dbri.c revision 16dab54b8cbac39bd3f639db5d7d0fd8300a6cb0
1/*
2 * Driver for DBRI sound chip found on Sparcs.
3 * Copyright (C) 2004 Martin Habets (mhabets@users.sourceforge.net)
4 *
5 * Based entirely upon drivers/sbus/audio/dbri.c which is:
6 * Copyright (C) 1997 Rudolf Koenig (rfkoenig@immd4.informatik.uni-erlangen.de)
7 * Copyright (C) 1998, 1999 Brent Baccala (baccala@freesoft.org)
8 *
9 * This is the lowlevel driver for the DBRI & MMCODEC duo used for ISDN & AUDIO
10 * on Sun SPARCstation 10, 20, LX and Voyager models.
11 *
12 * - DBRI: AT&T T5900FX Dual Basic Rates ISDN Interface. It is a 32 channel
13 *   data time multiplexer with ISDN support (aka T7259)
14 *   Interfaces: SBus,ISDN NT & TE, CHI, 4 bits parallel.
15 *   CHI: (spelled ki) Concentration Highway Interface (AT&T or Intel bus ?).
16 *   Documentation:
17 *   - "STP 4000SBus Dual Basic Rate ISDN (DBRI) Tranceiver" from
18 *     Sparc Technology Business (courtesy of Sun Support)
19 *   - Data sheet of the T7903, a newer but very similar ISA bus equivalent
20 *     available from the Lucent (formarly AT&T microelectronics) home
21 *     page.
22 *   - http://www.freesoft.org/Linux/DBRI/
23 * - MMCODEC: Crystal Semiconductor CS4215 16 bit Multimedia Audio Codec
24 *   Interfaces: CHI, Audio In & Out, 2 bits parallel
25 *   Documentation: from the Crystal Semiconductor home page.
26 *
27 * The DBRI is a 32 pipe machine, each pipe can transfer some bits between
28 * memory and a serial device (long pipes, nr 0-15) or between two serial
29 * devices (short pipes, nr 16-31), or simply send a fixed data to a serial
30 * device (short pipes).
31 * A timeslot defines the bit-offset and nr of bits read from a serial device.
32 * The timeslots are linked to 6 circular lists, one for each direction for
33 * each serial device (NT,TE,CHI). A timeslot is associated to 1 or 2 pipes
34 * (the second one is a monitor/tee pipe, valid only for serial input).
35 *
36 * The mmcodec is connected via the CHI bus and needs the data & some
37 * parameters (volume, balance, output selection) timemultiplexed in 8 byte
38 * chunks. It also has a control mode, which serves for audio format setting.
39 *
40 * Looking at the CS4215 data sheet it is easy to set up 2 or 4 codecs on
41 * the same CHI bus, so I thought perhaps it is possible to use the onboard
42 * & the speakerbox codec simultanously, giving 2 (not very independent :-)
43 * audio devices. But the SUN HW group decided against it, at least on my
44 * LX the speakerbox connector has at least 1 pin missing and 1 wrongly
45 * connected.
46 */
47
48#include <sound/driver.h>
49#include <linux/interrupt.h>
50#include <linux/delay.h>
51
52#include <sound/core.h>
53#include <sound/pcm.h>
54#include <sound/pcm_params.h>
55#include <sound/info.h>
56#include <sound/control.h>
57#include <sound/initval.h>
58
59#include <asm/irq.h>
60#include <asm/io.h>
61#include <asm/sbus.h>
62#include <asm/atomic.h>
63
64MODULE_AUTHOR("Rudolf Koenig, Brent Baccala and Martin Habets");
65MODULE_DESCRIPTION("Sun DBRI");
66MODULE_LICENSE("GPL");
67MODULE_SUPPORTED_DEVICE("{{Sun,DBRI}}");
68
69static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;	/* Index 0-MAX */
70static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;	/* ID for this card */
71static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;	/* Enable this card */
72
73module_param_array(index, int, NULL, 0444);
74MODULE_PARM_DESC(index, "Index value for Sun DBRI soundcard.");
75module_param_array(id, charp, NULL, 0444);
76MODULE_PARM_DESC(id, "ID string for Sun DBRI soundcard.");
77module_param_array(enable, bool, NULL, 0444);
78MODULE_PARM_DESC(enable, "Enable Sun DBRI soundcard.");
79
80#define DBRI_DEBUG
81
82#define D_INT	(1<<0)
83#define D_GEN	(1<<1)
84#define D_CMD	(1<<2)
85#define D_MM	(1<<3)
86#define D_USR	(1<<4)
87#define D_DESC	(1<<5)
88
89static int dbri_debug = 0;
90module_param(dbri_debug, int, 0444);
91MODULE_PARM_DESC(dbri_debug, "Debug value for Sun DBRI soundcard.");
92
93#ifdef DBRI_DEBUG
94static char *cmds[] = {
95	"WAIT", "PAUSE", "JUMP", "IIQ", "REX", "SDP", "CDP", "DTS",
96	"SSP", "CHI", "NT", "TE", "CDEC", "TEST", "CDM", "RESRV"
97};
98
99#define dprintk(a, x...) if(dbri_debug & a) printk(KERN_DEBUG x)
100
101#define DBRI_CMD(cmd, intr, value) ((cmd << 28) |			\
102				    (1 << 27) | \
103				    value)
104#else
105#define dprintk(a, x...)
106
107#define DBRI_CMD(cmd, intr, value) ((cmd << 28) |			\
108				    (intr << 27) | \
109				    value)
110#endif				/* DBRI_DEBUG */
111
112/***************************************************************************
113	CS4215 specific definitions and structures
114****************************************************************************/
115
116struct cs4215 {
117	__u8 data[4];		/* Data mode: Time slots 5-8 */
118	__u8 ctrl[4];		/* Ctrl mode: Time slots 1-4 */
119	__u8 onboard;
120	__u8 offset;		/* Bit offset from frame sync to time slot 1 */
121	volatile __u32 status;
122	volatile __u32 version;
123	__u8 precision;		/* In bits, either 8 or 16 */
124	__u8 channels;		/* 1 or 2 */
125};
126
127/*
128 * Control mode first
129 */
130
131/* Time Slot 1, Status register */
132#define CS4215_CLB	(1<<2)	/* Control Latch Bit */
133#define CS4215_OLB	(1<<3)	/* 1: line: 2.0V, speaker 4V */
134				/* 0: line: 2.8V, speaker 8V */
135#define CS4215_MLB	(1<<4)	/* 1: Microphone: 20dB gain disabled */
136#define CS4215_RSRVD_1  (1<<5)
137
138/* Time Slot 2, Data Format Register */
139#define CS4215_DFR_LINEAR16	0
140#define CS4215_DFR_ULAW		1
141#define CS4215_DFR_ALAW		2
142#define CS4215_DFR_LINEAR8	3
143#define CS4215_DFR_STEREO	(1<<2)
144static struct {
145	unsigned short freq;
146	unsigned char xtal;
147	unsigned char csval;
148} CS4215_FREQ[] = {
149	{  8000, (1 << 4), (0 << 3) },
150	{ 16000, (1 << 4), (1 << 3) },
151	{ 27429, (1 << 4), (2 << 3) },	/* Actually 24428.57 */
152	{ 32000, (1 << 4), (3 << 3) },
153     /* {    NA, (1 << 4), (4 << 3) }, */
154     /* {    NA, (1 << 4), (5 << 3) }, */
155	{ 48000, (1 << 4), (6 << 3) },
156	{  9600, (1 << 4), (7 << 3) },
157	{  5513, (2 << 4), (0 << 3) },	/* Actually 5512.5 */
158	{ 11025, (2 << 4), (1 << 3) },
159	{ 18900, (2 << 4), (2 << 3) },
160	{ 22050, (2 << 4), (3 << 3) },
161	{ 37800, (2 << 4), (4 << 3) },
162	{ 44100, (2 << 4), (5 << 3) },
163	{ 33075, (2 << 4), (6 << 3) },
164	{  6615, (2 << 4), (7 << 3) },
165	{ 0, 0, 0}
166};
167
168#define CS4215_HPF	(1<<7)	/* High Pass Filter, 1: Enabled */
169
170#define CS4215_12_MASK	0xfcbf	/* Mask off reserved bits in slot 1 & 2 */
171
172/* Time Slot 3, Serial Port Control register */
173#define CS4215_XEN	(1<<0)	/* 0: Enable serial output */
174#define CS4215_XCLK	(1<<1)	/* 1: Master mode: Generate SCLK */
175#define CS4215_BSEL_64	(0<<2)	/* Bitrate: 64 bits per frame */
176#define CS4215_BSEL_128	(1<<2)
177#define CS4215_BSEL_256	(2<<2)
178#define CS4215_MCK_MAST (0<<4)	/* Master clock */
179#define CS4215_MCK_XTL1 (1<<4)	/* 24.576 MHz clock source */
180#define CS4215_MCK_XTL2 (2<<4)	/* 16.9344 MHz clock source */
181#define CS4215_MCK_CLK1 (3<<4)	/* Clockin, 256 x Fs */
182#define CS4215_MCK_CLK2 (4<<4)	/* Clockin, see DFR */
183
184/* Time Slot 4, Test Register */
185#define CS4215_DAD	(1<<0)	/* 0:Digital-Dig loop, 1:Dig-Analog-Dig loop */
186#define CS4215_ENL	(1<<1)	/* Enable Loopback Testing */
187
188/* Time Slot 5, Parallel Port Register */
189/* Read only here and the same as the in data mode */
190
191/* Time Slot 6, Reserved  */
192
193/* Time Slot 7, Version Register  */
194#define CS4215_VERSION_MASK 0xf	/* Known versions 0/C, 1/D, 2/E */
195
196/* Time Slot 8, Reserved  */
197
198/*
199 * Data mode
200 */
201/* Time Slot 1-2: Left Channel Data, 2-3: Right Channel Data  */
202
203/* Time Slot 5, Output Setting  */
204#define CS4215_LO(v)	v	/* Left Output Attenuation 0x3f: -94.5 dB */
205#define CS4215_LE	(1<<6)	/* Line Out Enable */
206#define CS4215_HE	(1<<7)	/* Headphone Enable */
207
208/* Time Slot 6, Output Setting  */
209#define CS4215_RO(v)	v	/* Right Output Attenuation 0x3f: -94.5 dB */
210#define CS4215_SE	(1<<6)	/* Speaker Enable */
211#define CS4215_ADI	(1<<7)	/* A/D Data Invalid: Busy in calibration */
212
213/* Time Slot 7, Input Setting */
214#define CS4215_LG(v)	v	/* Left Gain Setting 0xf: 22.5 dB */
215#define CS4215_IS	(1<<4)	/* Input Select: 1=Microphone, 0=Line */
216#define CS4215_OVR	(1<<5)	/* 1: Overrange condition occurred */
217#define CS4215_PIO0	(1<<6)	/* Parallel I/O 0 */
218#define CS4215_PIO1	(1<<7)
219
220/* Time Slot 8, Input Setting */
221#define CS4215_RG(v)	v	/* Right Gain Setting 0xf: 22.5 dB */
222#define CS4215_MA(v)	(v<<4)	/* Monitor Path Attenuation 0xf: mute */
223
224/***************************************************************************
225		DBRI specific definitions and structures
226****************************************************************************/
227
228/* DBRI main registers */
229#define REG0	0x00UL		/* Status and Control */
230#define REG1	0x04UL		/* Mode and Interrupt */
231#define REG2	0x08UL		/* Parallel IO */
232#define REG3	0x0cUL		/* Test */
233#define REG8	0x20UL		/* Command Queue Pointer */
234#define REG9	0x24UL		/* Interrupt Queue Pointer */
235
236#define DBRI_NO_CMDS	64
237#define DBRI_NO_INTS	1	/* Note: the value of this define was
238				 * originally 2.  The ringbuffer to store
239				 * interrupts in dma is currently broken.
240				 * This is a temporary fix until the ringbuffer
241				 * is fixed.
