dbri.c revision 4581aa36fc8273579f6b7979adc4f4e666460a8d
1/*
2 * Driver for DBRI sound chip found on Sparcs.
3 * Copyright (C) 2004, 2005 Martin Habets (mhabets@users.sourceforge.net)
4 *
5 * Converted to ring buffered version by Krzysztof Helt (krzysztof.h1@wp.pl)
6 *
7 * Based entirely upon drivers/sbus/audio/dbri.c which is:
8 * Copyright (C) 1997 Rudolf Koenig (rfkoenig@immd4.informatik.uni-erlangen.de)
9 * Copyright (C) 1998, 1999 Brent Baccala (baccala@freesoft.org)
10 *
11 * This is the low level driver for the DBRI & MMCODEC duo used for ISDN & AUDIO
12 * on Sun SPARCStation 10, 20, LX and Voyager models.
13 *
14 * - DBRI: AT&T T5900FX Dual Basic Rates ISDN Interface. It is a 32 channel
15 *   data time multiplexer with ISDN support (aka T7259)
16 *   Interfaces: SBus,ISDN NT & TE, CHI, 4 bits parallel.
17 *   CHI: (spelled ki) Concentration Highway Interface (AT&T or Intel bus ?).
18 *   Documentation:
19 *   - "STP 4000SBus Dual Basic Rate ISDN (DBRI) Transceiver" from
20 *     Sparc Technology Business (courtesy of Sun Support)
21 *   - Data sheet of the T7903, a newer but very similar ISA bus equivalent
22 *     available from the Lucent (formerly AT&T microelectronics) home
23 *     page.
24 *   - http://www.freesoft.org/Linux/DBRI/
25 * - MMCODEC: Crystal Semiconductor CS4215 16 bit Multimedia Audio Codec
26 *   Interfaces: CHI, Audio In & Out, 2 bits parallel
27 *   Documentation: from the Crystal Semiconductor home page.
28 *
29 * The DBRI is a 32 pipe machine, each pipe can transfer some bits between
30 * memory and a serial device (long pipes, no. 0-15) or between two serial
31 * devices (short pipes, no. 16-31), or simply send a fixed data to a serial
32 * device (short pipes).
33 * A timeslot defines the bit-offset and no. of bits read from a serial device.
34 * The timeslots are linked to 6 circular lists, one for each direction for
35 * each serial device (NT,TE,CHI). A timeslot is associated to 1 or 2 pipes
36 * (the second one is a monitor/tee pipe, valid only for serial input).
37 *
38 * The mmcodec is connected via the CHI bus and needs the data & some
39 * parameters (volume, output selection) time multiplexed in 8 byte
40 * chunks. It also has a control mode, which serves for audio format setting.
41 *
42 * Looking at the CS4215 data sheet it is easy to set up 2 or 4 codecs on
43 * the same CHI bus, so I thought perhaps it is possible to use the on-board
44 * & the speakerbox codec simultaneously, giving 2 (not very independent :-)
45 * audio devices. But the SUN HW group decided against it, at least on my
46 * LX the speakerbox connector has at least 1 pin missing and 1 wrongly
47 * connected.
48 *
49 * I've tried to stick to the following function naming conventions:
50 * snd_*	ALSA stuff
51 * cs4215_*	CS4215 codec specific stuff
52 * dbri_*	DBRI high-level stuff
53 * other	DBRI low-level stuff
54 */
55
56#include <sound/driver.h>
57#include <linux/interrupt.h>
58#include <linux/delay.h>
59#include <linux/irq.h>
60#include <linux/io.h>
61
62#include <sound/core.h>
63#include <sound/pcm.h>
64#include <sound/pcm_params.h>
65#include <sound/info.h>
66#include <sound/control.h>
67#include <sound/initval.h>
68
69#include <linux/of.h>
70#include <asm/sbus.h>
71#include <asm/atomic.h>
72
73MODULE_AUTHOR("Rudolf Koenig, Brent Baccala and Martin Habets");
74MODULE_DESCRIPTION("Sun DBRI");
75MODULE_LICENSE("GPL");
76MODULE_SUPPORTED_DEVICE("{{Sun,DBRI}}");
77
78static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;	/* Index 0-MAX */
79static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;	/* ID for this card */
80/* Enable this card */
81static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;
82
83module_param_array(index, int, NULL, 0444);
84MODULE_PARM_DESC(index, "Index value for Sun DBRI soundcard.");
85module_param_array(id, charp, NULL, 0444);
86MODULE_PARM_DESC(id, "ID string for Sun DBRI soundcard.");
