82  return nullptr;
83}
84
85/// getExitEdges - Return all pairs of (_inside_block_,_outside_block_).
86template <class BlockT, class LoopT>
87void LoopBase<BlockT, LoopT>::getExitEdges(
88    SmallVectorImpl<Edge> &ExitEdges) const {
89  assert(!isInvalid() && "Loop not in a valid state!");
90  for (const auto BB : blocks())
91    for (const auto &Succ : children<BlockT *>(BB))
92      if (!contains(Succ))
93        // Not in current loop? It must be an exit block.
94        ExitEdges.emplace_back(BB, Succ);
95}
96
97/// getLoopPreheader - If there is a preheader for this loop, return it.  A
98/// loop has a preheader if there is only one edge to the header of the loop
99/// from outside of the loop and it is legal to hoist instructions into the
100/// predecessor. If this is the case, the block branching to the header of the
101/// loop is the preheader node.
102///
103/// This method returns null if there is no preheader for the loop.
104///
105template <class BlockT, class LoopT>
106BlockT *LoopBase<BlockT, LoopT>::getLoopPreheader() const {
107  assert(!isInvalid() && "Loop not in a valid state!");
108  // Keep track of nodes outside the loop branching to the header...
109  BlockT *Out = getLoopPredecessor();
110  if (!Out)
111    return nullptr;
112
113  // Make sure we are allowed to hoist instructions into the predecessor.
114  if (!Out->isLegalToHoistInto())
115    return nullptr;
116
117  // Make sure there is only one exit out of the preheader.
118  typedef GraphTraits<BlockT *> BlockTraits;
119  typename BlockTraits::ChildIteratorType SI = BlockTraits::child_begin(Out);
120  ++SI;
121  if (SI != BlockTraits::child_end(Out))
122    return nullptr; // Multiple exits from the block, must not be a preheader.
123
124  // The predecessor has exactly one successor, so it is a preheader.
125  return Out;
126}
127
128/// getLoopPredecessor - If the given loop's header has exactly one unique
129/// predecessor outside the loop, return it. Otherwise return null.
130/// This is less strict that the loop "preheader" concept, which requires
131/// the predecessor to have exactly one successor.
132///
133template <class BlockT, class LoopT>
134BlockT *LoopBase<BlockT, LoopT>::getLoopPredecessor() const {
135  assert(!isInvalid() && "Loop not in a valid state!");
136  // Keep track of nodes outside the loop branching to the header...
137  BlockT *Out = nullptr;
138
139  // Loop over the predecessors of the header node...
140  BlockT *Header = getHeader();
141  for (const auto Pred : children<Inverse<BlockT *>>(Header)) {
142    if (!contains(Pred)) { // If the block is not in the loop...
143      if (Out && Out != Pred)
144        return nullptr; // Multiple predecessors outside the loop
145      Out = Pred;
146    }
147  }
148
149  // Make sure there is only one exit out of the preheader.
150  assert(Out && "Header of loop has no predecessors from outside loop?");
151  return Out;
152}
153
154/// getLoopLatch - If there is a single latch block for this loop, return it.
155/// A latch block is a block that contains a branch back to the header.
156template <class BlockT, class LoopT>
157BlockT *LoopBase<BlockT, LoopT>::getLoopLatch() const {
158  assert(!isInvalid() && "Loop not in a valid state!");
159  BlockT *Header = getHeader();
160  BlockT *Latch = nullptr;
161  for (const auto Pred : children<Inverse<BlockT *>>(Header)) {
162    if (contains(Pred)) {
163      if (Latch)
164        return nullptr;
165      Latch = Pred;
166    }
167  }
168
169  return Latch;
170}
171
172//===----------------------------------------------------------------------===//
173// APIs for updating loop information after changing the CFG
174//
175
176/// addBasicBlockToLoop - This method is used by other analyses to update loop
177/// information.  NewBB is set to be a new member of the current loop.
178/// Because of this, it is added as a member of all parent loops, and is added
179/// to the specified LoopInfo object as being in the current basic block.  It
180/// is not valid to replace the loop header with this method.
