scanline.cpp revision ab5265ebe65eac3b9555eaa3f425cf8e2759d3b3
1/* libs/pixelflinger/scanline.cpp
2**
3** Copyright 2006-2011, The Android Open Source Project
4**
5** Licensed under the Apache License, Version 2.0 (the "License");
6** you may not use this file except in compliance with the License.
7** You may obtain a copy of the License at
8**
9**     http://www.apache.org/licenses/LICENSE-2.0
10**
11** Unless required by applicable law or agreed to in writing, software
12** distributed under the License is distributed on an "AS IS" BASIS,
13** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14** See the License for the specific language governing permissions and
15** limitations under the License.
16*/
17
18
19#define LOG_TAG "pixelflinger"
20
21#include <assert.h>
22#include <stdlib.h>
23#include <stdio.h>
24#include <string.h>
25
26#include <cutils/memory.h>
27#include <cutils/log.h>
28
29#ifdef __arm__
30#include <machine/cpu-features.h>
31#endif
32
33#include "buffer.h"
34#include "scanline.h"
35
36#include "codeflinger/CodeCache.h"
37#include "codeflinger/GGLAssembler.h"
38#if defined(__arm__)
39#include "codeflinger/ARMAssembler.h"
40#elif defined(__aarch64__)
41#include "codeflinger/Arm64Assembler.h"
42#elif defined(__mips__) && !defined(__LP64__) && __mips_isa_rev < 6
43#include "codeflinger/MIPSAssembler.h"
44#elif defined(__mips__) && defined(__LP64__)
45#include "codeflinger/MIPS64Assembler.h"
46#endif
47//#include "codeflinger/ARMAssemblerOptimizer.h"
48
49// ----------------------------------------------------------------------------
50
51#define ANDROID_CODEGEN_GENERIC     0   // force generic pixel pipeline
52#define ANDROID_CODEGEN_C           1   // hand-written C, fallback generic
53#define ANDROID_CODEGEN_ASM         2   // hand-written asm, fallback generic
54#define ANDROID_CODEGEN_GENERATED   3   // hand-written asm, fallback codegen
55
56#ifdef NDEBUG
57#   define ANDROID_RELEASE
58#   define ANDROID_CODEGEN      ANDROID_CODEGEN_GENERATED
59#else
60#   define ANDROID_DEBUG
61#   define ANDROID_CODEGEN      ANDROID_CODEGEN_GENERATED
62#endif
63
64#if defined(__arm__) || (defined(__mips__) && ((!defined(__LP64__) && __mips_isa_rev < 6) || defined(__LP64__))) || defined(__aarch64__)
65#   define ANDROID_ARM_CODEGEN  1
66#else
67#   define ANDROID_ARM_CODEGEN  0
68#endif
69
70#define DEBUG__CODEGEN_ONLY     0
71
72/* Set to 1 to dump to the log the states that need a new
73 * code-generated scanline callback, i.e. those that don't
74 * have a corresponding shortcut function.
75 */
76#define DEBUG_NEEDS  0
77
78#if defined( __mips__) && ((!defined(__LP64__) && __mips_isa_rev < 6) || defined(__LP64__))
79#define ASSEMBLY_SCRATCH_SIZE   4096
80#elif defined(__aarch64__)
81#define ASSEMBLY_SCRATCH_SIZE   8192
82#else
83#define ASSEMBLY_SCRATCH_SIZE   2048
84#endif
85
86// ----------------------------------------------------------------------------
87namespace android {
88// ----------------------------------------------------------------------------
89
90static void init_y(context_t*, int32_t);
91static void init_y_noop(context_t*, int32_t);
92static void init_y_packed(context_t*, int32_t);
93static void init_y_error(context_t*, int32_t);
94
95static void step_y__generic(context_t* c);
96static void step_y__nop(context_t*);
97static void step_y__smooth(context_t* c);
98static void step_y__tmu(context_t* c);
99static void step_y__w(context_t* c);
100
101static void scanline(context_t* c);
102static void scanline_perspective(context_t* c);
103static void scanline_perspective_single(context_t* c);
104static void scanline_t32cb16blend(context_t* c);
105static void scanline_t32cb16blend_dither(context_t* c);
106static void scanline_t32cb16blend_srca(context_t* c);
107static void scanline_t32cb16blend_clamp(context_t* c);
108static void scanline_t32cb16blend_clamp_dither(context_t* c);
109static void scanline_t32cb16blend_clamp_mod(context_t* c);
110static void scanline_x32cb16blend_clamp_mod(context_t* c);
111static void scanline_t32cb16blend_clamp_mod_dither(context_t* c);
112static void scanline_x32cb16blend_clamp_mod_dither(context_t* c);
113static void scanline_t32cb16(context_t* c);
114static void scanline_t32cb16_dither(context_t* c);
115static void scanline_t32cb16_clamp(context_t* c);
116static void scanline_t32cb16_clamp_dither(context_t* c);
117static void scanline_col32cb16blend(context_t* c);
118static void scanline_t16cb16_clamp(context_t* c);
119static void scanline_t16cb16blend_clamp_mod(context_t* c);
120static void scanline_memcpy(context_t* c);
121static void scanline_memset8(context_t* c);
122static void scanline_memset16(context_t* c);
123static void scanline_memset32(context_t* c);
124static void scanline_noop(context_t* c);
125static void scanline_set(context_t* c);
126static void scanline_clear(context_t* c);
127
128static void rect_generic(context_t* c, size_t yc);
129static void rect_memcpy(context_t* c, size_t yc);
130
131#if defined( __arm__)
132extern "C" void scanline_t32cb16blend_arm(uint16_t*, uint32_t*, size_t);
133extern "C" void scanline_t32cb16_arm(uint16_t *dst, uint32_t *src, size_t ct);
134extern "C" void scanline_col32cb16blend_neon(uint16_t *dst, uint32_t *col, size_t ct);
135extern "C" void scanline_col32cb16blend_arm(uint16_t *dst, uint32_t col, size_t ct);
136#elif defined(__aarch64__)
137extern "C" void scanline_t32cb16blend_arm64(uint16_t*, uint32_t*, size_t);
138extern "C" void scanline_col32cb16blend_arm64(uint16_t *dst, uint32_t col, size_t ct);
139#elif defined(__mips__) && !defined(__LP64__) && __mips_isa_rev < 6
140extern "C" void scanline_t32cb16blend_mips(uint16_t*, uint32_t*, size_t);
141#elif defined(__mips__) && defined(__LP64__)
142extern "C" void scanline_t32cb16blend_mips64(uint16_t*, uint32_t*, size_t);
143extern "C" void scanline_col32cb16blend_mips64(uint16_t *dst, uint32_t col, size_t ct);
144#endif
145
146// ----------------------------------------------------------------------------
147
148static inline uint16_t  convertAbgr8888ToRgb565(uint32_t  pix)
149{
150    return uint16_t( ((pix << 8) & 0xf800) |
151                      ((pix >> 5) & 0x07e0) |
152                      ((pix >> 19) & 0x001f) );
153}
154
155struct shortcut_t {
156    needs_filter_t  filter;
157    const char*     desc;
158    void            (*scanline)(context_t*);
159    void            (*init_y)(context_t*, int32_t);
160};
161
162// Keep in sync with needs
163
164/* To understand the values here, have a look at:
165 *     system/core/include/private/pixelflinger/ggl_context.h
166 *
167 * Especially the lines defining and using GGL_RESERVE_NEEDS
168 *
169 * Quick reminders:
170 *   - the last nibble of the first value is the destination buffer format.
171 *   - the last nibble of the third value is the source texture format
172 *   - formats: 4=rgb565 1=abgr8888 2=xbgr8888
173 *
174 * In the descriptions below:
175 *
176 *   SRC      means we copy the source pixels to the destination
177 *
178 *   SRC_OVER means we blend the source pixels to the destination
179 *            with dstFactor = 1-srcA, srcFactor=1  (premultiplied source).
180 *            This mode is otherwise called 'blend'.
181 *
182 *   SRCA_OVER means we blend the source pixels to the destination
183 *             with dstFactor=srcA*(1-srcA) srcFactor=srcA (non-premul source).
184 *             This mode is otherwise called 'blend_srca'
185 *
186 *   clamp    means we fetch source pixels from a texture with u/v clamping
187 *
188 *   mod      means the source pixels are modulated (multiplied) by the
189 *            a/r/g/b of the current context's color. Typically used for
190 *            fade-in / fade-out.
191 *
192 *   dither   means we dither 32 bit values to 16 bits
193 */
194static shortcut_t shortcuts[] = {
195    { { { 0x03515104, 0x00000077, { 0x00000A01, 0x00000000 } },
196        { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
197        "565 fb, 8888 tx, blend SRC_OVER", scanline_t32cb16blend, init_y_noop },
198    { { { 0x03010104, 0x00000077, { 0x00000A01, 0x00000000 } },
199        { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
200        "565 fb, 8888 tx, SRC", scanline_t32cb16, init_y_noop  },
201    /* same as first entry, but with dithering */
202    { { { 0x03515104, 0x00000177, { 0x00000A01, 0x00000000 } },
203        { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
204        "565 fb, 8888 tx, blend SRC_OVER dither", scanline_t32cb16blend_dither, init_y_noop },
205    /* same as second entry, but with dithering */
206    { { { 0x03010104, 0x00000177, { 0x00000A01, 0x00000000 } },
207        { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
208        "565 fb, 8888 tx, SRC dither", scanline_t32cb16_dither, init_y_noop  },
209    /* this is used during the boot animation - CHEAT: ignore dithering */
210    { { { 0x03545404, 0x00000077, { 0x00000A01, 0x00000000 } },
211        { 0xFFFFFFFF, 0xFFFFFEFF, { 0xFFFFFFFF, 0x0000003F } } },
212        "565 fb, 8888 tx, blend dst:ONE_MINUS_SRCA src:SRCA", scanline_t32cb16blend_srca, init_y_noop },
213    /* special case for arbitrary texture coordinates (think scaling) */
214    { { { 0x03515104, 0x00000077, { 0x00000001, 0x00000000 } },
215        { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
216        "565 fb, 8888 tx, SRC_OVER clamp", scanline_t32cb16blend_clamp, init_y },
217    { { { 0x03515104, 0x00000177, { 0x00000001, 0x00000000 } },
218        { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
219        "565 fb, 8888 tx, SRC_OVER clamp dither", scanline_t32cb16blend_clamp_dither, init_y },
220    /* another case used during emulation */
221    { { { 0x03515104, 0x00000077, { 0x00001001, 0x00000000 } },
222        { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
223        "565 fb, 8888 tx, SRC_OVER clamp modulate", scanline_t32cb16blend_clamp_mod, init_y },
224    /* and this */
225    { { { 0x03515104, 0x00000077, { 0x00001002, 0x00000000 } },
226        { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
227        "565 fb, x888 tx, SRC_OVER clamp modulate", scanline_x32cb16blend_clamp_mod, init_y },
228    { { { 0x03515104, 0x00000177, { 0x00001001, 0x00000000 } },
229        { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
230        "565 fb, 8888 tx, SRC_OVER clamp modulate dither", scanline_t32cb16blend_clamp_mod_dither, init_y },
231    { { { 0x03515104, 0x00000177, { 0x00001002, 0x00000000 } },
232        { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
233        "565 fb, x888 tx, SRC_OVER clamp modulate dither", scanline_x32cb16blend_clamp_mod_dither, init_y },
234    { { { 0x03010104, 0x00000077, { 0x00000001, 0x00000000 } },
235        { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
236        "565 fb, 8888 tx, SRC clamp", scanline_t32cb16_clamp, init_y  },
237    { { { 0x03010104, 0x00000077, { 0x00000002, 0x00000000 } },
238        { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
239        "565 fb, x888 tx, SRC clamp", scanline_t32cb16_clamp, init_y  },
240    { { { 0x03010104, 0x00000177, { 0x00000001, 0x00000000 } },
241        { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