87module_param_array(enable, bool, NULL, 0444);
88MODULE_PARM_DESC(enable, "Enable Sun DBRI soundcard.");
89
90#undef DBRI_DEBUG
91
92#define D_INT	(1<<0)
93#define D_GEN	(1<<1)
94#define D_CMD	(1<<2)
95#define D_MM	(1<<3)
96#define D_USR	(1<<4)
97#define D_DESC	(1<<5)
98
99static int dbri_debug;
100module_param(dbri_debug, int, 0644);
101MODULE_PARM_DESC(dbri_debug, "Debug value for Sun DBRI soundcard.");
102
103#ifdef DBRI_DEBUG
104static char *cmds[] = {
105	"WAIT", "PAUSE", "JUMP", "IIQ", "REX", "SDP", "CDP", "DTS",
106	"SSP", "CHI", "NT", "TE", "CDEC", "TEST", "CDM", "RESRV"
107};
108
109#define dprintk(a, x...) if (dbri_debug & a) printk(KERN_DEBUG x)
110
111#else
112#define dprintk(a, x...) do { } while (0)
113
114#endif				/* DBRI_DEBUG */
115
116#define DBRI_CMD(cmd, intr, value) ((cmd << 28) |	\
117				    (intr << 27) |	\
118				    value)
119
120/***************************************************************************
121	CS4215 specific definitions and structures
122****************************************************************************/
123
124struct cs4215 {
125	__u8 data[4];		/* Data mode: Time slots 5-8 */
126	__u8 ctrl[4];		/* Ctrl mode: Time slots 1-4 */
127	__u8 onboard;
128	__u8 offset;		/* Bit offset from frame sync to time slot 1 */
129	volatile __u32 status;
130	volatile __u32 version;
131	__u8 precision;		/* In bits, either 8 or 16 */
132	__u8 channels;		/* 1 or 2 */
133};
134
135/*
136 * Control mode first
137 */
138
139/* Time Slot 1, Status register */
140#define CS4215_CLB	(1<<2)	/* Control Latch Bit */
141#define CS4215_OLB	(1<<3)	/* 1: line: 2.0V, speaker 4V */
142				/* 0: line: 2.8V, speaker 8V */
143#define CS4215_MLB	(1<<4)	/* 1: Microphone: 20dB gain disabled */
144#define CS4215_RSRVD_1  (1<<5)
145
146/* Time Slot 2, Data Format Register */
147#define CS4215_DFR_LINEAR16	0
148#define CS4215_DFR_ULAW		1
149#define CS4215_DFR_ALAW		2
150#define CS4215_DFR_LINEAR8	3
151#define CS4215_DFR_STEREO	(1<<2)
152static struct {
153	unsigned short freq;
154	unsigned char xtal;
155	unsigned char csval;
156} CS4215_FREQ[] = {
157	{  8000, (1 << 4), (0 << 3) },
158	{ 16000, (1 << 4), (1 << 3) },
159	{ 27429, (1 << 4), (2 << 3) },	/* Actually 24428.57 */
160	{ 32000, (1 << 4), (3 << 3) },
161     /* {    NA, (1 << 4), (4 << 3) }, */
162     /* {    NA, (1 << 4), (5 << 3) }, */
163	{ 48000, (1 << 4), (6 << 3) },
164	{  9600, (1 << 4), (7 << 3) },
165	{  5512, (2 << 4), (0 << 3) },	/* Actually 5512.5 */
166	{ 11025, (2 << 4), (1 << 3) },
167	{ 18900, (2 << 4), (2 << 3) },
168	{ 22050, (2 << 4), (3 << 3) },
169	{ 37800, (2 << 4), (4 << 3) },
170	{ 44100, (2 << 4), (5 << 3) },
171	{ 33075, (2 << 4), (6 << 3) },
172	{  6615, (2 << 4), (7 << 3) },
173	{ 0, 0, 0}
174};
175
176#define CS4215_HPF	(1<<7)	/* High Pass Filter, 1: Enabled */
177
178#define CS4215_12_MASK	0xfcbf	/* Mask off reserved bits in slot 1 & 2 */
179
180/* Time Slot 3, Serial Port Control register */
181#define CS4215_XEN	(1<<0)	/* 0: Enable serial output */
182#define CS4215_XCLK	(1<<1)	/* 1: Master mode: Generate SCLK */
183#define CS4215_BSEL_64	(0<<2)	/* Bitrate: 64 bits per frame */
184#define CS4215_BSEL_128	(1<<2)
185#define CS4215_BSEL_256	(2<<2)
186#define CS4215_MCK_MAST (0<<4)	/* Master clock */
187#define CS4215_MCK_XTL1 (1<<4)	/* 24.576 MHz clock source */
188#define CS4215_MCK_XTL2 (2<<4)	/* 16.9344 MHz clock source */
189#define CS4215_MCK_CLK1 (3<<4)	/* Clockin, 256 x Fs */
190#define CS4215_MCK_CLK2 (4<<4)	/* Clockin, see DFR */
191
192/* Time Slot 4, Test Register */
193#define CS4215_DAD	(1<<0)	/* 0:Digital-Dig loop, 1:Dig-Analog-Dig loop */
194#define CS4215_ENL	(1<<1)	/* Enable Loopback Testing */
195
196/* Time Slot 5, Parallel Port Register */
197/* Read only here and the same as the in data mode */
198
199/* Time Slot 6, Reserved  */
200
201/* Time Slot 7, Version Register  */
202#define CS4215_VERSION_MASK 0xf	/* Known versions 0/C, 1/D, 2/E */