181///
182template <class BlockT, class LoopT>
183void LoopBase<BlockT, LoopT>::addBasicBlockToLoop(
184    BlockT *NewBB, LoopInfoBase<BlockT, LoopT> &LIB) {
185  assert(!isInvalid() && "Loop not in a valid state!");
186#ifndef NDEBUG
187  if (!Blocks.empty()) {
188    auto SameHeader = LIB[getHeader()];
189    assert(contains(SameHeader) && getHeader() == SameHeader->getHeader() &&
190           "Incorrect LI specified for this loop!");
191  }
192#endif
193  assert(NewBB && "Cannot add a null basic block to the loop!");
194  assert(!LIB[NewBB] && "BasicBlock already in the loop!");
195
196  LoopT *L = static_cast<LoopT *>(this);
197
198  // Add the loop mapping to the LoopInfo object...
199  LIB.BBMap[NewBB] = L;
200
201  // Add the basic block to this loop and all parent loops...
202  while (L) {
203    L->addBlockEntry(NewBB);
204    L = L->getParentLoop();
205  }
206}
207
208/// replaceChildLoopWith - This is used when splitting loops up.  It replaces
209/// the OldChild entry in our children list with NewChild, and updates the
210/// parent pointer of OldChild to be null and the NewChild to be this loop.
211/// This updates the loop depth of the new child.
212template <class BlockT, class LoopT>
213void LoopBase<BlockT, LoopT>::replaceChildLoopWith(LoopT *OldChild,
214                                                   LoopT *NewChild) {
215  assert(!isInvalid() && "Loop not in a valid state!");
216  assert(OldChild->ParentLoop == this && "This loop is already broken!");
217  assert(!NewChild->ParentLoop && "NewChild already has a parent!");
218  typename std::vector<LoopT *>::iterator I = find(SubLoops, OldChild);
219  assert(I != SubLoops.end() && "OldChild not in loop!");
220  *I = NewChild;
221  OldChild->ParentLoop = nullptr;
222  NewChild->ParentLoop = static_cast<LoopT *>(this);
223}
224
225/// verifyLoop - Verify loop structure
226template <class BlockT, class LoopT>
227void LoopBase<BlockT, LoopT>::verifyLoop() const {
228  assert(!isInvalid() && "Loop not in a valid state!");
229#ifndef NDEBUG
230  assert(!Blocks.empty() && "Loop header is missing");
231
232  // Setup for using a depth-first iterator to visit every block in the loop.
233  SmallVector<BlockT *, 8> ExitBBs;
234  getExitBlocks(ExitBBs);
235  df_iterator_default_set<BlockT *> VisitSet;
236  VisitSet.insert(ExitBBs.begin(), ExitBBs.end());
237  df_ext_iterator<BlockT *, df_iterator_default_set<BlockT *>>
238      BI = df_ext_begin(getHeader(), VisitSet),
239      BE = df_ext_end(getHeader(), VisitSet);
240
241  // Keep track of the BBs visited.
242  SmallPtrSet<BlockT *, 8> VisitedBBs;
243
244  // Check the individual blocks.
245  for (; BI != BE; ++BI) {
246    BlockT *BB = *BI;
247
248    assert(std::any_of(GraphTraits<BlockT *>::child_begin(BB),
249                       GraphTraits<BlockT *>::child_end(BB),
250                       [&](BlockT *B) { return contains(B); }) &&
251           "Loop block has no in-loop successors!");
252
253    assert(std::any_of(GraphTraits<Inverse<BlockT *>>::child_begin(BB),
254                       GraphTraits<Inverse<BlockT *>>::child_end(BB),
255                       [&](BlockT *B) { return contains(B); }) &&
256           "Loop block has no in-loop predecessors!");
257
258    SmallVector<BlockT *, 2> OutsideLoopPreds;
259    std::for_each(GraphTraits<Inverse<BlockT *>>::child_begin(BB),
260                  GraphTraits<Inverse<BlockT *>>::child_end(BB),
261                  [&](BlockT *B) {
262                    if (!contains(B))
263                      OutsideLoopPreds.push_back(B);
264                  });
265
266    if (BB == getHeader()) {
267      assert(!OutsideLoopPreds.empty() && "Loop is unreachable!");
268    } else if (!OutsideLoopPreds.empty()) {
269      // A non-header loop shouldn't be reachable from outside the loop,
270      // though it is permitted if the predecessor is not itself actually
271      // reachable.