242        "565 fb, 8888 tx, SRC clamp dither", scanline_t32cb16_clamp_dither, init_y  },
243    { { { 0x03010104, 0x00000177, { 0x00000002, 0x00000000 } },
244        { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
245        "565 fb, x888 tx, SRC clamp dither", scanline_t32cb16_clamp_dither, init_y  },
246    { { { 0x03010104, 0x00000077, { 0x00000004, 0x00000000 } },
247        { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
248        "565 fb, 565 tx, SRC clamp", scanline_t16cb16_clamp, init_y  },
249    { { { 0x03515104, 0x00000077, { 0x00001004, 0x00000000 } },
250        { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
251        "565 fb, 565 tx, SRC_OVER clamp", scanline_t16cb16blend_clamp_mod, init_y  },
252    { { { 0x03515104, 0x00000077, { 0x00000000, 0x00000000 } },
253        { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0xFFFFFFFF } } },
254        "565 fb, 8888 fixed color", scanline_col32cb16blend, init_y_packed  },
255    { { { 0x00000000, 0x00000000, { 0x00000000, 0x00000000 } },
256        { 0x00000000, 0x00000007, { 0x00000000, 0x00000000 } } },
257        "(nop) alpha test", scanline_noop, init_y_noop },
258    { { { 0x00000000, 0x00000000, { 0x00000000, 0x00000000 } },
259        { 0x00000000, 0x00000070, { 0x00000000, 0x00000000 } } },
260        "(nop) depth test", scanline_noop, init_y_noop },
261    { { { 0x05000000, 0x00000000, { 0x00000000, 0x00000000 } },
262        { 0x0F000000, 0x00000080, { 0x00000000, 0x00000000 } } },
263        "(nop) logic_op", scanline_noop, init_y_noop },
264    { { { 0xF0000000, 0x00000000, { 0x00000000, 0x00000000 } },
265        { 0xF0000000, 0x00000080, { 0x00000000, 0x00000000 } } },
266        "(nop) color mask", scanline_noop, init_y_noop },
267    { { { 0x0F000000, 0x00000077, { 0x00000000, 0x00000000 } },
268        { 0xFF000000, 0x000000F7, { 0x00000000, 0x00000000 } } },
269        "(set) logic_op", scanline_set, init_y_noop },
270    { { { 0x00000000, 0x00000077, { 0x00000000, 0x00000000 } },
271        { 0xFF000000, 0x000000F7, { 0x00000000, 0x00000000 } } },
272        "(clear) logic_op", scanline_clear, init_y_noop },
273    { { { 0x03000000, 0x00000077, { 0x00000000, 0x00000000 } },
274        { 0xFFFFFF00, 0x000000F7, { 0x00000000, 0x00000000 } } },
275        "(clear) blending 0/0", scanline_clear, init_y_noop },
276    { { { 0x00000000, 0x00000000, { 0x00000000, 0x00000000 } },
277        { 0x0000003F, 0x00000000, { 0x00000000, 0x00000000 } } },
278        "(error) invalid color-buffer format", scanline_noop, init_y_error },
279};
280static const needs_filter_t noblend1to1 = {
281        // (disregard dithering, see below)
282        { 0x03010100, 0x00000077, { 0x00000A00, 0x00000000 } },
283        { 0xFFFFFFC0, 0xFFFFFEFF, { 0xFFFFFFC0, 0x0000003F } }
284};
285static  const needs_filter_t fill16noblend = {
286        { 0x03010100, 0x00000077, { 0x00000000, 0x00000000 } },
287        { 0xFFFFFFC0, 0xFFFFFFFF, { 0x0000003F, 0x0000003F } }
288};
289
290// ----------------------------------------------------------------------------
291
292#if ANDROID_ARM_CODEGEN
293
294#if defined(__mips__) && ((!defined(__LP64__) && __mips_isa_rev < 6) || defined(__LP64__))
295static CodeCache gCodeCache(32 * 1024);
296#elif defined(__aarch64__)
297static CodeCache gCodeCache(48 * 1024);
298#else
299static CodeCache gCodeCache(12 * 1024);
300#endif
301
302class ScanlineAssembly : public Assembly {
303    AssemblyKey<needs_t> mKey;
304public:
305    ScanlineAssembly(needs_t needs, size_t size)
306        : Assembly(size), mKey(needs) { }
307    const AssemblyKey<needs_t>& key() const { return mKey; }
308};
309#endif
310
311// ----------------------------------------------------------------------------
312
313void ggl_init_scanline(context_t* c)
314{
315    c->init_y = init_y;
316    c->step_y = step_y__generic;
317    c->scanline = scanline;
318}
319
320void ggl_uninit_scanline(context_t* c)
321{
322    if (c->state.buffers.coverage)
323        free(c->state.buffers.coverage);
324#if ANDROID_ARM_CODEGEN
325    if (c->scanline_as)
326        c->scanline_as->decStrong(c);
327#endif
328}
329
330// ----------------------------------------------------------------------------
331
332static void pick_scanline(context_t* c)
333{
334#if (!defined(DEBUG__CODEGEN_ONLY) || (DEBUG__CODEGEN_ONLY == 0))
335
336#if ANDROID_CODEGEN == ANDROID_CODEGEN_GENERIC
337    c->init_y = init_y;
338    c->step_y = step_y__generic;
339    c->scanline = scanline;
340    return;
341#endif
342
343    //printf("*** needs [%08lx:%08lx:%08lx:%08lx]\n",
344    //    c->state.needs.n, c->state.needs.p,
345    //    c->state.needs.t[0], c->state.needs.t[1]);
346
347    // first handle the special case that we cannot test with a filter
348    const uint32_t cb_format = GGL_READ_NEEDS(CB_FORMAT, c->state.needs.n);
349    if (GGL_READ_NEEDS(T_FORMAT, c->state.needs.t[0]) == cb_format) {
350        if (c->state.needs.match(noblend1to1)) {
351            // this will match regardless of dithering state, since both
352            // src and dest have the same format anyway, there is no dithering
353            // to be done.
354            const GGLFormat* f =
355                &(c->formats[GGL_READ_NEEDS(T_FORMAT, c->state.needs.t[0])]);
356            if ((f->components == GGL_RGB) ||
357                (f->components == GGL_RGBA) ||
358                (f->components == GGL_LUMINANCE) ||
359                (f->components == GGL_LUMINANCE_ALPHA))
360            {
361                // format must have all of RGB components
362                // (so the current color doesn't show through)
363                c->scanline = scanline_memcpy;
364                c->init_y = init_y_noop;
365                return;
366            }
367        }
368    }
369
370    if (c->state.needs.match(fill16noblend)) {
371        c->init_y = init_y_packed;
372        switch (c->formats[cb_format].size) {
373        case 1: c->scanline = scanline_memset8;  return;
374        case 2: c->scanline = scanline_memset16; return;
375        case 4: c->scanline = scanline_memset32; return;
376        }
377    }
378
379    const int numFilters = sizeof(shortcuts)/sizeof(shortcut_t);
380    for (int i=0 ; i<numFilters ; i++) {
381        if (c->state.needs.match(shortcuts[i].filter)) {
382            c->scanline = shortcuts[i].scanline;
383            c->init_y = shortcuts[i].init_y;
384            return;
385        }
386    }
387
388#if DEBUG_NEEDS
389    ALOGI("Needs: n=0x%08x p=0x%08x t0=0x%08x t1=0x%08x",
390         c->state.needs.n, c->state.needs.p,
391         c->state.needs.t[0], c->state.needs.t[1]);
392#endif
393
394#endif // DEBUG__CODEGEN_ONLY
395
396    c->init_y = init_y;
397    c->step_y = step_y__generic;
398
399#if ANDROID_ARM_CODEGEN
400    // we're going to have to generate some code...
401    // here, generate code for our pixel pipeline
402    const AssemblyKey<needs_t> key(c->state.needs);
403    sp<Assembly> assembly = gCodeCache.lookup(key);
404    if (assembly == 0) {
405        // create a new assembly region
406        sp<ScanlineAssembly> a = new ScanlineAssembly(c->state.needs,
407                ASSEMBLY_SCRATCH_SIZE);
408        // initialize our assembler
409#if defined(__arm__)
410        GGLAssembler assembler( new ARMAssembler(a) );
411        //GGLAssembler assembler(
412        //        new ARMAssemblerOptimizer(new ARMAssembler(a)) );
413#endif
414#if defined(__mips__) && !defined(__LP64__) && __mips_isa_rev < 6
415        GGLAssembler assembler( new ArmToMipsAssembler(a) );
416#elif defined(__mips__) && defined(__LP64__)
417        GGLAssembler assembler( new ArmToMips64Assembler(a) );
418#elif defined(__aarch64__)
419        GGLAssembler assembler( new ArmToArm64Assembler(a) );
420#endif
421        // generate the scanline code for the given needs
422        bool err = assembler.scanline(c->state.needs, c) != 0;
423        if (ggl_likely(!err)) {
424            // finally, cache this assembly
425            err = gCodeCache.cache(a->key(), a) < 0;
426        }
427        if (ggl_unlikely(err)) {
428            ALOGE("error generating or caching assembly. Reverting to NOP.");
429            c->scanline = scanline_noop;
430            c->init_y = init_y_noop;
431            c->step_y = step_y__nop;
432            return;
433        }
434        assembly = a;
435    }
436
437    // release the previous assembly
438    if (c->scanline_as) {
439        c->scanline_as->decStrong(c);
440    }
441
442    //ALOGI("using generated pixel-pipeline");
443    c->scanline_as = assembly.get();
444    c->scanline_as->incStrong(c); //  hold on to assembly
445    c->scanline = (void(*)(context_t* c))assembly->base();
446#else
447//    ALOGW("using generic (slow) pixel-pipeline");
448    c->scanline = scanline;
449#endif
450}
451
452void ggl_pick_scanline(context_t* c)
453{
454    pick_scanline(c);
455    if ((c->state.enables & GGL_ENABLE_W) &&
456        (c->state.enables & GGL_ENABLE_TMUS))
457    {
458        c->span = c->scanline;
459        c->scanline = scanline_perspective;
460        if (!(c->state.enabled_tmu & (c->state.enabled_tmu - 1))) {
461            // only one TMU enabled
462            c->scanline = scanline_perspective_single;
463        }
464    }
465}
466
467// ----------------------------------------------------------------------------
468
469static void blending(context_t* c, pixel_t* fragment, pixel_t* fb);
470static void blend_factor(context_t* c, pixel_t* r, uint32_t factor,
471        const pixel_t* src, const pixel_t* dst);
472static void rescale(uint32_t& u, uint8_t& su, uint32_t& v, uint8_t& sv);
473
474#if ANDROID_ARM_CODEGEN && (ANDROID_CODEGEN == ANDROID_CODEGEN_GENERATED)
475
476// no need to compile the generic-pipeline, it can't be reached
477void scanline(context_t*)
478{
479}
480
481#else
482
483void rescale(uint32_t& u, uint8_t& su, uint32_t& v, uint8_t& sv)
484{
485    if (su && sv) {
486        if (su > sv) {
487            v = ggl_expand(v, sv, su);
488            sv = su;
489        } else if (su < sv) {
490            u = ggl_expand(u, su, sv);
491            su = sv;
492        }
493    }
494}
495
496void blending(context_t* c, pixel_t* fragment, pixel_t* fb)
497{
498    rescale(fragment->c[0], fragment->s[0], fb->c[0], fb->s[0]);
499    rescale(fragment->c[1], fragment->s[1], fb->c[1], fb->s[1]);
500    rescale(fragment->c[2], fragment->s[2], fb->c[2], fb->s[2]);
501    rescale(fragment->c[3], fragment->s[3], fb->c[3], fb->s[3]);
502
503    pixel_t sf, df;
504    blend_factor(c, &sf, c->state.blend.src, fragment, fb);
505    blend_factor(c, &df, c->state.blend.dst, fragment, fb);
506
507    fragment->c[1] =
508            gglMulAddx(fragment->c[1], sf.c[1], gglMulx(fb->c[1], df.c[1]));
509    fragment->c[2] =
510            gglMulAddx(fragment->c[2], sf.c[2], gglMulx(fb->c[2], df.c[2]));
511    fragment->c[3] =
512            gglMulAddx(fragment->c[3], sf.c[3], gglMulx(fb->c[3], df.c[3]));
513
514    if (c->state.blend.alpha_separate) {
515        blend_factor(c, &sf, c->state.blend.src_alpha, fragment, fb);
