1//===-- llvm/Analysis/DependenceAnalysis.h -------------------- -*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// DependenceAnalysis is an LLVM pass that analyses dependences between memory
11// accesses. Currently, it is an implementation of the approach described in
12//
13//            Practical Dependence Testing
14//            Goff, Kennedy, Tseng
15//            PLDI 1991
16//
17// There's a single entry point that analyzes the dependence between a pair
18// of memory references in a function, returning either NULL, for no dependence,
19// or a more-or-less detailed description of the dependence between them.
20//
21// This pass exists to support the DependenceGraph pass. There are two separate
22// passes because there's a useful separation of concerns. A dependence exists
23// if two conditions are met:
24//
25//    1) Two instructions reference the same memory location, and
26//    2) There is a flow of control leading from one instruction to the other.
27//
28// DependenceAnalysis attacks the first condition; DependenceGraph will attack
29// the second (it's not yet ready).
30//
31// Please note that this is work in progress and the interface is subject to
32// change.
33//
34// Plausible changes:
35//    Return a set of more precise dependences instead of just one dependence
36//    summarizing all.
37//
38//===----------------------------------------------------------------------===//
39
40#ifndef LLVM_ANALYSIS_DEPENDENCEANALYSIS_H
41#define LLVM_ANALYSIS_DEPENDENCEANALYSIS_H
42
43#include "llvm/ADT/SmallBitVector.h"
44#include "llvm/Analysis/AliasAnalysis.h"
45#include "llvm/IR/Instructions.h"
46#include "llvm/Pass.h"
47
48namespace llvm {
49template <typename T> class ArrayRef;
50  class Loop;
51  class LoopInfo;
52  class ScalarEvolution;
53  class SCEV;
54  class SCEVConstant;
55  class raw_ostream;
56
57  /// Dependence - This class represents a dependence between two memory
58  /// memory references in a function. It contains minimal information and
59  /// is used in the very common situation where the compiler is unable to
60  /// determine anything beyond the existence of a dependence; that is, it
61  /// represents a confused dependence (see also FullDependence). In most
62  /// cases (for output, flow, and anti dependences), the dependence implies
63  /// an ordering, where the source must precede the destination; in contrast,
64  /// input dependences are unordered.
65  ///
66  /// When a dependence graph is built, each Dependence will be a member of
67  /// the set of predecessor edges for its destination instruction and a set
68  /// if successor edges for its source instruction. These sets are represented
69  /// as singly-linked lists, with the "next" fields stored in the dependence
70  /// itelf.
71  class Dependence {
72  protected:
73    Dependence(Dependence &&) = default;
74    Dependence &operator=(Dependence &&) = default;
75
76  public:
77    Dependence(Instruction *Source,
78               Instruction *Destination) :
79      Src(Source),
80      Dst(Destination),
81      NextPredecessor(nullptr),
82      NextSuccessor(nullptr) {}
83    virtual ~Dependence() {}
84
85    /// Dependence::DVEntry - Each level in the distance/direction vector
86    /// has a direction (or perhaps a union of several directions), and
87    /// perhaps a distance.
88    struct DVEntry {
89      enum { NONE = 0,
90             LT = 1,
91             EQ = 2,
92             LE = 3,
93             GT = 4,
94             NE = 5,
95             GE = 6,
96             ALL = 7 };
97      unsigned char Direction : 3; // Init to ALL, then refine.
98      bool Scalar    : 1; // Init to true.
99      bool PeelFirst : 1; // Peeling the first iteration will break dependence.
100      bool PeelLast  : 1; // Peeling the last iteration will break the dependence.
101      bool Splitable : 1; // Splitting the loop will break dependence.
102      const SCEV *Distance; // NULL implies no distance available.
103      DVEntry() : Direction(ALL), Scalar(true), PeelFirst(false),
104                  PeelLast(false), Splitable(false), Distance(nullptr) { }
105    };
106
107    /// getSrc - Returns the source instruction for this dependence.
108    ///
109    Instruction *getSrc() const { return Src; }
110
111    /// getDst - Returns the destination instruction for this dependence.
112    ///
113    Instruction *getDst() const { return Dst; }
114
115    /// isInput - Returns true if this is an input dependence.
116    ///
117    bool isInput() const;
118
119    /// isOutput - Returns true if this is an output dependence.
120    ///
121    bool isOutput() const;
122
123    /// isFlow - Returns true if this is a flow (aka true) dependence.
124    ///
125    bool isFlow() const;
126
127    /// isAnti - Returns true if this is an anti dependence.
128    ///
129    bool isAnti() const;
130
131    /// isOrdered - Returns true if dependence is Output, Flow, or Anti
132    ///
133    bool isOrdered() const { return isOutput() || isFlow() || isAnti(); }
134
135    /// isUnordered - Returns true if dependence is Input
136    ///
137    bool isUnordered() const { return isInput(); }
138
139    /// isLoopIndependent - Returns true if this is a loop-independent
140    /// dependence.
