1//===- ExecutionEngine.h - Abstract Execution Engine Interface --*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the abstract interface that implements execution support
11// for LLVM.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_EXECUTIONENGINE_EXECUTIONENGINE_H
16#define LLVM_EXECUTIONENGINE_EXECUTIONENGINE_H
17
18#include "llvm-c/ExecutionEngine.h"
19#include "llvm/ADT/ArrayRef.h"
20#include "llvm/ADT/Optional.h"
21#include "llvm/ADT/SmallVector.h"
22#include "llvm/ADT/StringMap.h"
23#include "llvm/ADT/StringRef.h"
24#include "llvm/ExecutionEngine/JITSymbol.h"
25#include "llvm/IR/DataLayout.h"
26#include "llvm/IR/Module.h"
27#include "llvm/Object/Binary.h"
28#include "llvm/Support/CBindingWrapping.h"
29#include "llvm/Support/CodeGen.h"
30#include "llvm/Support/ErrorHandling.h"
31#include "llvm/Support/Mutex.h"
32#include "llvm/Target/TargetMachine.h"
33#include "llvm/Target/TargetOptions.h"
34#include <algorithm>
35#include <cstdint>
36#include <functional>
37#include <map>
38#include <memory>
39#include <string>
40#include <vector>
41
42namespace llvm {
43
44class Constant;
45class Function;
46struct GenericValue;
47class GlobalValue;
48class GlobalVariable;
49class JITEventListener;
50class MCJITMemoryManager;
51class ObjectCache;
52class RTDyldMemoryManager;
53class Triple;
54class Type;
55
56namespace object {
57
58class Archive;
59class ObjectFile;
60
61} // end namespace object
62
63/// \brief Helper class for helping synchronize access to the global address map
64/// table.  Access to this class should be serialized under a mutex.
65class ExecutionEngineState {
66public:
67  using GlobalAddressMapTy = StringMap<uint64_t>;
68
69private:
70  /// GlobalAddressMap - A mapping between LLVM global symbol names values and
71  /// their actualized version...
72  GlobalAddressMapTy GlobalAddressMap;
73
74  /// GlobalAddressReverseMap - This is the reverse mapping of GlobalAddressMap,
75  /// used to convert raw addresses into the LLVM global value that is emitted
76  /// at the address.  This map is not computed unless getGlobalValueAtAddress
77  /// is called at some point.
78  std::map<uint64_t, std::string> GlobalAddressReverseMap;
79
80public:
81  GlobalAddressMapTy &getGlobalAddressMap() {
82    return GlobalAddressMap;
83  }
84
85  std::map<uint64_t, std::string> &getGlobalAddressReverseMap() {
86    return GlobalAddressReverseMap;
87  }
88
89  /// \brief Erase an entry from the mapping table.
90  ///
91  /// \returns The address that \p ToUnmap was happed to.
92  uint64_t RemoveMapping(StringRef Name);
93};
94
95using FunctionCreator = std::function<void *(const std::string &)>;
96
97/// \brief Abstract interface for implementation execution of LLVM modules,
98/// designed to support both interpreter and just-in-time (JIT) compiler
99/// implementations.
100class ExecutionEngine {
101  /// The state object holding the global address mapping, which must be
102  /// accessed synchronously.
103  //
104  // FIXME: There is no particular need the entire map needs to be
105  // synchronized.  Wouldn't a reader-writer design be better here?
106  ExecutionEngineState EEState;
107
108  /// The target data for the platform for which execution is being performed.
109  ///
110  /// Note: the DataLayout is LLVMContext specific because it has an
111  /// internal cache based on type pointers. It makes unsafe to reuse the
112  /// ExecutionEngine across context, we don't enforce this rule but undefined
113  /// behavior can occurs if the user tries to do it.
114  const DataLayout DL;
115
116  /// Whether lazy JIT compilation is enabled.
117  bool CompilingLazily;
118
119  /// Whether JIT compilation of external global variables is allowed.