516        blend_factor(c, &df, c->state.blend.dst_alpha, fragment, fb);
517    }
518
519    fragment->c[0] =
520            gglMulAddx(fragment->c[0], sf.c[0], gglMulx(fb->c[0], df.c[0]));
521
522    // clamp to 1.0
523    if (fragment->c[0] >= (1LU<<fragment->s[0]))
524        fragment->c[0] = (1<<fragment->s[0])-1;
525    if (fragment->c[1] >= (1LU<<fragment->s[1]))
526        fragment->c[1] = (1<<fragment->s[1])-1;
527    if (fragment->c[2] >= (1LU<<fragment->s[2]))
528        fragment->c[2] = (1<<fragment->s[2])-1;
529    if (fragment->c[3] >= (1LU<<fragment->s[3]))
530        fragment->c[3] = (1<<fragment->s[3])-1;
531}
532
533static inline int blendfactor(uint32_t x, uint32_t size, uint32_t def = 0)
534{
535    if (!size)
536        return def;
537
538    // scale to 16 bits
539    if (size > 16) {
540        x >>= (size - 16);
541    } else if (size < 16) {
542        x = ggl_expand(x, size, 16);
543    }
544    x += x >> 15;
545    return x;
546}
547
548void blend_factor(context_t* /*c*/, pixel_t* r,
549        uint32_t factor, const pixel_t* src, const pixel_t* dst)
550{
551    switch (factor) {
552        case GGL_ZERO:
553            r->c[1] =
554            r->c[2] =
555            r->c[3] =
556            r->c[0] = 0;
557            break;
558        case GGL_ONE:
559            r->c[1] =
560            r->c[2] =
561            r->c[3] =
562            r->c[0] = FIXED_ONE;
563            break;
564        case GGL_DST_COLOR:
565            r->c[1] = blendfactor(dst->c[1], dst->s[1]);
566            r->c[2] = blendfactor(dst->c[2], dst->s[2]);
567            r->c[3] = blendfactor(dst->c[3], dst->s[3]);
568            r->c[0] = blendfactor(dst->c[0], dst->s[0]);
569            break;
570        case GGL_SRC_COLOR:
571            r->c[1] = blendfactor(src->c[1], src->s[1]);
572            r->c[2] = blendfactor(src->c[2], src->s[2]);
573            r->c[3] = blendfactor(src->c[3], src->s[3]);
574            r->c[0] = blendfactor(src->c[0], src->s[0]);
575            break;
576        case GGL_ONE_MINUS_DST_COLOR:
577            r->c[1] = FIXED_ONE - blendfactor(dst->c[1], dst->s[1]);
578            r->c[2] = FIXED_ONE - blendfactor(dst->c[2], dst->s[2]);
579            r->c[3] = FIXED_ONE - blendfactor(dst->c[3], dst->s[3]);
580            r->c[0] = FIXED_ONE - blendfactor(dst->c[0], dst->s[0]);
581            break;
582        case GGL_ONE_MINUS_SRC_COLOR:
583            r->c[1] = FIXED_ONE - blendfactor(src->c[1], src->s[1]);
584            r->c[2] = FIXED_ONE - blendfactor(src->c[2], src->s[2]);
585            r->c[3] = FIXED_ONE - blendfactor(src->c[3], src->s[3]);
586            r->c[0] = FIXED_ONE - blendfactor(src->c[0], src->s[0]);
587            break;
588        case GGL_SRC_ALPHA:
589            r->c[1] =
590            r->c[2] =
591            r->c[3] =
592            r->c[0] = blendfactor(src->c[0], src->s[0], FIXED_ONE);
593            break;
594        case GGL_ONE_MINUS_SRC_ALPHA:
595            r->c[1] =
596            r->c[2] =
597            r->c[3] =
598            r->c[0] = FIXED_ONE - blendfactor(src->c[0], src->s[0], FIXED_ONE);
599            break;
600        case GGL_DST_ALPHA:
601            r->c[1] =
602            r->c[2] =
603            r->c[3] =
604            r->c[0] = blendfactor(dst->c[0], dst->s[0], FIXED_ONE);
605            break;
606        case GGL_ONE_MINUS_DST_ALPHA:
607            r->c[1] =
608            r->c[2] =
609            r->c[3] =
610            r->c[0] = FIXED_ONE - blendfactor(dst->c[0], dst->s[0], FIXED_ONE);
611            break;
612        case GGL_SRC_ALPHA_SATURATE:
613            // XXX: GGL_SRC_ALPHA_SATURATE
614            break;
615    }
616}
617
618static GGLfixed wrapping(int32_t coord, uint32_t size, int tx_wrap)
619{
620    GGLfixed d;
621    if (tx_wrap == GGL_REPEAT) {
622        d = (uint32_t(coord)>>16) * size;
623    } else if (tx_wrap == GGL_CLAMP) { // CLAMP_TO_EDGE semantics
624        const GGLfixed clamp_min = FIXED_HALF;
625        const GGLfixed clamp_max = (size << 16) - FIXED_HALF;
626        if (coord < clamp_min)     coord = clamp_min;
627        if (coord > clamp_max)     coord = clamp_max;
628        d = coord;
629    } else { // 1:1
630        const GGLfixed clamp_min = 0;
631        const GGLfixed clamp_max = (size << 16);
632        if (coord < clamp_min)     coord = clamp_min;
633        if (coord > clamp_max)     coord = clamp_max;
634        d = coord;
635    }
636    return d;
637}
638
639static inline
640GGLcolor ADJUST_COLOR_ITERATOR(GGLcolor v, GGLcolor dvdx, int len)
641{
642    const int32_t end = dvdx * (len-1) + v;
643    if (end < 0)
644        v -= end;
645    v &= ~(v>>31);
646    return v;
647}
648
649void scanline(context_t* c)
650{
651    const uint32_t enables = c->state.enables;
652    const int xs = c->iterators.xl;
653    const int x1 = c->iterators.xr;
654	int xc = x1 - xs;
655    const int16_t* covPtr = c->state.buffers.coverage + xs;
656
657    // All iterated values are sampled at the pixel center
658
659    // reset iterators for that scanline...
660    GGLcolor r, g, b, a;
661    iterators_t& ci = c->iterators;
662    if (enables & GGL_ENABLE_SMOOTH) {
663        r = (xs * c->shade.drdx) + ci.ydrdy;
664        g = (xs * c->shade.dgdx) + ci.ydgdy;
665        b = (xs * c->shade.dbdx) + ci.ydbdy;
666        a = (xs * c->shade.dadx) + ci.ydady;
667        r = ADJUST_COLOR_ITERATOR(r, c->shade.drdx, xc);
668        g = ADJUST_COLOR_ITERATOR(g, c->shade.dgdx, xc);
669        b = ADJUST_COLOR_ITERATOR(b, c->shade.dbdx, xc);
670        a = ADJUST_COLOR_ITERATOR(a, c->shade.dadx, xc);
671    } else {
672        r = ci.ydrdy;
673        g = ci.ydgdy;
674        b = ci.ydbdy;
675        a = ci.ydady;
676    }
677
678    // z iterators are 1.31
679    GGLfixed z = (xs * c->shade.dzdx) + ci.ydzdy;
680    GGLfixed f = (xs * c->shade.dfdx) + ci.ydfdy;
681
682    struct {
683        GGLfixed s, t;
684    } tc[GGL_TEXTURE_UNIT_COUNT];
685    if (enables & GGL_ENABLE_TMUS) {
686        for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; ++i) {
687            if (c->state.texture[i].enable) {
688                texture_iterators_t& ti = c->state.texture[i].iterators;
689                if (enables & GGL_ENABLE_W) {
690                    tc[i].s = ti.ydsdy;
691                    tc[i].t = ti.ydtdy;
692                } else {
693                    tc[i].s = (xs * ti.dsdx) + ti.ydsdy;
694                    tc[i].t = (xs * ti.dtdx) + ti.ydtdy;
695                }
696            }
697        }
698    }
699
700    pixel_t fragment;
701    pixel_t texel;
702    pixel_t fb;
703
704	uint32_t x = xs;
705	uint32_t y = c->iterators.y;
706
707	while (xc--) {
708
709        { // just a scope
710
711		// read color (convert to 8 bits by keeping only the integer part)
712        fragment.s[1] = fragment.s[2] =
713        fragment.s[3] = fragment.s[0] = 8;
714        fragment.c[1] = r >> (GGL_COLOR_BITS-8);
715        fragment.c[2] = g >> (GGL_COLOR_BITS-8);
716        fragment.c[3] = b >> (GGL_COLOR_BITS-8);
717        fragment.c[0] = a >> (GGL_COLOR_BITS-8);
718
719		// texturing
720        if (enables & GGL_ENABLE_TMUS) {
721            for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; ++i) {
722                texture_t& tx = c->state.texture[i];
723                if (!tx.enable)
724                    continue;
725                texture_iterators_t& ti = tx.iterators;
726                int32_t u, v;
727
728                // s-coordinate
729                if (tx.s_coord != GGL_ONE_TO_ONE) {
730                    const int w = tx.surface.width;
731                    u = wrapping(tc[i].s, w, tx.s_wrap);
732                    tc[i].s += ti.dsdx;
733                } else {
734                    u = (((tx.shade.is0>>16) + x)<<16) + FIXED_HALF;
735                }
736
737                // t-coordinate
738                if (tx.t_coord != GGL_ONE_TO_ONE) {
739                    const int h = tx.surface.height;
740                    v = wrapping(tc[i].t, h, tx.t_wrap);
741                    tc[i].t += ti.dtdx;
742                } else {
743                    v = (((tx.shade.it0>>16) + y)<<16) + FIXED_HALF;
744                }
745
746                // read texture
747                if (tx.mag_filter == GGL_NEAREST &&
748                    tx.min_filter == GGL_NEAREST)
749                {
750                    u >>= 16;
751                    v >>= 16;
752                    tx.surface.read(&tx.surface, c, u, v, &texel);
753                } else {
754                    const int w = tx.surface.width;
755                    const int h = tx.surface.height;
756                    u -= FIXED_HALF;
757                    v -= FIXED_HALF;
758                    int u0 = u >> 16;
759                    int v0 = v >> 16;
760                    int u1 = u0 + 1;
761                    int v1 = v0 + 1;
762                    if (tx.s_wrap == GGL_REPEAT) {
763                        if (u0<0)  u0 += w;
764                        if (u1<0)  u1 += w;
765                        if (u0>=w) u0 -= w;
766                        if (u1>=w) u1 -= w;
767                    } else {
768                        if (u0<0)  u0 = 0;
769                        if (u1<0)  u1 = 0;
770                        if (u0>=w) u0 = w-1;
771                        if (u1>=w) u1 = w-1;
772                    }
773                    if (tx.t_wrap == GGL_REPEAT) {
774                        if (v0<0)  v0 += h;
775                        if (v1<0)  v1 += h;
776                        if (v0>=h) v0 -= h;
777                        if (v1>=h) v1 -= h;
778                    } else {
779                        if (v0<0)  v0 = 0;
780                        if (v1<0)  v1 = 0;
781                        if (v0>=h) v0 = h-1;
782                        if (v1>=h) v1 = h-1;
783                    }
784                    pixel_t texels[4];
785                    uint32_t mm[4];
786                    tx.surface.read(&tx.surface, c, u0, v0, &texels[0]);
787                    tx.surface.read(&tx.surface, c, u0, v1, &texels[1]);
788                    tx.surface.read(&tx.surface, c, u1, v0, &texels[2]);
789                    tx.surface.read(&tx.surface, c, u1, v1, &texels[3]);
790                    u = (u >> 12) & 0xF;
791                    v = (v >> 12) & 0xF;
792                    u += u>>3;
793                    v += v>>3;
794                    mm[0] = (0x10 - u) * (0x10 - v);
795                    mm[1] = (0x10 - u) * v;
796                    mm[2] = u * (0x10 - v);
797                    mm[3] = 0x100 - (mm[0] + mm[1] + mm[2]);
798                    for (int j=0 ; j<4 ; j++) {
799                        texel.s[j] = texels[0].s[j];
800                        if (!texel.s[j]) continue;
801                        texel.s[j] += 8;
802                        texel.c[j] =    texels[0].c[j]*mm[0] +
803                                        texels[1].c[j]*mm[1] +
804                                        texels[2].c[j]*mm[2] +
805                                        texels[3].c[j]*mm[3] ;
806                    }
807                }
808
809                // Texture environnement...