272      BlockT *EntryBB = &BB->getParent()->front();
273      for (BlockT *CB : depth_first(EntryBB))
274        for (unsigned i = 0, e = OutsideLoopPreds.size(); i != e; ++i)
275          assert(CB != OutsideLoopPreds[i] &&
276                 "Loop has multiple entry points!");
277    }
278    assert(BB != &getHeader()->getParent()->front() &&
279           "Loop contains function entry block!");
280
281    VisitedBBs.insert(BB);
282  }
283
284  if (VisitedBBs.size() != getNumBlocks()) {
285    dbgs() << "The following blocks are unreachable in the loop: ";
286    for (auto BB : Blocks) {
287      if (!VisitedBBs.count(BB)) {
288        dbgs() << *BB << "\n";
289      }
290    }
291    assert(false && "Unreachable block in loop");
292  }
293
294  // Check the subloops.
295  for (iterator I = begin(), E = end(); I != E; ++I)
296    // Each block in each subloop should be contained within this loop.
297    for (block_iterator BI = (*I)->block_begin(), BE = (*I)->block_end();
298         BI != BE; ++BI) {
299      assert(contains(*BI) &&
300             "Loop does not contain all the blocks of a subloop!");
301    }
302
303  // Check the parent loop pointer.
304  if (ParentLoop) {
305    assert(is_contained(*ParentLoop, this) &&
306           "Loop is not a subloop of its parent!");
307  }
308#endif
309}
310
311/// verifyLoop - Verify loop structure of this loop and all nested loops.
312template <class BlockT, class LoopT>
313void LoopBase<BlockT, LoopT>::verifyLoopNest(
314    DenseSet<const LoopT *> *Loops) const {
315  assert(!isInvalid() && "Loop not in a valid state!");
316  Loops->insert(static_cast<const LoopT *>(this));
317  // Verify this loop.
318  verifyLoop();
319  // Verify the subloops.
320  for (iterator I = begin(), E = end(); I != E; ++I)
321    (*I)->verifyLoopNest(Loops);
322}
323
324template <class BlockT, class LoopT>
325void LoopBase<BlockT, LoopT>::print(raw_ostream &OS, unsigned Depth,
326                                    bool Verbose) const {
327  OS.indent(Depth * 2) << "Loop at depth " << getLoopDepth() << " containing: ";
328
329  BlockT *H = getHeader();
330  for (unsigned i = 0; i < getBlocks().size(); ++i) {
331    BlockT *BB = getBlocks()[i];
332    if (!Verbose) {
333      if (i)
334        OS << ",";
335      BB->printAsOperand(OS, false);
336    } else
337      OS << "\n";
338
339    if (BB == H)
340      OS << "<header>";
341    if (isLoopLatch(BB))
342      OS << "<latch>";
343    if (isLoopExiting(BB))
344      OS << "<exiting>";
345    if (Verbose)
346      BB->print(OS);
347  }
348  OS << "\n";
349
350  for (iterator I = begin(), E = end(); I != E; ++I)
351    (*I)->print(OS, Depth + 2);
352}
353
354//===----------------------------------------------------------------------===//
355/// Stable LoopInfo Analysis - Build a loop tree using stable iterators so the
356/// result does / not depend on use list (block predecessor) order.
357///
358
359/// Discover a subloop with the specified backedges such that: All blocks within
360/// this loop are mapped to this loop or a subloop. And all subloops within this
361/// loop have their parent loop set to this loop or a subloop.
362template <class BlockT, class LoopT>
363static void discoverAndMapSubloop(LoopT *L, ArrayRef<BlockT *> Backedges,
364                                  LoopInfoBase<BlockT, LoopT> *LI,
365                                  const DomTreeBase<BlockT> &DomTree) {
366  typedef GraphTraits<Inverse<BlockT *>> InvBlockTraits;
367
368  unsigned NumBlocks = 0;
369  unsigned NumSubloops = 0;
370
371  // Perform a backward CFG traversal using a worklist.
372  std::vector<BlockT *> ReverseCFGWorklist(Backedges.begin(), Backedges.end());
373  while (!ReverseCFGWorklist.empty()) {
374    BlockT *PredBB = ReverseCFGWorklist.back();
375    ReverseCFGWorklist.pop_back();
376
377    LoopT *Subloop = LI->getLoopFor(PredBB);
378    if (!Subloop) {
379      if (!DomTree.isReachableFromEntry(PredBB))
380        continue;
381
382      // This is an undiscovered block. Map it to the current loop.
383      LI->changeLoopFor(PredBB, L);
384      ++NumBlocks;
385      if (PredBB == L->getHeader())
386        continue;
387      // Push all block predecessors on the worklist.