242				 */
243#define DBRI_INT_BLK	64
244#define DBRI_NO_DESCS	64
245#define DBRI_NO_PIPES	32
246
247#define DBRI_MM_ONB	1
248#define DBRI_MM_SB	2
249
250#define DBRI_REC	0
251#define DBRI_PLAY	1
252#define DBRI_NO_STREAMS	2
253
254/* One transmit/receive descriptor */
255struct dbri_mem {
256	volatile __u32 word1;
257	volatile __u32 ba;	/* Transmit/Receive Buffer Address */
258	volatile __u32 nda;	/* Next Descriptor Address */
259	volatile __u32 word4;
260};
261
262/* This structure is in a DMA region where it can accessed by both
263 * the CPU and the DBRI
264 */
265struct dbri_dma {
266	volatile s32 cmd[DBRI_NO_CMDS];	/* Place for commands       */
267	volatile s32 intr[DBRI_NO_INTS * DBRI_INT_BLK];	/* Interrupt field  */
268	struct dbri_mem desc[DBRI_NO_DESCS];	/* Xmit/receive descriptors */
269};
270
271#define dbri_dma_off(member, elem)	\
272	((u32)(unsigned long)		\
273	 (&(((struct dbri_dma *)0)->member[elem])))
274
275enum in_or_out { PIPEinput, PIPEoutput };
276
277struct dbri_pipe {
278	u32 sdp;		/* SDP command word */
279	enum in_or_out direction;
280	int nextpipe;		/* Next pipe in linked list */
281	int prevpipe;
282	int cycle;		/* Offset of timeslot (bits) */
283	int length;		/* Length of timeslot (bits) */
284	int first_desc;		/* Index of first descriptor */
285	int desc;		/* Index of active descriptor */
286	volatile __u32 *recv_fixed_ptr;	/* Ptr to receive fixed data */
287};
288
289struct dbri_desc {
290	int inuse;		/* Boolean flag */
291	int next;		/* Index of next desc, or -1 */
292	unsigned int len;
293};
294
295/* Per stream (playback or record) information */
296typedef struct dbri_streaminfo {
297	snd_pcm_substream_t *substream;
298	u32 dvma_buffer;	/* Device view of Alsa DMA buffer */
299	int left;		/* # of bytes left in DMA buffer  */
300	int size;		/* Size of DMA buffer             */
301	size_t offset;		/* offset in user buffer          */
302	int pipe;		/* Data pipe used                 */
303	int left_gain;		/* mixer elements                 */
304	int right_gain;
305	int balance;
306} dbri_streaminfo_t;
307
308/* This structure holds the information for both chips (DBRI & CS4215) */
309typedef struct snd_dbri {
310	snd_card_t *card;	/* ALSA card */
311	snd_pcm_t *pcm;
312
313	int regs_size, irq;	/* Needed for unload */
314	struct sbus_dev *sdev;	/* SBUS device info */
315	spinlock_t lock;
316
317	volatile struct dbri_dma *dma;	/* Pointer to our DMA block */
318	u32 dma_dvma;		/* DBRI visible DMA address */
319
320	void __iomem *regs;	/* dbri HW regs */
321	int dbri_version;	/* 'e' and up is OK */
322	int dbri_irqp;		/* intr queue pointer */
323	int wait_seen;
324
325	struct dbri_pipe pipes[DBRI_NO_PIPES];	/* DBRI's 32 data pipes */
326	struct dbri_desc descs[DBRI_NO_DESCS];
327
328	int chi_in_pipe;
329	int chi_out_pipe;
330	int chi_bpf;
331
332	struct cs4215 mm;	/* mmcodec special info */
333				/* per stream (playback/record) info */
334	struct dbri_streaminfo stream_info[DBRI_NO_STREAMS];
335
336	struct snd_dbri *next;
337} snd_dbri_t;
338
339/* Needed for the ALSA macros to work */
340#define chip_t snd_dbri_t
341
342#define DBRI_MAX_VOLUME		63	/* Output volume */
343#define DBRI_MAX_GAIN		15	/* Input gain */
344#define DBRI_RIGHT_BALANCE	255
345#define DBRI_MID_BALANCE	(DBRI_RIGHT_BALANCE >> 1)
346
347/* DBRI Reg0 - Status Control Register - defines. (Page 17) */
348#define D_P		(1<<15)	/* Program command & queue pointer valid */
349#define D_G		(1<<14)	/* Allow 4-Word SBus Burst */
350#define D_S		(1<<13)	/* Allow 16-Word SBus Burst */
351#define D_E		(1<<12)	/* Allow 8-Word SBus Burst */
352#define D_X		(1<<7)	/* Sanity Timer Disable */
353#define D_T		(1<<6)	/* Permit activation of the TE interface */
354#define D_N		(1<<5)	/* Permit activation of the NT interface */
355#define D_C		(1<<4)	/* Permit activation of the CHI interface */
356#define D_F		(1<<3)	/* Force Sanity Timer Time-Out */
357#define D_D		(1<<2)	/* Disable Master Mode */
358#define D_H		(1<<1)	/* Halt for Analysis */
359#define D_R		(1<<0)	/* Soft Reset */
360
361/* DBRI Reg1 - Mode and Interrupt Register - defines. (Page 18) */
362#define D_LITTLE_END	(1<<8)	/* Byte Order */
363#define D_BIG_END	(0<<8)	/* Byte Order */
364#define D_MRR		(1<<4)	/* Multiple Error Ack on SBus (readonly) */
365#define D_MLE		(1<<3)	/* Multiple Late Error on SBus (readonly) */
366#define D_LBG		(1<<2)	/* Lost Bus Grant on SBus (readonly) */
367#define D_MBE		(1<<1)	/* Burst Error on SBus (readonly) */
368#define D_IR		(1<<0)	/* Interrupt Indicator (readonly) */
369
370/* DBRI Reg2 - Parallel IO Register - defines. (Page 18) */
371#define D_ENPIO3	(1<<7)	/* Enable Pin 3 */
372#define D_ENPIO2	(1<<6)	/* Enable Pin 2 */
373#define D_ENPIO1	(1<<5)	/* Enable Pin 1 */
374#define D_ENPIO0	(1<<4)	/* Enable Pin 0 */
375#define D_ENPIO		(0xf0)	/* Enable all the pins */
376#define D_PIO3		(1<<3)	/* Pin 3: 1: Data mode, 0: Ctrl mode */
377#define D_PIO2		(1<<2)	/* Pin 2: 1: Onboard PDN */
378#define D_PIO1		(1<<1)	/* Pin 1: 0: Reset */
379#define D_PIO0		(1<<0)	/* Pin 0: 1: Speakerbox PDN */
380
381/* DBRI Commands (Page 20) */
382#define D_WAIT		0x0	/* Stop execution */
383#define D_PAUSE		0x1	/* Flush long pipes */
384#define D_JUMP		0x2	/* New command queue */
385#define D_IIQ		0x3	/* Initialize Interrupt Queue */
386#define D_REX		0x4	/* Report command execution via interrupt */
387#define D_SDP		0x5	/* Setup Data Pipe */
388#define D_CDP		0x6	/* Continue Data Pipe (reread NULL Pointer) */
389#define D_DTS		0x7	/* Define Time Slot */
390#define D_SSP		0x8	/* Set short Data Pipe */
391#define D_CHI		0x9	/* Set CHI Global Mode */
392#define D_NT		0xa	/* NT Command */
393#define D_TE		0xb	/* TE Command */
394#define D_CDEC		0xc	/* Codec setup */
395#define D_TEST		0xd	/* No comment */
396#define D_CDM		0xe	/* CHI Data mode command */
397
398/* Special bits for some commands */
399#define D_PIPE(v)      ((v)<<0)	/* Pipe Nr: 0-15 long, 16-21 short */
400
401/* Setup Data Pipe */
402/* IRM */
403#define D_SDP_2SAME	(1<<18)	/* Report 2nd time in a row value rcvd */
404#define D_SDP_CHANGE	(2<<18)	/* Report any changes */
405#define D_SDP_EVERY	(3<<18)	/* Report any changes */
406#define D_SDP_EOL	(1<<17)	/* EOL interrupt enable */
407#define D_SDP_IDLE	(1<<16)	/* HDLC idle interrupt enable */
408
409/* Pipe data MODE */
410#define D_SDP_MEM	(0<<13)	/* To/from memory */
411#define D_SDP_HDLC	(2<<13)
412#define D_SDP_HDLC_D	(3<<13)	/* D Channel (prio control) */
413#define D_SDP_SER	(4<<13)	/* Serial to serial */
414#define D_SDP_FIXED	(6<<13)	/* Short only */
415#define D_SDP_MODE(v)	((v)&(7<<13))
416
417#define D_SDP_TO_SER	(1<<12)	/* Direction */
418#define D_SDP_FROM_SER	(0<<12)	/* Direction */
419#define D_SDP_MSB	(1<<11)	/* Bit order within Byte */
420#define D_SDP_LSB	(0<<11)	/* Bit order within Byte */
421#define D_SDP_P		(1<<10)	/* Pointer Valid */
422#define D_SDP_A		(1<<8)	/* Abort */
423#define D_SDP_C		(1<<7)	/* Clear */
424
425/* Define Time Slot */
426#define D_DTS_VI	(1<<17)	/* Valid Input Time-Slot Descriptor */
427#define D_DTS_VO	(1<<16)	/* Valid Output Time-Slot Descriptor */
428#define D_DTS_INS	(1<<15)	/* Insert Time Slot */
429#define D_DTS_DEL	(0<<15)	/* Delete Time Slot */
430#define D_DTS_PRVIN(v) ((v)<<10)	/* Previous In Pipe */
431#define D_DTS_PRVOUT(v)        ((v)<<5)	/* Previous Out Pipe */
432
433/* Time Slot defines */
434#define D_TS_LEN(v)	((v)<<24)	/* Number of bits in this time slot */
435#define D_TS_CYCLE(v)	((v)<<14)	/* Bit Count at start of TS */
436#define D_TS_DI		(1<<13)	/* Data Invert */
437#define D_TS_1CHANNEL	(0<<10)	/* Single Channel / Normal mode */
438#define D_TS_MONITOR	(2<<10)	/* Monitor pipe */
439#define D_TS_NONCONTIG	(3<<10)	/* Non contiguous mode */
440#define D_TS_ANCHOR	(7<<10)	/* Starting short pipes */
441#define D_TS_MON(v)    ((v)<<5)	/* Monitor Pipe */
442#define D_TS_NEXT(v)   ((v)<<0)	/* Pipe Nr: 0-15 long, 16-21 short */
443
444/* Concentration Highway Interface Modes */
445#define D_CHI_CHICM(v)	((v)<<16)	/* Clock mode */
446#define D_CHI_IR	(1<<15)	/* Immediate Interrupt Report */
447#define D_CHI_EN	(1<<14)	/* CHIL Interrupt enabled */
448#define D_CHI_OD	(1<<13)	/* Open Drain Enable */
449#define D_CHI_FE	(1<<12)	/* Sample CHIFS on Rising Frame Edge */
450#define D_CHI_FD	(1<<11)	/* Frame Drive */
451#define D_CHI_BPF(v)	((v)<<0)	/* Bits per Frame */
452
453/* NT: These are here for completeness */
454#define D_NT_FBIT	(1<<17)	/* Frame Bit */
455#define D_NT_NBF	(1<<16)	/* Number of bad frames to loose framing */
456#define D_NT_IRM_IMM	(1<<15)	/* Interrupt Report & Mask: Immediate */
457#define D_NT_IRM_EN	(1<<14)	/* Interrupt Report & Mask: Enable */
458#define D_NT_ISNT	(1<<13)	/* Configfure interface as NT */
459#define D_NT_FT		(1<<12)	/* Fixed Timing */
460#define D_NT_EZ		(1<<11)	/* Echo Channel is Zeros */
461#define D_NT_IFA	(1<<10)	/* Inhibit Final Activation */
462#define D_NT_ACT	(1<<9)	/* Activate Interface */
463#define D_NT_MFE	(1<<8)	/* Multiframe Enable */
464#define D_NT_RLB(v)	((v)<<5)	/* Remote Loopback */
465#define D_NT_LLB(v)	((v)<<2)	/* Local Loopback */
466#define D_NT_FACT	(1<<1)	/* Force Activation */
467#define D_NT_ABV	(1<<0)	/* Activate Bipolar Violation */
468
469/* Codec Setup */
470#define D_CDEC_CK(v)	((v)<<24)	/* Clock Select */
471#define D_CDEC_FED(v)	((v)<<12)	/* FSCOD Falling Edge Delay */
472#define D_CDEC_RED(v)	((v)<<0)	/* FSCOD Rising Edge Delay */
473
474/* Test */
475#define D_TEST_RAM(v)	((v)<<16)	/* RAM Pointer */
476#define D_TEST_SIZE(v)	((v)<<11)	/* */
477#define D_TEST_ROMONOFF	0x5	/* Toggle ROM opcode monitor on/off */
478#define D_TEST_PROC	0x6	/* MicroProcessor test */
479#define D_TEST_SER	0x7	/* Serial-Controller test */
480#define D_TEST_RAMREAD	0x8	/* Copy from Ram to system memory */
481#define D_TEST_RAMWRITE	0x9	/* Copy into Ram from system memory */
482#define D_TEST_RAMBIST	0xa	/* RAM Built-In Self Test */
483#define D_TEST_MCBIST	0xb	/* Microcontroller Built-In Self Test */
484#define D_TEST_DUMP	0xe	/* ROM Dump */
485
486/* CHI Data Mode */
487#define D_CDM_THI	(1<<8)	/* Transmit Data on CHIDR Pin */
488#define D_CDM_RHI	(1<<7)	/* Receive Data on CHIDX Pin */
489#define D_CDM_RCE	(1<<6)	/* Receive on Rising Edge of CHICK */
490#define D_CDM_XCE	(1<<2)	/* Transmit Data on Rising Edge of CHICK */
491#define D_CDM_XEN	(1<<1)	/* Transmit Highway Enable */
492#define D_CDM_REN	(1<<0)	/* Receive Highway Enable */
493
494/* The Interrupts */
495#define D_INTR_BRDY	1	/* Buffer Ready for processing */
496#define D_INTR_MINT	2	/* Marked Interrupt in RD/TD */
497#define D_INTR_IBEG	3	/* Flag to idle transition detected (HDLC) */
498#define D_INTR_IEND	4	/* Idle to flag transition detected (HDLC) */
499#define D_INTR_EOL	5	/* End of List */
500#define D_INTR_CMDI	6	/* Command has bean read */
501#define D_INTR_XCMP	8	/* Transmission of frame complete */
502#define D_INTR_SBRI	9	/* BRI status change info */
503#define D_INTR_FXDT	10	/* Fixed data change */
504#define D_INTR_CHIL	11	/* CHI lost frame sync (channel 36 only) */
505#define D_INTR_COLL	11	/* Unrecoverable D-Channel collision */
506#define D_INTR_DBYT	12	/* Dropped by frame slip */
507#define D_INTR_RBYT	13	/* Repeated by frame slip */
508#define D_INTR_LINT	14	/* Lost Interrupt */
509#define D_INTR_UNDR	15	/* DMA underrun */
510
511#define D_INTR_TE	32
512#define D_INTR_NT	34
513#define D_INTR_CHI	36
514#define D_INTR_CMD	38
515
516#define D_INTR_GETCHAN(v)	(((v)>>24) & 0x3f)
517#define D_INTR_GETCODE(v)	(((v)>>20) & 0xf)
518#define D_INTR_GETCMD(v)	(((v)>>16) & 0xf)
519#define D_INTR_GETVAL(v)	((v) & 0xffff)
520#define D_INTR_GETRVAL(v)	((v) & 0xfffff)
521
522#define D_P_0		0	/* TE receive anchor */
523#define D_P_1		1	/* TE transmit anchor */
524#define D_P_2		2	/* NT transmit anchor */
525#define D_P_3		3	/* NT receive anchor */
526#define D_P_4		4	/* CHI send data */
527#define D_P_5		5	/* CHI receive data */
528#define D_P_6		6	/* */
529#define D_P_7		7	/* */
530#define D_P_8		8	/* */
531#define D_P_9		9	/* */
532#define D_P_10		10	/* */
533#define D_P_11		11	/* */
534#define D_P_12		12	/* */
535#define D_P_13		13	/* */
536#define D_P_14		14	/* */
537#define D_P_15		15	/* */
538#define D_P_16		16	/* CHI anchor pipe */
539#define D_P_17		17	/* CHI send */
540#define D_P_18		18	/* CHI receive */
541#define D_P_19		19	/* CHI receive */
542#define D_P_20		20	/* CHI receive */
543#define D_P_21		21	/* */
544#define D_P_22		22	/* */
545#define D_P_23		23	/* */
546#define D_P_24		24	/* */
547#define D_P_25		25	/* */
548#define D_P_26		26	/* */
549#define D_P_27		27	/* */
550#define D_P_28		28	/* */
551#define D_P_29		29	/* */
552#define D_P_30		30	/* */
553#define D_P_31		31	/* */
554
555/* Transmit descriptor defines */
556#define DBRI_TD_F	(1<<31)	/* End of Frame */
557#define DBRI_TD_D	(1<<30)	/* Do not append CRC */
558#define DBRI_TD_CNT(v)	((v)<<16)	/* Number of valid bytes in the buffer */
559#define DBRI_TD_B	(1<<15)	/* Final interrupt */
560#define DBRI_TD_M	(1<<14)	/* Marker interrupt */
561#define DBRI_TD_I	(1<<13)	/* Transmit Idle Characters */
562#define DBRI_TD_FCNT(v)	(v)	/* Flag Count */
563#define DBRI_TD_UNR	(1<<3)	/* Underrun: transmitter is out of data */
564#define DBRI_TD_ABT	(1<<2)	/* Abort: frame aborted */
565#define DBRI_TD_TBC	(1<<0)	/* Transmit buffer Complete */
566#define DBRI_TD_STATUS(v)       ((v)&0xff)	/* Transmit status */
567			/* Maximum buffer size per TD: almost 8Kb */
568#define DBRI_TD_MAXCNT	((1 << 13) - 1)
569
570/* Receive descriptor defines */
571#define DBRI_RD_F	(1<<31)	/* End of Frame */
572#define DBRI_RD_C	(1<<30)	/* Completed buffer */
573#define DBRI_RD_B	(1<<15)	/* Final interrupt */
574#define DBRI_RD_M	(1<<14)	/* Marker interrupt */
575#define DBRI_RD_BCNT(v)	(v)	/* Buffer size */
576#define DBRI_RD_CRC	(1<<7)	/* 0: CRC is correct */
577#define DBRI_RD_BBC	(1<<6)	/* 1: Bad Byte received */
578#define DBRI_RD_ABT	(1<<5)	/* Abort: frame aborted */
579#define DBRI_RD_OVRN	(1<<3)	/* Overrun: data lost */
580#define DBRI_RD_STATUS(v)      ((v)&0xff)	/* Receive status */
581#define DBRI_RD_CNT(v) (((v)>>16)&0x1fff)	/* Valid bytes in the buffer */
582
583/* stream_info[] access */
584/* Translate the ALSA direction into the array index */
585#define DBRI_STREAMNO(substream)				\
586		(substream->stream == 				\
587		 SNDRV_PCM_STREAM_PLAYBACK? DBRI_PLAY: DBRI_REC)
588
589/* Return a pointer to dbri_streaminfo */
590#define DBRI_STREAM(dbri, substream)	&dbri->stream_info[DBRI_STREAMNO(substream)]
591
592static snd_dbri_t *dbri_list = NULL;	/* All DBRI devices */
593
594/*
595 * Short data pipes transmit LSB first. The CS4215 receives MSB first. Grrr.