141    virtual bool isLoopIndependent() const { return true; }
142
143    /// isConfused - Returns true if this dependence is confused
144    /// (the compiler understands nothing and makes worst-case
145    /// assumptions).
146    virtual bool isConfused() const { return true; }
147
148    /// isConsistent - Returns true if this dependence is consistent
149    /// (occurs every time the source and destination are executed).
150    virtual bool isConsistent() const { return false; }
151
152    /// getLevels - Returns the number of common loops surrounding the
153    /// source and destination of the dependence.
154    virtual unsigned getLevels() const { return 0; }
155
156    /// getDirection - Returns the direction associated with a particular
157    /// level.
158    virtual unsigned getDirection(unsigned Level) const { return DVEntry::ALL; }
159
160    /// getDistance - Returns the distance (or NULL) associated with a
161    /// particular level.
162    virtual const SCEV *getDistance(unsigned Level) const { return nullptr; }
163
164    /// isPeelFirst - Returns true if peeling the first iteration from
165    /// this loop will break this dependence.
166    virtual bool isPeelFirst(unsigned Level) const { return false; }
167
168    /// isPeelLast - Returns true if peeling the last iteration from
169    /// this loop will break this dependence.
170    virtual bool isPeelLast(unsigned Level) const { return false; }
171
172    /// isSplitable - Returns true if splitting this loop will break
173    /// the dependence.
174    virtual bool isSplitable(unsigned Level) const { return false; }
175
176    /// isScalar - Returns true if a particular level is scalar; that is,
177    /// if no subscript in the source or destination mention the induction
178    /// variable associated with the loop at this level.
179    virtual bool isScalar(unsigned Level) const;
180
181    /// getNextPredecessor - Returns the value of the NextPredecessor
182    /// field.
183    const Dependence *getNextPredecessor() const { return NextPredecessor; }
184
185    /// getNextSuccessor - Returns the value of the NextSuccessor
186    /// field.
187    const Dependence *getNextSuccessor() const { return NextSuccessor; }
188
189    /// setNextPredecessor - Sets the value of the NextPredecessor
190    /// field.
191    void setNextPredecessor(const Dependence *pred) { NextPredecessor = pred; }
192
193    /// setNextSuccessor - Sets the value of the NextSuccessor
194    /// field.
195    void setNextSuccessor(const Dependence *succ) { NextSuccessor = succ; }
196
197    /// dump - For debugging purposes, dumps a dependence to OS.
198    ///
199    void dump(raw_ostream &OS) const;
200
201  private:
202    Instruction *Src, *Dst;
203    const Dependence *NextPredecessor, *NextSuccessor;
204    friend class DependenceInfo;
205  };
206
207  /// FullDependence - This class represents a dependence between two memory
208  /// references in a function. It contains detailed information about the
209  /// dependence (direction vectors, etc.) and is used when the compiler is
210  /// able to accurately analyze the interaction of the references; that is,
211  /// it is not a confused dependence (see Dependence). In most cases
212  /// (for output, flow, and anti dependences), the dependence implies an
213  /// ordering, where the source must precede the destination; in contrast,
214  /// input dependences are unordered.
215  class FullDependence final : public Dependence {
216  public:
217    FullDependence(Instruction *Src, Instruction *Dst, bool LoopIndependent,
218                   unsigned Levels);
219
220    /// isLoopIndependent - Returns true if this is a loop-independent
221    /// dependence.
222    bool isLoopIndependent() const override { return LoopIndependent; }
223
224    /// isConfused - Returns true if this dependence is confused
225    /// (the compiler understands nothing and makes worst-case
226    /// assumptions).
227    bool isConfused() const override { return false; }
228
229    /// isConsistent - Returns true if this dependence is consistent
230    /// (occurs every time the source and destination are executed).
231    bool isConsistent() const override { return Consistent; }
232
233    /// getLevels - Returns the number of common loops surrounding the
234    /// source and destination of the dependence.
235    unsigned getLevels() const override { return Levels; }
236
237    /// getDirection - Returns the direction associated with a particular
238    /// level.
239    unsigned getDirection(unsigned Level) const override;
240
241    /// getDistance - Returns the distance (or NULL) associated with a
242    /// particular level.
243    const SCEV *getDistance(unsigned Level) const override;
244
245    /// isPeelFirst - Returns true if peeling the first iteration from
246    /// this loop will break this dependence.
247    bool isPeelFirst(unsigned Level) const override;
248
249    /// isPeelLast - Returns true if peeling the last iteration from
250    /// this loop will break this dependence.
251    bool isPeelLast(unsigned Level) const override;
252
253    /// isSplitable - Returns true if splitting the loop will break
254    /// the dependence.
255    bool isSplitable(unsigned Level) const override;
256
257    /// isScalar - Returns true if a particular level is scalar; that is,
258    /// if no subscript in the source or destination mention the induction
259    /// variable associated with the loop at this level.
260    bool isScalar(unsigned Level) const override;
261
262  private:
263    unsigned short Levels;
264    bool LoopIndependent;
265    bool Consistent; // Init to true, then refine.