388      ReverseCFGWorklist.insert(ReverseCFGWorklist.end(),
389                                InvBlockTraits::child_begin(PredBB),
390                                InvBlockTraits::child_end(PredBB));
391    } else {
392      // This is a discovered block. Find its outermost discovered loop.
393      while (LoopT *Parent = Subloop->getParentLoop())
394        Subloop = Parent;
395
396      // If it is already discovered to be a subloop of this loop, continue.
397      if (Subloop == L)
398        continue;
399
400      // Discover a subloop of this loop.
401      Subloop->setParentLoop(L);
402      ++NumSubloops;
403      NumBlocks += Subloop->getBlocks().capacity();
404      PredBB = Subloop->getHeader();
405      // Continue traversal along predecessors that are not loop-back edges from
406      // within this subloop tree itself. Note that a predecessor may directly
407      // reach another subloop that is not yet discovered to be a subloop of
408      // this loop, which we must traverse.
409      for (const auto Pred : children<Inverse<BlockT *>>(PredBB)) {
410        if (LI->getLoopFor(Pred) != Subloop)
411          ReverseCFGWorklist.push_back(Pred);
412      }
413    }
414  }
415  L->getSubLoopsVector().reserve(NumSubloops);
416  L->reserveBlocks(NumBlocks);
417}
418
419/// Populate all loop data in a stable order during a single forward DFS.
420template <class BlockT, class LoopT> class PopulateLoopsDFS {
421  typedef GraphTraits<BlockT *> BlockTraits;
422  typedef typename BlockTraits::ChildIteratorType SuccIterTy;
423
424  LoopInfoBase<BlockT, LoopT> *LI;
425
426public:
427  PopulateLoopsDFS(LoopInfoBase<BlockT, LoopT> *li) : LI(li) {}
428
429  void traverse(BlockT *EntryBlock);
430
431protected:
432  void insertIntoLoop(BlockT *Block);
433};
434
435/// Top-level driver for the forward DFS within the loop.
436template <class BlockT, class LoopT>
437void PopulateLoopsDFS<BlockT, LoopT>::traverse(BlockT *EntryBlock) {
438  for (BlockT *BB : post_order(EntryBlock))
439    insertIntoLoop(BB);
440}
441
442/// Add a single Block to its ancestor loops in PostOrder. If the block is a
443/// subloop header, add the subloop to its parent in PostOrder, then reverse the
444/// Block and Subloop vectors of the now complete subloop to achieve RPO.
445template <class BlockT, class LoopT>
446void PopulateLoopsDFS<BlockT, LoopT>::insertIntoLoop(BlockT *Block) {
447  LoopT *Subloop = LI->getLoopFor(Block);
448  if (Subloop && Block == Subloop->getHeader()) {
449    // We reach this point once per subloop after processing all the blocks in
450    // the subloop.
451    if (Subloop->getParentLoop())
452      Subloop->getParentLoop()->getSubLoopsVector().push_back(Subloop);
453    else
454      LI->addTopLevelLoop(Subloop);
455
456    // For convenience, Blocks and Subloops are inserted in postorder. Reverse
457    // the lists, except for the loop header, which is always at the beginning.
458    Subloop->reverseBlock(1);
459    std::reverse(Subloop->getSubLoopsVector().begin(),
460                 Subloop->getSubLoopsVector().end());
461
462    Subloop = Subloop->getParentLoop();
463  }
464  for (; Subloop; Subloop = Subloop->getParentLoop())
465    Subloop->addBlockEntry(Block);
466}
467
468/// Analyze LoopInfo discovers loops during a postorder DominatorTree traversal
469/// interleaved with backward CFG traversals within each subloop
470/// (discoverAndMapSubloop). The backward traversal skips inner subloops, so
471/// this part of the algorithm is linear in the number of CFG edges. Subloop and
472/// Block vectors are then populated during a single forward CFG traversal
473/// (PopulateLoopDFS).
474///
475/// During the two CFG traversals each block is seen three times:
476/// 1) Discovered and mapped by a reverse CFG traversal.
477/// 2) Visited during a forward DFS CFG traversal.
478/// 3) Reverse-inserted in the loop in postorder following forward DFS.
479///
480/// The Block vectors are inclusive, so step 3 requires loop-depth number of
481/// insertions per block.
482template <class BlockT, class LoopT>
483void LoopInfoBase<BlockT, LoopT>::analyze(const DomTreeBase<BlockT> &DomTree) {
484  // Postorder traversal of the dominator tree.