810                for (int j=0 ; j<4 ; j++) {
811                    uint32_t& Cf = fragment.c[j];
812                    uint32_t& Ct = texel.c[j];
813                    uint8_t& sf  = fragment.s[j];
814                    uint8_t& st  = texel.s[j];
815                    uint32_t At = texel.c[0];
816                    uint8_t sat = texel.s[0];
817                    switch (tx.env) {
818                    case GGL_REPLACE:
819                        if (st) {
820                            Cf = Ct;
821                            sf = st;
822                        }
823                        break;
824                    case GGL_MODULATE:
825                        if (st) {
826                            uint32_t factor = Ct + (Ct>>(st-1));
827                            Cf = (Cf * factor) >> st;
828                        }
829                        break;
830                    case GGL_DECAL:
831                        if (sat) {
832                            rescale(Cf, sf, Ct, st);
833                            Cf += ((Ct - Cf) * (At + (At>>(sat-1)))) >> sat;
834                        }
835                        break;
836                    case GGL_BLEND:
837                        if (st) {
838                            uint32_t Cc = tx.env_color[i];
839                            if (sf>8)       Cc = (Cc * ((1<<sf)-1))>>8;
840                            else if (sf<8)  Cc = (Cc - (Cc>>(8-sf)))>>(8-sf);
841                            uint32_t factor = Ct + (Ct>>(st-1));
842                            Cf = ((((1<<st) - factor) * Cf) + Ct*Cc)>>st;
843                        }
844                        break;
845                    case GGL_ADD:
846                        if (st) {
847                            rescale(Cf, sf, Ct, st);
848                            Cf += Ct;
849                        }
850                        break;
851                    }
852                }
853            }
854		}
855
856        // coverage application
857        if (enables & GGL_ENABLE_AA) {
858            int16_t cf = *covPtr++;
859            fragment.c[0] = (int64_t(fragment.c[0]) * cf) >> 15;
860        }
861
862        // alpha-test
863        if (enables & GGL_ENABLE_ALPHA_TEST) {
864            GGLcolor ref = c->state.alpha_test.ref;
865            GGLcolor alpha = (uint64_t(fragment.c[0]) *
866                    ((1<<GGL_COLOR_BITS)-1)) / ((1<<fragment.s[0])-1);
867            switch (c->state.alpha_test.func) {
868            case GGL_NEVER:     goto discard;
869            case GGL_LESS:      if (alpha<ref)  break; goto discard;
870            case GGL_EQUAL:     if (alpha==ref) break; goto discard;
871            case GGL_LEQUAL:    if (alpha<=ref) break; goto discard;
872            case GGL_GREATER:   if (alpha>ref)  break; goto discard;
873            case GGL_NOTEQUAL:  if (alpha!=ref) break; goto discard;
874            case GGL_GEQUAL:    if (alpha>=ref) break; goto discard;
875            }
876        }
877
878        // depth test
879        if (c->state.buffers.depth.format) {
880            if (enables & GGL_ENABLE_DEPTH_TEST) {
881                surface_t* cb = &(c->state.buffers.depth);
882                uint16_t* p = (uint16_t*)(cb->data)+(x+(cb->stride*y));
883                uint16_t zz = uint32_t(z)>>(16);
884                uint16_t depth = *p;
885                switch (c->state.depth_test.func) {
886                case GGL_NEVER:     goto discard;
887                case GGL_LESS:      if (zz<depth)    break; goto discard;
888                case GGL_EQUAL:     if (zz==depth)   break; goto discard;
889                case GGL_LEQUAL:    if (zz<=depth)   break; goto discard;
890                case GGL_GREATER:   if (zz>depth)    break; goto discard;
891                case GGL_NOTEQUAL:  if (zz!=depth)   break; goto discard;
892                case GGL_GEQUAL:    if (zz>=depth)   break; goto discard;
893                }
894                // depth buffer is not enabled, if depth-test is not enabled
895/*
896        fragment.s[1] = fragment.s[2] =
897        fragment.s[3] = fragment.s[0] = 8;
898        fragment.c[1] =
899        fragment.c[2] =
900        fragment.c[3] =
901        fragment.c[0] = 255 - (zz>>8);
902*/
903                if (c->state.mask.depth) {
904                    *p = zz;
905                }
906            }
907        }
908
909        // fog
910        if (enables & GGL_ENABLE_FOG) {
911            for (int i=1 ; i<=3 ; i++) {
912                GGLfixed fc = (c->state.fog.color[i] * 0x10000) / 0xFF;
913                uint32_t& c = fragment.c[i];
914                uint8_t& s  = fragment.s[i];
915                c = (c * 0x10000) / ((1<<s)-1);
916                c = gglMulAddx(c, f, gglMulx(fc, 0x10000 - f));
917                s = 16;
918            }
919        }
920
921        // blending
922        if (enables & GGL_ENABLE_BLENDING) {
923            fb.c[1] = fb.c[2] = fb.c[3] = fb.c[0] = 0; // placate valgrind
924            fb.s[1] = fb.s[2] = fb.s[3] = fb.s[0] = 0;
925            c->state.buffers.color.read(
926                    &(c->state.buffers.color), c, x, y, &fb);
927            blending( c, &fragment, &fb );
928        }
929
930		// write
931        c->state.buffers.color.write(
932                &(c->state.buffers.color), c, x, y, &fragment);
933        }
934
935discard:
936		// iterate...
937        x += 1;
938        if (enables & GGL_ENABLE_SMOOTH) {
939            r += c->shade.drdx;
940            g += c->shade.dgdx;
941            b += c->shade.dbdx;
942            a += c->shade.dadx;
943        }
944        z += c->shade.dzdx;
945        f += c->shade.dfdx;
946	}
947}
948
949#endif // ANDROID_ARM_CODEGEN && (ANDROID_CODEGEN == ANDROID_CODEGEN_GENERATED)
950
951// ----------------------------------------------------------------------------
952#if 0
953#pragma mark -
954#pragma mark Scanline
955#endif
956
957/* Used to parse a 32-bit source texture linearly. Usage is:
958 *
959 * horz_iterator32  hi(context);
960 * while (...) {
961 *    uint32_t  src_pixel = hi.get_pixel32();
962 *    ...
963 * }
964 *
965 * Use only for one-to-one texture mapping.
966 */
967struct horz_iterator32 {
968    horz_iterator32(context_t* c) {
969        const int x = c->iterators.xl;
970        const int y = c->iterators.y;
971        texture_t& tx = c->state.texture[0];
972        const int32_t u = (tx.shade.is0>>16) + x;
973        const int32_t v = (tx.shade.it0>>16) + y;
974        m_src = reinterpret_cast<uint32_t*>(tx.surface.data)+(u+(tx.surface.stride*v));
975    }
976    uint32_t  get_pixel32() {
977        return *m_src++;
978    }
979protected:
980    uint32_t* m_src;
981};
982
983/* A variant for 16-bit source textures. */
984struct horz_iterator16 {
985    horz_iterator16(context_t* c) {
986        const int x = c->iterators.xl;
987        const int y = c->iterators.y;
988        texture_t& tx = c->state.texture[0];
989        const int32_t u = (tx.shade.is0>>16) + x;
990        const int32_t v = (tx.shade.it0>>16) + y;
991        m_src = reinterpret_cast<uint16_t*>(tx.surface.data)+(u+(tx.surface.stride*v));
992    }
993    uint16_t  get_pixel16() {
994        return *m_src++;
995    }
996protected:
997    uint16_t* m_src;
998};
999
1000/* A clamp iterator is used to iterate inside a texture with GGL_CLAMP.
1001 * After initialization, call get_src16() or get_src32() to get the current
1002 * texture pixel value.
1003 */
1004struct clamp_iterator {
1005    clamp_iterator(context_t* c) {
1006        const int xs = c->iterators.xl;
1007        texture_t& tx = c->state.texture[0];
1008        texture_iterators_t& ti = tx.iterators;
1009        m_s = (xs * ti.dsdx) + ti.ydsdy;
1010        m_t = (xs * ti.dtdx) + ti.ydtdy;
1011        m_ds = ti.dsdx;
1012        m_dt = ti.dtdx;
1013        m_width_m1 = tx.surface.width - 1;
1014        m_height_m1 = tx.surface.height - 1;
1015        m_data = tx.surface.data;
1016        m_stride = tx.surface.stride;
1017    }
1018    uint16_t get_pixel16() {
1019        int  u, v;
1020        get_uv(u, v);
1021        uint16_t* src = reinterpret_cast<uint16_t*>(m_data) + (u + (m_stride*v));
1022        return src[0];
1023    }
1024    uint32_t get_pixel32() {
1025        int  u, v;
1026        get_uv(u, v);
1027        uint32_t* src = reinterpret_cast<uint32_t*>(m_data) + (u + (m_stride*v));
1028        return src[0];
1029    }
1030private:
1031    void   get_uv(int& u, int& v) {
1032        int  uu = m_s >> 16;
1033        int  vv = m_t >> 16;
1034        if (uu < 0)
1035            uu = 0;
1036        if (uu > m_width_m1)
1037            uu = m_width_m1;
1038        if (vv < 0)
1039            vv = 0;
1040        if (vv > m_height_m1)
1041            vv = m_height_m1;
1042        u = uu;
1043        v = vv;
1044        m_s += m_ds;
1045        m_t += m_dt;
1046    }
1047
1048    GGLfixed  m_s, m_t;
1049    GGLfixed  m_ds, m_dt;
1050    int       m_width_m1, m_height_m1;
1051    uint8_t*  m_data;
1052    int       m_stride;
1053};
1054
1055/*
1056 * The 'horizontal clamp iterator' variant corresponds to the case where
1057 * the 'v' coordinate doesn't change. This is useful to avoid one mult and
1058 * extra adds / checks per pixels, if the blending/processing operation after
1059 * this is very fast.
1060 */
1061static int is_context_horizontal(const context_t* c) {
1062    return (c->state.texture[0].iterators.dtdx == 0);
1063}
1064
1065struct horz_clamp_iterator {
1066    uint16_t  get_pixel16() {
1067        int  u = m_s >> 16;
1068        m_s += m_ds;
1069        if (u < 0)
1070            u = 0;
1071        if (u > m_width_m1)
1072            u = m_width_m1;
1073        const uint16_t* src = reinterpret_cast<const uint16_t*>(m_data);
1074        return src[u];
1075    }
1076    uint32_t  get_pixel32() {
1077        int  u = m_s >> 16;
1078        m_s += m_ds;
1079        if (u < 0)
1080            u = 0;
1081        if (u > m_width_m1)
1082            u = m_width_m1;
1083        const uint32_t* src = reinterpret_cast<const uint32_t*>(m_data);
1084        return src[u];
1085    }
1086protected:
1087    void init(const context_t* c, int shift);
1088    GGLfixed       m_s;
1089    GGLfixed       m_ds;
1090    int            m_width_m1;
1091    const uint8_t* m_data;
1092};
1093
1094void horz_clamp_iterator::init(const context_t* c, int shift)
1095{
1096    const int xs = c->iterators.xl;
1097    const texture_t& tx = c->state.texture[0];
1098    const texture_iterators_t& ti = tx.iterators;
1099    m_s = (xs * ti.dsdx) + ti.ydsdy;
1100    m_ds = ti.dsdx;
1101    m_width_m1 = tx.surface.width-1;
1102    m_data = tx.surface.data;
1103
1104    GGLfixed t = (xs * ti.dtdx) + ti.ydtdy;
1105    int      v = t >> 16;
1106    if (v < 0)
1107        v = 0;
1108    else if (v >= (int)tx.surface.height)
1109        v = (int)tx.surface.height-1;
1110
1111    m_data += (tx.surface.stride*v) << shift;
1112}
1113
1114struct horz_clamp_iterator16 : horz_clamp_iterator {
1115    horz_clamp_iterator16(const context_t* c) {
1116        init(c,1);
1117    };
1118};
1119
1120struct horz_clamp_iterator32 : horz_clamp_iterator {
1121    horz_clamp_iterator32(context_t* c) {
1122        init(c,2);
1123    };
1124};
1125
1126/* This is used to perform dithering operations.