120  bool GVCompilationDisabled;
121
122  /// Whether the JIT should perform lookups of external symbols (e.g.,
123  /// using dlsym).
124  bool SymbolSearchingDisabled;
125
126  /// Whether the JIT should verify IR modules during compilation.
127  bool VerifyModules;
128
129  friend class EngineBuilder;  // To allow access to JITCtor and InterpCtor.
130
131protected:
132  /// The list of Modules that we are JIT'ing from.  We use a SmallVector to
133  /// optimize for the case where there is only one module.
134  SmallVector<std::unique_ptr<Module>, 1> Modules;
135
136  /// getMemoryforGV - Allocate memory for a global variable.
137  virtual char *getMemoryForGV(const GlobalVariable *GV);
138
139  static ExecutionEngine *(*MCJITCtor)(
140                                std::unique_ptr<Module> M,
141                                std::string *ErrorStr,
142                                std::shared_ptr<MCJITMemoryManager> MM,
143                                std::shared_ptr<JITSymbolResolver> SR,
144                                std::unique_ptr<TargetMachine> TM);
145
146  static ExecutionEngine *(*OrcMCJITReplacementCtor)(
147                                std::string *ErrorStr,
148                                std::shared_ptr<MCJITMemoryManager> MM,
149                                std::shared_ptr<JITSymbolResolver> SR,
150                                std::unique_ptr<TargetMachine> TM);
151
152  static ExecutionEngine *(*InterpCtor)(std::unique_ptr<Module> M,
153                                        std::string *ErrorStr);
154
155  /// LazyFunctionCreator - If an unknown function is needed, this function
156  /// pointer is invoked to create it.  If this returns null, the JIT will
157  /// abort.
158  FunctionCreator LazyFunctionCreator;
159
160  /// getMangledName - Get mangled name.
161  std::string getMangledName(const GlobalValue *GV);
162
163public:
164  /// lock - This lock protects the ExecutionEngine and MCJIT classes. It must
165  /// be held while changing the internal state of any of those classes.
166  sys::Mutex lock;
167
168  //===--------------------------------------------------------------------===//
169  //  ExecutionEngine Startup
170  //===--------------------------------------------------------------------===//
171
172  virtual ~ExecutionEngine();
173
174  /// Add a Module to the list of modules that we can JIT from.
175  virtual void addModule(std::unique_ptr<Module> M) {
176    Modules.push_back(std::move(M));
177  }
178
179  /// addObjectFile - Add an ObjectFile to the execution engine.
180  ///
181  /// This method is only supported by MCJIT.  MCJIT will immediately load the
182  /// object into memory and adds its symbols to the list used to resolve
183  /// external symbols while preparing other objects for execution.
184  ///
185  /// Objects added using this function will not be made executable until
186  /// needed by another object.
187  ///
188  /// MCJIT will take ownership of the ObjectFile.
189  virtual void addObjectFile(std::unique_ptr<object::ObjectFile> O);
190  virtual void addObjectFile(object::OwningBinary<object::ObjectFile> O);
191
192  /// addArchive - Add an Archive to the execution engine.
193  ///
194  /// This method is only supported by MCJIT.  MCJIT will use the archive to
195  /// resolve external symbols in objects it is loading.  If a symbol is found
196  /// in the Archive the contained object file will be extracted (in memory)
197  /// and loaded for possible execution.
198  virtual void addArchive(object::OwningBinary<object::Archive> A);
199
200  //===--------------------------------------------------------------------===//
201
202  const DataLayout &getDataLayout() const { return DL; }
203
204  /// removeModule - Removes a Module from the list of modules, but does not
205  /// free the module's memory. Returns true if M is found, in which case the
206  /// caller assumes responsibility for deleting the module.
207  //
208  // FIXME: This stealth ownership transfer is horrible. This will probably be
209  //        fixed by deleting ExecutionEngine.
210  virtual bool removeModule(Module *M);
211
212  /// FindFunctionNamed - Search all of the active modules to find the function that
213  /// defines FnName.  This is very slow operation and shouldn't be used for
214  /// general code.