485  const DomTreeNodeBase<BlockT> *DomRoot = DomTree.getRootNode();
486  for (auto DomNode : post_order(DomRoot)) {
487
488    BlockT *Header = DomNode->getBlock();
489    SmallVector<BlockT *, 4> Backedges;
490
491    // Check each predecessor of the potential loop header.
492    for (const auto Backedge : children<Inverse<BlockT *>>(Header)) {
493      // If Header dominates predBB, this is a new loop. Collect the backedges.
494      if (DomTree.dominates(Header, Backedge) &&
495          DomTree.isReachableFromEntry(Backedge)) {
496        Backedges.push_back(Backedge);
497      }
498    }
499    // Perform a backward CFG traversal to discover and map blocks in this loop.
500    if (!Backedges.empty()) {
501      LoopT *L = AllocateLoop(Header);
502      discoverAndMapSubloop(L, ArrayRef<BlockT *>(Backedges), this, DomTree);
503    }
504  }
505  // Perform a single forward CFG traversal to populate block and subloop
506  // vectors for all loops.
507  PopulateLoopsDFS<BlockT, LoopT> DFS(this);
508  DFS.traverse(DomRoot->getBlock());
509}
510
511template <class BlockT, class LoopT>
512SmallVector<LoopT *, 4> LoopInfoBase<BlockT, LoopT>::getLoopsInPreorder() {
513  SmallVector<LoopT *, 4> PreOrderLoops, PreOrderWorklist;
514  // The outer-most loop actually goes into the result in the same relative
515  // order as we walk it. But LoopInfo stores the top level loops in reverse
516  // program order so for here we reverse it to get forward program order.
517  // FIXME: If we change the order of LoopInfo we will want to remove the
518  // reverse here.
519  for (LoopT *RootL : reverse(*this)) {
520    assert(PreOrderWorklist.empty() &&
521           "Must start with an empty preorder walk worklist.");
522    PreOrderWorklist.push_back(RootL);
523    do {
524      LoopT *L = PreOrderWorklist.pop_back_val();
525      // Sub-loops are stored in forward program order, but will process the
526      // worklist backwards so append them in reverse order.
527      PreOrderWorklist.append(L->rbegin(), L->rend());
528      PreOrderLoops.push_back(L);
529    } while (!PreOrderWorklist.empty());
530  }
531
532  return PreOrderLoops;
533}
534
535template <class BlockT, class LoopT>
536SmallVector<LoopT *, 4>
537LoopInfoBase<BlockT, LoopT>::getLoopsInReverseSiblingPreorder() {
538  SmallVector<LoopT *, 4> PreOrderLoops, PreOrderWorklist;
539  // The outer-most loop actually goes into the result in the same relative
540  // order as we walk it. LoopInfo stores the top level loops in reverse
541  // program order so we walk in order here.
542  // FIXME: If we change the order of LoopInfo we will want to add a reverse
543  // here.
544  for (LoopT *RootL : *this) {
545    assert(PreOrderWorklist.empty() &&
546           "Must start with an empty preorder walk worklist.");
547    PreOrderWorklist.push_back(RootL);
548    do {
549      LoopT *L = PreOrderWorklist.pop_back_val();
550      // Sub-loops are stored in forward program order, but will process the
551      // worklist backwards so we can just append them in order.