1127 */
1128struct ditherer {
1129    ditherer(const context_t* c) {
1130        const int x = c->iterators.xl;
1131        const int y = c->iterators.y;
1132        m_line = &c->ditherMatrix[ ((y & GGL_DITHER_MASK)<<GGL_DITHER_ORDER_SHIFT) ];
1133        m_index = x & GGL_DITHER_MASK;
1134    }
1135    void step(void) {
1136        m_index++;
1137    }
1138    int  get_value(void) {
1139        int ret = m_line[m_index & GGL_DITHER_MASK];
1140        m_index++;
1141        return ret;
1142    }
1143    uint16_t abgr8888ToRgb565(uint32_t s) {
1144        uint32_t r = s & 0xff;
1145        uint32_t g = (s >> 8) & 0xff;
1146        uint32_t b = (s >> 16) & 0xff;
1147        return rgb888ToRgb565(r,g,b);
1148    }
1149    /* The following assumes that r/g/b are in the 0..255 range each */
1150    uint16_t rgb888ToRgb565(uint32_t& r, uint32_t& g, uint32_t &b) {
1151        int threshold = get_value();
1152        /* dither in on GGL_DITHER_BITS, and each of r, g, b is on 8 bits */
1153        r += (threshold >> (GGL_DITHER_BITS-8 +5));
1154        g += (threshold >> (GGL_DITHER_BITS-8 +6));
1155        b += (threshold >> (GGL_DITHER_BITS-8 +5));
1156        if (r > 0xff)
1157            r = 0xff;
1158        if (g > 0xff)
1159            g = 0xff;
1160        if (b > 0xff)
1161            b = 0xff;
1162        return uint16_t(((r & 0xf8) << 8) | ((g & 0xfc) << 3) | (b >> 3));
1163    }
1164protected:
1165    const uint8_t* m_line;
1166    int            m_index;
1167};
1168
1169/* This structure is used to blend (SRC_OVER) 32-bit source pixels
1170 * onto 16-bit destination ones. Usage is simply:
1171 *
1172 *   blender.blend(<32-bit-src-pixel-value>,<ptr-to-16-bit-dest-pixel>)
1173 */
1174struct blender_32to16 {
1175    blender_32to16(context_t* /*c*/) { }
1176    void write(uint32_t s, uint16_t* dst) {
1177        if (s == 0)
1178            return;
1179        s = GGL_RGBA_TO_HOST(s);
1180        int sA = (s>>24);
1181        if (sA == 0xff) {
1182            *dst = convertAbgr8888ToRgb565(s);
1183        } else {
1184            int f = 0x100 - (sA + (sA>>7));
1185            int sR = (s >> (   3))&0x1F;
1186            int sG = (s >> ( 8+2))&0x3F;
1187            int sB = (s >> (16+3))&0x1F;
1188            uint16_t d = *dst;
1189            int dR = (d>>11)&0x1f;
1190            int dG = (d>>5)&0x3f;
1191            int dB = (d)&0x1f;
1192            sR += (f*dR)>>8;
1193            sG += (f*dG)>>8;
1194            sB += (f*dB)>>8;
1195            *dst = uint16_t((sR<<11)|(sG<<5)|sB);
1196        }
1197    }
1198    void write(uint32_t s, uint16_t* dst, ditherer& di) {
1199        if (s == 0) {
1200            di.step();
1201            return;
1202        }
1203        s = GGL_RGBA_TO_HOST(s);
1204        int sA = (s>>24);
1205        if (sA == 0xff) {
1206            *dst = di.abgr8888ToRgb565(s);
1207        } else {
1208            int threshold = di.get_value() << (8 - GGL_DITHER_BITS);
1209            int f = 0x100 - (sA + (sA>>7));
1210            int sR = (s >> (   3))&0x1F;
1211            int sG = (s >> ( 8+2))&0x3F;
1212            int sB = (s >> (16+3))&0x1F;
1213            uint16_t d = *dst;
1214            int dR = (d>>11)&0x1f;
1215            int dG = (d>>5)&0x3f;
1216            int dB = (d)&0x1f;
1217            sR = ((sR << 8) + f*dR + threshold)>>8;
1218            sG = ((sG << 8) + f*dG + threshold)>>8;
1219            sB = ((sB << 8) + f*dB + threshold)>>8;
1220            if (sR > 0x1f) sR = 0x1f;
1221            if (sG > 0x3f) sG = 0x3f;
1222            if (sB > 0x1f) sB = 0x1f;
1223            *dst = uint16_t((sR<<11)|(sG<<5)|sB);
1224        }
1225    }
1226};
1227
1228/* This blender does the same for the 'blend_srca' operation.
1229 * where dstFactor=srcA*(1-srcA) srcFactor=srcA
1230 */
1231struct blender_32to16_srcA {
1232    blender_32to16_srcA(const context_t* /*c*/) { }
1233    void write(uint32_t s, uint16_t* dst) {
1234        if (!s) {
1235            return;
1236        }
1237        uint16_t d = *dst;
1238        s = GGL_RGBA_TO_HOST(s);
1239        int sR = (s >> (   3))&0x1F;
1240        int sG = (s >> ( 8+2))&0x3F;
1241        int sB = (s >> (16+3))&0x1F;
1242        int sA = (s>>24);
1243        int f1 = (sA + (sA>>7));
1244        int f2 = 0x100-f1;
1245        int dR = (d>>11)&0x1f;
1246        int dG = (d>>5)&0x3f;
1247        int dB = (d)&0x1f;
1248        sR = (f1*sR + f2*dR)>>8;
1249        sG = (f1*sG + f2*dG)>>8;
1250        sB = (f1*sB + f2*dB)>>8;
1251        *dst = uint16_t((sR<<11)|(sG<<5)|sB);
1252    }
1253};
1254
1255/* Common init code the modulating blenders */
1256struct blender_modulate {
1257    void init(const context_t* c) {
1258        const int r = c->iterators.ydrdy >> (GGL_COLOR_BITS-8);
1259        const int g = c->iterators.ydgdy >> (GGL_COLOR_BITS-8);
1260        const int b = c->iterators.ydbdy >> (GGL_COLOR_BITS-8);
1261        const int a = c->iterators.ydady >> (GGL_COLOR_BITS-8);
1262        m_r = r + (r >> 7);
1263        m_g = g + (g >> 7);
1264        m_b = b + (b >> 7);
1265        m_a = a + (a >> 7);
1266    }
1267protected:
1268    int m_r, m_g, m_b, m_a;
1269};
1270
1271/* This blender does a normal blend after modulation.
1272 */
1273struct blender_32to16_modulate : blender_modulate {
1274    blender_32to16_modulate(const context_t* c) {
1275        init(c);
1276    }
1277    void write(uint32_t s, uint16_t* dst) {
1278        // blend source and destination
1279        if (!s) {
1280            return;
1281        }
1282        s = GGL_RGBA_TO_HOST(s);
1283
1284        /* We need to modulate s */
1285        uint32_t  sA = (s >> 24);
1286        uint32_t  sB = (s >> 16) & 0xff;
1287        uint32_t  sG = (s >> 8) & 0xff;
1288        uint32_t  sR = s & 0xff;
1289
1290        sA = (sA*m_a) >> 8;
1291        /* Keep R/G/B scaled to 5.8 or 6.8 fixed float format */
1292        sR = (sR*m_r) >> (8 - 5);
1293        sG = (sG*m_g) >> (8 - 6);
1294        sB = (sB*m_b) >> (8 - 5);
1295
1296        /* Now do a normal blend */
1297        int f = 0x100 - (sA + (sA>>7));
1298        uint16_t d = *dst;
1299        int dR = (d>>11)&0x1f;
1300        int dG = (d>>5)&0x3f;
1301        int dB = (d)&0x1f;
1302        sR = (sR + f*dR)>>8;
1303        sG = (sG + f*dG)>>8;
1304        sB = (sB + f*dB)>>8;
1305        *dst = uint16_t((sR<<11)|(sG<<5)|sB);
1306    }
1307    void write(uint32_t s, uint16_t* dst, ditherer& di) {
1308        // blend source and destination
1309        if (!s) {
1310            di.step();
1311            return;
1312        }
1313        s = GGL_RGBA_TO_HOST(s);
1314
1315        /* We need to modulate s */
1316        uint32_t  sA = (s >> 24);
1317        uint32_t  sB = (s >> 16) & 0xff;
1318        uint32_t  sG = (s >> 8) & 0xff;
1319        uint32_t  sR = s & 0xff;
1320
1321        sA = (sA*m_a) >> 8;
1322        /* keep R/G/B scaled to 5.8 or 6.8 fixed float format */
1323        sR = (sR*m_r) >> (8 - 5);
1324        sG = (sG*m_g) >> (8 - 6);
1325        sB = (sB*m_b) >> (8 - 5);
1326
1327        /* Scale threshold to 0.8 fixed float format */
1328        int threshold = di.get_value() << (8 - GGL_DITHER_BITS);
1329        int f = 0x100 - (sA + (sA>>7));
1330        uint16_t d = *dst;
1331        int dR = (d>>11)&0x1f;
1332        int dG = (d>>5)&0x3f;
1333        int dB = (d)&0x1f;
1334        sR = (sR + f*dR + threshold)>>8;
1335        sG = (sG + f*dG + threshold)>>8;
1336        sB = (sB + f*dB + threshold)>>8;
1337        if (sR > 0x1f) sR = 0x1f;
1338        if (sG > 0x3f) sG = 0x3f;
1339        if (sB > 0x1f) sB = 0x1f;
1340        *dst = uint16_t((sR<<11)|(sG<<5)|sB);
1341    }
1342};
1343
1344/* same as 32to16_modulate, except that the input is xRGB, instead of ARGB */
1345struct blender_x32to16_modulate : blender_modulate {
1346    blender_x32to16_modulate(const context_t* c) {
1347        init(c);
1348    }
1349    void write(uint32_t s, uint16_t* dst) {
1350        s = GGL_RGBA_TO_HOST(s);
1351
1352        uint32_t  sB = (s >> 16) & 0xff;
1353        uint32_t  sG = (s >> 8) & 0xff;
1354        uint32_t  sR = s & 0xff;
1355
1356        /* Keep R/G/B in 5.8 or 6.8 format */
1357        sR = (sR*m_r) >> (8 - 5);
1358        sG = (sG*m_g) >> (8 - 6);
1359        sB = (sB*m_b) >> (8 - 5);
1360
1361        int f = 0x100 - m_a;
1362        uint16_t d = *dst;
1363        int dR = (d>>11)&0x1f;
1364        int dG = (d>>5)&0x3f;
1365        int dB = (d)&0x1f;
1366        sR = (sR + f*dR)>>8;
1367        sG = (sG + f*dG)>>8;
1368        sB = (sB + f*dB)>>8;
1369        *dst = uint16_t((sR<<11)|(sG<<5)|sB);
1370    }
1371    void write(uint32_t s, uint16_t* dst, ditherer& di) {
1372        s = GGL_RGBA_TO_HOST(s);
1373
1374        uint32_t  sB = (s >> 16) & 0xff;
1375        uint32_t  sG = (s >> 8) & 0xff;
1376        uint32_t  sR = s & 0xff;
1377
1378        sR = (sR*m_r) >> (8 - 5);
1379        sG = (sG*m_g) >> (8 - 6);
1380        sB = (sB*m_b) >> (8 - 5);
1381
1382        /* Now do a normal blend */
1383        int threshold = di.get_value() << (8 - GGL_DITHER_BITS);
1384        int f = 0x100 - m_a;
1385        uint16_t d = *dst;
1386        int dR = (d>>11)&0x1f;
1387        int dG = (d>>5)&0x3f;
1388        int dB = (d)&0x1f;
1389        sR = (sR + f*dR + threshold)>>8;
1390        sG = (sG + f*dG + threshold)>>8;
1391        sB = (sB + f*dB + threshold)>>8;
1392        if (sR > 0x1f) sR = 0x1f;
1393        if (sG > 0x3f) sG = 0x3f;
1394        if (sB > 0x1f) sB = 0x1f;
1395        *dst = uint16_t((sR<<11)|(sG<<5)|sB);
1396    }
1397};
1398
1399/* Same as above, but source is 16bit rgb565 */
1400struct blender_16to16_modulate : blender_modulate {
1401    blender_16to16_modulate(const context_t* c) {
1402        init(c);
1403    }
1404    void write(uint16_t s16, uint16_t* dst) {
1405        uint32_t  s = s16;
1406
1407        uint32_t  sR = s >> 11;
1408        uint32_t  sG = (s >> 5) & 0x3f;
1409        uint32_t  sB = s & 0x1f;
1410
1411        sR = (sR*m_r);
1412        sG = (sG*m_g);
1413        sB = (sB*m_b);
1414
1415        int f = 0x100 - m_a;
1416        uint16_t d = *dst;
1417        int dR = (d>>11)&0x1f;
1418        int dG = (d>>5)&0x3f;
1419        int dB = (d)&0x1f;
1420        sR = (sR + f*dR)>>8;
1421        sG = (sG + f*dG)>>8;
1422        sB = (sB + f*dB)>>8;
1423        *dst = uint16_t((sR<<11)|(sG<<5)|sB);
1424    }
1425};
1426
1427/* This is used to iterate over a 16-bit destination color buffer.