203
204/* Time Slot 8, Reserved  */
205
206/*
207 * Data mode
208 */
209/* Time Slot 1-2: Left Channel Data, 2-3: Right Channel Data  */
210
211/* Time Slot 5, Output Setting  */
212#define CS4215_LO(v)	v	/* Left Output Attenuation 0x3f: -94.5 dB */
213#define CS4215_LE	(1<<6)	/* Line Out Enable */
214#define CS4215_HE	(1<<7)	/* Headphone Enable */
215
216/* Time Slot 6, Output Setting  */
217#define CS4215_RO(v)	v	/* Right Output Attenuation 0x3f: -94.5 dB */
218#define CS4215_SE	(1<<6)	/* Speaker Enable */
219#define CS4215_ADI	(1<<7)	/* A/D Data Invalid: Busy in calibration */
220
221/* Time Slot 7, Input Setting */
222#define CS4215_LG(v)	v	/* Left Gain Setting 0xf: 22.5 dB */
223#define CS4215_IS	(1<<4)	/* Input Select: 1=Microphone, 0=Line */
224#define CS4215_OVR	(1<<5)	/* 1: Over range condition occurred */
225#define CS4215_PIO0	(1<<6)	/* Parallel I/O 0 */
226#define CS4215_PIO1	(1<<7)
227
228/* Time Slot 8, Input Setting */
229#define CS4215_RG(v)	v	/* Right Gain Setting 0xf: 22.5 dB */
230#define CS4215_MA(v)	(v<<4)	/* Monitor Path Attenuation 0xf: mute */
231
232/***************************************************************************
233		DBRI specific definitions and structures
234****************************************************************************/
235
236/* DBRI main registers */
237#define REG0	0x00		/* Status and Control */
238#define REG1	0x04		/* Mode and Interrupt */
239#define REG2	0x08		/* Parallel IO */
240#define REG3	0x0c		/* Test */
241#define REG8	0x20		/* Command Queue Pointer */
242#define REG9	0x24		/* Interrupt Queue Pointer */
243
244#define DBRI_NO_CMDS	64
245#define DBRI_INT_BLK	64
246#define DBRI_NO_DESCS	64
247#define DBRI_NO_PIPES	32
248#define DBRI_MAX_PIPE	(DBRI_NO_PIPES - 1)
249
250#define DBRI_REC	0
251#define DBRI_PLAY	1
252#define DBRI_NO_STREAMS	2
253
254/* One transmit/receive descriptor */
255/* When ba != 0 descriptor is used */
256struct dbri_mem {
257	volatile __u32 word1;
258	__u32 ba;	/* Transmit/Receive Buffer Address */
259	__u32 nda;	/* Next Descriptor Address */
260	volatile __u32 word4;
261};
262
263/* This structure is in a DMA region where it can accessed by both
264 * the CPU and the DBRI
265 */
266struct dbri_dma {
267	s32 cmd[DBRI_NO_CMDS];			/* Place for commands */
268	volatile s32 intr[DBRI_INT_BLK];	/* Interrupt field  */
269	struct dbri_mem desc[DBRI_NO_DESCS];	/* Xmit/receive descriptors */
270};
271
272#define dbri_dma_off(member, elem)	\
273	((u32)(unsigned long)		\
274	 (&(((struct dbri_dma *)0)->member[elem])))
275
276enum in_or_out { PIPEinput, PIPEoutput };
277
278struct dbri_pipe {
279	u32 sdp;		/* SDP command word */
280	int nextpipe;		/* Next pipe in linked list */
281	int length;		/* Length of timeslot (bits) */
282	int first_desc;		/* Index of first descriptor */
283	int desc;		/* Index of active descriptor */
284	volatile __u32 *recv_fixed_ptr;	/* Ptr to receive fixed data */
285};
286
287/* Per stream (playback or record) information */
288struct dbri_streaminfo {
289	struct snd_pcm_substream *substream;
290	u32 dvma_buffer;	/* Device view of ALSA DMA buffer */
291	int size;		/* Size of DMA buffer             */
292	size_t offset;		/* offset in user buffer          */
293	int pipe;		/* Data pipe used                 */
294	int left_gain;		/* mixer elements                 */
295	int right_gain;
296};
297
298/* This structure holds the information for both chips (DBRI & CS4215) */
299struct snd_dbri {
300	int regs_size, irq;	/* Needed for unload */
301	struct sbus_dev *sdev;	/* SBUS device info */
302	spinlock_t lock;
303
304	struct dbri_dma *dma;	/* Pointer to our DMA block */
305	u32 dma_dvma;		/* DBRI visible DMA address */
306
307	void __iomem *regs;	/* dbri HW regs */
308	int dbri_irqp;		/* intr queue pointer */
309
310	struct dbri_pipe pipes[DBRI_NO_PIPES];	/* DBRI's 32 data pipes */
311	int next_desc[DBRI_NO_DESCS];		/* Index of next desc, or -1 */