215  virtual Function *FindFunctionNamed(StringRef FnName);
216
217  /// FindGlobalVariableNamed - Search all of the active modules to find the global variable
218  /// that defines Name.  This is very slow operation and shouldn't be used for
219  /// general code.
220  virtual GlobalVariable *FindGlobalVariableNamed(StringRef Name, bool AllowInternal = false);
221
222  /// runFunction - Execute the specified function with the specified arguments,
223  /// and return the result.
224  ///
225  /// For MCJIT execution engines, clients are encouraged to use the
226  /// "GetFunctionAddress" method (rather than runFunction) and cast the
227  /// returned uint64_t to the desired function pointer type. However, for
228  /// backwards compatibility MCJIT's implementation can execute 'main-like'
229  /// function (i.e. those returning void or int, and taking either no
230  /// arguments or (int, char*[])).
231  virtual GenericValue runFunction(Function *F,
232                                   ArrayRef<GenericValue> ArgValues) = 0;
233
234  /// getPointerToNamedFunction - This method returns the address of the
235  /// specified function by using the dlsym function call.  As such it is only
236  /// useful for resolving library symbols, not code generated symbols.
237  ///
238  /// If AbortOnFailure is false and no function with the given name is
239  /// found, this function silently returns a null pointer. Otherwise,
240  /// it prints a message to stderr and aborts.
241  ///
242  /// This function is deprecated for the MCJIT execution engine.
243  virtual void *getPointerToNamedFunction(StringRef Name,
244                                          bool AbortOnFailure = true) = 0;
245
246  /// mapSectionAddress - map a section to its target address space value.
247  /// Map the address of a JIT section as returned from the memory manager
248  /// to the address in the target process as the running code will see it.
249  /// This is the address which will be used for relocation resolution.
250  virtual void mapSectionAddress(const void *LocalAddress,
251                                 uint64_t TargetAddress) {
252    llvm_unreachable("Re-mapping of section addresses not supported with this "
253                     "EE!");
254  }
255
256  /// generateCodeForModule - Run code generation for the specified module and
257  /// load it into memory.
258  ///
259  /// When this function has completed, all code and data for the specified
260  /// module, and any module on which this module depends, will be generated
261  /// and loaded into memory, but relocations will not yet have been applied
262  /// and all memory will be readable and writable but not executable.
263  ///
264  /// This function is primarily useful when generating code for an external
265  /// target, allowing the client an opportunity to remap section addresses
266  /// before relocations are applied.  Clients that intend to execute code
267  /// locally can use the getFunctionAddress call, which will generate code
268  /// and apply final preparations all in one step.
269  ///
270  /// This method has no effect for the interpeter.
271  virtual void generateCodeForModule(Module *M) {}
272
273  /// finalizeObject - ensure the module is fully processed and is usable.
274  ///
275  /// It is the user-level function for completing the process of making the
276  /// object usable for execution.  It should be called after sections within an
277  /// object have been relocated using mapSectionAddress.  When this method is
278  /// called the MCJIT execution engine will reapply relocations for a loaded
279  /// object.  This method has no effect for the interpeter.
280  virtual void finalizeObject() {}
281
282  /// runStaticConstructorsDestructors - This method is used to execute all of
283  /// the static constructors or destructors for a program.
284  ///
285  /// \param isDtors - Run the destructors instead of constructors.
286  virtual void runStaticConstructorsDestructors(bool isDtors);
287
288  /// This method is used to execute all of the static constructors or
289  /// destructors for a particular module.
290  ///
291  /// \param isDtors - Run the destructors instead of constructors.
292  void runStaticConstructorsDestructors(Module &module, bool isDtors);
293
294
295  /// runFunctionAsMain - This is a helper function which wraps runFunction to
296  /// handle the common task of starting up main with the specified argc, argv,
297  /// and envp parameters.