266    std::unique_ptr<DVEntry[]> DV;
267    friend class DependenceInfo;
268  };
269
270  /// DependenceInfo - This class is the main dependence-analysis driver.
271  ///
272  class DependenceInfo {
273  public:
274    DependenceInfo(Function *F, AliasAnalysis *AA, ScalarEvolution *SE,
275                   LoopInfo *LI)
276        : AA(AA), SE(SE), LI(LI), F(F) {}
277
278    /// depends - Tests for a dependence between the Src and Dst instructions.
279    /// Returns NULL if no dependence; otherwise, returns a Dependence (or a
280    /// FullDependence) with as much information as can be gleaned.
281    /// The flag PossiblyLoopIndependent should be set by the caller
282    /// if it appears that control flow can reach from Src to Dst
283    /// without traversing a loop back edge.
284    std::unique_ptr<Dependence> depends(Instruction *Src,
285                                        Instruction *Dst,
286                                        bool PossiblyLoopIndependent);
287
288    /// getSplitIteration - Give a dependence that's splittable at some
289    /// particular level, return the iteration that should be used to split
290    /// the loop.
291    ///
292    /// Generally, the dependence analyzer will be used to build
293    /// a dependence graph for a function (basically a map from instructions
294    /// to dependences). Looking for cycles in the graph shows us loops
295    /// that cannot be trivially vectorized/parallelized.
296    ///
297    /// We can try to improve the situation by examining all the dependences
298    /// that make up the cycle, looking for ones we can break.
299    /// Sometimes, peeling the first or last iteration of a loop will break
300    /// dependences, and there are flags for those possibilities.
301    /// Sometimes, splitting a loop at some other iteration will do the trick,
302    /// and we've got a flag for that case. Rather than waste the space to
303    /// record the exact iteration (since we rarely know), we provide
304    /// a method that calculates the iteration. It's a drag that it must work
305    /// from scratch, but wonderful in that it's possible.
306    ///
307    /// Here's an example:
308    ///
309    ///    for (i = 0; i < 10; i++)
310    ///        A[i] = ...
311    ///        ... = A[11 - i]
312    ///
313    /// There's a loop-carried flow dependence from the store to the load,
314    /// found by the weak-crossing SIV test. The dependence will have a flag,
315    /// indicating that the dependence can be broken by splitting the loop.
316    /// Calling getSplitIteration will return 5.
317    /// Splitting the loop breaks the dependence, like so:
318    ///
319    ///    for (i = 0; i <= 5; i++)
320    ///        A[i] = ...
321    ///        ... = A[11 - i]
322    ///    for (i = 6; i < 10; i++)
323    ///        A[i] = ...
324    ///        ... = A[11 - i]
325    ///
326    /// breaks the dependence and allows us to vectorize/parallelize
327    /// both loops.
328    const SCEV *getSplitIteration(const Dependence &Dep, unsigned Level);
329
330    Function *getFunction() const { return F; }
331
332  private:
333    AliasAnalysis *AA;
334    ScalarEvolution *SE;
335    LoopInfo *LI;
336    Function *F;
337
338    /// Subscript - This private struct represents a pair of subscripts from
339    /// a pair of potentially multi-dimensional array references. We use a
340    /// vector of them to guide subscript partitioning.
341    struct Subscript {
342      const SCEV *Src;
343      const SCEV *Dst;
344      enum ClassificationKind { ZIV, SIV, RDIV, MIV, NonLinear } Classification;
345      SmallBitVector Loops;
346      SmallBitVector GroupLoops;
347      SmallBitVector Group;
348    };
349
350    struct CoefficientInfo {
351      const SCEV *Coeff;
352      const SCEV *PosPart;
353      const SCEV *NegPart;
354      const SCEV *Iterations;
355    };
356
357    struct BoundInfo {
358      const SCEV *Iterations;
359      const SCEV *Upper[8];
360      const SCEV *Lower[8];
361      unsigned char Direction;
362      unsigned char DirSet;
363    };
364
365    /// Constraint - This private class represents a constraint, as defined
366    /// in the paper
367    ///
368    ///           Practical Dependence Testing
369    ///           Goff, Kennedy, Tseng
370    ///           PLDI 1991
371    ///
372    /// There are 5 kinds of constraint, in a hierarchy.
373    ///   1) Any - indicates no constraint, any dependence is possible.
374    ///   2) Line - A line ax + by = c, where a, b, and c are parameters,
375    ///             representing the dependence equation.
376    ///   3) Distance - The value d of the dependence distance;
377    ///   4) Point - A point <x, y> representing the dependence from
378    ///              iteration x to iteration y.
379    ///   5) Empty - No dependence is possible.
380    class Constraint {
381    private:
382      enum ConstraintKind { Empty, Point, Distance, Line, Any } Kind;
383      ScalarEvolution *SE;
384      const SCEV *A;
385      const SCEV *B;
386      const SCEV *C;
387      const Loop *AssociatedLoop;
388
389    public:
390      /// isEmpty - Return true if the constraint is of kind Empty.