596 * So we have to reverse the bits. Note: not all bit lengths are supported
597 */
598static __u32 reverse_bytes(__u32 b, int len)
599{
600	switch (len) {
601	case 32:
602		b = ((b & 0xffff0000) >> 16) | ((b & 0x0000ffff) << 16);
603	case 16:
604		b = ((b & 0xff00ff00) >> 8) | ((b & 0x00ff00ff) << 8);
605	case 8:
606		b = ((b & 0xf0f0f0f0) >> 4) | ((b & 0x0f0f0f0f) << 4);
607	case 4:
608		b = ((b & 0xcccccccc) >> 2) | ((b & 0x33333333) << 2);
609	case 2:
610		b = ((b & 0xaaaaaaaa) >> 1) | ((b & 0x55555555) << 1);
611	case 1:
612	case 0:
613		break;
614	default:
615		printk(KERN_ERR "DBRI reverse_bytes: unsupported length\n");
616	};
617
618	return b;
619}
620
621/*
622****************************************************************************
623************** DBRI initialization and command synchronization *************
624****************************************************************************
625
626Commands are sent to the DBRI by building a list of them in memory,
627then writing the address of the first list item to DBRI register 8.
628The list is terminated with a WAIT command, which can generate a
629CPU interrupt if required.
630
631Since the DBRI can run in parallel with the CPU, several means of
632synchronization present themselves.  The original scheme (Rudolf's)
633was to set a flag when we "cmdlock"ed the DBRI, clear the flag when
634an interrupt signaled completion, and wait on a wait_queue if a routine
635attempted to cmdlock while the flag was set.  The problems arose when
636we tried to cmdlock from inside an interrupt handler, which might
637cause scheduling in an interrupt (if we waited), etc, etc
638
639A more sophisticated scheme might involve a circular command buffer
640or an array of command buffers.  A routine could fill one with
641commands and link it onto a list.  When a interrupt signaled
642completion of the current command buffer, look on the list for
643the next one.
644
645I've decided to implement something much simpler - after each command,
646the CPU waits for the DBRI to finish the command by polling the P bit
647in DBRI register 0.  I've tried to implement this in such a way
648that might make implementing a more sophisticated scheme easier.
649
650Every time a routine wants to write commands to the DBRI, it must
651first call dbri_cmdlock() and get an initial pointer into dbri->dma->cmd
652in return.  After the commands have been writen, dbri_cmdsend() is
653called with the final pointer value.
654
655*/
656
657enum dbri_lock_t { NoGetLock, GetLock };
658
659static volatile s32 *dbri_cmdlock(snd_dbri_t * dbri, enum dbri_lock_t get)
660{
661#ifndef SMP
662	if ((get == GetLock) && spin_is_locked(&dbri->lock)) {
663		printk(KERN_ERR "DBRI: cmdlock called while in spinlock.");
664	}
665#endif
666
667	/*if (get == GetLock) spin_lock(&dbri->lock); */
668	return &dbri->dma->cmd[0];
669}
670
671static void dbri_process_interrupt_buffer(snd_dbri_t *);
672
673static void dbri_cmdsend(snd_dbri_t * dbri, volatile s32 * cmd)
674{
675	int MAXLOOPS = 1000000;
676	int maxloops = MAXLOOPS;
677	volatile s32 *ptr;
678
679	for (ptr = &dbri->dma->cmd[0]; ptr < cmd; ptr++) {
680		dprintk(D_CMD, "cmd: %lx:%08x\n", (unsigned long)ptr, *ptr);
681	}
682
683	if ((cmd - &dbri->dma->cmd[0]) >= DBRI_NO_CMDS - 1) {
684		printk("DBRI: Command buffer overflow! (bug in driver)\n");
685		/* Ignore the last part. */
686		cmd = &dbri->dma->cmd[DBRI_NO_CMDS - 3];
687	}
688
689	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
690	*(cmd++) = DBRI_CMD(D_WAIT, 1, 0);
691	dbri->wait_seen = 0;
692	sbus_writel(dbri->dma_dvma, dbri->regs + REG8);
693	while ((--maxloops) > 0 && (sbus_readl(dbri->regs + REG0) & D_P))
694		barrier();
695	if (maxloops == 0) {
696		printk(KERN_ERR "DBRI: Chip never completed command buffer\n");
697		dprintk(D_CMD, "DBRI: Chip never completed command buffer\n");
698	} else {
699		while ((--maxloops) > 0 && (!dbri->wait_seen))
700			dbri_process_interrupt_buffer(dbri);
701		if (maxloops == 0) {
702			printk(KERN_ERR "DBRI: Chip never acked WAIT\n");
703			dprintk(D_CMD, "DBRI: Chip never acked WAIT\n");
704		} else {
705			dprintk(D_CMD, "Chip completed command "
706				"buffer (%d)\n", MAXLOOPS - maxloops);
707		}
708	}
709
710	/*spin_unlock(&dbri->lock); */
711}
712
713/* Lock must be held when calling this */
714static void dbri_reset(snd_dbri_t * dbri)
715{
716	int i;
717
718	dprintk(D_GEN, "reset 0:%x 2:%x 8:%x 9:%x\n",
719		sbus_readl(dbri->regs + REG0),
720		sbus_readl(dbri->regs + REG2),
721		sbus_readl(dbri->regs + REG8), sbus_readl(dbri->regs + REG9));
722
723	sbus_writel(D_R, dbri->regs + REG0);	/* Soft Reset */
724	for (i = 0; (sbus_readl(dbri->regs + REG0) & D_R) && i < 64; i++)
725		udelay(10);
726}
727
728/* Lock must not be held before calling this */
729static void dbri_initialize(snd_dbri_t * dbri)
730{
731	volatile s32 *cmd;
732	u32 dma_addr, tmp;
733	unsigned long flags;
734	int n;
735
736	spin_lock_irqsave(&dbri->lock, flags);
737
738	dbri_reset(dbri);
739
740	cmd = dbri_cmdlock(dbri, NoGetLock);
741	dprintk(D_GEN, "init: cmd: %p, int: %p\n",
742		&dbri->dma->cmd[0], &dbri->dma->intr[0]);
743
744	/*
745	 * Initialize the interrupt ringbuffer.
746	 */
747	for (n = 0; n < DBRI_NO_INTS - 1; n++) {
748		dma_addr = dbri->dma_dvma;
749		dma_addr += dbri_dma_off(intr, ((n + 1) & DBRI_INT_BLK));
750		dbri->dma->intr[n * DBRI_INT_BLK] = dma_addr;
751	}
752	dma_addr = dbri->dma_dvma + dbri_dma_off(intr, 0);
753	dbri->dma->intr[n * DBRI_INT_BLK] = dma_addr;
754	dbri->dbri_irqp = 1;
755
756	/* Initialize pipes */
757	for (n = 0; n < DBRI_NO_PIPES; n++)
758		dbri->pipes[n].desc = dbri->pipes[n].first_desc = -1;
759
760	/* We should query the openprom to see what burst sizes this
761	 * SBus supports.  For now, just disable all SBus bursts */
762	tmp = sbus_readl(dbri->regs + REG0);
763	tmp &= ~(D_G | D_S | D_E);
764	sbus_writel(tmp, dbri->regs + REG0);
765
766	/*
767	 * Set up the interrupt queue
768	 */
769	dma_addr = dbri->dma_dvma + dbri_dma_off(intr, 0);
770	*(cmd++) = DBRI_CMD(D_IIQ, 0, 0);
771	*(cmd++) = dma_addr;
772
773	dbri_cmdsend(dbri, cmd);
774	spin_unlock_irqrestore(&dbri->lock, flags);
775}
776
777/*
778****************************************************************************
779************************** DBRI data pipe management ***********************
780****************************************************************************
781
782While DBRI control functions use the command and interrupt buffers, the
783main data path takes the form of data pipes, which can be short (command
784and interrupt driven), or long (attached to DMA buffers).  These functions
785provide a rudimentary means of setting up and managing the DBRI's pipes,
786but the calling functions have to make sure they respect the pipes' linked
787list ordering, among other things.  The transmit and receive functions
788here interface closely with the transmit and receive interrupt code.
789
790*/
791static int pipe_active(snd_dbri_t * dbri, int pipe)
792{
793	return ((pipe >= 0) && (dbri->pipes[pipe].desc != -1));
794}
795
796/* reset_pipe(dbri, pipe)
797 *
798 * Called on an in-use pipe to clear anything being transmitted or received
799 * Lock must be held before calling this.
800 */
801static void reset_pipe(snd_dbri_t * dbri, int pipe)
802{
803	int sdp;
804	int desc;
805	volatile int *cmd;
806
807	if (pipe < 0 || pipe > 31) {
808		printk("DBRI: reset_pipe called with illegal pipe number\n");
809		return;
810	}
811
812	sdp = dbri->pipes[pipe].sdp;
813	if (sdp == 0) {
814		printk("DBRI: reset_pipe called on uninitialized pipe\n");
815		return;
816	}
817
818	cmd = dbri_cmdlock(dbri, NoGetLock);
819	*(cmd++) = DBRI_CMD(D_SDP, 0, sdp | D_SDP_C | D_SDP_P);
820	*(cmd++) = 0;
821	dbri_cmdsend(dbri, cmd);
822
823	desc = dbri->pipes[pipe].first_desc;
824	while (desc != -1) {
825		dbri->descs[desc].inuse = 0;
826		desc = dbri->descs[desc].next;
827	}
828
829	dbri->pipes[pipe].desc = -1;
830	dbri->pipes[pipe].first_desc = -1;
831}
832
833/* FIXME: direction as an argument? */
834static void setup_pipe(snd_dbri_t * dbri, int pipe, int sdp)
835{
836	if (pipe < 0 || pipe > 31) {
837		printk("DBRI: setup_pipe called with illegal pipe number\n");
838		return;
839	}
840
841	if ((sdp & 0xf800) != sdp) {
842		printk("DBRI: setup_pipe called with strange SDP value\n");
843		/* sdp &= 0xf800; */
844	}
845
846	/* If this is a fixed receive pipe, arrange for an interrupt
847	 * every time its data changes
848	 */
849	if (D_SDP_MODE(sdp) == D_SDP_FIXED && !(sdp & D_SDP_TO_SER))
850		sdp |= D_SDP_CHANGE;
851
852	sdp |= D_PIPE(pipe);
853	dbri->pipes[pipe].sdp = sdp;
854	dbri->pipes[pipe].desc = -1;
855	dbri->pipes[pipe].first_desc = -1;
856	if (sdp & D_SDP_TO_SER)
857		dbri->pipes[pipe].direction = PIPEoutput;
858	else
859		dbri->pipes[pipe].direction = PIPEinput;
860
861	reset_pipe(dbri, pipe);
862}
863
864/* FIXME: direction not needed */
865static void link_time_slot(snd_dbri_t * dbri, int pipe,
866			   enum in_or_out direction, int basepipe,
867			   int length, int cycle)
868{
869	volatile s32 *cmd;
870	int val;
871	int prevpipe;
872	int nextpipe;
873
874	if (pipe < 0 || pipe > 31 || basepipe < 0 || basepipe > 31) {
875		printk
876		    ("DBRI: link_time_slot called with illegal pipe number\n");
877		return;
878	}
879
880	if (dbri->pipes[pipe].sdp == 0 || dbri->pipes[basepipe].sdp == 0) {
881		printk("DBRI: link_time_slot called on uninitialized pipe\n");
882		return;
883	}
884
885	/* Deal with CHI special case:
886	 * "If transmission on edges 0 or 1 is desired, then cycle n
887	 *  (where n = # of bit times per frame...) must be used."
888	 *                  - DBRI data sheet, page 11
889	 */
890	if (basepipe == 16 && direction == PIPEoutput && cycle == 0)
891		cycle = dbri->chi_bpf;
892
893	if (basepipe == pipe) {
894		prevpipe = pipe;
895		nextpipe = pipe;
896	} else {
897		/* We're not initializing a new linked list (basepipe != pipe),
898		 * so run through the linked list and find where this pipe
899		 * should be sloted in, based on its cycle.  CHI confuses
900		 * things a bit, since it has a single anchor for both its
901		 * transmit and receive lists.