298  int runFunctionAsMain(Function *Fn, const std::vector<std::string> &argv,
299                        const char * const * envp);
300
301
302  /// addGlobalMapping - Tell the execution engine that the specified global is
303  /// at the specified location.  This is used internally as functions are JIT'd
304  /// and as global variables are laid out in memory.  It can and should also be
305  /// used by clients of the EE that want to have an LLVM global overlay
306  /// existing data in memory. Values to be mapped should be named, and have
307  /// external or weak linkage. Mappings are automatically removed when their
308  /// GlobalValue is destroyed.
309  void addGlobalMapping(const GlobalValue *GV, void *Addr);
310  void addGlobalMapping(StringRef Name, uint64_t Addr);
311
312  /// clearAllGlobalMappings - Clear all global mappings and start over again,
313  /// for use in dynamic compilation scenarios to move globals.
314  void clearAllGlobalMappings();
315
316  /// clearGlobalMappingsFromModule - Clear all global mappings that came from a
317  /// particular module, because it has been removed from the JIT.
318  void clearGlobalMappingsFromModule(Module *M);
319
320  /// updateGlobalMapping - Replace an existing mapping for GV with a new
321  /// address.  This updates both maps as required.  If "Addr" is null, the
322  /// entry for the global is removed from the mappings.  This returns the old
323  /// value of the pointer, or null if it was not in the map.
324  uint64_t updateGlobalMapping(const GlobalValue *GV, void *Addr);
325  uint64_t updateGlobalMapping(StringRef Name, uint64_t Addr);
326
327  /// getAddressToGlobalIfAvailable - This returns the address of the specified
328  /// global symbol.
329  uint64_t getAddressToGlobalIfAvailable(StringRef S);
330
331  /// getPointerToGlobalIfAvailable - This returns the address of the specified
332  /// global value if it is has already been codegen'd, otherwise it returns
333  /// null.
334  void *getPointerToGlobalIfAvailable(StringRef S);
335  void *getPointerToGlobalIfAvailable(const GlobalValue *GV);
336
337  /// getPointerToGlobal - This returns the address of the specified global
338  /// value. This may involve code generation if it's a function.
339  ///
340  /// This function is deprecated for the MCJIT execution engine.  Use
341  /// getGlobalValueAddress instead.
342  void *getPointerToGlobal(const GlobalValue *GV);
343
344  /// getPointerToFunction - The different EE's represent function bodies in
345  /// different ways.  They should each implement this to say what a function
346  /// pointer should look like.  When F is destroyed, the ExecutionEngine will
347  /// remove its global mapping and free any machine code.  Be sure no threads
348  /// are running inside F when that happens.
349  ///
350  /// This function is deprecated for the MCJIT execution engine.  Use
351  /// getFunctionAddress instead.
352  virtual void *getPointerToFunction(Function *F) = 0;
353
354  /// getPointerToFunctionOrStub - If the specified function has been
355  /// code-gen'd, return a pointer to the function.  If not, compile it, or use
356  /// a stub to implement lazy compilation if available.  See
357  /// getPointerToFunction for the requirements on destroying F.
358  ///
359  /// This function is deprecated for the MCJIT execution engine.  Use
360  /// getFunctionAddress instead.
361  virtual void *getPointerToFunctionOrStub(Function *F) {
362    // Default implementation, just codegen the function.
363    return getPointerToFunction(F);
364  }
365
366  /// getGlobalValueAddress - Return the address of the specified global
367  /// value. This may involve code generation.
368  ///
369  /// This function should not be called with the interpreter engine.
370  virtual uint64_t getGlobalValueAddress(const std::string &Name) {
371    // Default implementation for the interpreter.  MCJIT will override this.
372    // JIT and interpreter clients should use getPointerToGlobal instead.
373    return 0;
374  }
375
376  /// getFunctionAddress - Return the address of the specified function.
377  /// This may involve code generation.
378  virtual uint64_t getFunctionAddress(const std::string &Name) {
379    // Default implementation for the interpreter.  MCJIT will override this.