391      bool isEmpty() const { return Kind == Empty; }
392
393      /// isPoint - Return true if the constraint is of kind Point.
394      bool isPoint() const { return Kind == Point; }
395
396      /// isDistance - Return true if the constraint is of kind Distance.
397      bool isDistance() const { return Kind == Distance; }
398
399      /// isLine - Return true if the constraint is of kind Line.
400      /// Since Distance's can also be represented as Lines, we also return
401      /// true if the constraint is of kind Distance.
402      bool isLine() const { return Kind == Line || Kind == Distance; }
403
404      /// isAny - Return true if the constraint is of kind Any;
405      bool isAny() const { return Kind == Any; }
406
407      /// getX - If constraint is a point <X, Y>, returns X.
408      /// Otherwise assert.
409      const SCEV *getX() const;
410
411      /// getY - If constraint is a point <X, Y>, returns Y.
412      /// Otherwise assert.
413      const SCEV *getY() const;
414
415      /// getA - If constraint is a line AX + BY = C, returns A.
416      /// Otherwise assert.
417      const SCEV *getA() const;
418
419      /// getB - If constraint is a line AX + BY = C, returns B.
420      /// Otherwise assert.
421      const SCEV *getB() const;
422
423      /// getC - If constraint is a line AX + BY = C, returns C.
424      /// Otherwise assert.
425      const SCEV *getC() const;
426
427      /// getD - If constraint is a distance, returns D.
428      /// Otherwise assert.
429      const SCEV *getD() const;
430
431      /// getAssociatedLoop - Returns the loop associated with this constraint.
432      const Loop *getAssociatedLoop() const;
433
434      /// setPoint - Change a constraint to Point.
435      void setPoint(const SCEV *X, const SCEV *Y, const Loop *CurrentLoop);
436
437      /// setLine - Change a constraint to Line.
438      void setLine(const SCEV *A, const SCEV *B,
439                   const SCEV *C, const Loop *CurrentLoop);
440
441      /// setDistance - Change a constraint to Distance.
442      void setDistance(const SCEV *D, const Loop *CurrentLoop);
443
444      /// setEmpty - Change a constraint to Empty.
445      void setEmpty();
446
447      /// setAny - Change a constraint to Any.
448      void setAny(ScalarEvolution *SE);
449
450      /// dump - For debugging purposes. Dumps the constraint
451      /// out to OS.
452      void dump(raw_ostream &OS) const;
453    };
454
455    /// establishNestingLevels - Examines the loop nesting of the Src and Dst
456    /// instructions and establishes their shared loops. Sets the variables
457    /// CommonLevels, SrcLevels, and MaxLevels.
458    /// The source and destination instructions needn't be contained in the same
459    /// loop. The routine establishNestingLevels finds the level of most deeply
460    /// nested loop that contains them both, CommonLevels. An instruction that's
461    /// not contained in a loop is at level = 0. MaxLevels is equal to the level
462    /// of the source plus the level of the destination, minus CommonLevels.
463    /// This lets us allocate vectors MaxLevels in length, with room for every
464    /// distinct loop referenced in both the source and destination subscripts.
465    /// The variable SrcLevels is the nesting depth of the source instruction.
466    /// It's used to help calculate distinct loops referenced by the destination.
467    /// Here's the map from loops to levels:
468    ///            0 - unused
469    ///            1 - outermost common loop
470    ///          ... - other common loops
471    /// CommonLevels - innermost common loop
472    ///          ... - loops containing Src but not Dst
473    ///    SrcLevels - innermost loop containing Src but not Dst
474    ///          ... - loops containing Dst but not Src
475    ///    MaxLevels - innermost loop containing Dst but not Src
476    /// Consider the follow code fragment:
477    ///    for (a = ...) {
478    ///      for (b = ...) {
479    ///        for (c = ...) {
480    ///          for (d = ...) {
481    ///            A[] = ...;
482    ///          }
483    ///        }
484    ///        for (e = ...) {
485    ///          for (f = ...) {
486    ///            for (g = ...) {
487    ///              ... = A[];
488    ///            }
489    ///          }
490    ///        }
491    ///      }
492    ///    }
493    /// If we're looking at the possibility of a dependence between the store
494    /// to A (the Src) and the load from A (the Dst), we'll note that they
495    /// have 2 loops in common, so CommonLevels will equal 2 and the direction
496    /// vector for Result will have 2 entries. SrcLevels = 4 and MaxLevels = 7.
497    /// A map from loop names to level indices would look like
498    ///     a - 1
499    ///     b - 2 = CommonLevels
500    ///     c - 3
501    ///     d - 4 = SrcLevels
502    ///     e - 5
503    ///     f - 6
504    ///     g - 7 = MaxLevels
505    void establishNestingLevels(const Instruction *Src,
506                                const Instruction *Dst);
507
508    unsigned CommonLevels, SrcLevels, MaxLevels;
509
510    /// mapSrcLoop - Given one of the loops containing the source, return
511    /// its level index in our numbering scheme.