902		 */
903		if (basepipe == 16) {
904			if (direction == PIPEinput) {
905				prevpipe = dbri->chi_in_pipe;
906			} else {
907				prevpipe = dbri->chi_out_pipe;
908			}
909		} else {
910			prevpipe = basepipe;
911		}
912
913		nextpipe = dbri->pipes[prevpipe].nextpipe;
914
915		while (dbri->pipes[nextpipe].cycle < cycle
916		       && dbri->pipes[nextpipe].nextpipe != basepipe) {
917			prevpipe = nextpipe;
918			nextpipe = dbri->pipes[nextpipe].nextpipe;
919		}
920	}
921
922	if (prevpipe == 16) {
923		if (direction == PIPEinput) {
924			dbri->chi_in_pipe = pipe;
925		} else {
926			dbri->chi_out_pipe = pipe;
927		}
928	} else {
929		dbri->pipes[prevpipe].nextpipe = pipe;
930	}
931
932	dbri->pipes[pipe].nextpipe = nextpipe;
933	dbri->pipes[pipe].cycle = cycle;
934	dbri->pipes[pipe].length = length;
935
936	cmd = dbri_cmdlock(dbri, NoGetLock);
937
938	if (direction == PIPEinput) {
939		val = D_DTS_VI | D_DTS_INS | D_DTS_PRVIN(prevpipe) | pipe;
940		*(cmd++) = DBRI_CMD(D_DTS, 0, val);
941		*(cmd++) =
942		    D_TS_LEN(length) | D_TS_CYCLE(cycle) | D_TS_NEXT(nextpipe);
943		*(cmd++) = 0;
944	} else {
945		val = D_DTS_VO | D_DTS_INS | D_DTS_PRVOUT(prevpipe) | pipe;
946		*(cmd++) = DBRI_CMD(D_DTS, 0, val);
947		*(cmd++) = 0;
948		*(cmd++) =
949		    D_TS_LEN(length) | D_TS_CYCLE(cycle) | D_TS_NEXT(nextpipe);
950	}
951
952	dbri_cmdsend(dbri, cmd);
953}
954
955static void unlink_time_slot(snd_dbri_t * dbri, int pipe,
956			     enum in_or_out direction, int prevpipe,
957			     int nextpipe)
958{
959	volatile s32 *cmd;
960	int val;
961
962	if (pipe < 0 || pipe > 31 || prevpipe < 0 || prevpipe > 31) {
963		printk
964		    ("DBRI: unlink_time_slot called with illegal pipe number\n");
965		return;
966	}
967
968	cmd = dbri_cmdlock(dbri, NoGetLock);
969
970	if (direction == PIPEinput) {
971		val = D_DTS_VI | D_DTS_DEL | D_DTS_PRVIN(prevpipe) | pipe;
972		*(cmd++) = DBRI_CMD(D_DTS, 0, val);
973		*(cmd++) = D_TS_NEXT(nextpipe);
974		*(cmd++) = 0;
975	} else {
976		val = D_DTS_VO | D_DTS_DEL | D_DTS_PRVOUT(prevpipe) | pipe;
977		*(cmd++) = DBRI_CMD(D_DTS, 0, val);
978		*(cmd++) = 0;
979		*(cmd++) = D_TS_NEXT(nextpipe);
980	}
981
982	dbri_cmdsend(dbri, cmd);
983}
984
985/* xmit_fixed() / recv_fixed()
986 *
987 * Transmit/receive data on a "fixed" pipe - i.e, one whose contents are not
988 * expected to change much, and which we don't need to buffer.
989 * The DBRI only interrupts us when the data changes (receive pipes),
990 * or only changes the data when this function is called (transmit pipes).
991 * Only short pipes (numbers 16-31) can be used in fixed data mode.
992 *
993 * These function operate on a 32-bit field, no matter how large
994 * the actual time slot is.  The interrupt handler takes care of bit
995 * ordering and alignment.  An 8-bit time slot will always end up
996 * in the low-order 8 bits, filled either MSB-first or LSB-first,
997 * depending on the settings passed to setup_pipe()
998 */
999static void xmit_fixed(snd_dbri_t * dbri, int pipe, unsigned int data)
1000{
1001	volatile s32 *cmd;
1002
1003	if (pipe < 16 || pipe > 31) {
1004		printk("DBRI: xmit_fixed: Illegal pipe number\n");
1005		return;
1006	}
1007
1008	if (D_SDP_MODE(dbri->pipes[pipe].sdp) == 0) {
1009		printk("DBRI: xmit_fixed: Uninitialized pipe %d\n", pipe);
1010		return;
1011	}
1012
1013	if (D_SDP_MODE(dbri->pipes[pipe].sdp) != D_SDP_FIXED) {
1014		printk("DBRI: xmit_fixed: Non-fixed pipe %d\n", pipe);
1015		return;
1016	}
1017
1018	if (!(dbri->pipes[pipe].sdp & D_SDP_TO_SER)) {
1019		printk("DBRI: xmit_fixed: Called on receive pipe %d\n", pipe);
1020		return;
1021	}
1022
1023	/* DBRI short pipes always transmit LSB first */
1024
1025	if (dbri->pipes[pipe].sdp & D_SDP_MSB)
1026		data = reverse_bytes(data, dbri->pipes[pipe].length);
1027
1028	cmd = dbri_cmdlock(dbri, GetLock);
1029
1030	*(cmd++) = DBRI_CMD(D_SSP, 0, pipe);
1031	*(cmd++) = data;
1032
1033	dbri_cmdsend(dbri, cmd);
1034}
1035
1036static void recv_fixed(snd_dbri_t * dbri, int pipe, volatile __u32 * ptr)
1037{
1038	if (pipe < 16 || pipe > 31) {
1039		printk("DBRI: recv_fixed called with illegal pipe number\n");
1040		return;
1041	}
1042
1043	if (D_SDP_MODE(dbri->pipes[pipe].sdp) != D_SDP_FIXED) {
1044		printk("DBRI: recv_fixed called on non-fixed pipe %d\n", pipe);
1045		return;
1046	}
1047
1048	if (dbri->pipes[pipe].sdp & D_SDP_TO_SER) {
1049		printk("DBRI: recv_fixed called on transmit pipe %d\n", pipe);
1050		return;
1051	}
1052
1053	dbri->pipes[pipe].recv_fixed_ptr = ptr;
1054}
1055
1056/* setup_descs()
1057 *
1058 * Setup transmit/receive data on a "long" pipe - i.e, one associated
1059 * with a DMA buffer.
1060 *
1061 * Only pipe numbers 0-15 can be used in this mode.
1062 *
1063 * This function takes a stream number pointing to a data buffer,
1064 * and work by building chains of descriptors which identify the
1065 * data buffers.  Buffers too large for a single descriptor will
1066 * be spread across multiple descriptors.
1067 */
1068static int setup_descs(snd_dbri_t * dbri, int streamno, unsigned int period)
1069{
1070	dbri_streaminfo_t *info = &dbri->stream_info[streamno];
1071	__u32 dvma_buffer;
1072	int desc = 0;
1073	int len;
1074	int first_desc = -1;
1075	int last_desc = -1;
1076
1077	if (info->pipe < 0 || info->pipe > 15) {
1078		printk("DBRI: setup_descs: Illegal pipe number\n");
1079		return -2;
1080	}
1081
1082	if (dbri->pipes[info->pipe].sdp == 0) {
1083		printk("DBRI: setup_descs: Uninitialized pipe %d\n",
1084		       info->pipe);
1085		return -2;
1086	}
1087
1088	dvma_buffer = info->dvma_buffer;
1089	len = info->size;
1090
1091	if (streamno == DBRI_PLAY) {
1092		if (!(dbri->pipes[info->pipe].sdp & D_SDP_TO_SER)) {
1093			printk("DBRI: setup_descs: Called on receive pipe %d\n",
1094			       info->pipe);
1095			return -2;
1096		}
1097	} else {
1098		if (dbri->pipes[info->pipe].sdp & D_SDP_TO_SER) {
1099			printk
1100			    ("DBRI: setup_descs: Called on transmit pipe %d\n",
1101			     info->pipe);
1102			return -2;
1103		}
1104		/* Should be able to queue multiple buffers to receive on a pipe */
1105		if (pipe_active(dbri, info->pipe)) {
1106			printk("DBRI: recv_on_pipe: Called on active pipe %d\n",
1107			       info->pipe);
1108			return -2;
1109		}
1110
1111		/* Make sure buffer size is multiple of four */
1112		len &= ~3;
1113	}
1114
1115	while (len > 0) {
1116		int mylen;
1117
1118		for (; desc < DBRI_NO_DESCS; desc++) {
1119			if (!dbri->descs[desc].inuse)
1120				break;
1121		}
1122		if (desc == DBRI_NO_DESCS) {
1123			printk("DBRI: setup_descs: No descriptors\n");
1124			return -1;
1125		}
1126
1127		if (len > DBRI_TD_MAXCNT) {
1128			mylen = DBRI_TD_MAXCNT;	/* 8KB - 1 */
1129		} else {
1130			mylen = len;
1131		}
1132		if (mylen > period) {
1133			mylen = period;
1134		}
1135
1136		dbri->descs[desc].inuse = 1;
1137		dbri->descs[desc].next = -1;
1138		dbri->dma->desc[desc].ba = dvma_buffer;
1139		dbri->dma->desc[desc].nda = 0;
1140
1141		if (streamno == DBRI_PLAY) {
1142			dbri->descs[desc].len = mylen;
1143			dbri->dma->desc[desc].word1 = DBRI_TD_CNT(mylen);
1144			dbri->dma->desc[desc].word4 = 0;
1145			if (first_desc != -1)
1146				dbri->dma->desc[desc].word1 |= DBRI_TD_M;
1147		} else {
1148			dbri->descs[desc].len = 0;
1149			dbri->dma->desc[desc].word1 = 0;
1150			dbri->dma->desc[desc].word4 =
1151			    DBRI_RD_B | DBRI_RD_BCNT(mylen);
1152		}
1153
1154		if (first_desc == -1) {
1155			first_desc = desc;
1156		} else {
1157			dbri->descs[last_desc].next = desc;
1158			dbri->dma->desc[last_desc].nda =
1159			    dbri->dma_dvma + dbri_dma_off(desc, desc);
1160		}
1161
1162		last_desc = desc;
1163		dvma_buffer += mylen;
1164		len -= mylen;
1165	}
1166
1167	if (first_desc == -1 || last_desc == -1) {
1168		printk("DBRI: setup_descs: Not enough descriptors available\n");
1169		return -1;
1170	}
1171
1172	dbri->dma->desc[last_desc].word1 &= ~DBRI_TD_M;
1173	if (streamno == DBRI_PLAY) {
1174		dbri->dma->desc[last_desc].word1 |=
1175		    DBRI_TD_I | DBRI_TD_F | DBRI_TD_B;
1176	}
1177	dbri->pipes[info->pipe].first_desc = first_desc;
1178	dbri->pipes[info->pipe].desc = first_desc;
1179
1180	for (desc = first_desc; desc != -1; desc = dbri->descs[desc].next) {
1181		dprintk(D_DESC, "DESC %d: %08x %08x %08x %08x\n",
1182			desc,
1183			dbri->dma->desc[desc].word1,
1184			dbri->dma->desc[desc].ba,
1185			dbri->dma->desc[desc].nda, dbri->dma->desc[desc].word4);
1186	}
1187	return 0;
1188}
1189
1190/*
1191****************************************************************************
1192************************** DBRI - CHI interface ****************************
1193****************************************************************************
1194
1195The CHI is a four-wire (clock, frame sync, data in, data out) time-division
1196multiplexed serial interface which the DBRI can operate in either master
1197(give clock/frame sync) or slave (take clock/frame sync) mode.
1198
1199*/
1200
1201enum master_or_slave { CHImaster, CHIslave };
1202
1203static void reset_chi(snd_dbri_t * dbri, enum master_or_slave master_or_slave,
1204		      int bits_per_frame)
1205{
1206	volatile s32 *cmd;
1207	int val;
1208	static int chi_initialized = 0;	/* FIXME: mutex? */
1209
1210	if (!chi_initialized) {
1211
1212		cmd = dbri_cmdlock(dbri, GetLock);
1213
1214		/* Set CHI Anchor: Pipe 16 */
1215
1216		val = D_DTS_VI | D_DTS_INS | D_DTS_PRVIN(16) | D_PIPE(16);
1217		*(cmd++) = DBRI_CMD(D_DTS, 0, val);
1218		*(cmd++) = D_TS_ANCHOR | D_TS_NEXT(16);
1219		*(cmd++) = 0;
1220
1221		val = D_DTS_VO | D_DTS_INS | D_DTS_PRVOUT(16) | D_PIPE(16);
1222		*(cmd++) = DBRI_CMD(D_DTS, 0, val);
1223		*(cmd++) = 0;
1224		*(cmd++) = D_TS_ANCHOR | D_TS_NEXT(16);
1225
1226		dbri->pipes[16].sdp = 1;
1227		dbri->pipes[16].nextpipe = 16;
1228		dbri->chi_in_pipe = 16;
1229		dbri->chi_out_pipe = 16;
1230
1231#if 0
1232		chi_initialized++;
1233#endif
1234	} else {
1235		int pipe;
1236
1237		for (pipe = dbri->chi_in_pipe;
1238		     pipe != 16; pipe = dbri->pipes[pipe].nextpipe) {
1239			unlink_time_slot(dbri, pipe, PIPEinput,
1240					 16, dbri->pipes[pipe].nextpipe);
1241		}
1242		for (pipe = dbri->chi_out_pipe;
1243		     pipe != 16; pipe = dbri->pipes[pipe].nextpipe) {
1244			unlink_time_slot(dbri, pipe, PIPEoutput,
1245					 16, dbri->pipes[pipe].nextpipe);
1246		}
1247
1248		dbri->chi_in_pipe = 16;
1249		dbri->chi_out_pipe = 16;
1250
1251		cmd = dbri_cmdlock(dbri, GetLock);
1252	}
1253
1254	if (master_or_slave == CHIslave) {
1255		/* Setup DBRI for CHI Slave - receive clock, frame sync (FS)
1256		 *
1257		 * CHICM  = 0 (slave mode, 8 kHz frame rate)
1258		 * IR     = give immediate CHI status interrupt
1259		 * EN     = give CHI status interrupt upon change
1260		 */
1261		*(cmd++) = DBRI_CMD(D_CHI, 0, D_CHI_CHICM(0));
1262	} else {
1263		/* Setup DBRI for CHI Master - generate clock, FS
1264		 *
1265		 * BPF                          =  bits per 8 kHz frame
1266		 * 12.288 MHz / CHICM_divisor   = clock rate
1267		 * FD  =  1 - drive CHIFS on rising edge of CHICK
1268		 */
1269		int clockrate = bits_per_frame * 8;
1270		int divisor = 12288 / clockrate;
1271
1272		if (divisor > 255 || divisor * clockrate != 12288)
1273			printk("DBRI: illegal bits_per_frame in setup_chi\n");
1274
1275		*(cmd++) = DBRI_CMD(D_CHI, 0, D_CHI_CHICM(divisor) | D_CHI_FD
1276				    | D_CHI_BPF(bits_per_frame));
1277	}
1278
1279	dbri->chi_bpf = bits_per_frame;
1280
1281	/* CHI Data Mode
1282	 *
1283	 * RCE   =  0 - receive on falling edge of CHICK
1284	 * XCE   =  1 - transmit on rising edge of CHICK
1285	 * XEN   =  1 - enable transmitter
1286	 * REN   =  1 - enable receiver
1287	 */
1288
1289	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1290	*(cmd++) = DBRI_CMD(D_CDM, 0, D_CDM_XCE | D_CDM_XEN | D_CDM_REN);
1291
1292	dbri_cmdsend(dbri, cmd);
1293}
1294
1295/*
1296****************************************************************************
1297*********************** CS4215 audio codec management **********************
1298****************************************************************************
1299
1300In the standard SPARC audio configuration, the CS4215 codec is attached
1301to the DBRI via the CHI interface and few of the DBRI's PIO pins.