1428 * Usage is:
1429 *
1430 *   dst_iterator16  di(context);
1431 *   while (di.count--) {
1432 *       <do stuff with dest pixel at di.dst>
1433 *       di.dst++;
1434 *   }
1435 */
1436struct dst_iterator16 {
1437    dst_iterator16(const context_t* c) {
1438        const int x = c->iterators.xl;
1439        const int width = c->iterators.xr - x;
1440        const int32_t y = c->iterators.y;
1441        const surface_t* cb = &(c->state.buffers.color);
1442        count = width;
1443        dst = reinterpret_cast<uint16_t*>(cb->data) + (x+(cb->stride*y));
1444    }
1445    int        count;
1446    uint16_t*  dst;
1447};
1448
1449
1450static void scanline_t32cb16_clamp(context_t* c)
1451{
1452    dst_iterator16  di(c);
1453
1454    if (is_context_horizontal(c)) {
1455        /* Special case for simple horizontal scaling */
1456        horz_clamp_iterator32 ci(c);
1457        while (di.count--) {
1458            uint32_t s = ci.get_pixel32();
1459            *di.dst++ = convertAbgr8888ToRgb565(s);
1460        }
1461    } else {
1462        /* General case */
1463        clamp_iterator ci(c);
1464        while (di.count--) {
1465            uint32_t s = ci.get_pixel32();
1466            *di.dst++ = convertAbgr8888ToRgb565(s);
1467        }
1468    }
1469}
1470
1471static void scanline_t32cb16_dither(context_t* c)
1472{
1473    horz_iterator32 si(c);
1474    dst_iterator16  di(c);
1475    ditherer        dither(c);
1476
1477    while (di.count--) {
1478        uint32_t s = si.get_pixel32();
1479        *di.dst++ = dither.abgr8888ToRgb565(s);
1480    }
1481}
1482
1483static void scanline_t32cb16_clamp_dither(context_t* c)
1484{
1485    dst_iterator16  di(c);
1486    ditherer        dither(c);
1487
1488    if (is_context_horizontal(c)) {
1489        /* Special case for simple horizontal scaling */
1490        horz_clamp_iterator32 ci(c);
1491        while (di.count--) {
1492            uint32_t s = ci.get_pixel32();
1493            *di.dst++ = dither.abgr8888ToRgb565(s);
1494        }
1495    } else {
1496        /* General case */
1497        clamp_iterator ci(c);
1498        while (di.count--) {
1499            uint32_t s = ci.get_pixel32();
1500            *di.dst++ = dither.abgr8888ToRgb565(s);
1501        }
1502    }
1503}
1504
1505static void scanline_t32cb16blend_dither(context_t* c)
1506{
1507    dst_iterator16 di(c);
1508    ditherer       dither(c);
1509    blender_32to16 bl(c);
1510    horz_iterator32  hi(c);
1511    while (di.count--) {
1512        uint32_t s = hi.get_pixel32();
1513        bl.write(s, di.dst, dither);
1514        di.dst++;
1515    }
1516}
1517
1518static void scanline_t32cb16blend_clamp(context_t* c)
1519{
1520    dst_iterator16  di(c);
1521    blender_32to16  bl(c);
1522
1523    if (is_context_horizontal(c)) {
1524        horz_clamp_iterator32 ci(c);
1525        while (di.count--) {
1526            uint32_t s = ci.get_pixel32();
1527            bl.write(s, di.dst);
1528            di.dst++;
1529        }
1530    } else {
1531        clamp_iterator ci(c);
1532        while (di.count--) {
1533            uint32_t s = ci.get_pixel32();
1534            bl.write(s, di.dst);
1535            di.dst++;
1536        }
1537    }
1538}
1539
1540static void scanline_t32cb16blend_clamp_dither(context_t* c)
1541{
1542    dst_iterator16 di(c);
1543    ditherer       dither(c);
1544    blender_32to16 bl(c);
1545
1546    clamp_iterator ci(c);
1547    while (di.count--) {
1548        uint32_t s = ci.get_pixel32();
1549        bl.write(s, di.dst, dither);
1550        di.dst++;
1551    }
1552}
1553
1554void scanline_t32cb16blend_clamp_mod(context_t* c)
1555{
1556    dst_iterator16 di(c);
1557    blender_32to16_modulate bl(c);
1558
1559    clamp_iterator ci(c);
1560    while (di.count--) {
1561        uint32_t s = ci.get_pixel32();
1562        bl.write(s, di.dst);
1563        di.dst++;
1564    }
1565}
1566
1567void scanline_t32cb16blend_clamp_mod_dither(context_t* c)
1568{
1569    dst_iterator16 di(c);
1570    blender_32to16_modulate bl(c);
1571    ditherer dither(c);
1572
1573    clamp_iterator ci(c);
1574    while (di.count--) {
1575        uint32_t s = ci.get_pixel32();
1576        bl.write(s, di.dst, dither);
1577        di.dst++;
1578    }
1579}
1580
1581/* Variant of scanline_t32cb16blend_clamp_mod with a xRGB texture */
1582void scanline_x32cb16blend_clamp_mod(context_t* c)
1583{
1584    dst_iterator16 di(c);
1585    blender_x32to16_modulate  bl(c);
1586
1587    clamp_iterator ci(c);
1588    while (di.count--) {
1589        uint32_t s = ci.get_pixel32();
1590        bl.write(s, di.dst);
1591        di.dst++;
1592    }
1593}
1594
1595void scanline_x32cb16blend_clamp_mod_dither(context_t* c)
1596{
1597    dst_iterator16 di(c);
1598    blender_x32to16_modulate  bl(c);
1599    ditherer dither(c);
1600
1601    clamp_iterator ci(c);
1602    while (di.count--) {
1603        uint32_t s = ci.get_pixel32();
1604        bl.write(s, di.dst, dither);
1605        di.dst++;
1606    }
1607}
1608
1609void scanline_t16cb16_clamp(context_t* c)
1610{
1611    dst_iterator16  di(c);
1612
1613    /* Special case for simple horizontal scaling */
1614    if (is_context_horizontal(c)) {
1615        horz_clamp_iterator16 ci(c);
1616        while (di.count--) {
1617            *di.dst++ = ci.get_pixel16();
1618        }
1619    } else {
1620        clamp_iterator ci(c);
1621        while (di.count--) {
1622            *di.dst++ = ci.get_pixel16();
1623        }
1624    }
1625}
1626
1627
1628
1629template <typename T, typename U>
1630static inline __attribute__((const))
1631T interpolate(int y, T v0, U dvdx, U dvdy) {
1632    // interpolates in pixel's centers
1633    // v = v0 + (y + 0.5) * dvdy + (0.5 * dvdx)
1634    return (y * dvdy) + (v0 + ((dvdy + dvdx) >> 1));
1635}
1636
1637// ----------------------------------------------------------------------------
1638#if 0
1639#pragma mark -
1640#endif
1641
1642void init_y(context_t* c, int32_t ys)
1643{
1644    const uint32_t enables = c->state.enables;
1645
1646    // compute iterators...
1647    iterators_t& ci = c->iterators;
1648
1649    // sample in the center
1650    ci.y = ys;
1651
1652    if (enables & (GGL_ENABLE_DEPTH_TEST|GGL_ENABLE_W|GGL_ENABLE_FOG)) {
1653        ci.ydzdy = interpolate(ys, c->shade.z0, c->shade.dzdx, c->shade.dzdy);
1654        ci.ydwdy = interpolate(ys, c->shade.w0, c->shade.dwdx, c->shade.dwdy);
1655        ci.ydfdy = interpolate(ys, c->shade.f0, c->shade.dfdx, c->shade.dfdy);
1656    }
1657
1658    if (ggl_unlikely(enables & GGL_ENABLE_SMOOTH)) {
1659        ci.ydrdy = interpolate(ys, c->shade.r0, c->shade.drdx, c->shade.drdy);
1660        ci.ydgdy = interpolate(ys, c->shade.g0, c->shade.dgdx, c->shade.dgdy);
1661        ci.ydbdy = interpolate(ys, c->shade.b0, c->shade.dbdx, c->shade.dbdy);
1662        ci.ydady = interpolate(ys, c->shade.a0, c->shade.dadx, c->shade.dady);
1663        c->step_y = step_y__smooth;
1664    } else {
1665        ci.ydrdy = c->shade.r0;
1666        ci.ydgdy = c->shade.g0;
1667        ci.ydbdy = c->shade.b0;
1668        ci.ydady = c->shade.a0;
1669        // XXX: do only if needed, or make sure this is fast
1670        c->packed = ggl_pack_color(c, c->state.buffers.color.format,
1671                ci.ydrdy, ci.ydgdy, ci.ydbdy, ci.ydady);
1672        c->packed8888 = ggl_pack_color(c, GGL_PIXEL_FORMAT_RGBA_8888,
1673                ci.ydrdy, ci.ydgdy, ci.ydbdy, ci.ydady);
1674    }
1675
1676    // initialize the variables we need in the shader
1677    generated_vars_t& gen = c->generated_vars;
1678    gen.argb[GGLFormat::ALPHA].c  = ci.ydady;
1679    gen.argb[GGLFormat::ALPHA].dx = c->shade.dadx;
1680    gen.argb[GGLFormat::RED  ].c  = ci.ydrdy;
1681    gen.argb[GGLFormat::RED  ].dx = c->shade.drdx;
1682    gen.argb[GGLFormat::GREEN].c  = ci.ydgdy;
1683    gen.argb[GGLFormat::GREEN].dx = c->shade.dgdx;
1684    gen.argb[GGLFormat::BLUE ].c  = ci.ydbdy;
1685    gen.argb[GGLFormat::BLUE ].dx = c->shade.dbdx;
1686    gen.dzdx = c->shade.dzdx;
1687    gen.f    = ci.ydfdy;
1688    gen.dfdx = c->shade.dfdx;
1689
1690    if (enables & GGL_ENABLE_TMUS) {
1691        for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; ++i) {
1692            texture_t& t = c->state.texture[i];
1693            if (!t.enable) continue;
1694
1695            texture_iterators_t& ti = t.iterators;
1696            if (t.s_coord == GGL_ONE_TO_ONE && t.t_coord == GGL_ONE_TO_ONE) {
1697                // we need to set all of these to 0 because in some cases
1698                // step_y__generic() or step_y__tmu() will be used and
1699                // therefore will update dtdy, however, in 1:1 mode
1700                // this is always done by the scanline rasterizer.
1701                ti.dsdx = ti.dsdy = ti.dtdx = ti.dtdy = 0;
1702                ti.ydsdy = t.shade.is0;
1703                ti.ydtdy = t.shade.it0;
1704            } else {
1705                const int adjustSWrap = ((t.s_wrap==GGL_CLAMP)?0:16);
1706                const int adjustTWrap = ((t.t_wrap==GGL_CLAMP)?0:16);
1707                ti.sscale = t.shade.sscale + adjustSWrap;
1708                ti.tscale = t.shade.tscale + adjustTWrap;
1709                if (!(enables & GGL_ENABLE_W)) {
1710                    // S coordinate
1711                    const int32_t sscale = ti.sscale;
1712                    const int32_t sy = interpolate(ys,
1713                            t.shade.is0, t.shade.idsdx, t.shade.idsdy);
1714                    if (sscale>=0) {
1715                        ti.ydsdy= sy            << sscale;
1716                        ti.dsdx = t.shade.idsdx << sscale;
1717                        ti.dsdy = t.shade.idsdy << sscale;
1718                    } else {
1719                        ti.ydsdy= sy            >> -sscale;
1720                        ti.dsdx = t.shade.idsdx >> -sscale;
1721                        ti.dsdy = t.shade.idsdy >> -sscale;
1722                    }
1723                    // T coordinate
1724                    const int32_t tscale = ti.tscale;
1725                    const int32_t ty = interpolate(ys,
1726                            t.shade.it0, t.shade.idtdx, t.shade.idtdy);
1727                    if (tscale>=0) {
1728                        ti.ydtdy= ty            << tscale;
1729                        ti.dtdx = t.shade.idtdx << tscale;
1730                        ti.dtdy = t.shade.idtdy << tscale;
1731                    } else {
1732                        ti.ydtdy= ty            >> -tscale;
1733                        ti.dtdx = t.shade.idtdx >> -tscale;
1734                        ti.dtdy = t.shade.idtdy >> -tscale;
1735                    }
1736                }
1737            }
1738            // mirror for generated code...
1739            generated_tex_vars_t& gen = c->generated_vars.texture[i];
1740            gen.width   = t.surface.width;
1741            gen.height  = t.surface.height;
1742            gen.stride  = t.surface.stride;
1743            gen.data    = uintptr_t(t.surface.data);
1744            gen.dsdx = ti.dsdx;
1745            gen.dtdx = ti.dtdx;
1746        }
1747    }
1748
1749    // choose the y-stepper
1750    c->step_y = step_y__nop;
1751    if (enables & GGL_ENABLE_FOG) {
1752        c->step_y = step_y__generic;
1753    } else if (enables & GGL_ENABLE_TMUS) {
1754        if (enables & GGL_ENABLE_SMOOTH) {
1755            c->step_y = step_y__generic;
1756        } else if (enables & GGL_ENABLE_W) {
1757            c->step_y = step_y__w;
1758        } else {
1759            c->step_y = step_y__tmu;
1760        }
1761    } else {
1762        if (enables & GGL_ENABLE_SMOOTH) {
1763            c->step_y = step_y__smooth;
1764        }
1765    }
1766
1767    // choose the rectangle blitter
1768    c->rect = rect_generic;
1769    if ((c->step_y == step_y__nop) &&
1770        (c->scanline == scanline_memcpy))
1771    {
1772        c->rect = rect_memcpy;
1773    }
1774}
1775
1776void init_y_packed(context_t* c, int32_t y0)
1777{
1778    uint8_t f = c->state.buffers.color.format;
1779    c->packed = ggl_pack_color(c, f,
1780            c->shade.r0, c->shade.g0, c->shade.b0, c->shade.a0);
1781    c->packed8888 = ggl_pack_color(c, GGL_PIXEL_FORMAT_RGBA_8888,
1782            c->shade.r0, c->shade.g0, c->shade.b0, c->shade.a0);
1783    c->iterators.y = y0;
1784    c->step_y = step_y__nop;
1785    // choose the rectangle blitter
1786    c->rect = rect_generic;
1787    if (c->scanline == scanline_memcpy) {
1788        c->rect = rect_memcpy;
1789    }
1790}
1791
1792void init_y_noop(context_t* c, int32_t y0)
1793{
1794    c->iterators.y = y0;
1795    c->step_y = step_y__nop;
1796    // choose the rectangle blitter
1797    c->rect = rect_generic;
1798    if (c->scanline == scanline_memcpy) {
1799        c->rect = rect_memcpy;
1800    }
1801}
1802
1803void init_y_error(context_t* c, int32_t y0)
1804{
1805    // woooops, shoud never happen,
1806    // fail gracefully (don't display anything)
1807    init_y_noop(c, y0);
1808    ALOGE("color-buffer has an invalid format!");
1809}
1810
1811// ----------------------------------------------------------------------------
1812#if 0
1813#pragma mark -
1814#endif
1815
1816void step_y__generic(context_t* c)
1817{
1818    const uint32_t enables = c->state.enables;
1819
1820    // iterate...