312	spinlock_t cmdlock;	/* Protects cmd queue accesses */
313	s32 *cmdptr;		/* Pointer to the last queued cmd */
314
315	int chi_bpf;
316
317	struct cs4215 mm;	/* mmcodec special info */
318				/* per stream (playback/record) info */
319	struct dbri_streaminfo stream_info[DBRI_NO_STREAMS];
320};
321
322#define DBRI_MAX_VOLUME		63	/* Output volume */
323#define DBRI_MAX_GAIN		15	/* Input gain */
324
325/* DBRI Reg0 - Status Control Register - defines. (Page 17) */
326#define D_P		(1<<15)	/* Program command & queue pointer valid */
327#define D_G		(1<<14)	/* Allow 4-Word SBus Burst */
328#define D_S		(1<<13)	/* Allow 16-Word SBus Burst */
329#define D_E		(1<<12)	/* Allow 8-Word SBus Burst */
330#define D_X		(1<<7)	/* Sanity Timer Disable */
331#define D_T		(1<<6)	/* Permit activation of the TE interface */
332#define D_N		(1<<5)	/* Permit activation of the NT interface */
333#define D_C		(1<<4)	/* Permit activation of the CHI interface */
334#define D_F		(1<<3)	/* Force Sanity Timer Time-Out */
335#define D_D		(1<<2)	/* Disable Master Mode */
336#define D_H		(1<<1)	/* Halt for Analysis */
337#define D_R		(1<<0)	/* Soft Reset */
338
339/* DBRI Reg1 - Mode and Interrupt Register - defines. (Page 18) */
340#define D_LITTLE_END	(1<<8)	/* Byte Order */
341#define D_BIG_END	(0<<8)	/* Byte Order */
342#define D_MRR		(1<<4)	/* Multiple Error Ack on SBus (read only) */
343#define D_MLE		(1<<3)	/* Multiple Late Error on SBus (read only) */
344#define D_LBG		(1<<2)	/* Lost Bus Grant on SBus (read only) */
345#define D_MBE		(1<<1)	/* Burst Error on SBus (read only) */
346#define D_IR		(1<<0)	/* Interrupt Indicator (read only) */
347
348/* DBRI Reg2 - Parallel IO Register - defines. (Page 18) */
349#define D_ENPIO3	(1<<7)	/* Enable Pin 3 */
350#define D_ENPIO2	(1<<6)	/* Enable Pin 2 */
351#define D_ENPIO1	(1<<5)	/* Enable Pin 1 */
352#define D_ENPIO0	(1<<4)	/* Enable Pin 0 */
353#define D_ENPIO		(0xf0)	/* Enable all the pins */
354#define D_PIO3		(1<<3)	/* Pin 3: 1: Data mode, 0: Ctrl mode */
355#define D_PIO2		(1<<2)	/* Pin 2: 1: Onboard PDN */
356#define D_PIO1		(1<<1)	/* Pin 1: 0: Reset */
357#define D_PIO0		(1<<0)	/* Pin 0: 1: Speakerbox PDN */
358
359/* DBRI Commands (Page 20) */
360#define D_WAIT		0x0	/* Stop execution */
361#define D_PAUSE		0x1	/* Flush long pipes */
362#define D_JUMP		0x2	/* New command queue */
363#define D_IIQ		0x3	/* Initialize Interrupt Queue */
364#define D_REX		0x4	/* Report command execution via interrupt */
365#define D_SDP		0x5	/* Setup Data Pipe */
366#define D_CDP		0x6	/* Continue Data Pipe (reread NULL Pointer) */
367#define D_DTS		0x7	/* Define Time Slot */
368#define D_SSP		0x8	/* Set short Data Pipe */
369#define D_CHI		0x9	/* Set CHI Global Mode */
370#define D_NT		0xa	/* NT Command */
371#define D_TE		0xb	/* TE Command */
372#define D_CDEC		0xc	/* Codec setup */
373#define D_TEST		0xd	/* No comment */
374#define D_CDM		0xe	/* CHI Data mode command */
375
376/* Special bits for some commands */
377#define D_PIPE(v)      ((v)<<0)	/* Pipe No.: 0-15 long, 16-21 short */
378
379/* Setup Data Pipe */
380/* IRM */
381#define D_SDP_2SAME	(1<<18)	/* Report 2nd time in a row value received */
382#define D_SDP_CHANGE	(2<<18)	/* Report any changes */
383#define D_SDP_EVERY	(3<<18)	/* Report any changes */
384#define D_SDP_EOL	(1<<17)	/* EOL interrupt enable */
385#define D_SDP_IDLE	(1<<16)	/* HDLC idle interrupt enable */
386
387/* Pipe data MODE */
388#define D_SDP_MEM	(0<<13)	/* To/from memory */
389#define D_SDP_HDLC	(2<<13)
390#define D_SDP_HDLC_D	(3<<13)	/* D Channel (prio control) */
391#define D_SDP_SER	(4<<13)	/* Serial to serial */
392#define D_SDP_FIXED	(6<<13)	/* Short only */
393#define D_SDP_MODE(v)	((v)&(7<<13))
394
395#define D_SDP_TO_SER	(1<<12)	/* Direction */
396#define D_SDP_FROM_SER	(0<<12)	/* Direction */
397#define D_SDP_MSB	(1<<11)	/* Bit order within Byte */
398#define D_SDP_LSB	(0<<11)	/* Bit order within Byte */