1302
1303*/
1304static void cs4215_setup_pipes(snd_dbri_t * dbri)
1305{
1306	/*
1307	 * Data mode:
1308	 * Pipe  4: Send timeslots 1-4 (audio data)
1309	 * Pipe 20: Send timeslots 5-8 (part of ctrl data)
1310	 * Pipe  6: Receive timeslots 1-4 (audio data)
1311	 * Pipe 21: Receive timeslots 6-7. We can only receive 20 bits via
1312	 *          interrupt, and the rest of the data (slot 5 and 8) is
1313	 *          not relevant for us (only for doublechecking).
1314	 *
1315	 * Control mode:
1316	 * Pipe 17: Send timeslots 1-4 (slots 5-8 are readonly)
1317	 * Pipe 18: Receive timeslot 1 (clb).
1318	 * Pipe 19: Receive timeslot 7 (version).
1319	 */
1320
1321	setup_pipe(dbri, 4, D_SDP_MEM | D_SDP_TO_SER | D_SDP_MSB);
1322	setup_pipe(dbri, 20, D_SDP_FIXED | D_SDP_TO_SER | D_SDP_MSB);
1323	setup_pipe(dbri, 6, D_SDP_MEM | D_SDP_FROM_SER | D_SDP_MSB);
1324	setup_pipe(dbri, 21, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1325
1326	setup_pipe(dbri, 17, D_SDP_FIXED | D_SDP_TO_SER | D_SDP_MSB);
1327	setup_pipe(dbri, 18, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1328	setup_pipe(dbri, 19, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1329}
1330
1331static int cs4215_init_data(struct cs4215 *mm)
1332{
1333	/*
1334	 * No action, memory resetting only.
1335	 *
1336	 * Data Time Slot 5-8
1337	 * Speaker,Line and Headphone enable. Gain set to the half.
1338	 * Input is mike.
1339	 */
1340	mm->data[0] = CS4215_LO(0x20) | CS4215_HE | CS4215_LE;
1341	mm->data[1] = CS4215_RO(0x20) | CS4215_SE;
1342	mm->data[2] = CS4215_LG(0x8) | CS4215_IS | CS4215_PIO0 | CS4215_PIO1;
1343	mm->data[3] = CS4215_RG(0x8) | CS4215_MA(0xf);
1344
1345	/*
1346	 * Control Time Slot 1-4
1347	 * 0: Default I/O voltage scale
1348	 * 1: 8 bit ulaw, 8kHz, mono, high pass filter disabled
1349	 * 2: Serial enable, CHI master, 128 bits per frame, clock 1
1350	 * 3: Tests disabled
1351	 */
1352	mm->ctrl[0] = CS4215_RSRVD_1 | CS4215_MLB;
1353	mm->ctrl[1] = CS4215_DFR_ULAW | CS4215_FREQ[0].csval;
1354	mm->ctrl[2] = CS4215_XCLK | CS4215_BSEL_128 | CS4215_FREQ[0].xtal;
1355	mm->ctrl[3] = 0;
1356
1357	mm->status = 0;
1358	mm->version = 0xff;
1359	mm->precision = 8;	/* For ULAW */
1360	mm->channels = 2;
1361
1362	return 0;
1363}
1364
1365static void cs4215_setdata(snd_dbri_t * dbri, int muted)
1366{
1367	if (muted) {
1368		dbri->mm.data[0] |= 63;
1369		dbri->mm.data[1] |= 63;
1370		dbri->mm.data[2] &= ~15;
1371		dbri->mm.data[3] &= ~15;
1372	} else {
1373		/* Start by setting the playback attenuation. */
1374		dbri_streaminfo_t *info = &dbri->stream_info[DBRI_PLAY];
1375		int left_gain = info->left_gain % 64;
1376		int right_gain = info->right_gain % 64;
1377
1378		if (info->balance < DBRI_MID_BALANCE) {
1379			right_gain *= info->balance;
1380			right_gain /= DBRI_MID_BALANCE;
1381		} else {
1382			left_gain *= DBRI_RIGHT_BALANCE - info->balance;
1383			left_gain /= DBRI_MID_BALANCE;
1384		}
1385
1386		dbri->mm.data[0] &= ~0x3f;	/* Reset the volume bits */
1387		dbri->mm.data[1] &= ~0x3f;
1388		dbri->mm.data[0] |= (DBRI_MAX_VOLUME - left_gain);
1389		dbri->mm.data[1] |= (DBRI_MAX_VOLUME - right_gain);
1390
1391		/* Now set the recording gain. */
1392		info = &dbri->stream_info[DBRI_REC];
1393		left_gain = info->left_gain % 16;
1394		right_gain = info->right_gain % 16;
1395		dbri->mm.data[2] |= CS4215_LG(left_gain);
1396		dbri->mm.data[3] |= CS4215_RG(right_gain);
1397	}
1398
1399	xmit_fixed(dbri, 20, *(int *)dbri->mm.data);
1400}
1401
1402/*
1403 * Set the CS4215 to data mode.
1404 */
1405static void cs4215_open(snd_dbri_t * dbri)
1406{
1407	int data_width;
1408	u32 tmp;
1409
1410	dprintk(D_MM, "cs4215_open: %d channels, %d bits\n",
1411		dbri->mm.channels, dbri->mm.precision);
1412
1413	/* Temporarily mute outputs, and wait 1/8000 sec (125 us)
1414	 * to make sure this takes.  This avoids clicking noises.
1415	 */
1416
1417	cs4215_setdata(dbri, 1);
1418	udelay(125);
1419
1420	/*
1421	 * Data mode:
1422	 * Pipe  4: Send timeslots 1-4 (audio data)
1423	 * Pipe 20: Send timeslots 5-8 (part of ctrl data)
1424	 * Pipe  6: Receive timeslots 1-4 (audio data)
1425	 * Pipe 21: Receive timeslots 6-7. We can only receive 20 bits via
1426	 *          interrupt, and the rest of the data (slot 5 and 8) is
1427	 *          not relevant for us (only for doublechecking).
1428	 *
1429	 * Just like in control mode, the time slots are all offset by eight
1430	 * bits.  The CS4215, it seems, observes TSIN (the delayed signal)
1431	 * even if it's the CHI master.  Don't ask me...
1432	 */
1433	tmp = sbus_readl(dbri->regs + REG0);
1434	tmp &= ~(D_C);		/* Disable CHI */
1435	sbus_writel(tmp, dbri->regs + REG0);
1436
1437	/* Switch CS4215 to data mode - set PIO3 to 1 */
1438	sbus_writel(D_ENPIO | D_PIO1 | D_PIO3 |
1439		    (dbri->mm.onboard ? D_PIO0 : D_PIO2), dbri->regs + REG2);
1440
1441	reset_chi(dbri, CHIslave, 128);
1442
1443	/* Note: this next doesn't work for 8-bit stereo, because the two
1444	 * channels would be on timeslots 1 and 3, with 2 and 4 idle.
1445	 * (See CS4215 datasheet Fig 15)
1446	 *
1447	 * DBRI non-contiguous mode would be required to make this work.
1448	 */
1449	data_width = dbri->mm.channels * dbri->mm.precision;
1450
1451	link_time_slot(dbri, 20, PIPEoutput, 16, 32, dbri->mm.offset + 32);
1452	link_time_slot(dbri, 4, PIPEoutput, 16, data_width, dbri->mm.offset);
1453	link_time_slot(dbri, 6, PIPEinput, 16, data_width, dbri->mm.offset);
1454	link_time_slot(dbri, 21, PIPEinput, 16, 16, dbri->mm.offset + 40);
1455
1456	/* FIXME: enable CHI after _setdata? */
1457	tmp = sbus_readl(dbri->regs + REG0);
1458	tmp |= D_C;		/* Enable CHI */
1459	sbus_writel(tmp, dbri->regs + REG0);
1460
1461	cs4215_setdata(dbri, 0);
1462}
1463
1464/*
1465 * Send the control information (i.e. audio format)
1466 */
1467static int cs4215_setctrl(snd_dbri_t * dbri)
1468{
1469	int i, val;
1470	u32 tmp;
1471
1472	/* FIXME - let the CPU do something useful during these delays */
1473
1474	/* Temporarily mute outputs, and wait 1/8000 sec (125 us)
1475	 * to make sure this takes.  This avoids clicking noises.
1476	 */
1477
1478	cs4215_setdata(dbri, 1);
1479	udelay(125);
1480
1481	/*
1482	 * Enable Control mode: Set DBRI's PIO3 (4215's D/~C) to 0, then wait
1483	 * 12 cycles <= 12/(5512.5*64) sec = 34.01 usec
1484	 */
1485	val = D_ENPIO | D_PIO1 | (dbri->mm.onboard ? D_PIO0 : D_PIO2);
1486	sbus_writel(val, dbri->regs + REG2);
1487	dprintk(D_MM, "cs4215_setctrl: reg2=0x%x\n", val);
1488	udelay(34);
1489
1490	/* In Control mode, the CS4215 is a slave device, so the DBRI must
1491	 * operate as CHI master, supplying clocking and frame synchronization.
1492	 *
1493	 * In Data mode, however, the CS4215 must be CHI master to insure
1494	 * that its data stream is synchronous with its codec.
1495	 *
1496	 * The upshot of all this?  We start by putting the DBRI into master
1497	 * mode, program the CS4215 in Control mode, then switch the CS4215
1498	 * into Data mode and put the DBRI into slave mode.  Various timing
1499	 * requirements must be observed along the way.
1500	 *
1501	 * Oh, and one more thing, on a SPARCStation 20 (and maybe
1502	 * others?), the addressing of the CS4215's time slots is
1503	 * offset by eight bits, so we add eight to all the "cycle"
1504	 * values in the Define Time Slot (DTS) commands.  This is
1505	 * done in hardware by a TI 248 that delays the DBRI->4215
1506	 * frame sync signal by eight clock cycles.  Anybody know why?
1507	 */
1508	tmp = sbus_readl(dbri->regs + REG0);
1509	tmp &= ~D_C;		/* Disable CHI */
1510	sbus_writel(tmp, dbri->regs + REG0);
1511
1512	reset_chi(dbri, CHImaster, 128);
1513
1514	/*
1515	 * Control mode:
1516	 * Pipe 17: Send timeslots 1-4 (slots 5-8 are readonly)
1517	 * Pipe 18: Receive timeslot 1 (clb).
1518	 * Pipe 19: Receive timeslot 7 (version).
1519	 */
1520
1521	link_time_slot(dbri, 17, PIPEoutput, 16, 32, dbri->mm.offset);
1522	link_time_slot(dbri, 18, PIPEinput, 16, 8, dbri->mm.offset);
1523	link_time_slot(dbri, 19, PIPEinput, 16, 8, dbri->mm.offset + 48);
1524
1525	/* Wait for the chip to echo back CLB (Control Latch Bit) as zero */
1526	dbri->mm.ctrl[0] &= ~CS4215_CLB;
1527	xmit_fixed(dbri, 17, *(int *)dbri->mm.ctrl);
1528
1529	tmp = sbus_readl(dbri->regs + REG0);
1530	tmp |= D_C;		/* Enable CHI */
1531	sbus_writel(tmp, dbri->regs + REG0);
1532
1533	for (i = 64; ((dbri->mm.status & 0xe4) != 0x20); --i) {
1534		udelay(125);
1535	}
1536	if (i == 0) {
1537		dprintk(D_MM, "CS4215 didn't respond to CLB (0x%02x)\n",
1538			dbri->mm.status);
1539		return -1;
1540	}
1541
1542	/* Disable changes to our copy of the version number, as we are about
1543	 * to leave control mode.
1544	 */
1545	recv_fixed(dbri, 19, NULL);
1546
1547	/* Terminate CS4215 control mode - data sheet says
1548	 * "Set CLB=1 and send two more frames of valid control info"
1549	 */
1550	dbri->mm.ctrl[0] |= CS4215_CLB;
1551	xmit_fixed(dbri, 17, *(int *)dbri->mm.ctrl);
1552
1553	/* Two frames of control info @ 8kHz frame rate = 250 us delay */
1554	udelay(250);
1555
1556	cs4215_setdata(dbri, 0);
1557
1558	return 0;
1559}
1560
1561/*
1562 * Setup the codec with the sampling rate, audio format and number of
1563 * channels.
1564 * As part of the process we resend the settings for the data
1565 * timeslots as well.