380    // Interpreter clients should use getPointerToFunction instead.
381    return 0;
382  }
383
384  /// getGlobalValueAtAddress - Return the LLVM global value object that starts
385  /// at the specified address.
386  ///
387  const GlobalValue *getGlobalValueAtAddress(void *Addr);
388
389  /// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr.
390  /// Ptr is the address of the memory at which to store Val, cast to
391  /// GenericValue *.  It is not a pointer to a GenericValue containing the
392  /// address at which to store Val.
393  void StoreValueToMemory(const GenericValue &Val, GenericValue *Ptr,
394                          Type *Ty);
395
396  void InitializeMemory(const Constant *Init, void *Addr);
397
398  /// getOrEmitGlobalVariable - Return the address of the specified global
399  /// variable, possibly emitting it to memory if needed.  This is used by the
400  /// Emitter.
401  ///
402  /// This function is deprecated for the MCJIT execution engine.  Use
403  /// getGlobalValueAddress instead.
404  virtual void *getOrEmitGlobalVariable(const GlobalVariable *GV) {
405    return getPointerToGlobal((const GlobalValue *)GV);
406  }
407
408  /// Registers a listener to be called back on various events within
409  /// the JIT.  See JITEventListener.h for more details.  Does not
410  /// take ownership of the argument.  The argument may be NULL, in
411  /// which case these functions do nothing.
412  virtual void RegisterJITEventListener(JITEventListener *) {}
413  virtual void UnregisterJITEventListener(JITEventListener *) {}
414
415  /// Sets the pre-compiled object cache.  The ownership of the ObjectCache is
416  /// not changed.  Supported by MCJIT but not the interpreter.
417  virtual void setObjectCache(ObjectCache *) {
418    llvm_unreachable("No support for an object cache");
419  }
420
421  /// setProcessAllSections (MCJIT Only): By default, only sections that are
422  /// "required for execution" are passed to the RTDyldMemoryManager, and other
423  /// sections are discarded. Passing 'true' to this method will cause
424  /// RuntimeDyld to pass all sections to its RTDyldMemoryManager regardless
425  /// of whether they are "required to execute" in the usual sense.
426  ///
427  /// Rationale: Some MCJIT clients want to be able to inspect metadata
428  /// sections (e.g. Dwarf, Stack-maps) to enable functionality or analyze
429  /// performance. Passing these sections to the memory manager allows the
430  /// client to make policy about the relevant sections, rather than having
431  /// MCJIT do it.
432  virtual void setProcessAllSections(bool ProcessAllSections) {
433    llvm_unreachable("No support for ProcessAllSections option");
434  }
435
436  /// Return the target machine (if available).
437  virtual TargetMachine *getTargetMachine() { return nullptr; }
438
439  /// DisableLazyCompilation - When lazy compilation is off (the default), the
440  /// JIT will eagerly compile every function reachable from the argument to
441  /// getPointerToFunction.  If lazy compilation is turned on, the JIT will only
442  /// compile the one function and emit stubs to compile the rest when they're
443  /// first called.  If lazy compilation is turned off again while some lazy
444  /// stubs are still around, and one of those stubs is called, the program will
445  /// abort.
446  ///
447  /// In order to safely compile lazily in a threaded program, the user must
448  /// ensure that 1) only one thread at a time can call any particular lazy
449  /// stub, and 2) any thread modifying LLVM IR must hold the JIT's lock
450  /// (ExecutionEngine::lock) or otherwise ensure that no other thread calls a
451  /// lazy stub.  See http://llvm.org/PR5184 for details.
452  void DisableLazyCompilation(bool Disabled = true) {
453    CompilingLazily = !Disabled;
454  }
455  bool isCompilingLazily() const {
456    return CompilingLazily;
457  }
458
459  /// DisableGVCompilation - If called, the JIT will abort if it's asked to
460  /// allocate space and populate a GlobalVariable that is not internal to
461  /// the module.