512    unsigned mapSrcLoop(const Loop *SrcLoop) const;
513
514    /// mapDstLoop - Given one of the loops containing the destination,
515    /// return its level index in our numbering scheme.
516    unsigned mapDstLoop(const Loop *DstLoop) const;
517
518    /// isLoopInvariant - Returns true if Expression is loop invariant
519    /// in LoopNest.
520    bool isLoopInvariant(const SCEV *Expression, const Loop *LoopNest) const;
521
522    /// Makes sure all subscript pairs share the same integer type by
523    /// sign-extending as necessary.
524    /// Sign-extending a subscript is safe because getelementptr assumes the
525    /// array subscripts are signed.
526    void unifySubscriptType(ArrayRef<Subscript *> Pairs);
527
528    /// removeMatchingExtensions - Examines a subscript pair.
529    /// If the source and destination are identically sign (or zero)
530    /// extended, it strips off the extension in an effort to
531    /// simplify the actual analysis.
532    void removeMatchingExtensions(Subscript *Pair);
533
534    /// collectCommonLoops - Finds the set of loops from the LoopNest that
535    /// have a level <= CommonLevels and are referred to by the SCEV Expression.
536    void collectCommonLoops(const SCEV *Expression,
537                            const Loop *LoopNest,
538                            SmallBitVector &Loops) const;
539
540    /// checkSrcSubscript - Examines the SCEV Src, returning true iff it's
541    /// linear. Collect the set of loops mentioned by Src.
542    bool checkSrcSubscript(const SCEV *Src,
543                           const Loop *LoopNest,
544                           SmallBitVector &Loops);
545
546    /// checkDstSubscript - Examines the SCEV Dst, returning true iff it's
547    /// linear. Collect the set of loops mentioned by Dst.
548    bool checkDstSubscript(const SCEV *Dst,
549                           const Loop *LoopNest,
550                           SmallBitVector &Loops);
551
552    /// isKnownPredicate - Compare X and Y using the predicate Pred.
553    /// Basically a wrapper for SCEV::isKnownPredicate,
554    /// but tries harder, especially in the presence of sign and zero
555    /// extensions and symbolics.
556    bool isKnownPredicate(ICmpInst::Predicate Pred,
557                          const SCEV *X,
558                          const SCEV *Y) const;
559
560    /// collectUpperBound - All subscripts are the same type (on my machine,
561    /// an i64). The loop bound may be a smaller type. collectUpperBound
562    /// find the bound, if available, and zero extends it to the Type T.
563    /// (I zero extend since the bound should always be >= 0.)
564    /// If no upper bound is available, return NULL.
565    const SCEV *collectUpperBound(const Loop *l, Type *T) const;
566
567    /// collectConstantUpperBound - Calls collectUpperBound(), then
568    /// attempts to cast it to SCEVConstant. If the cast fails,
569    /// returns NULL.
570    const SCEVConstant *collectConstantUpperBound(const Loop *l, Type *T) const;
571
572    /// classifyPair - Examines the subscript pair (the Src and Dst SCEVs)
573    /// and classifies it as either ZIV, SIV, RDIV, MIV, or Nonlinear.
574    /// Collects the associated loops in a set.
575    Subscript::ClassificationKind classifyPair(const SCEV *Src,
576                                           const Loop *SrcLoopNest,
577                                           const SCEV *Dst,
578                                           const Loop *DstLoopNest,
579                                           SmallBitVector &Loops);
580
581    /// testZIV - Tests the ZIV subscript pair (Src and Dst) for dependence.
582    /// Returns true if any possible dependence is disproved.
583    /// If there might be a dependence, returns false.
584    /// If the dependence isn't proven to exist,
585    /// marks the Result as inconsistent.
586    bool testZIV(const SCEV *Src,
587                 const SCEV *Dst,
588                 FullDependence &Result) const;
589
590    /// testSIV - Tests the SIV subscript pair (Src and Dst) for dependence.
591    /// Things of the form [c1 + a1*i] and [c2 + a2*j], where
592    /// i and j are induction variables, c1 and c2 are loop invariant,
593    /// and a1 and a2 are constant.
594    /// Returns true if any possible dependence is disproved.
595    /// If there might be a dependence, returns false.
596    /// Sets appropriate direction vector entry and, when possible,
597    /// the distance vector entry.
598    /// If the dependence isn't proven to exist,
599    /// marks the Result as inconsistent.
600    bool testSIV(const SCEV *Src,
601                 const SCEV *Dst,
602                 unsigned &Level,
603                 FullDependence &Result,
604                 Constraint &NewConstraint,
605                 const SCEV *&SplitIter) const;
606
607    /// testRDIV - Tests the RDIV subscript pair (Src and Dst) for dependence.
608    /// Things of the form [c1 + a1*i] and [c2 + a2*j]
609    /// where i and j are induction variables, c1 and c2 are loop invariant,
610    /// and a1 and a2 are constant.
611    /// With minor algebra, this test can also be used for things like
612    /// [c1 + a1*i + a2*j][c2].
613    /// Returns true if any possible dependence is disproved.
614    /// If there might be a dependence, returns false.