1566 */
1567static int cs4215_prepare(snd_dbri_t * dbri, unsigned int rate,
1568			  snd_pcm_format_t format, unsigned int channels)
1569{
1570	int freq_idx;
1571	int ret = 0;
1572
1573	/* Lookup index for this rate */
1574	for (freq_idx = 0; CS4215_FREQ[freq_idx].freq != 0; freq_idx++) {
1575		if (CS4215_FREQ[freq_idx].freq == rate)
1576			break;
1577	}
1578	if (CS4215_FREQ[freq_idx].freq != rate) {
1579		printk(KERN_WARNING "DBRI: Unsupported rate %d Hz\n", rate);
1580		return -1;
1581	}
1582
1583	switch (format) {
1584	case SNDRV_PCM_FORMAT_MU_LAW:
1585		dbri->mm.ctrl[1] = CS4215_DFR_ULAW;
1586		dbri->mm.precision = 8;
1587		break;
1588	case SNDRV_PCM_FORMAT_A_LAW:
1589		dbri->mm.ctrl[1] = CS4215_DFR_ALAW;
1590		dbri->mm.precision = 8;
1591		break;
1592	case SNDRV_PCM_FORMAT_U8:
1593		dbri->mm.ctrl[1] = CS4215_DFR_LINEAR8;
1594		dbri->mm.precision = 8;
1595		break;
1596	case SNDRV_PCM_FORMAT_S16_BE:
1597		dbri->mm.ctrl[1] = CS4215_DFR_LINEAR16;
1598		dbri->mm.precision = 16;
1599		break;
1600	default:
1601		printk(KERN_WARNING "DBRI: Unsupported format %d\n", format);
1602		return -1;
1603	}
1604
1605	/* Add rate parameters */
1606	dbri->mm.ctrl[1] |= CS4215_FREQ[freq_idx].csval;
1607	dbri->mm.ctrl[2] = CS4215_XCLK |
1608	    CS4215_BSEL_128 | CS4215_FREQ[freq_idx].xtal;
1609
1610	dbri->mm.channels = channels;
1611	/* Stereo bit: 8 bit stereo not working yet. */
1612	if ((channels > 1) && (dbri->mm.precision == 16))
1613		dbri->mm.ctrl[1] |= CS4215_DFR_STEREO;
1614
1615	ret = cs4215_setctrl(dbri);
1616	if (ret == 0)
1617		cs4215_open(dbri);	/* set codec to data mode */
1618
1619	return ret;
1620}
1621
1622/*
1623 *
1624 */
1625static int cs4215_init(snd_dbri_t * dbri)
1626{
1627	u32 reg2 = sbus_readl(dbri->regs + REG2);
1628	dprintk(D_MM, "cs4215_init: reg2=0x%x\n", reg2);
1629
1630	/* Look for the cs4215 chips */
1631	if (reg2 & D_PIO2) {
1632		dprintk(D_MM, "Onboard CS4215 detected\n");
1633		dbri->mm.onboard = 1;
1634	}
1635	if (reg2 & D_PIO0) {
1636		dprintk(D_MM, "Speakerbox detected\n");
1637		dbri->mm.onboard = 0;
1638
1639		if (reg2 & D_PIO2) {
1640			printk(KERN_INFO "DBRI: Using speakerbox / "
1641			       "ignoring onboard mmcodec.\n");
1642			sbus_writel(D_ENPIO2, dbri->regs + REG2);
1643		}
1644	}
1645
1646	if (!(reg2 & (D_PIO0 | D_PIO2))) {
1647		printk(KERN_ERR "DBRI: no mmcodec found.\n");
1648		return -EIO;
1649	}
1650
1651	cs4215_setup_pipes(dbri);
1652
1653	cs4215_init_data(&dbri->mm);
1654
1655	/* Enable capture of the status & version timeslots. */
1656	recv_fixed(dbri, 18, &dbri->mm.status);
1657	recv_fixed(dbri, 19, &dbri->mm.version);
1658
1659	dbri->mm.offset = dbri->mm.onboard ? 0 : 8;
1660	if (cs4215_setctrl(dbri) == -1 || dbri->mm.version == 0xff) {
1661		dprintk(D_MM, "CS4215 failed probe at offset %d\n",
1662			dbri->mm.offset);
1663		return -EIO;
1664	}
1665	dprintk(D_MM, "Found CS4215 at offset %d\n", dbri->mm.offset);
1666
1667	return 0;
1668}
1669
1670/*
1671****************************************************************************
1672*************************** DBRI interrupt handler *************************
1673****************************************************************************
1674
1675The DBRI communicates with the CPU mainly via a circular interrupt
1676buffer.  When an interrupt is signaled, the CPU walks through the
1677buffer and calls dbri_process_one_interrupt() for each interrupt word.
1678Complicated interrupts are handled by dedicated functions (which
1679appear first in this file).  Any pending interrupts can be serviced by
1680calling dbri_process_interrupt_buffer(), which works even if the CPU's
1681interrupts are disabled.  This function is used by dbri_cmdsend()
1682to make sure we're synced up with the chip after each command sequence,
1683even if we're running cli'ed.
1684
1685*/
1686
1687/* xmit_descs()
1688 *
1689 * Transmit the current TD's for recording/playing, if needed.
1690 * For playback, ALSA has filled the DMA memory with new data (we hope).
1691 */
1692static void xmit_descs(unsigned long data)
1693{
1694	snd_dbri_t *dbri = (snd_dbri_t *) data;
1695	dbri_streaminfo_t *info;
1696	volatile s32 *cmd;
1697	unsigned long flags;
1698	int first_td;
1699
1700	if (dbri == NULL)
1701		return;		/* Disabled */
1702
1703	/* First check the recording stream for buffer overflow */
1704	info = &dbri->stream_info[DBRI_REC];
1705	spin_lock_irqsave(&dbri->lock, flags);
1706
1707	if ((info->left >= info->size) && (info->pipe >= 0)) {
1708		first_td = dbri->pipes[info->pipe].first_desc;
1709
1710		dprintk(D_DESC, "xmit_descs rec @ TD %d\n", first_td);
1711
1712		/* Stream could be closed by the time we run. */
1713		if (first_td < 0) {
1714			goto play;
1715		}
1716
1717		cmd = dbri_cmdlock(dbri, NoGetLock);
1718		*(cmd++) = DBRI_CMD(D_SDP, 0,
1719				    dbri->pipes[info->pipe].sdp
1720				    | D_SDP_P | D_SDP_EVERY | D_SDP_C);
1721		*(cmd++) = dbri->dma_dvma + dbri_dma_off(desc, first_td);
1722		dbri_cmdsend(dbri, cmd);
1723
1724		/* Reset our admin of the pipe & bytes read. */
1725		dbri->pipes[info->pipe].desc = first_td;
1726		info->left = 0;
1727	}
1728
1729play:
1730	spin_unlock_irqrestore(&dbri->lock, flags);
1731
1732	/* Now check the playback stream for buffer underflow */
1733	info = &dbri->stream_info[DBRI_PLAY];
1734	spin_lock_irqsave(&dbri->lock, flags);
1735
1736	if ((info->left <= 0) && (info->pipe >= 0)) {
1737		first_td = dbri->pipes[info->pipe].first_desc;
1738
1739		dprintk(D_DESC, "xmit_descs play @ TD %d\n", first_td);
1740
1741		/* Stream could be closed by the time we run. */
1742		if (first_td < 0) {
1743			spin_unlock_irqrestore(&dbri->lock, flags);
1744			return;
1745		}
1746
1747		cmd = dbri_cmdlock(dbri, NoGetLock);
1748		*(cmd++) = DBRI_CMD(D_SDP, 0,
1749				    dbri->pipes[info->pipe].sdp
1750				    | D_SDP_P | D_SDP_EVERY | D_SDP_C);
1751		*(cmd++) = dbri->dma_dvma + dbri_dma_off(desc, first_td);
1752		dbri_cmdsend(dbri, cmd);
1753
1754		/* Reset our admin of the pipe & bytes written. */
1755		dbri->pipes[info->pipe].desc = first_td;
1756		info->left = info->size;
1757	}
1758	spin_unlock_irqrestore(&dbri->lock, flags);
1759}
1760
1761DECLARE_TASKLET(xmit_descs_task, xmit_descs, 0);
1762
1763/* transmission_complete_intr()
1764 *
1765 * Called by main interrupt handler when DBRI signals transmission complete
1766 * on a pipe (interrupt triggered by the B bit in a transmit descriptor).
1767 *
1768 * Walks through the pipe's list of transmit buffer descriptors, releasing
1769 * each one's DMA buffer (if present), flagging the descriptor available,
1770 * and signaling its callback routine (if present), before proceeding
1771 * to the next one.  Stops when the first descriptor is found without
1772 * TBC (Transmit Buffer Complete) set, or we've run through them all.
1773 */
1774
1775static void transmission_complete_intr(snd_dbri_t * dbri, int pipe)
1776{
1777	dbri_streaminfo_t *info;
1778	int td;
1779	int status;
1780
1781	info = &dbri->stream_info[DBRI_PLAY];
1782
1783	td = dbri->pipes[pipe].desc;
1784	while (td >= 0) {
1785		if (td >= DBRI_NO_DESCS) {
1786			printk(KERN_ERR "DBRI: invalid td on pipe %d\n", pipe);
1787			return;
1788		}
1789
1790		status = DBRI_TD_STATUS(dbri->dma->desc[td].word4);
1791		if (!(status & DBRI_TD_TBC)) {
1792			break;
1793		}
1794
1795		dprintk(D_INT, "TD %d, status 0x%02x\n", td, status);
1796
1797		dbri->dma->desc[td].word4 = 0;	/* Reset it for next time. */
1798		info->offset += dbri->descs[td].len;
1799		info->left -= dbri->descs[td].len;
1800
1801		/* On the last TD, transmit them all again. */
1802		if (dbri->descs[td].next == -1) {
1803			if (info->left > 0) {
1804				printk(KERN_WARNING
1805				       "%d bytes left after last transfer.\n",
1806				       info->left);
1807				info->left = 0;
1808			}
1809			tasklet_schedule(&xmit_descs_task);
1810		}
1811
1812		td = dbri->descs[td].next;
1813		dbri->pipes[pipe].desc = td;
1814	}
1815
1816	/* Notify ALSA */
1817	if (spin_is_locked(&dbri->lock)) {
1818		spin_unlock(&dbri->lock);
1819		snd_pcm_period_elapsed(info->substream);
1820		spin_lock(&dbri->lock);
1821	} else
1822		snd_pcm_period_elapsed(info->substream);
1823}
1824
1825static void reception_complete_intr(snd_dbri_t * dbri, int pipe)
1826{
1827	dbri_streaminfo_t *info;
1828	int rd = dbri->pipes[pipe].desc;
1829	s32 status;
1830
1831	if (rd < 0 || rd >= DBRI_NO_DESCS) {
1832		printk(KERN_ERR "DBRI: invalid rd on pipe %d\n", pipe);
1833		return;
1834	}
1835
1836	dbri->descs[rd].inuse = 0;
1837	dbri->pipes[pipe].desc = dbri->descs[rd].next;
1838	status = dbri->dma->desc[rd].word1;
1839	dbri->dma->desc[rd].word1 = 0;	/* Reset it for next time. */
1840
1841	info = &dbri->stream_info[DBRI_REC];
1842	info->offset += DBRI_RD_CNT(status);
1843	info->left += DBRI_RD_CNT(status);
1844
1845	/* FIXME: Check status */
1846
1847	dprintk(D_INT, "Recv RD %d, status 0x%02x, len %d\n",
1848		rd, DBRI_RD_STATUS(status), DBRI_RD_CNT(status));
1849
1850	/* On the last TD, transmit them all again. */
1851	if (dbri->descs[rd].next == -1) {
1852		if (info->left > info->size) {
1853			printk(KERN_WARNING
1854			       "%d bytes recorded in %d size buffer.\n",
1855			       info->left, info->size);
1856		}
1857		tasklet_schedule(&xmit_descs_task);
1858	}
1859
1860	/* Notify ALSA */
1861	if (spin_is_locked(&dbri->lock)) {
1862		spin_unlock(&dbri->lock);
1863		snd_pcm_period_elapsed(info->substream);
1864		spin_lock(&dbri->lock);
1865	} else
1866		snd_pcm_period_elapsed(info->substream);
1867}
1868
1869static void dbri_process_one_interrupt(snd_dbri_t * dbri, int x)
1870{
1871	int val = D_INTR_GETVAL(x);
1872	int channel = D_INTR_GETCHAN(x);
1873	int command = D_INTR_GETCMD(x);
1874	int code = D_INTR_GETCODE(x);
1875#ifdef DBRI_DEBUG
1876	int rval = D_INTR_GETRVAL(x);
1877#endif
1878
1879	if (channel == D_INTR_CMD) {
1880		dprintk(D_CMD, "INTR: Command: %-5s  Value:%d\n",
1881			cmds[command], val);
1882	} else {
1883		dprintk(D_INT, "INTR: Chan:%d Code:%d Val:%#x\n",
1884			channel, code, rval);
1885	}
1886
1887	if (channel == D_INTR_CMD && command == D_WAIT) {
1888		dbri->wait_seen++;
1889		return;
1890	}
1891
1892	switch (code) {
1893	case D_INTR_BRDY:
1894		reception_complete_intr(dbri, channel);
1895		break;
1896	case D_INTR_XCMP:
1897	case D_INTR_MINT:
1898		transmission_complete_intr(dbri, channel);
1899		break;
1900	case D_INTR_UNDR:
1901		/* UNDR - Transmission underrun
1902		 * resend SDP command with clear pipe bit (C) set
1903		 */
1904		{
1905			volatile s32 *cmd;
1906
1907			int pipe = channel;
1908			int td = dbri->pipes[pipe].desc;
1909
1910			dbri->dma->desc[td].word4 = 0;
1911			cmd = dbri_cmdlock(dbri, NoGetLock);
1912			*(cmd++) = DBRI_CMD(D_SDP, 0,
1913					    dbri->pipes[pipe].sdp
1914					    | D_SDP_P | D_SDP_C | D_SDP_2SAME);
1915			*(cmd++) = dbri->dma_dvma + dbri_dma_off(desc, td);
1916			dbri_cmdsend(dbri, cmd);
1917		}
1918		break;
1919	case D_INTR_FXDT:
1920		/* FXDT - Fixed data change */
1921		if (dbri->pipes[channel].sdp & D_SDP_MSB)
1922			val = reverse_bytes(val, dbri->pipes[channel].length);
1923
1924		if (dbri->pipes[channel].recv_fixed_ptr)
1925			*(dbri->pipes[channel].recv_fixed_ptr) = val;
1926		break;
1927	default:
1928		if (channel != D_INTR_CMD)
1929			printk(KERN_WARNING
1930			       "DBRI: Ignored Interrupt: %d (0x%x)\n", code, x);
1931	}
1932}
1933
1934/* dbri_process_interrupt_buffer advances through the DBRI's interrupt
1935 * buffer until it finds a zero word (indicating nothing more to do
1936 * right now).  Non-zero words require processing and are handed off
1937 * to dbri_process_one_interrupt AFTER advancing the pointer.  This
1938 * order is important since we might recurse back into this function
1939 * and need to make sure the pointer has been advanced first.
1940 */
1941static void dbri_process_interrupt_buffer(snd_dbri_t * dbri)
1942{
1943	s32 x;
1944
1945	while ((x = dbri->dma->intr[dbri->dbri_irqp]) != 0) {
1946		dbri->dma->intr[dbri->dbri_irqp] = 0;
1947		dbri->dbri_irqp++;
1948		if (dbri->dbri_irqp == (DBRI_NO_INTS * DBRI_INT_BLK))
1949			dbri->dbri_irqp = 1;
1950		else if ((dbri->dbri_irqp & (DBRI_INT_BLK - 1)) == 0)
1951			dbri->dbri_irqp++;
1952
1953		dbri_process_one_interrupt(dbri, x);
1954	}
1955}
1956
1957static irqreturn_t snd_dbri_interrupt(int irq, void *dev_id,
1958				      struct pt_regs *regs)
1959{
1960	snd_dbri_t *dbri = dev_id;
1961	static int errcnt = 0;
1962	int x;
1963
1964	if (dbri == NULL)
1965		return IRQ_NONE;
1966	spin_lock(&dbri->lock);
1967
1968	/*
1969	 * Read it, so the interrupt goes away.
1970	 */
1971	x = sbus_readl(dbri->regs + REG1);
1972
1973	if (x & (D_MRR | D_MLE | D_LBG | D_MBE)) {
1974		u32 tmp;
1975
1976		if (x & D_MRR)
1977			printk(KERN_ERR
1978			       "DBRI: Multiple Error Ack on SBus reg1=0x%x\n",
1979			       x);
1980		if (x & D_MLE)
1981			printk(KERN_ERR
1982			       "DBRI: Multiple Late Error on SBus reg1=0x%x\n",
1983			       x);
1984		if (x & D_LBG)
1985			printk(KERN_ERR
1986			       "DBRI: Lost Bus Grant on SBus reg1=0x%x\n", x);
1987		if (x & D_MBE)
1988			printk(KERN_ERR
1989			       "DBRI: Burst Error on SBus reg1=0x%x\n", x);
1990
1991		/* Some of these SBus errors cause the chip's SBus circuitry
1992		 * to be disabled, so just re-enable and try to keep going.