462  void DisableGVCompilation(bool Disabled = true) {
463    GVCompilationDisabled = Disabled;
464  }
465  bool isGVCompilationDisabled() const {
466    return GVCompilationDisabled;
467  }
468
469  /// DisableSymbolSearching - If called, the JIT will not try to lookup unknown
470  /// symbols with dlsym.  A client can still use InstallLazyFunctionCreator to
471  /// resolve symbols in a custom way.
472  void DisableSymbolSearching(bool Disabled = true) {
473    SymbolSearchingDisabled = Disabled;
474  }
475  bool isSymbolSearchingDisabled() const {
476    return SymbolSearchingDisabled;
477  }
478
479  /// Enable/Disable IR module verification.
480  ///
481  /// Note: Module verification is enabled by default in Debug builds, and
482  /// disabled by default in Release. Use this method to override the default.
483  void setVerifyModules(bool Verify) {
484    VerifyModules = Verify;
485  }
486  bool getVerifyModules() const {
487    return VerifyModules;
488  }
489
490  /// InstallLazyFunctionCreator - If an unknown function is needed, the
491  /// specified function pointer is invoked to create it.  If it returns null,
492  /// the JIT will abort.
493  void InstallLazyFunctionCreator(FunctionCreator C) {
494    LazyFunctionCreator = std::move(C);
495  }
496
497protected:
498  ExecutionEngine(DataLayout DL) : DL(std::move(DL)) {}
499  explicit ExecutionEngine(DataLayout DL, std::unique_ptr<Module> M);
500  explicit ExecutionEngine(std::unique_ptr<Module> M);
501
502  void emitGlobals();
503
504  void EmitGlobalVariable(const GlobalVariable *GV);
505
506  GenericValue getConstantValue(const Constant *C);
507  void LoadValueFromMemory(GenericValue &Result, GenericValue *Ptr,
508                           Type *Ty);
509
510private:
511  void Init(std::unique_ptr<Module> M);
512};
513
514namespace EngineKind {
515
516  // These are actually bitmasks that get or-ed together.
517  enum Kind {
518    JIT         = 0x1,
519    Interpreter = 0x2
520  };
521  const static Kind Either = (Kind)(JIT | Interpreter);
522
523} // end namespace EngineKind
524
525/// Builder class for ExecutionEngines. Use this by stack-allocating a builder,
526/// chaining the various set* methods, and terminating it with a .create()
527/// call.
528class EngineBuilder {
529private:
530  std::unique_ptr<Module> M;
531  EngineKind::Kind WhichEngine;
532  std::string *ErrorStr;
533  CodeGenOpt::Level OptLevel;
534  std::shared_ptr<MCJITMemoryManager> MemMgr;
535  std::shared_ptr<JITSymbolResolver> Resolver;
536  TargetOptions Options;
537  Optional<Reloc::Model> RelocModel;
538  Optional<CodeModel::Model> CMModel;
539  std::string MArch;
540  std::string MCPU;
541  SmallVector<std::string, 4> MAttrs;
542  bool VerifyModules;
543  bool UseOrcMCJITReplacement;
544
545public:
546  /// Default constructor for EngineBuilder.
547  EngineBuilder();
548
549  /// Constructor for EngineBuilder.
550  EngineBuilder(std::unique_ptr<Module> M);
551
552  // Out-of-line since we don't have the def'n of RTDyldMemoryManager here.
553  ~EngineBuilder();
554
555  /// setEngineKind - Controls whether the user wants the interpreter, the JIT,
556  /// or whichever engine works.  This option defaults to EngineKind::Either.
557  EngineBuilder &setEngineKind(EngineKind::Kind w) {
558    WhichEngine = w;
559    return *this;
560  }
561
562  /// setMCJITMemoryManager - Sets the MCJIT memory manager to use. This allows
563  /// clients to customize their memory allocation policies for the MCJIT. This
564  /// is only appropriate for the MCJIT; setting this and configuring the builder
565  /// to create anything other than MCJIT will cause a runtime error. If create()
566  /// is called and is successful, the created engine takes ownership of the
567  /// memory manager. This option defaults to NULL.