399#define D_SDP_P		(1<<10)	/* Pointer Valid */
400#define D_SDP_A		(1<<8)	/* Abort */
401#define D_SDP_C		(1<<7)	/* Clear */
402
403/* Define Time Slot */
404#define D_DTS_VI	(1<<17)	/* Valid Input Time-Slot Descriptor */
405#define D_DTS_VO	(1<<16)	/* Valid Output Time-Slot Descriptor */
406#define D_DTS_INS	(1<<15)	/* Insert Time Slot */
407#define D_DTS_DEL	(0<<15)	/* Delete Time Slot */
408#define D_DTS_PRVIN(v) ((v)<<10)	/* Previous In Pipe */
409#define D_DTS_PRVOUT(v)        ((v)<<5)	/* Previous Out Pipe */
410
411/* Time Slot defines */
412#define D_TS_LEN(v)	((v)<<24)	/* Number of bits in this time slot */
413#define D_TS_CYCLE(v)	((v)<<14)	/* Bit Count at start of TS */
414#define D_TS_DI		(1<<13)	/* Data Invert */
415#define D_TS_1CHANNEL	(0<<10)	/* Single Channel / Normal mode */
416#define D_TS_MONITOR	(2<<10)	/* Monitor pipe */
417#define D_TS_NONCONTIG	(3<<10)	/* Non contiguous mode */
418#define D_TS_ANCHOR	(7<<10)	/* Starting short pipes */
419#define D_TS_MON(v)    ((v)<<5)	/* Monitor Pipe */
420#define D_TS_NEXT(v)   ((v)<<0)	/* Pipe no.: 0-15 long, 16-21 short */
421
422/* Concentration Highway Interface Modes */
423#define D_CHI_CHICM(v)	((v)<<16)	/* Clock mode */
424#define D_CHI_IR	(1<<15)	/* Immediate Interrupt Report */
425#define D_CHI_EN	(1<<14)	/* CHIL Interrupt enabled */
426#define D_CHI_OD	(1<<13)	/* Open Drain Enable */
427#define D_CHI_FE	(1<<12)	/* Sample CHIFS on Rising Frame Edge */
428#define D_CHI_FD	(1<<11)	/* Frame Drive */
429#define D_CHI_BPF(v)	((v)<<0)	/* Bits per Frame */
430
431/* NT: These are here for completeness */
432#define D_NT_FBIT	(1<<17)	/* Frame Bit */
433#define D_NT_NBF	(1<<16)	/* Number of bad frames to loose framing */
434#define D_NT_IRM_IMM	(1<<15)	/* Interrupt Report & Mask: Immediate */
435#define D_NT_IRM_EN	(1<<14)	/* Interrupt Report & Mask: Enable */
436#define D_NT_ISNT	(1<<13)	/* Configure interface as NT */
437#define D_NT_FT		(1<<12)	/* Fixed Timing */
438#define D_NT_EZ		(1<<11)	/* Echo Channel is Zeros */
439#define D_NT_IFA	(1<<10)	/* Inhibit Final Activation */
440#define D_NT_ACT	(1<<9)	/* Activate Interface */
441#define D_NT_MFE	(1<<8)	/* Multiframe Enable */
442#define D_NT_RLB(v)	((v)<<5)	/* Remote Loopback */
443#define D_NT_LLB(v)	((v)<<2)	/* Local Loopback */
444#define D_NT_FACT	(1<<1)	/* Force Activation */
445#define D_NT_ABV	(1<<0)	/* Activate Bipolar Violation */
446
447/* Codec Setup */
448#define D_CDEC_CK(v)	((v)<<24)	/* Clock Select */
449#define D_CDEC_FED(v)	((v)<<12)	/* FSCOD Falling Edge Delay */
450#define D_CDEC_RED(v)	((v)<<0)	/* FSCOD Rising Edge Delay */
451
452/* Test */
453#define D_TEST_RAM(v)	((v)<<16)	/* RAM Pointer */
454#define D_TEST_SIZE(v)	((v)<<11)	/* */
455#define D_TEST_ROMONOFF	0x5	/* Toggle ROM opcode monitor on/off */
456#define D_TEST_PROC	0x6	/* Microprocessor test */
457#define D_TEST_SER	0x7	/* Serial-Controller test */
458#define D_TEST_RAMREAD	0x8	/* Copy from Ram to system memory */
459#define D_TEST_RAMWRITE	0x9	/* Copy into Ram from system memory */
460#define D_TEST_RAMBIST	0xa	/* RAM Built-In Self Test */
461#define D_TEST_MCBIST	0xb	/* Microcontroller Built-In Self Test */
462#define D_TEST_DUMP	0xe	/* ROM Dump */
463
464/* CHI Data Mode */
465#define D_CDM_THI	(1 << 8)	/* Transmit Data on CHIDR Pin */
466#define D_CDM_RHI	(1 << 7)	/* Receive Data on CHIDX Pin */
467#define D_CDM_RCE	(1 << 6)	/* Receive on Rising Edge of CHICK */
468#define D_CDM_XCE	(1 << 2) /* Transmit Data on Rising Edge of CHICK */
469#define D_CDM_XEN	(1 << 1)	/* Transmit Highway Enable */
470#define D_CDM_REN	(1 << 0)	/* Receive Highway Enable */
471
472/* The Interrupts */
473#define D_INTR_BRDY	1	/* Buffer Ready for processing */
474#define D_INTR_MINT	2	/* Marked Interrupt in RD/TD */
475#define D_INTR_IBEG	3	/* Flag to idle transition detected (HDLC) */
476#define D_INTR_IEND	4	/* Idle to flag transition detected (HDLC) */