1993		 *
1994		 * The only one I've seen is MRR, which will be triggered
1995		 * if you let a transmit pipe underrun, then try to CDP it.
1996		 *
1997		 * If these things persist, we should probably reset
1998		 * and re-init the chip.
1999		 */
2000		if ((++errcnt) % 10 == 0) {
2001			dprintk(D_INT, "Interrupt errors exceeded.\n");
2002			dbri_reset(dbri);
2003		} else {
2004			tmp = sbus_readl(dbri->regs + REG0);
2005			tmp &= ~(D_D);
2006			sbus_writel(tmp, dbri->regs + REG0);
2007		}
2008	}
2009
2010	dbri_process_interrupt_buffer(dbri);
2011
2012	/* FIXME: Write 0 into regs to ACK interrupt */
2013
2014	spin_unlock(&dbri->lock);
2015
2016	return IRQ_HANDLED;
2017}
2018
2019/****************************************************************************
2020		PCM Interface
2021****************************************************************************/
2022static snd_pcm_hardware_t snd_dbri_pcm_hw = {
2023	.info			= (SNDRV_PCM_INFO_MMAP |
2024				   SNDRV_PCM_INFO_INTERLEAVED |
2025				   SNDRV_PCM_INFO_BLOCK_TRANSFER |
2026				   SNDRV_PCM_INFO_MMAP_VALID),
2027	.formats		= SNDRV_PCM_FMTBIT_MU_LAW |
2028				  SNDRV_PCM_FMTBIT_A_LAW |
2029				  SNDRV_PCM_FMTBIT_U8 |
2030				  SNDRV_PCM_FMTBIT_S16_BE,
2031	.rates			= SNDRV_PCM_RATE_8000_48000,
2032	.rate_min		= 8000,
2033	.rate_max		= 48000,
2034	.channels_min		= 1,
2035	.channels_max		= 2,
2036	.buffer_bytes_max	= (64 * 1024),
2037	.period_bytes_min	= 1,
2038	.period_bytes_max	= DBRI_TD_MAXCNT,
2039	.periods_min		= 1,
2040	.periods_max		= 1024,
2041};
2042
2043static int snd_dbri_open(snd_pcm_substream_t * substream)
2044{
2045	snd_dbri_t *dbri = snd_pcm_substream_chip(substream);
2046	snd_pcm_runtime_t *runtime = substream->runtime;
2047	dbri_streaminfo_t *info = DBRI_STREAM(dbri, substream);
2048	unsigned long flags;
2049
2050	dprintk(D_USR, "open audio output.\n");
2051	runtime->hw = snd_dbri_pcm_hw;
2052
2053	spin_lock_irqsave(&dbri->lock, flags);
2054	info->substream = substream;
2055	info->left = 0;
2056	info->offset = 0;
2057	info->dvma_buffer = 0;
2058	info->pipe = -1;
2059	spin_unlock_irqrestore(&dbri->lock, flags);
2060
2061	cs4215_open(dbri);
2062
2063	return 0;
2064}
2065
2066static int snd_dbri_close(snd_pcm_substream_t * substream)
2067{
2068	snd_dbri_t *dbri = snd_pcm_substream_chip(substream);
2069	dbri_streaminfo_t *info = DBRI_STREAM(dbri, substream);
2070
2071	dprintk(D_USR, "close audio output.\n");
2072	info->substream = NULL;
2073	info->left = 0;
2074	info->offset = 0;
2075
2076	return 0;
2077}
2078
2079static int snd_dbri_hw_params(snd_pcm_substream_t * substream,
2080			      snd_pcm_hw_params_t * hw_params)
2081{
2082	snd_pcm_runtime_t *runtime = substream->runtime;
2083	snd_dbri_t *dbri = snd_pcm_substream_chip(substream);
2084	dbri_streaminfo_t *info = DBRI_STREAM(dbri, substream);
2085	int direction;
2086	int ret;
2087
2088	/* set sampling rate, audio format and number of channels */
2089	ret = cs4215_prepare(dbri, params_rate(hw_params),
2090			     params_format(hw_params),
2091			     params_channels(hw_params));
2092	if (ret != 0)
2093		return ret;
2094
2095	if ((ret = snd_pcm_lib_malloc_pages(substream,
2096				params_buffer_bytes(hw_params))) < 0) {
2097		snd_printk(KERN_ERR "malloc_pages failed with %d\n", ret);
2098		return ret;
2099	}
2100
2101	/* hw_params can get called multiple times. Only map the DMA once.
2102	 */
2103	if (info->dvma_buffer == 0) {
2104		if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2105			direction = SBUS_DMA_TODEVICE;
2106		else
2107			direction = SBUS_DMA_FROMDEVICE;
2108
2109		info->dvma_buffer = sbus_map_single(dbri->sdev,
2110					runtime->dma_area,
2111					params_buffer_bytes(hw_params),
2112					direction);
2113	}
2114
2115	direction = params_buffer_bytes(hw_params);
2116	dprintk(D_USR, "hw_params: %d bytes, dvma=%x\n",
2117		direction, info->dvma_buffer);
2118	return 0;
2119}
2120
2121static int snd_dbri_hw_free(snd_pcm_substream_t * substream)
2122{
2123	snd_dbri_t *dbri = snd_pcm_substream_chip(substream);
2124	dbri_streaminfo_t *info = DBRI_STREAM(dbri, substream);
2125	int direction;
2126	dprintk(D_USR, "hw_free.\n");
2127
2128	/* hw_free can get called multiple times. Only unmap the DMA once.
2129	 */
2130	if (info->dvma_buffer) {
2131		if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2132			direction = SBUS_DMA_TODEVICE;
2133		else
2134			direction = SBUS_DMA_FROMDEVICE;
2135
2136		sbus_unmap_single(dbri->sdev, info->dvma_buffer,
2137				  substream->runtime->buffer_size, direction);
2138		info->dvma_buffer = 0;
2139	}
2140	info->pipe = -1;
2141
2142	return snd_pcm_lib_free_pages(substream);
2143}
2144
2145static int snd_dbri_prepare(snd_pcm_substream_t * substream)
2146{
2147	snd_dbri_t *dbri = snd_pcm_substream_chip(substream);
2148	dbri_streaminfo_t *info = DBRI_STREAM(dbri, substream);
2149	snd_pcm_runtime_t *runtime = substream->runtime;
2150	int ret;
2151
2152	info->size = snd_pcm_lib_buffer_bytes(substream);
2153	if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2154		info->pipe = 4;	/* Send pipe */
2155	else {
2156		info->pipe = 6;	/* Receive pipe */
2157		info->left = info->size;	/* To trigger submittal */
2158	}
2159
2160	spin_lock_irq(&dbri->lock);
2161
2162	/* Setup the all the transmit/receive desciptors to cover the
2163	 * whole DMA buffer.
2164	 */
2165	ret = setup_descs(dbri, DBRI_STREAMNO(substream),
2166			  snd_pcm_lib_period_bytes(substream));
2167
2168	runtime->stop_threshold = DBRI_TD_MAXCNT / runtime->channels;
2169
2170	spin_unlock_irq(&dbri->lock);
2171
2172	dprintk(D_USR, "prepare audio output. %d bytes\n", info->size);
2173	return ret;
2174}
2175
2176static int snd_dbri_trigger(snd_pcm_substream_t * substream, int cmd)
2177{
2178	snd_dbri_t *dbri = snd_pcm_substream_chip(substream);
2179	dbri_streaminfo_t *info = DBRI_STREAM(dbri, substream);
2180	int ret = 0;
2181
2182	switch (cmd) {
2183	case SNDRV_PCM_TRIGGER_START:
2184		dprintk(D_USR, "start audio, period is %d bytes\n",
2185			(int)snd_pcm_lib_period_bytes(substream));
2186		/* Enable & schedule the tasklet that re-submits the TDs. */
2187		xmit_descs_task.data = (unsigned long)dbri;
2188		tasklet_schedule(&xmit_descs_task);
2189		break;
2190	case SNDRV_PCM_TRIGGER_STOP:
2191		dprintk(D_USR, "stop audio.\n");
2192		/* Make the tasklet bail out immediately. */
2193		xmit_descs_task.data = 0;
2194		reset_pipe(dbri, info->pipe);
2195		break;
2196	default:
2197		ret = -EINVAL;
2198	}
2199
2200	return ret;
2201}
2202
2203static snd_pcm_uframes_t snd_dbri_pointer(snd_pcm_substream_t * substream)
2204{
2205	snd_dbri_t *dbri = snd_pcm_substream_chip(substream);
2206	dbri_streaminfo_t *info = DBRI_STREAM(dbri, substream);
2207	snd_pcm_uframes_t ret;
2208
2209	ret = bytes_to_frames(substream->runtime, info->offset)
2210		% substream->runtime->buffer_size;
2211	dprintk(D_USR, "I/O pointer: %ld frames, %d bytes left.\n",
2212		ret, info->left);
2213	return ret;
2214}
2215
2216static snd_pcm_ops_t snd_dbri_ops = {
2217	.open = snd_dbri_open,
2218	.close = snd_dbri_close,
2219	.ioctl = snd_pcm_lib_ioctl,
2220	.hw_params = snd_dbri_hw_params,
2221	.hw_free = snd_dbri_hw_free,
2222	.prepare = snd_dbri_prepare,
2223	.trigger = snd_dbri_trigger,
2224	.pointer = snd_dbri_pointer,
2225};
2226
2227static int __devinit snd_dbri_pcm(snd_dbri_t * dbri)
2228{
2229	snd_pcm_t *pcm;
2230	int err;
2231
2232	if ((err = snd_pcm_new(dbri->card,
2233			       /* ID */		    "sun_dbri",
2234			       /* device */	    0,
2235			       /* playback count */ 1,
2236			       /* capture count */  1, &pcm)) < 0)
2237		return err;
2238	snd_assert(pcm != NULL, return -EINVAL);
2239
2240	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_dbri_ops);
2241	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_dbri_ops);
2242
2243	pcm->private_data = dbri;
2244	pcm->info_flags = 0;
2245	strcpy(pcm->name, dbri->card->shortname);
2246	dbri->pcm = pcm;
2247
2248	if ((err = snd_pcm_lib_preallocate_pages_for_all(pcm,
2249			SNDRV_DMA_TYPE_CONTINUOUS,
2250			snd_dma_continuous_data(GFP_KERNEL),
2251			64 * 1024, 64 * 1024)) < 0) {
2252		return err;
2253	}
2254
2255	return 0;
2256}
2257
2258/*****************************************************************************
2259			Mixer interface
2260*****************************************************************************/
2261
2262static int snd_cs4215_info_volume(snd_kcontrol_t * kcontrol,
2263				  snd_ctl_elem_info_t * uinfo)
2264{
2265	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2266	uinfo->count = 2;
2267	uinfo->value.integer.min = 0;
2268	if (kcontrol->private_value == DBRI_PLAY) {
2269		uinfo->value.integer.max = DBRI_MAX_VOLUME;
2270	} else {
2271		uinfo->value.integer.max = DBRI_MAX_GAIN;
2272	}
2273	return 0;
2274}
2275
2276static int snd_cs4215_get_volume(snd_kcontrol_t * kcontrol,
2277				 snd_ctl_elem_value_t * ucontrol)
2278{
2279	snd_dbri_t *dbri = snd_kcontrol_chip(kcontrol);
2280	dbri_streaminfo_t *info;
2281	snd_assert(dbri != NULL, return -EINVAL);
2282	info = &dbri->stream_info[kcontrol->private_value];
2283	snd_assert(info != NULL, return -EINVAL);
2284
2285	ucontrol->value.integer.value[0] = info->left_gain;
2286	ucontrol->value.integer.value[1] = info->right_gain;
2287	return 0;
2288}
2289
2290static int snd_cs4215_put_volume(snd_kcontrol_t * kcontrol,
2291				 snd_ctl_elem_value_t * ucontrol)
2292{
2293	snd_dbri_t *dbri = snd_kcontrol_chip(kcontrol);
2294	dbri_streaminfo_t *info = &dbri->stream_info[kcontrol->private_value];
2295	unsigned long flags;
2296	int changed = 0;
2297
2298	if (info->left_gain != ucontrol->value.integer.value[0]) {
2299		info->left_gain = ucontrol->value.integer.value[0];
2300		changed = 1;
2301	}
2302	if (info->right_gain != ucontrol->value.integer.value[1]) {
2303		info->right_gain = ucontrol->value.integer.value[1];
2304		changed = 1;
2305	}
2306	if (changed == 1) {
2307		/* First mute outputs, and wait 1/8000 sec (125 us)
2308		 * to make sure this takes.  This avoids clicking noises.
2309		 */
2310		spin_lock_irqsave(&dbri->lock, flags);
2311
2312		cs4215_setdata(dbri, 1);
2313		udelay(125);
2314		cs4215_setdata(dbri, 0);
2315
2316		spin_unlock_irqrestore(&dbri->lock, flags);
2317	}
2318	return changed;
2319}
2320
2321static int snd_cs4215_info_single(snd_kcontrol_t * kcontrol,
2322				  snd_ctl_elem_info_t * uinfo)
2323{
2324	int mask = (kcontrol->private_value >> 16) & 0xff;
2325
2326	uinfo->type = (mask == 1) ?