1821    iterators_t& ci = c->iterators;
1822    ci.y += 1;
1823
1824    if (enables & GGL_ENABLE_SMOOTH) {
1825        ci.ydrdy += c->shade.drdy;
1826        ci.ydgdy += c->shade.dgdy;
1827        ci.ydbdy += c->shade.dbdy;
1828        ci.ydady += c->shade.dady;
1829    }
1830
1831    const uint32_t mask =
1832            GGL_ENABLE_DEPTH_TEST |
1833            GGL_ENABLE_W |
1834            GGL_ENABLE_FOG;
1835    if (enables & mask) {
1836        ci.ydzdy += c->shade.dzdy;
1837        ci.ydwdy += c->shade.dwdy;
1838        ci.ydfdy += c->shade.dfdy;
1839    }
1840
1841    if ((enables & GGL_ENABLE_TMUS) && (!(enables & GGL_ENABLE_W))) {
1842        for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; ++i) {
1843            if (c->state.texture[i].enable) {
1844                texture_iterators_t& ti = c->state.texture[i].iterators;
1845                ti.ydsdy += ti.dsdy;
1846                ti.ydtdy += ti.dtdy;
1847            }
1848        }
1849    }
1850}
1851
1852void step_y__nop(context_t* c)
1853{
1854    c->iterators.y += 1;
1855    c->iterators.ydzdy += c->shade.dzdy;
1856}
1857
1858void step_y__smooth(context_t* c)
1859{
1860    iterators_t& ci = c->iterators;
1861    ci.y += 1;
1862    ci.ydrdy += c->shade.drdy;
1863    ci.ydgdy += c->shade.dgdy;
1864    ci.ydbdy += c->shade.dbdy;
1865    ci.ydady += c->shade.dady;
1866    ci.ydzdy += c->shade.dzdy;
1867}
1868
1869void step_y__w(context_t* c)
1870{
1871    iterators_t& ci = c->iterators;
1872    ci.y += 1;
1873    ci.ydzdy += c->shade.dzdy;
1874    ci.ydwdy += c->shade.dwdy;
1875}
1876
1877void step_y__tmu(context_t* c)
1878{
1879    iterators_t& ci = c->iterators;
1880    ci.y += 1;
1881    ci.ydzdy += c->shade.dzdy;
1882    for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; ++i) {
1883        if (c->state.texture[i].enable) {
1884            texture_iterators_t& ti = c->state.texture[i].iterators;
1885            ti.ydsdy += ti.dsdy;
1886            ti.ydtdy += ti.dtdy;
1887        }
1888    }
1889}
1890
1891// ----------------------------------------------------------------------------
1892#if 0
1893#pragma mark -
1894#endif
1895
1896void scanline_perspective(context_t* c)
1897{
1898    struct {
1899        union {
1900            struct {
1901                int32_t s, sq;
1902                int32_t t, tq;
1903            } sqtq;
1904            struct {
1905                int32_t v, q;
1906            } st[2];
1907        };
1908    } tc[GGL_TEXTURE_UNIT_COUNT] __attribute__((aligned(16)));
1909
1910    // XXX: we should have a special case when dwdx = 0
1911
1912    // 32 pixels spans works okay. 16 is a lot better,
1913    // but hey, it's a software renderer...
1914    const uint32_t SPAN_BITS = 5;
1915    const uint32_t ys = c->iterators.y;
1916    const uint32_t xs = c->iterators.xl;
1917    const uint32_t x1 = c->iterators.xr;
1918	const uint32_t xc = x1 - xs;
1919    uint32_t remainder = xc & ((1<<SPAN_BITS)-1);
1920    uint32_t numSpans = xc >> SPAN_BITS;
1921
1922    const iterators_t& ci = c->iterators;
1923    int32_t w0 = (xs * c->shade.dwdx) + ci.ydwdy;
1924    int32_t q0 = gglRecipQ(w0, 30);
1925    const int iwscale = 32 - gglClz(q0);
1926
1927    const int32_t dwdx = c->shade.dwdx << SPAN_BITS;
1928    int32_t xl = c->iterators.xl;
1929
1930    // We process s & t with a loop to reduce the code size
1931    // (and i-cache pressure).
1932
1933    for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; ++i) {
1934        const texture_t& tmu = c->state.texture[i];
1935        if (!tmu.enable) continue;
1936        int32_t s =   tmu.shade.is0 +
1937                     (tmu.shade.idsdy * ys) + (tmu.shade.idsdx * xs) +
1938                     ((tmu.shade.idsdx + tmu.shade.idsdy)>>1);
1939        int32_t t =   tmu.shade.it0 +
1940                     (tmu.shade.idtdy * ys) + (tmu.shade.idtdx * xs) +
1941                     ((tmu.shade.idtdx + tmu.shade.idtdy)>>1);
1942        tc[i].sqtq.s  = s;
1943        tc[i].sqtq.t  = t;
1944        tc[i].sqtq.sq = gglMulx(s, q0, iwscale);
1945        tc[i].sqtq.tq = gglMulx(t, q0, iwscale);
1946    }
1947
1948    int32_t span = 0;
1949    do {
1950        int32_t w1;
1951        if (ggl_likely(numSpans)) {
1952            w1 = w0 + dwdx;
1953        } else {
1954            if (remainder) {
1955                // finish off the scanline...
1956                span = remainder;
1957                w1 = (c->shade.dwdx * span) + w0;
1958            } else {
1959                break;
1960            }
1961        }
1962        int32_t q1 = gglRecipQ(w1, 30);
1963        for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; ++i) {
1964            texture_t& tmu = c->state.texture[i];
1965            if (!tmu.enable) continue;
1966            texture_iterators_t& ti = tmu.iterators;
1967
1968            for (int j=0 ; j<2 ; j++) {
1969                int32_t v = tc[i].st[j].v;
1970                if (span)   v += (tmu.shade.st[j].dx)*span;
1971                else        v += (tmu.shade.st[j].dx)<<SPAN_BITS;
1972                const int32_t v0 = tc[i].st[j].q;
1973                const int32_t v1 = gglMulx(v, q1, iwscale);
1974                int32_t dvdx = v1 - v0;
1975                if (span)   dvdx /= span;
1976                else        dvdx >>= SPAN_BITS;
1977                tc[i].st[j].v = v;
1978                tc[i].st[j].q = v1;
1979
1980                const int scale = ti.st[j].scale + (iwscale - 30);
1981                if (scale >= 0) {
1982                    ti.st[j].ydvdy = v0   << scale;
1983                    ti.st[j].dvdx  = dvdx << scale;
1984                } else {
1985                    ti.st[j].ydvdy = v0   >> -scale;
1986                    ti.st[j].dvdx  = dvdx >> -scale;
1987                }
1988            }
1989            generated_tex_vars_t& gen = c->generated_vars.texture[i];
1990            gen.dsdx = ti.st[0].dvdx;
1991            gen.dtdx = ti.st[1].dvdx;
1992        }
1993        c->iterators.xl = xl;
1994        c->iterators.xr = xl = xl + (span ? span : (1<<SPAN_BITS));
1995        w0 = w1;
1996        q0 = q1;
1997        c->span(c);
1998    } while(numSpans--);
1999}
2000
2001void scanline_perspective_single(context_t* c)
2002{
2003    // 32 pixels spans works okay. 16 is a lot better,
2004    // but hey, it's a software renderer...
2005    const uint32_t SPAN_BITS = 5;
2006    const uint32_t ys = c->iterators.y;
2007    const uint32_t xs = c->iterators.xl;
2008    const uint32_t x1 = c->iterators.xr;
2009	const uint32_t xc = x1 - xs;
2010
2011    const iterators_t& ci = c->iterators;
2012    int32_t w = (xs * c->shade.dwdx) + ci.ydwdy;
2013    int32_t iw = gglRecipQ(w, 30);
2014    const int iwscale = 32 - gglClz(iw);
2015
2016    const int i = 31 - gglClz(c->state.enabled_tmu);
2017    generated_tex_vars_t& gen = c->generated_vars.texture[i];
2018    texture_t& tmu = c->state.texture[i];
2019    texture_iterators_t& ti = tmu.iterators;
2020    const int sscale = ti.sscale + (iwscale - 30);
2021    const int tscale = ti.tscale + (iwscale - 30);
2022    int32_t s =   tmu.shade.is0 +
2023                 (tmu.shade.idsdy * ys) + (tmu.shade.idsdx * xs) +
2024                 ((tmu.shade.idsdx + tmu.shade.idsdy)>>1);
2025    int32_t t =   tmu.shade.it0 +
2026                 (tmu.shade.idtdy * ys) + (tmu.shade.idtdx * xs) +
2027                 ((tmu.shade.idtdx + tmu.shade.idtdy)>>1);
2028    int32_t s0 = gglMulx(s, iw, iwscale);
2029    int32_t t0 = gglMulx(t, iw, iwscale);
2030    int32_t xl = c->iterators.xl;
2031
2032    int32_t sq, tq, dsdx, dtdx;
2033    int32_t premainder = xc & ((1<<SPAN_BITS)-1);
2034    uint32_t numSpans = xc >> SPAN_BITS;
2035    if (c->shade.dwdx == 0) {
2036        // XXX: we could choose to do this if the error is small enough
2037        numSpans = 0;
2038        premainder = xc;
2039        goto no_perspective;
2040    }
2041
2042    if (premainder) {
2043        w += c->shade.dwdx   * premainder;
2044        iw = gglRecipQ(w, 30);
2045no_perspective:
2046        s += tmu.shade.idsdx * premainder;
2047        t += tmu.shade.idtdx * premainder;
2048        sq = gglMulx(s, iw, iwscale);
2049        tq = gglMulx(t, iw, iwscale);
2050        dsdx = (sq - s0) / premainder;
2051        dtdx = (tq - t0) / premainder;
2052        c->iterators.xl = xl;
2053        c->iterators.xr = xl = xl + premainder;
2054        goto finish;
2055    }
2056
2057    while (numSpans--) {
2058        w += c->shade.dwdx   << SPAN_BITS;
2059        s += tmu.shade.idsdx << SPAN_BITS;
2060        t += tmu.shade.idtdx << SPAN_BITS;
2061        iw = gglRecipQ(w, 30);
2062        sq = gglMulx(s, iw, iwscale);
2063        tq = gglMulx(t, iw, iwscale);
2064        dsdx = (sq - s0) >> SPAN_BITS;
2065        dtdx = (tq - t0) >> SPAN_BITS;
2066        c->iterators.xl = xl;
2067        c->iterators.xr = xl = xl + (1<<SPAN_BITS);
2068finish:
2069        if (sscale >= 0) {
2070            ti.ydsdy = s0   << sscale;
2071            ti.dsdx  = dsdx << sscale;
2072        } else {
2073            ti.ydsdy = s0   >>-sscale;
2074            ti.dsdx  = dsdx >>-sscale;
2075        }
2076        if (tscale >= 0) {
2077            ti.ydtdy = t0   << tscale;
2078            ti.dtdx  = dtdx << tscale;
2079        } else {
2080            ti.ydtdy = t0   >>-tscale;
2081            ti.dtdx  = dtdx >>-tscale;
2082        }
2083        s0 = sq;
2084        t0 = tq;
2085        gen.dsdx = ti.dsdx;
2086        gen.dtdx = ti.dtdx;
2087        c->span(c);
2088    }
2089}
2090
2091// ----------------------------------------------------------------------------
2092
2093void scanline_col32cb16blend(context_t* c)
2094{
2095    int32_t x = c->iterators.xl;
2096    size_t ct = c->iterators.xr - x;
2097    int32_t y = c->iterators.y;