477#define D_INTR_EOL	5	/* End of List */
478#define D_INTR_CMDI	6	/* Command has bean read */
479#define D_INTR_XCMP	8	/* Transmission of frame complete */
480#define D_INTR_SBRI	9	/* BRI status change info */
481#define D_INTR_FXDT	10	/* Fixed data change */
482#define D_INTR_CHIL	11	/* CHI lost frame sync (channel 36 only) */
483#define D_INTR_COLL	11	/* Unrecoverable D-Channel collision */
484#define D_INTR_DBYT	12	/* Dropped by frame slip */
485#define D_INTR_RBYT	13	/* Repeated by frame slip */
486#define D_INTR_LINT	14	/* Lost Interrupt */
487#define D_INTR_UNDR	15	/* DMA underrun */
488
489#define D_INTR_TE	32
490#define D_INTR_NT	34
491#define D_INTR_CHI	36
492#define D_INTR_CMD	38
493
494#define D_INTR_GETCHAN(v)	(((v) >> 24) & 0x3f)
495#define D_INTR_GETCODE(v)	(((v) >> 20) & 0xf)
496#define D_INTR_GETCMD(v)	(((v) >> 16) & 0xf)
497#define D_INTR_GETVAL(v)	((v) & 0xffff)
498#define D_INTR_GETRVAL(v)	((v) & 0xfffff)
499
500#define D_P_0		0	/* TE receive anchor */
501#define D_P_1		1	/* TE transmit anchor */
502#define D_P_2		2	/* NT transmit anchor */
503#define D_P_3		3	/* NT receive anchor */
504#define D_P_4		4	/* CHI send data */
505#define D_P_5		5	/* CHI receive data */
506#define D_P_6		6	/* */
507#define D_P_7		7	/* */
508#define D_P_8		8	/* */
509#define D_P_9		9	/* */
510#define D_P_10		10	/* */
511#define D_P_11		11	/* */
512#define D_P_12		12	/* */
513#define D_P_13		13	/* */
514#define D_P_14		14	/* */
515#define D_P_15		15	/* */
516#define D_P_16		16	/* CHI anchor pipe */
517#define D_P_17		17	/* CHI send */
518#define D_P_18		18	/* CHI receive */
519#define D_P_19		19	/* CHI receive */
520#define D_P_20		20	/* CHI receive */
521#define D_P_21		21	/* */
522#define D_P_22		22	/* */
523#define D_P_23		23	/* */
524#define D_P_24		24	/* */
525#define D_P_25		25	/* */
526#define D_P_26		26	/* */
527#define D_P_27		27	/* */
528#define D_P_28		28	/* */
529#define D_P_29		29	/* */
530#define D_P_30		30	/* */
531#define D_P_31		31	/* */
532
533/* Transmit descriptor defines */
534#define DBRI_TD_F	(1 << 31)	/* End of Frame */
535#define DBRI_TD_D	(1 << 30)	/* Do not append CRC */
536#define DBRI_TD_CNT(v)	((v) << 16) /* Number of valid bytes in the buffer */
537#define DBRI_TD_B	(1 << 15)	/* Final interrupt */
538#define DBRI_TD_M	(1 << 14)	/* Marker interrupt */
539#define DBRI_TD_I	(1 << 13)	/* Transmit Idle Characters */
540#define DBRI_TD_FCNT(v)	(v)		/* Flag Count */
541#define DBRI_TD_UNR	(1 << 3) /* Underrun: transmitter is out of data */
542#define DBRI_TD_ABT	(1 << 2)	/* Abort: frame aborted */
543#define DBRI_TD_TBC	(1 << 0)	/* Transmit buffer Complete */
544#define DBRI_TD_STATUS(v)       ((v) & 0xff)	/* Transmit status */
545			/* Maximum buffer size per TD: almost 8KB */
546#define DBRI_TD_MAXCNT	((1 << 13) - 4)
547
548/* Receive descriptor defines */
549#define DBRI_RD_F	(1 << 31)	/* End of Frame */
550#define DBRI_RD_C	(1 << 30)	/* Completed buffer */
551#define DBRI_RD_B	(1 << 15)	/* Final interrupt */
552#define DBRI_RD_M	(1 << 14)	/* Marker interrupt */
553#define DBRI_RD_BCNT(v)	(v)		/* Buffer size */
554#define DBRI_RD_CRC	(1 << 7)	/* 0: CRC is correct */
555#define DBRI_RD_BBC	(1 << 6)	/* 1: Bad Byte received */
556#define DBRI_RD_ABT	(1 << 5)	/* Abort: frame aborted */
557#define DBRI_RD_OVRN	(1 << 3)	/* Overrun: data lost */
558#define DBRI_RD_STATUS(v)      ((v) & 0xff)	/* Receive status */
559#define DBRI_RD_CNT(v) (((v) >> 16) & 0x1fff)	/* Valid bytes in the buffer */
560
561/* stream_info[] access */
562/* Translate the ALSA direction into the array index */
563#define DBRI_STREAMNO(substream)				\
564		(substream->stream ==				\
565		 SNDRV_PCM_STREAM_PLAYBACK ? DBRI_PLAY: DBRI_REC)
566
567/* Return a pointer to dbri_streaminfo */
568#define DBRI_STREAM(dbri, substream)	\
569		&dbri->stream_info[DBRI_STREAMNO(substream)]
570
571/*
572 * Short data pipes transmit LSB first. The CS4215 receives MSB first. Grrr.