2327	    SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2328	uinfo->count = 1;
2329	uinfo->value.integer.min = 0;
2330	uinfo->value.integer.max = mask;
2331	return 0;
2332}
2333
2334static int snd_cs4215_get_single(snd_kcontrol_t * kcontrol,
2335				 snd_ctl_elem_value_t * ucontrol)
2336{
2337	snd_dbri_t *dbri = snd_kcontrol_chip(kcontrol);
2338	int elem = kcontrol->private_value & 0xff;
2339	int shift = (kcontrol->private_value >> 8) & 0xff;
2340	int mask = (kcontrol->private_value >> 16) & 0xff;
2341	int invert = (kcontrol->private_value >> 24) & 1;
2342	snd_assert(dbri != NULL, return -EINVAL);
2343
2344	if (elem < 4) {
2345		ucontrol->value.integer.value[0] =
2346		    (dbri->mm.data[elem] >> shift) & mask;
2347	} else {
2348		ucontrol->value.integer.value[0] =
2349		    (dbri->mm.ctrl[elem - 4] >> shift) & mask;
2350	}
2351
2352	if (invert == 1) {
2353		ucontrol->value.integer.value[0] =
2354		    mask - ucontrol->value.integer.value[0];
2355	}
2356	return 0;
2357}
2358
2359static int snd_cs4215_put_single(snd_kcontrol_t * kcontrol,
2360				 snd_ctl_elem_value_t * ucontrol)
2361{
2362	snd_dbri_t *dbri = snd_kcontrol_chip(kcontrol);
2363	unsigned long flags;
2364	int elem = kcontrol->private_value & 0xff;
2365	int shift = (kcontrol->private_value >> 8) & 0xff;
2366	int mask = (kcontrol->private_value >> 16) & 0xff;
2367	int invert = (kcontrol->private_value >> 24) & 1;
2368	int changed = 0;
2369	unsigned short val;
2370	snd_assert(dbri != NULL, return -EINVAL);
2371
2372	val = (ucontrol->value.integer.value[0] & mask);
2373	if (invert == 1)
2374		val = mask - val;
2375	val <<= shift;
2376
2377	if (elem < 4) {
2378		dbri->mm.data[elem] = (dbri->mm.data[elem] &
2379				       ~(mask << shift)) | val;
2380		changed = (val != dbri->mm.data[elem]);
2381	} else {
2382		dbri->mm.ctrl[elem - 4] = (dbri->mm.ctrl[elem - 4] &
2383					   ~(mask << shift)) | val;
2384		changed = (val != dbri->mm.ctrl[elem - 4]);
2385	}
2386
2387	dprintk(D_GEN, "put_single: mask=0x%x, changed=%d, "
2388		"mixer-value=%ld, mm-value=0x%x\n",
2389		mask, changed, ucontrol->value.integer.value[0],
2390		dbri->mm.data[elem & 3]);
2391
2392	if (changed) {
2393		/* First mute outputs, and wait 1/8000 sec (125 us)
2394		 * to make sure this takes.  This avoids clicking noises.
2395		 */
2396		spin_lock_irqsave(&dbri->lock, flags);
2397
2398		cs4215_setdata(dbri, 1);
2399		udelay(125);
2400		cs4215_setdata(dbri, 0);
2401
2402		spin_unlock_irqrestore(&dbri->lock, flags);
2403	}
2404	return changed;
2405}
2406
2407/* Entries 0-3 map to the 4 data timeslots, entries 4-7 map to the 4 control
2408   timeslots. Shift is the bit offset in the timeslot, mask defines the
2409   number of bits. invert is a boolean for use with attenuation.
2410 */
2411#define CS4215_SINGLE(xname, entry, shift, mask, invert) \
2412{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2413  .info = snd_cs4215_info_single, \
2414  .get = snd_cs4215_get_single, .put = snd_cs4215_put_single, \
2415  .private_value = entry | (shift << 8) | (mask << 16) | (invert << 24) },
2416
2417static snd_kcontrol_new_t dbri_controls[] __devinitdata = {
2418	{
2419	 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2420	 .name  = "Playback Volume",
2421	 .info  = snd_cs4215_info_volume,
2422	 .get   = snd_cs4215_get_volume,
2423	 .put   = snd_cs4215_put_volume,
2424	 .private_value = DBRI_PLAY,
2425	 },
2426	CS4215_SINGLE("Headphone switch", 0, 7, 1, 0)
2427	CS4215_SINGLE("Line out switch", 0, 6, 1, 0)
2428	CS4215_SINGLE("Speaker switch", 1, 6, 1, 0)
2429	{
2430	 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2431	 .name  = "Capture Volume",
2432	 .info  = snd_cs4215_info_volume,
2433	 .get   = snd_cs4215_get_volume,
2434	 .put   = snd_cs4215_put_volume,
2435	 .private_value = DBRI_REC,
2436	 },
2437	/* FIXME: mic/line switch */
2438	CS4215_SINGLE("Line in switch", 2, 4, 1, 0)
2439	CS4215_SINGLE("High Pass Filter switch", 5, 7, 1, 0)
2440	CS4215_SINGLE("Monitor Volume", 3, 4, 0xf, 1)
2441	CS4215_SINGLE("Mic boost", 4, 4, 1, 1)
2442};
2443
2444#define NUM_CS4215_CONTROLS (sizeof(dbri_controls)/sizeof(snd_kcontrol_new_t))
2445
2446static int __init snd_dbri_mixer(snd_dbri_t * dbri)
2447{
2448	snd_card_t *card;
2449	int idx, err;
2450
2451	snd_assert(dbri != NULL && dbri->card != NULL, return -EINVAL);
2452
2453	card = dbri->card;
2454	strcpy(card->mixername, card->shortname);
2455
2456	for (idx = 0; idx < NUM_CS4215_CONTROLS; idx++) {
2457		if ((err = snd_ctl_add(card,
2458				       snd_ctl_new1(&dbri_controls[idx],
2459						    dbri))) < 0)
2460			return err;
2461	}
2462
2463	for (idx = DBRI_REC; idx < DBRI_NO_STREAMS; idx++) {
2464		dbri->stream_info[idx].left_gain = 0;
2465		dbri->stream_info[idx].right_gain = 0;
2466		dbri->stream_info[idx].balance = DBRI_MID_BALANCE;
2467	}
2468
2469	return 0;
2470}
2471
2472/****************************************************************************
2473			/proc interface
2474****************************************************************************/
2475static void dbri_regs_read(snd_info_entry_t * entry, snd_info_buffer_t * buffer)
2476{
2477	snd_dbri_t *dbri = entry->private_data;
2478
2479	snd_iprintf(buffer, "REG0: 0x%x\n", sbus_readl(dbri->regs + REG0));
2480	snd_iprintf(buffer, "REG2: 0x%x\n", sbus_readl(dbri->regs + REG2));
2481	snd_iprintf(buffer, "REG8: 0x%x\n", sbus_readl(dbri->regs + REG8));
2482	snd_iprintf(buffer, "REG9: 0x%x\n", sbus_readl(dbri->regs + REG9));
2483}
2484
2485#ifdef DBRI_DEBUG
2486static void dbri_debug_read(snd_info_entry_t * entry,
2487			    snd_info_buffer_t * buffer)
2488{
2489	snd_dbri_t *dbri = entry->private_data;
2490	int pipe;
2491	snd_iprintf(buffer, "debug=%d\n", dbri_debug);
2492
2493	snd_iprintf(buffer, "CHI pipe in=%d, out=%d\n",
2494		    dbri->chi_in_pipe, dbri->chi_out_pipe);
2495	for (pipe = 0; pipe < 32; pipe++) {
2496		if (pipe_active(dbri, pipe)) {
2497			struct dbri_pipe *pptr = &dbri->pipes[pipe];
2498			snd_iprintf(buffer,
2499				    "Pipe %d: %s SDP=0x%x desc=%d, "
2500				    "len=%d @ %d prev: %d next %d\n",
2501				    pipe,
2502				    (pptr->direction ==
2503				     PIPEinput ? "input" : "output"), pptr->sdp,
2504				    pptr->desc, pptr->length, pptr->cycle,
2505				    pptr->prevpipe, pptr->nextpipe);
2506		}
2507	}
2508}
2509
2510static void dbri_debug_write(snd_info_entry_t * entry,
2511			     snd_info_buffer_t * buffer)
2512{
2513	char line[80];
2514	int i;
2515
2516	if (snd_info_get_line(buffer, line, 80) == 0) {
2517		sscanf(line, "%d\n", &i);
2518		dbri_debug = i & 0x3f;
2519	}
2520}
2521#endif
2522
2523void snd_dbri_proc(snd_dbri_t * dbri)
2524{
2525	snd_info_entry_t *entry;
2526	int err;
2527
2528	err = snd_card_proc_new(dbri->card, "regs", &entry);
2529	snd_info_set_text_ops(entry, dbri, 1024, dbri_regs_read);
2530
2531#ifdef DBRI_DEBUG
2532	err = snd_card_proc_new(dbri->card, "debug", &entry);
2533	snd_info_set_text_ops(entry, dbri, 4096, dbri_debug_read);
2534	entry->mode = S_IFREG | S_IRUGO | S_IWUSR; /* Writable for root */
2535	entry->c.text.write_size = 256;
2536	entry->c.text.write = dbri_debug_write;
2537#endif
2538}
2539
2540/*
2541****************************************************************************
2542**************************** Initialization ********************************
2543****************************************************************************
2544*/
2545static void snd_dbri_free(snd_dbri_t * dbri);
2546
2547static int __init snd_dbri_create(snd_card_t * card,
2548				  struct sbus_dev *sdev,
2549				  struct linux_prom_irqs *irq, int dev)
2550{
2551	snd_dbri_t *dbri = card->private_data;
2552	int err;
2553
2554	spin_lock_init(&dbri->lock);
2555	dbri->card = card;
2556	dbri->sdev = sdev;
2557	dbri->irq = irq->pri;
2558	dbri->dbri_version = sdev->prom_name[9];
2559
2560	dbri->dma = sbus_alloc_consistent(sdev, sizeof(struct dbri_dma),
2561					  &dbri->dma_dvma);
2562	memset((void *)dbri->dma, 0, sizeof(struct dbri_dma));
2563
2564	dprintk(D_GEN, "DMA Cmd Block 0x%p (0x%08x)\n",
2565		dbri->dma, dbri->dma_dvma);
2566
2567	/* Map the registers into memory. */
2568	dbri->regs_size = sdev->reg_addrs[0].reg_size;
2569	dbri->regs = sbus_ioremap(&sdev->resource[0], 0,
2570				  dbri->regs_size, "DBRI Registers");
2571	if (!dbri->regs) {
2572		printk(KERN_ERR "DBRI: could not allocate registers\n");
2573		sbus_free_consistent(sdev, sizeof(struct dbri_dma),
2574				     (void *)dbri->dma, dbri->dma_dvma);
2575		return -EIO;
2576	}
2577
2578	err = request_irq(dbri->irq, snd_dbri_interrupt, SA_SHIRQ,
2579			  "DBRI audio", dbri);
2580	if (err) {
2581		printk(KERN_ERR "DBRI: Can't get irq %d\n", dbri->irq);
2582		sbus_iounmap(dbri->regs, dbri->regs_size);
2583		sbus_free_consistent(sdev, sizeof(struct dbri_dma),
2584				     (void *)dbri->dma, dbri->dma_dvma);
2585		return err;
2586	}
2587
2588	/* Do low level initialization of the DBRI and CS4215 chips */
2589	dbri_initialize(dbri);
2590	err = cs4215_init(dbri);
2591	if (err) {
2592		snd_dbri_free(dbri);
2593		return err;
2594	}
2595
2596	dbri->next = dbri_list;
2597	dbri_list = dbri;
2598
2599	return 0;
2600}
2601
2602static void snd_dbri_free(snd_dbri_t * dbri)
2603{
2604	dprintk(D_GEN, "snd_dbri_free\n");
2605	dbri_reset(dbri);
2606
2607	if (dbri->irq)
2608		free_irq(dbri->irq, dbri);
2609
2610	if (dbri->regs)
2611		sbus_iounmap(dbri->regs, dbri->regs_size);
2612
2613	if (dbri->dma)
2614		sbus_free_consistent(dbri->sdev, sizeof(struct dbri_dma),
2615				     (void *)dbri->dma, dbri->dma_dvma);
2616}
2617
2618static int __init dbri_attach(int prom_node, struct sbus_dev *sdev)
2619{
2620	snd_dbri_t *dbri;
2621	struct linux_prom_irqs irq;
2622	struct resource *rp;
2623	snd_card_t *card;
2624	static int dev = 0;
2625	int err;
2626
2627	if (sdev->prom_name[9] < 'e') {
2628		printk(KERN_ERR "DBRI: unsupported chip version %c found.\n",
2629		       sdev->prom_name[9]);
2630		return -EIO;
2631	}
2632
2633	if (dev >= SNDRV_CARDS)
2634		return -ENODEV;
2635	if (!enable[dev]) {
2636		dev++;
2637		return -ENOENT;
2638	}
2639
2640	prom_getproperty(prom_node, "intr", (char *)&irq, sizeof(irq));
2641
2642	card = snd_card_new(index[dev], id[dev], THIS_MODULE,
2643			    sizeof(snd_dbri_t));
2644	if (card == NULL)
2645		return -ENOMEM;
2646
2647	strcpy(card->driver, "DBRI");
2648	strcpy(card->shortname, "Sun DBRI");
2649	rp = &sdev->resource[0];
2650	sprintf(card->longname, "%s at 0x%02lx:0x%08lx, irq %s",
2651		card->shortname,
2652		rp->flags & 0xffL, rp->start, __irq_itoa(irq.pri));
2653
2654	if ((err = snd_dbri_create(card, sdev, &irq, dev)) < 0) {
2655		snd_card_free(card);
2656		return err;
2657	}
2658
2659	dbri = (snd_dbri_t *) card->private_data;
2660	if ((err = snd_dbri_pcm(dbri)) < 0)
2661		goto _err;
2662
2663	if ((err = snd_dbri_mixer(dbri)) < 0)
2664		goto _err;
2665
2666	/* /proc file handling */
2667	snd_dbri_proc(dbri);
2668
2669	if ((err = snd_card_set_generic_dev(card)) < 0)
2670		goto _err;
2671
2672	if ((err = snd_card_register(card)) < 0)
2673		goto _err;
2674
2675	printk(KERN_INFO "audio%d at %p (irq %d) is DBRI(%c)+CS4215(%d)\n",
2676	       dev, dbri->regs,
2677	       dbri->irq, dbri->dbri_version, dbri->mm.version);
2678	dev++;
2679
2680	return 0;
2681
2682 _err:
2683	snd_dbri_free(dbri);
2684	snd_card_free(card);
2685	return err;
2686}
2687
2688/* Probe for the dbri chip and then attach the driver. */
2689static int __init dbri_init(void)
2690{
2691	struct sbus_bus *sbus;
2692	struct sbus_dev *sdev;
2693	int found = 0;
2694
2695	/* Probe each SBUS for the DBRI chip(s). */
2696	for_all_sbusdev(sdev, sbus) {
2697		/*
2698		 * The version is coded in the last character
2699		 */
2700		if (!strncmp(sdev->prom_name, "SUNW,DBRI", 9)) {
2701			dprintk(D_GEN, "DBRI: Found %s in SBUS slot %d\n",
2702				sdev->prom_name, sdev->slot);
2703
2704			if (dbri_attach(sdev->prom_node, sdev) == 0)
2705				found++;
2706		}
2707	}
2708
2709	return (found > 0) ? 0 : -EIO;
2710}
2711
2712static void __exit dbri_exit(void)
2713{
2714	snd_dbri_t *this = dbri_list;
2715
2716	while (this != NULL) {
2717		snd_dbri_t *next = this->next;
2718		snd_card_t *card = this->card;
2719
2720		snd_dbri_free(this);
2721		snd_card_free(card);
2722		this = next;
2723	}
2724	dbri_list = NULL;
2725}
2726
2727module_init(dbri_init);
2728module_exit(dbri_exit);
2729