552      PreOrderWorklist.append(L->begin(), L->end());
553      PreOrderLoops.push_back(L);
554    } while (!PreOrderWorklist.empty());
555  }
556
557  return PreOrderLoops;
558}
559
560// Debugging
561template <class BlockT, class LoopT>
562void LoopInfoBase<BlockT, LoopT>::print(raw_ostream &OS) const {
563  for (unsigned i = 0; i < TopLevelLoops.size(); ++i)
564    TopLevelLoops[i]->print(OS);
565#if 0
566  for (DenseMap<BasicBlock*, LoopT*>::const_iterator I = BBMap.begin(),
567         E = BBMap.end(); I != E; ++I)
568    OS << "BB '" << I->first->getName() << "' level = "
569       << I->second->getLoopDepth() << "\n";
570#endif
571}
572
573template <typename T>
574bool compareVectors(std::vector<T> &BB1, std::vector<T> &BB2) {
575  std::sort(BB1.begin(), BB1.end());
576  std::sort(BB2.begin(), BB2.end());
577  return BB1 == BB2;
578}
579
580template <class BlockT, class LoopT>
581void addInnerLoopsToHeadersMap(DenseMap<BlockT *, const LoopT *> &LoopHeaders,
582                               const LoopInfoBase<BlockT, LoopT> &LI,
583                               const LoopT &L) {
584  LoopHeaders[L.getHeader()] = &L;
585  for (LoopT *SL : L)
586    addInnerLoopsToHeadersMap(LoopHeaders, LI, *SL);
587}
588
589#ifndef NDEBUG
590template <class BlockT, class LoopT>
591static void compareLoops(const LoopT *L, const LoopT *OtherL,
592                         DenseMap<BlockT *, const LoopT *> &OtherLoopHeaders) {
593  BlockT *H = L->getHeader();
594  BlockT *OtherH = OtherL->getHeader();
595  assert(H == OtherH &&
596         "Mismatched headers even though found in the same map entry!");
597
598  assert(L->getLoopDepth() == OtherL->getLoopDepth() &&
599         "Mismatched loop depth!");
600  const LoopT *ParentL = L, *OtherParentL = OtherL;
601  do {
602    assert(ParentL->getHeader() == OtherParentL->getHeader() &&
603           "Mismatched parent loop headers!");
604    ParentL = ParentL->getParentLoop();
605    OtherParentL = OtherParentL->getParentLoop();
606  } while (ParentL);
607
608  for (const LoopT *SubL : *L) {
609    BlockT *SubH = SubL->getHeader();
610    const LoopT *OtherSubL = OtherLoopHeaders.lookup(SubH);
611    assert(OtherSubL && "Inner loop is missing in computed loop info!");
612    OtherLoopHeaders.erase(SubH);
613    compareLoops(SubL, OtherSubL, OtherLoopHeaders);
614  }
615
616  std::vector<BlockT *> BBs = L->getBlocks();
617  std::vector<BlockT *> OtherBBs = OtherL->getBlocks();
618  assert(compareVectors(BBs, OtherBBs) &&
619         "Mismatched basic blocks in the loops!");
620}
621#endif
622
623template <class BlockT, class LoopT>
624void LoopInfoBase<BlockT, LoopT>::verify(
625    const DomTreeBase<BlockT> &DomTree) const {
626  DenseSet<const LoopT *> Loops;
627  for (iterator I = begin(), E = end(); I != E; ++I) {
628    assert(!(*I)->getParentLoop() && "Top-level loop has a parent!");
629    (*I)->verifyLoopNest(&Loops);
630  }
631
632// Verify that blocks are mapped to valid loops.
633#ifndef NDEBUG
634  for (auto &Entry : BBMap) {
635    const BlockT *BB = Entry.first;
636    LoopT *L = Entry.second;
637    assert(Loops.count(L) && "orphaned loop");
638    assert(L->contains(BB) && "orphaned block");
639  }
640
641  // Recompute LoopInfo to verify loops structure.
642  LoopInfoBase<BlockT, LoopT> OtherLI;
643  OtherLI.analyze(DomTree);
644
645  // Build a map we can use to move from our LI to the computed one. This
646  // allows us to ignore the particular order in any layer of the loop forest
647  // while still comparing the structure.
648  DenseMap<BlockT *, const LoopT *> OtherLoopHeaders;
649  for (LoopT *L : OtherLI)
650    addInnerLoopsToHeadersMap(OtherLoopHeaders, OtherLI, *L);
651
652  // Walk the top level loops and ensure there is a corresponding top-level
653  // loop in the computed version and then recursively compare those loop
654  // nests.
655  for (LoopT *L : *this) {
656    BlockT *Header = L->getHeader();
657    const LoopT *OtherL = OtherLoopHeaders.lookup(Header);
658    assert(OtherL && "Top level loop is missing in computed loop info!");
659    // Now that we've matched this loop, erase its header from the map.
660    OtherLoopHeaders.erase(Header);
661    // And recursively compare these loops.
662    compareLoops(L, OtherL, OtherLoopHeaders);
663  }
664
665  // Any remaining entries in the map are loops which were found when computing
666  // a fresh LoopInfo but not present in the current one.
667  if (!OtherLoopHeaders.empty()) {
668    for (const auto &HeaderAndLoop : OtherLoopHeaders)
669      dbgs() << "Found new loop: " << *HeaderAndLoop.second << "\n";
670    llvm_unreachable("Found new loops when recomputing LoopInfo!");
671  }
672#endif
673}
674
675} // End llvm namespace
676
677#endif
678