573 * So we have to reverse the bits. Note: not all bit lengths are supported
574 */
575static __u32 reverse_bytes(__u32 b, int len)
576{
577	switch (len) {
578	case 32:
579		b = ((b & 0xffff0000) >> 16) | ((b & 0x0000ffff) << 16);
580	case 16:
581		b = ((b & 0xff00ff00) >> 8) | ((b & 0x00ff00ff) << 8);
582	case 8:
583		b = ((b & 0xf0f0f0f0) >> 4) | ((b & 0x0f0f0f0f) << 4);
584	case 4:
585		b = ((b & 0xcccccccc) >> 2) | ((b & 0x33333333) << 2);
586	case 2:
587		b = ((b & 0xaaaaaaaa) >> 1) | ((b & 0x55555555) << 1);
588	case 1:
589	case 0:
590		break;
591	default:
592		printk(KERN_ERR "DBRI reverse_bytes: unsupported length\n");
593	};
594
595	return b;
596}
597
598/*
599****************************************************************************
600************** DBRI initialization and command synchronization *************
601****************************************************************************
602
603Commands are sent to the DBRI by building a list of them in memory,
604then writing the address of the first list item to DBRI register 8.
605The list is terminated with a WAIT command, which generates a
606CPU interrupt to signal completion.
607
608Since the DBRI can run in parallel with the CPU, several means of
609synchronization present themselves. The method implemented here uses
610the dbri_cmdwait() to wait for execution of batch of sent commands.
611
612A circular command buffer is used here. A new command is being added
613while another can be executed. The scheme works by adding two WAIT commands
614after each sent batch of commands. When the next batch is prepared it is
615added after the WAIT commands then the WAITs are replaced with single JUMP
616command to the new batch. The the DBRI is forced to reread the last WAIT
617command (replaced by the JUMP by then). If the DBRI is still executing
618previous commands the request to reread the WAIT command is ignored.
619
620Every time a routine wants to write commands to the DBRI, it must
621first call dbri_cmdlock() and get pointer to a free space in
622dbri->dma->cmd buffer. After this, the commands can be written to
623the buffer, and dbri_cmdsend() is called with the final pointer value
624to send them to the DBRI.
625
626*/
627
628#define MAXLOOPS 20
629/*
630 * Wait for the current command string to execute
631 */
632static void dbri_cmdwait(struct snd_dbri *dbri)
633{
634	int maxloops = MAXLOOPS;
635	unsigned long flags;
636
637	/* Delay if previous commands are still being processed */
638	spin_lock_irqsave(&dbri->lock, flags);
639	while ((--maxloops) > 0 && (sbus_readl(dbri->regs + REG0) & D_P)) {
640		spin_unlock_irqrestore(&dbri->lock, flags);
641		msleep_interruptible(1);
642		spin_lock_irqsave(&dbri->lock, flags);
643	}
644	spin_unlock_irqrestore(&dbri->lock, flags);
645
646	if (maxloops == 0)
647		printk(KERN_ERR "DBRI: Chip never completed command buffer\n");
648	else
649		dprintk(D_CMD, "Chip completed command buffer (%d)\n",
650			MAXLOOPS - maxloops - 1);
651}
652/*
653 * Lock the command queue and return pointer to space for len cmd words
654 * It locks the cmdlock spinlock.
655 */
656static s32 *dbri_cmdlock(struct snd_dbri *dbri, int len)
657{
658	/* Space for 2 WAIT cmds (replaced later by 1 JUMP cmd) */
659	len += 2;
660	spin_lock(&dbri->cmdlock);
661	if (dbri->cmdptr - dbri->dma->cmd + len < DBRI_NO_CMDS - 2)
662		return dbri->cmdptr + 2;
663	else if (len < sbus_readl(dbri->regs + REG8) - dbri->dma_dvma)
664		return dbri->dma->cmd;
665	else
666		printk(KERN_ERR "DBRI: no space for commands.");
667
668	return NULL;
669}
670
671/*
672 * Send prepared cmd string. It works by writing a JUMP cmd into
673 * the last WAIT cmd and force DBRI to reread the cmd.
674 * The JUMP cmd points to the new cmd string.
675 * It also releases the cmdlock spinlock.
676 *
677 * Lock must be held before calling this.