615    /// Marks the Result as inconsistent.
616    bool testRDIV(const SCEV *Src,
617                  const SCEV *Dst,
618                  FullDependence &Result) const;
619
620    /// testMIV - Tests the MIV subscript pair (Src and Dst) for dependence.
621    /// Returns true if dependence disproved.
622    /// Can sometimes refine direction vectors.
623    bool testMIV(const SCEV *Src,
624                 const SCEV *Dst,
625                 const SmallBitVector &Loops,
626                 FullDependence &Result) const;
627
628    /// strongSIVtest - Tests the strong SIV subscript pair (Src and Dst)
629    /// for dependence.
630    /// Things of the form [c1 + a*i] and [c2 + a*i],
631    /// where i is an induction variable, c1 and c2 are loop invariant,
632    /// and a is a constant
633    /// Returns true if any possible dependence is disproved.
634    /// If there might be a dependence, returns false.
635    /// Sets appropriate direction and distance.
636    bool strongSIVtest(const SCEV *Coeff,
637                       const SCEV *SrcConst,
638                       const SCEV *DstConst,
639                       const Loop *CurrentLoop,
640                       unsigned Level,
641                       FullDependence &Result,
642                       Constraint &NewConstraint) const;
643
644    /// weakCrossingSIVtest - Tests the weak-crossing SIV subscript pair
645    /// (Src and Dst) for dependence.
646    /// Things of the form [c1 + a*i] and [c2 - a*i],
647    /// where i is an induction variable, c1 and c2 are loop invariant,
648    /// and a is a constant.
649    /// Returns true if any possible dependence is disproved.
650    /// If there might be a dependence, returns false.
651    /// Sets appropriate direction entry.
652    /// Set consistent to false.
653    /// Marks the dependence as splitable.
654    bool weakCrossingSIVtest(const SCEV *SrcCoeff,
655                             const SCEV *SrcConst,
656                             const SCEV *DstConst,
657                             const Loop *CurrentLoop,
658                             unsigned Level,
659                             FullDependence &Result,
660                             Constraint &NewConstraint,
661                             const SCEV *&SplitIter) const;
662
663    /// ExactSIVtest - Tests the SIV subscript pair
664    /// (Src and Dst) for dependence.
665    /// Things of the form [c1 + a1*i] and [c2 + a2*i],
666    /// where i is an induction variable, c1 and c2 are loop invariant,
667    /// and a1 and a2 are constant.
668    /// Returns true if any possible dependence is disproved.
669    /// If there might be a dependence, returns false.
670    /// Sets appropriate direction entry.
671    /// Set consistent to false.
672    bool exactSIVtest(const SCEV *SrcCoeff,
673                      const SCEV *DstCoeff,
674                      const SCEV *SrcConst,
675                      const SCEV *DstConst,
676                      const Loop *CurrentLoop,
677                      unsigned Level,
678                      FullDependence &Result,
679                      Constraint &NewConstraint) const;
680
681    /// weakZeroSrcSIVtest - Tests the weak-zero SIV subscript pair
682    /// (Src and Dst) for dependence.
683    /// Things of the form [c1] and [c2 + a*i],
684    /// where i is an induction variable, c1 and c2 are loop invariant,
685    /// and a is a constant. See also weakZeroDstSIVtest.
686    /// Returns true if any possible dependence is disproved.
687    /// If there might be a dependence, returns false.
688    /// Sets appropriate direction entry.
689    /// Set consistent to false.
690    /// If loop peeling will break the dependence, mark appropriately.
691    bool weakZeroSrcSIVtest(const SCEV *DstCoeff,
692                            const SCEV *SrcConst,
693                            const SCEV *DstConst,
694                            const Loop *CurrentLoop,
695                            unsigned Level,
696                            FullDependence &Result,
697                            Constraint &NewConstraint) const;
698
699    /// weakZeroDstSIVtest - Tests the weak-zero SIV subscript pair
700    /// (Src and Dst) for dependence.
701    /// Things of the form [c1 + a*i] and [c2],
702    /// where i is an induction variable, c1 and c2 are loop invariant,
703    /// and a is a constant. See also weakZeroSrcSIVtest.
704    /// Returns true if any possible dependence is disproved.
705    /// If there might be a dependence, returns false.
706    /// Sets appropriate direction entry.
707    /// Set consistent to false.
708    /// If loop peeling will break the dependence, mark appropriately.
709    bool weakZeroDstSIVtest(const SCEV *SrcCoeff,
710                            const SCEV *SrcConst,
711                            const SCEV *DstConst,
712                            const Loop *CurrentLoop,
713                            unsigned Level,
714                            FullDependence &Result,
715                            Constraint &NewConstraint) const;
716
717    /// exactRDIVtest - Tests the RDIV subscript pair for dependence.
718    /// Things of the form [c1 + a*i] and [c2 + b*j],
719    /// where i and j are induction variable, c1 and c2 are loop invariant,
720    /// and a and b are constants.
721    /// Returns true if any possible dependence is disproved.
722    /// Marks the result as inconsistent.