568  EngineBuilder &setMCJITMemoryManager(std::unique_ptr<RTDyldMemoryManager> mcjmm);
569
570  EngineBuilder&
571  setMemoryManager(std::unique_ptr<MCJITMemoryManager> MM);
572
573  EngineBuilder&
574  setSymbolResolver(std::unique_ptr<JITSymbolResolver> SR);
575
576  /// setErrorStr - Set the error string to write to on error.  This option
577  /// defaults to NULL.
578  EngineBuilder &setErrorStr(std::string *e) {
579    ErrorStr = e;
580    return *this;
581  }
582
583  /// setOptLevel - Set the optimization level for the JIT.  This option
584  /// defaults to CodeGenOpt::Default.
585  EngineBuilder &setOptLevel(CodeGenOpt::Level l) {
586    OptLevel = l;
587    return *this;
588  }
589
590  /// setTargetOptions - Set the target options that the ExecutionEngine
591  /// target is using. Defaults to TargetOptions().
592  EngineBuilder &setTargetOptions(const TargetOptions &Opts) {
593    Options = Opts;
594    return *this;
595  }
596
597  /// setRelocationModel - Set the relocation model that the ExecutionEngine
598  /// target is using. Defaults to target specific default "Reloc::Default".
599  EngineBuilder &setRelocationModel(Reloc::Model RM) {
600    RelocModel = RM;
601    return *this;
602  }
603
604  /// setCodeModel - Set the CodeModel that the ExecutionEngine target
605  /// data is using. Defaults to target specific default
606  /// "CodeModel::JITDefault".
607  EngineBuilder &setCodeModel(CodeModel::Model M) {
608    CMModel = M;
609    return *this;
610  }
611
612  /// setMArch - Override the architecture set by the Module's triple.
613  EngineBuilder &setMArch(StringRef march) {
614    MArch.assign(march.begin(), march.end());
615    return *this;
616  }
617
618  /// setMCPU - Target a specific cpu type.
619  EngineBuilder &setMCPU(StringRef mcpu) {
620    MCPU.assign(mcpu.begin(), mcpu.end());
621    return *this;
622  }
623
624  /// setVerifyModules - Set whether the JIT implementation should verify
625  /// IR modules during compilation.
626  EngineBuilder &setVerifyModules(bool Verify) {
627    VerifyModules = Verify;
628    return *this;
629  }
630
631  /// setMAttrs - Set cpu-specific attributes.
632  template<typename StringSequence>
633  EngineBuilder &setMAttrs(const StringSequence &mattrs) {
634    MAttrs.clear();
635    MAttrs.append(mattrs.begin(), mattrs.end());
636    return *this;
637  }
638
639  // \brief Use OrcMCJITReplacement instead of MCJIT. Off by default.
640  void setUseOrcMCJITReplacement(bool UseOrcMCJITReplacement) {
641    this->UseOrcMCJITReplacement = UseOrcMCJITReplacement;
642  }
643
644  TargetMachine *selectTarget();
645
646  /// selectTarget - Pick a target either via -march or by guessing the native
647  /// arch.  Add any CPU features specified via -mcpu or -mattr.
648  TargetMachine *selectTarget(const Triple &TargetTriple,
649                              StringRef MArch,
650                              StringRef MCPU,
651                              const SmallVectorImpl<std::string>& MAttrs);
652
653  ExecutionEngine *create() {
654    return create(selectTarget());
655  }
656
657  ExecutionEngine *create(TargetMachine *TM);
658};
659
660// Create wrappers for C Binding types (see CBindingWrapping.h).
661DEFINE_SIMPLE_CONVERSION_FUNCTIONS(ExecutionEngine, LLVMExecutionEngineRef)
662
663} // end namespace llvm
664
665#endif // LLVM_EXECUTIONENGINE_EXECUTIONENGINE_H
666