2098    surface_t* cb = &(c->state.buffers.color);
2099    union {
2100        uint16_t* dst;
2101        uint32_t* dst32;
2102    };
2103    dst = reinterpret_cast<uint16_t*>(cb->data) + (x+(cb->stride*y));
2104
2105#if ((ANDROID_CODEGEN >= ANDROID_CODEGEN_ASM) && defined(__arm__))
2106#if defined(__ARM_HAVE_NEON) && BYTE_ORDER == LITTLE_ENDIAN
2107    scanline_col32cb16blend_neon(dst, &(c->packed8888), ct);
2108#else  // defined(__ARM_HAVE_NEON) && BYTE_ORDER == LITTLE_ENDIAN
2109    scanline_col32cb16blend_arm(dst, GGL_RGBA_TO_HOST(c->packed8888), ct);
2110#endif // defined(__ARM_HAVE_NEON) && BYTE_ORDER == LITTLE_ENDIAN
2111#elif ((ANDROID_CODEGEN >= ANDROID_CODEGEN_ASM) && defined(__aarch64__))
2112    scanline_col32cb16blend_arm64(dst, GGL_RGBA_TO_HOST(c->packed8888), ct);
2113#elif ((ANDROID_CODEGEN >= ANDROID_CODEGEN_ASM) && (defined(__mips__) && defined(__LP64__)))
2114    scanline_col32cb16blend_mips64(dst, GGL_RGBA_TO_HOST(c->packed8888), ct);
2115#else
2116    uint32_t s = GGL_RGBA_TO_HOST(c->packed8888);
2117    int sA = (s>>24);
2118    int f = 0x100 - (sA + (sA>>7));
2119    while (ct--) {
2120        uint16_t d = *dst;
2121        int dR = (d>>11)&0x1f;
2122        int dG = (d>>5)&0x3f;
2123        int dB = (d)&0x1f;
2124        int sR = (s >> (   3))&0x1F;
2125        int sG = (s >> ( 8+2))&0x3F;
2126        int sB = (s >> (16+3))&0x1F;
2127        sR += (f*dR)>>8;
2128        sG += (f*dG)>>8;
2129        sB += (f*dB)>>8;
2130        *dst++ = uint16_t((sR<<11)|(sG<<5)|sB);
2131    }
2132#endif
2133
2134}
2135
2136void scanline_t32cb16(context_t* c)
2137{
2138    int32_t x = c->iterators.xl;
2139    size_t ct = c->iterators.xr - x;
2140    int32_t y = c->iterators.y;
2141    surface_t* cb = &(c->state.buffers.color);
2142    union {
2143        uint16_t* dst;
2144        uint32_t* dst32;
2145    };
2146    dst = reinterpret_cast<uint16_t*>(cb->data) + (x+(cb->stride*y));
2147
2148    surface_t* tex = &(c->state.texture[0].surface);
2149    const int32_t u = (c->state.texture[0].shade.is0>>16) + x;
2150    const int32_t v = (c->state.texture[0].shade.it0>>16) + y;
2151    uint32_t *src = reinterpret_cast<uint32_t*>(tex->data)+(u+(tex->stride*v));
2152    int sR, sG, sB;
2153    uint32_t s, d;
2154
2155    if (ct==1 || uintptr_t(dst)&2) {
2156last_one:
2157        s = GGL_RGBA_TO_HOST( *src++ );
2158        *dst++ = convertAbgr8888ToRgb565(s);
2159        ct--;
2160    }
2161
2162    while (ct >= 2) {
2163#if BYTE_ORDER == BIG_ENDIAN
2164        s = GGL_RGBA_TO_HOST( *src++ );
2165        d = convertAbgr8888ToRgb565_hi16(s);
2166
2167        s = GGL_RGBA_TO_HOST( *src++ );
2168        d |= convertAbgr8888ToRgb565(s);
2169#else
2170        s = GGL_RGBA_TO_HOST( *src++ );
2171        d = convertAbgr8888ToRgb565(s);
2172
2173        s = GGL_RGBA_TO_HOST( *src++ );
2174        d |= convertAbgr8888ToRgb565(s) << 16;
2175#endif
2176        *dst32++ = d;
2177        ct -= 2;
2178    }
2179
2180    if (ct > 0) {
2181        goto last_one;
2182    }
2183}
2184
2185void scanline_t32cb16blend(context_t* c)
2186{
2187#if ((ANDROID_CODEGEN >= ANDROID_CODEGEN_ASM) && (defined(__arm__) || defined(__aarch64__) || \
2188    (defined(__mips__) && ((!defined(__LP64__) && __mips_isa_rev < 6) || defined(__LP64__)))))
2189    int32_t x = c->iterators.xl;
2190    size_t ct = c->iterators.xr - x;
2191    int32_t y = c->iterators.y;
2192    surface_t* cb = &(c->state.buffers.color);
2193    uint16_t* dst = reinterpret_cast<uint16_t*>(cb->data) + (x+(cb->stride*y));
2194
2195    surface_t* tex = &(c->state.texture[0].surface);
2196    const int32_t u = (c->state.texture[0].shade.is0>>16) + x;
2197    const int32_t v = (c->state.texture[0].shade.it0>>16) + y;
2198    uint32_t *src = reinterpret_cast<uint32_t*>(tex->data)+(u+(tex->stride*v));
2199
2200#ifdef __arm__
2201    scanline_t32cb16blend_arm(dst, src, ct);
2202#elif defined(__aarch64__)
2203    scanline_t32cb16blend_arm64(dst, src, ct);
2204#elif defined(__mips__) && !defined(__LP64__) && __mips_isa_rev < 6
2205    scanline_t32cb16blend_mips(dst, src, ct);
2206#elif defined(__mips__) && defined(__LP64__)
2207    scanline_t32cb16blend_mips64(dst, src, ct);
2208#endif
2209#else
2210    dst_iterator16  di(c);
2211    horz_iterator32  hi(c);
2212    blender_32to16  bl(c);
2213    while (di.count--) {
2214        uint32_t s = hi.get_pixel32();
2215        bl.write(s, di.dst);
2216        di.dst++;
2217    }
2218#endif
2219}
2220
2221void scanline_t32cb16blend_srca(context_t* c)
2222{
2223    dst_iterator16  di(c);
2224    horz_iterator32  hi(c);
2225    blender_32to16_srcA  blender(c);
2226
2227    while (di.count--) {
2228        uint32_t s = hi.get_pixel32();
2229        blender.write(s,di.dst);
2230        di.dst++;
2231    }
2232}
2233
2234void scanline_t16cb16blend_clamp_mod(context_t* c)
2235{
2236    const int a = c->iterators.ydady >> (GGL_COLOR_BITS-8);
2237    if (a == 0) {
2238        return;
2239    }
2240
2241    if (a == 255) {
2242        scanline_t16cb16_clamp(c);
2243        return;
2244    }
2245
2246    dst_iterator16  di(c);
2247    blender_16to16_modulate  blender(c);
2248    clamp_iterator  ci(c);
2249
2250    while (di.count--) {
2251        uint16_t s = ci.get_pixel16();
2252        blender.write(s, di.dst);
2253        di.dst++;
2254    }
2255}
2256
2257void scanline_memcpy(context_t* c)
2258{
2259    int32_t x = c->iterators.xl;
2260    size_t ct = c->iterators.xr - x;
2261    int32_t y = c->iterators.y;
2262    surface_t* cb = &(c->state.buffers.color);
2263    const GGLFormat* fp = &(c->formats[cb->format]);
2264    uint8_t* dst = reinterpret_cast<uint8_t*>(cb->data) +
2265                            (x + (cb->stride * y)) * fp->size;
2266
2267    surface_t* tex = &(c->state.texture[0].surface);
2268    const int32_t u = (c->state.texture[0].shade.is0>>16) + x;
2269    const int32_t v = (c->state.texture[0].shade.it0>>16) + y;
2270    uint8_t *src = reinterpret_cast<uint8_t*>(tex->data) +
2271                            (u + (tex->stride * v)) * fp->size;
2272
2273    const size_t size = ct * fp->size;
2274    memcpy(dst, src, size);
2275}
2276
2277void scanline_memset8(context_t* c)
2278{
2279    int32_t x = c->iterators.xl;
2280    size_t ct = c->iterators.xr - x;
2281    int32_t y = c->iterators.y;
2282    surface_t* cb = &(c->state.buffers.color);
2283    uint8_t* dst = reinterpret_cast<uint8_t*>(cb->data) + (x+(cb->stride*y));
2284    uint32_t packed = c->packed;
2285    memset(dst, packed, ct);
2286}
2287
2288void scanline_memset16(context_t* c)
2289{
2290    int32_t x = c->iterators.xl;
2291    size_t ct = c->iterators.xr - x;
2292    int32_t y = c->iterators.y;
2293    surface_t* cb = &(c->state.buffers.color);
2294    uint16_t* dst = reinterpret_cast<uint16_t*>(cb->data) + (x+(cb->stride*y));
2295    uint32_t packed = c->packed;
2296    android_memset16(dst, packed, ct*2);
2297}
2298
2299void scanline_memset32(context_t* c)
2300{
2301    int32_t x = c->iterators.xl;
2302    size_t ct = c->iterators.xr - x;
2303    int32_t y = c->iterators.y;
2304    surface_t* cb = &(c->state.buffers.color);
2305    uint32_t* dst = reinterpret_cast<uint32_t*>(cb->data) + (x+(cb->stride*y));
2306    uint32_t packed = GGL_HOST_TO_RGBA(c->packed);
2307    android_memset32(dst, packed, ct*4);
2308}
2309
2310void scanline_clear(context_t* c)
2311{
2312    int32_t x = c->iterators.xl;
2313    size_t ct = c->iterators.xr - x;
2314    int32_t y = c->iterators.y;
2315    surface_t* cb = &(c->state.buffers.color);
2316    const GGLFormat* fp = &(c->formats[cb->format]);
2317    uint8_t* dst = reinterpret_cast<uint8_t*>(cb->data) +
2318                            (x + (cb->stride * y)) * fp->size;
2319    const size_t size = ct * fp->size;
2320    memset(dst, 0, size);
2321}
2322
2323void scanline_set(context_t* c)
2324{
2325    int32_t x = c->iterators.xl;
2326    size_t ct = c->iterators.xr - x;
2327    int32_t y = c->iterators.y;
2328    surface_t* cb = &(c->state.buffers.color);
2329    const GGLFormat* fp = &(c->formats[cb->format]);
2330    uint8_t* dst = reinterpret_cast<uint8_t*>(cb->data) +
2331                            (x + (cb->stride * y)) * fp->size;
2332    const size_t size = ct * fp->size;
2333    memset(dst, 0xFF, size);
2334}
2335
2336void scanline_noop(context_t* /*c*/)
2337{
2338}
2339
2340void rect_generic(context_t* c, size_t yc)
2341{
2342    do {
2343        c->scanline(c);
2344        c->step_y(c);
2345    } while (--yc);
2346}
2347
2348void rect_memcpy(context_t* c, size_t yc)
2349{
2350    int32_t x = c->iterators.xl;
2351    size_t ct = c->iterators.xr - x;
2352    int32_t y = c->iterators.y;
2353    surface_t* cb = &(c->state.buffers.color);
2354    const GGLFormat* fp = &(c->formats[cb->format]);
2355    uint8_t* dst = reinterpret_cast<uint8_t*>(cb->data) +
2356                            (x + (cb->stride * y)) * fp->size;
2357
2358    surface_t* tex = &(c->state.texture[0].surface);
2359    const int32_t u = (c->state.texture[0].shade.is0>>16) + x;
2360    const int32_t v = (c->state.texture[0].shade.it0>>16) + y;
2361    uint8_t *src = reinterpret_cast<uint8_t*>(tex->data) +
2362                            (u + (tex->stride * v)) * fp->size;
2363
2364    if (cb->stride == tex->stride && ct == size_t(cb->stride)) {
2365        memcpy(dst, src, ct * fp->size * yc);
2366    } else {
2367        const size_t size = ct * fp->size;
2368        const size_t dbpr = cb->stride  * fp->size;
2369        const size_t sbpr = tex->stride * fp->size;
2370        do {
2371            memcpy(dst, src, size);
2372            dst += dbpr;
2373            src += sbpr;
2374        } while (--yc);
2375    }
2376}
2377// ----------------------------------------------------------------------------
2378}; // namespace android
2379
2380