723    /// Works in some cases that symbolicRDIVtest doesn't,
724    /// and vice versa.
725    bool exactRDIVtest(const SCEV *SrcCoeff,
726                       const SCEV *DstCoeff,
727                       const SCEV *SrcConst,
728                       const SCEV *DstConst,
729                       const Loop *SrcLoop,
730                       const Loop *DstLoop,
731                       FullDependence &Result) const;
732
733    /// symbolicRDIVtest - Tests the RDIV subscript pair for dependence.
734    /// Things of the form [c1 + a*i] and [c2 + b*j],
735    /// where i and j are induction variable, c1 and c2 are loop invariant,
736    /// and a and b are constants.
737    /// Returns true if any possible dependence is disproved.
738    /// Marks the result as inconsistent.
739    /// Works in some cases that exactRDIVtest doesn't,
740    /// and vice versa. Can also be used as a backup for
741    /// ordinary SIV tests.
742    bool symbolicRDIVtest(const SCEV *SrcCoeff,
743                          const SCEV *DstCoeff,
744                          const SCEV *SrcConst,
745                          const SCEV *DstConst,
746                          const Loop *SrcLoop,
747                          const Loop *DstLoop) const;
748
749    /// gcdMIVtest - Tests an MIV subscript pair for dependence.
750    /// Returns true if any possible dependence is disproved.
751    /// Marks the result as inconsistent.
752    /// Can sometimes disprove the equal direction for 1 or more loops.
753    //  Can handle some symbolics that even the SIV tests don't get,
754    /// so we use it as a backup for everything.
755    bool gcdMIVtest(const SCEV *Src,
756                    const SCEV *Dst,
757                    FullDependence &Result) const;
758
759    /// banerjeeMIVtest - Tests an MIV subscript pair for dependence.
760    /// Returns true if any possible dependence is disproved.
761    /// Marks the result as inconsistent.
762    /// Computes directions.
763    bool banerjeeMIVtest(const SCEV *Src,
764                         const SCEV *Dst,
765                         const SmallBitVector &Loops,
766                         FullDependence &Result) const;
767
768    /// collectCoefficientInfo - Walks through the subscript,
769    /// collecting each coefficient, the associated loop bounds,
770    /// and recording its positive and negative parts for later use.
771    CoefficientInfo *collectCoeffInfo(const SCEV *Subscript,
772                                      bool SrcFlag,
773                                      const SCEV *&Constant) const;
774
775    /// getPositivePart - X^+ = max(X, 0).
776    ///
777    const SCEV *getPositivePart(const SCEV *X) const;
778
779    /// getNegativePart - X^- = min(X, 0).
780    ///
781    const SCEV *getNegativePart(const SCEV *X) const;
782
783    /// getLowerBound - Looks through all the bounds info and
784    /// computes the lower bound given the current direction settings
785    /// at each level.
786    const SCEV *getLowerBound(BoundInfo *Bound) const;
787
788    /// getUpperBound - Looks through all the bounds info and
789    /// computes the upper bound given the current direction settings
790    /// at each level.
791    const SCEV *getUpperBound(BoundInfo *Bound) const;
792
793    /// exploreDirections - Hierarchically expands the direction vector
794    /// search space, combining the directions of discovered dependences
795    /// in the DirSet field of Bound. Returns the number of distinct
796    /// dependences discovered. If the dependence is disproved,
797    /// it will return 0.
798    unsigned exploreDirections(unsigned Level,
799                               CoefficientInfo *A,
800                               CoefficientInfo *B,
801                               BoundInfo *Bound,
802                               const SmallBitVector &Loops,
803                               unsigned &DepthExpanded,
804                               const SCEV *Delta) const;
805
806    /// testBounds - Returns true iff the current bounds are plausible.
807    bool testBounds(unsigned char DirKind,
808                    unsigned Level,
809                    BoundInfo *Bound,
810                    const SCEV *Delta) const;
811
812    /// findBoundsALL - Computes the upper and lower bounds for level K
813    /// using the * direction. Records them in Bound.
814    void findBoundsALL(CoefficientInfo *A,
815                       CoefficientInfo *B,
816                       BoundInfo *Bound,
817                       unsigned K) const;
818
819    /// findBoundsLT - Computes the upper and lower bounds for level K
820    /// using the < direction. Records them in Bound.
821    void findBoundsLT(CoefficientInfo *A,
822                      CoefficientInfo *B,
823                      BoundInfo *Bound,
824                      unsigned K) const;
825
826    /// findBoundsGT - Computes the upper and lower bounds for level K
827    /// using the > direction. Records them in Bound.
828    void findBoundsGT(CoefficientInfo *A,
829                      CoefficientInfo *B,
830                      BoundInfo *Bound,
831                      unsigned K) const;
832
833    /// findBoundsEQ - Computes the upper and lower bounds for level K
834    /// using the = direction. Records them in Bound.
835    void findBoundsEQ(CoefficientInfo *A,
836                      CoefficientInfo *B,
837                      BoundInfo *Bound,
838                      unsigned K) const;
839
840    /// intersectConstraints - Updates X with the intersection
841    /// of the Constraints X and Y. Returns true if X has changed.
842    bool intersectConstraints(Constraint *X,
843                              const Constraint *Y);
844
845    /// propagate - Review the constraints, looking for opportunities
846    /// to simplify a subscript pair (Src and Dst).
847    /// Return true if some simplification occurs.
848    /// If the simplification isn't exact (that is, if it is conservative
849    /// in terms of dependence), set consistent to false.
850    bool propagate(const SCEV *&Src,
851                   const SCEV *&Dst,
852                   SmallBitVector &Loops,
853                   SmallVectorImpl<Constraint> &Constraints,
854                   bool &Consistent);
855
856    /// propagateDistance - Attempt to propagate a distance
857    /// constraint into a subscript pair (Src and Dst).
858    /// Return true if some simplification occurs.
859    /// If the simplification isn't exact (that is, if it is conservative
860    /// in terms of dependence), set consistent to false.
861    bool propagateDistance(const SCEV *&Src,
862                           const SCEV *&Dst,
863                           Constraint &CurConstraint,
864                           bool &Consistent);
865
866    /// propagatePoint - Attempt to propagate a point
867    /// constraint into a subscript pair (Src and Dst).
868    /// Return true if some simplification occurs.
869    bool propagatePoint(const SCEV *&Src,
870                        const SCEV *&Dst,
871                        Constraint &CurConstraint);
872
873    /// propagateLine - Attempt to propagate a line
874    /// constraint into a subscript pair (Src and Dst).
875    /// Return true if some simplification occurs.
876    /// If the simplification isn't exact (that is, if it is conservative
877    /// in terms of dependence), set consistent to false.
878    bool propagateLine(const SCEV *&Src,
879                       const SCEV *&Dst,
880                       Constraint &CurConstraint,
881                       bool &Consistent);
882
883    /// findCoefficient - Given a linear SCEV,
884    /// return the coefficient corresponding to specified loop.
885    /// If there isn't one, return the SCEV constant 0.
886    /// For example, given a*i + b*j + c*k, returning the coefficient
887    /// corresponding to the j loop would yield b.
888    const SCEV *findCoefficient(const SCEV *Expr,
889                                const Loop *TargetLoop) const;
890
891    /// zeroCoefficient - Given a linear SCEV,
892    /// return the SCEV given by zeroing out the coefficient
893    /// corresponding to the specified loop.
894    /// For example, given a*i + b*j + c*k, zeroing the coefficient
895    /// corresponding to the j loop would yield a*i + c*k.
896    const SCEV *zeroCoefficient(const SCEV *Expr,
897                                const Loop *TargetLoop) const;
898
899    /// addToCoefficient - Given a linear SCEV Expr,
900    /// return the SCEV given by adding some Value to the
901    /// coefficient corresponding to the specified TargetLoop.
902    /// For example, given a*i + b*j + c*k, adding 1 to the coefficient
903    /// corresponding to the j loop would yield a*i + (b+1)*j + c*k.
904    const SCEV *addToCoefficient(const SCEV *Expr,
905                                 const Loop *TargetLoop,
906                                 const SCEV *Value)  const;
907
908    /// updateDirection - Update direction vector entry
909    /// based on the current constraint.
910    void updateDirection(Dependence::DVEntry &Level,
911                         const Constraint &CurConstraint) const;
912
913    bool tryDelinearize(Instruction *Src, Instruction *Dst,
914                        SmallVectorImpl<Subscript> &Pair);
915  }; // class DependenceInfo
916
917  /// \brief AnalysisPass to compute dependence information in a function
918  class DependenceAnalysis : public AnalysisInfoMixin<DependenceAnalysis> {
919  public:
920    typedef DependenceInfo Result;
921    Result run(Function &F, FunctionAnalysisManager &FAM);
922
923  private:
924    static AnalysisKey Key;
925    friend struct AnalysisInfoMixin<DependenceAnalysis>;
926  }; // class DependenceAnalysis
927
928  /// \brief Legacy pass manager pass to access dependence information
929  class DependenceAnalysisWrapperPass : public FunctionPass {
930  public:
931    static char ID; // Class identification, replacement for typeinfo
932    DependenceAnalysisWrapperPass() : FunctionPass(ID) {
933      initializeDependenceAnalysisWrapperPassPass(
934          *PassRegistry::getPassRegistry());
935    }
936
937    bool runOnFunction(Function &F) override;
938    void releaseMemory() override;
939    void getAnalysisUsage(AnalysisUsage &) const override;
940    void print(raw_ostream &, const Module * = nullptr) const override;
941    DependenceInfo &getDI() const;
942
943  private:
944    std::unique_ptr<DependenceInfo> info;
945  }; // class DependenceAnalysisWrapperPass
946
947  /// createDependenceAnalysisPass - This creates an instance of the
948  /// DependenceAnalysis wrapper pass.
949  FunctionPass *createDependenceAnalysisWrapperPass();
950
951} // namespace llvm
952
953#endif
954