678 */
679static void dbri_cmdsend(struct snd_dbri *dbri, s32 *cmd, int len)
680{
681	s32 tmp, addr;
682	static int wait_id = 0;
683
684	wait_id++;
685	wait_id &= 0xffff;	/* restrict it to a 16 bit counter. */
686	*(cmd) = DBRI_CMD(D_WAIT, 1, wait_id);
687	*(cmd+1) = DBRI_CMD(D_WAIT, 1, wait_id);
688
689	/* Replace the last command with JUMP */
690	addr = dbri->dma_dvma + (cmd - len - dbri->dma->cmd) * sizeof(s32);
691	*(dbri->cmdptr+1) = addr;
692	*(dbri->cmdptr) = DBRI_CMD(D_JUMP, 0, 0);
693
694#ifdef DBRI_DEBUG
695	if (cmd > dbri->cmdptr) {
696		s32 *ptr;
697
698		for (ptr = dbri->cmdptr; ptr < cmd+2; ptr++)
699			dprintk(D_CMD, "cmd: %lx:%08x\n",
700				(unsigned long)ptr, *ptr);
701	} else {
702		s32 *ptr = dbri->cmdptr;
703
704		dprintk(D_CMD, "cmd: %lx:%08x\n", (unsigned long)ptr, *ptr);
705		ptr++;
706		dprintk(D_CMD, "cmd: %lx:%08x\n", (unsigned long)ptr, *ptr);
707		for (ptr = dbri->dma->cmd; ptr < cmd+2; ptr++)
708			dprintk(D_CMD, "cmd: %lx:%08x\n",
709				(unsigned long)ptr, *ptr);
710	}
711#endif
712
713	/* Reread the last command */
714	tmp = sbus_readl(dbri->regs + REG0);
715	tmp |= D_P;
716	sbus_writel(tmp, dbri->regs + REG0);
717
718	dbri->cmdptr = cmd;
719	spin_unlock(&dbri->cmdlock);
720}
721
722/* Lock must be held when calling this */
723static void dbri_reset(struct snd_dbri *dbri)
724{
725	int i;
726	u32 tmp;
727
728	dprintk(D_GEN, "reset 0:%x 2:%x 8:%x 9:%x\n",
729		sbus_readl(dbri->regs + REG0),
730		sbus_readl(dbri->regs + REG2),
731		sbus_readl(dbri->regs + REG8), sbus_readl(dbri->regs + REG9));
732
733	sbus_writel(D_R, dbri->regs + REG0);	/* Soft Reset */
734	for (i = 0; (sbus_readl(dbri->regs + REG0) & D_R) && i < 64; i++)
735		udelay(10);
736
737	/* A brute approach - DBRI falls back to working burst size by itself
738	 * On SS20 D_S does not work, so do not try so high. */
739	tmp = sbus_readl(dbri->regs + REG0);
740	tmp |= D_G | D_E;
741	tmp &= ~D_S;
742	sbus_writel(tmp, dbri->regs + REG0);
743}
744
745/* Lock must not be held before calling this */
746static void __devinit dbri_initialize(struct snd_dbri *dbri)
747{
748	s32 *cmd;
749	u32 dma_addr;
750	unsigned long flags;
751	int n;
752
753	spin_lock_irqsave(&dbri->lock, flags);
754
755	dbri_reset(dbri);
756
757	/* Initialize pipes */
758	for (n = 0; n < DBRI_NO_PIPES; n++)
759		dbri->pipes[n].desc = dbri->pipes[n].first_desc = -1;
760
761	spin_lock_init(&dbri->cmdlock);
762	/*
763	 * Initialize the interrupt ring buffer.
764	 */
765	dma_addr = dbri->dma_dvma + dbri_dma_off(intr, 0);
766	dbri->dma->intr[0] = dma_addr;
767	dbri->dbri_irqp = 1;
768	/*
769	 * Set up the interrupt queue
770	 */
771	spin_lock(&dbri->cmdlock);
772	cmd = dbri->cmdptr = dbri->dma->cmd;
773	*(cmd++) = DBRI_CMD(D_IIQ, 0, 0);
774	*(cmd++) = dma_addr;
775	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
776	dbri->cmdptr = cmd;
777	*(cmd++) = DBRI_CMD(D_WAIT, 1, 0);
778	*(cmd++) = DBRI_CMD(D_WAIT, 1, 0);
779	dma_addr = dbri->dma_dvma + dbri_dma_off(cmd, 0);
780	sbus_writel(dma_addr, dbri->regs + REG8);
781	spin_unlock(&dbri->cmdlock);
782
783	spin_unlock_irqrestore(&dbri->lock, flags);
784	dbri_cmdwait(dbri);
785}
786
787/*
788****************************************************************************
789************************** DBRI data pipe management ***********************
790****************************************************************************
791
792While DBRI control functions use the command and interrupt buffers, the
793main data path takes the form of data pipes, which can be short (command
794and interrupt driven), or long (attached to DMA buffers).  These functions
795provide a rudimentary means of setting up and managing the DBRI's pipes,
796but the calling functions have to make sure they respect the pipes' linked
797list ordering, among other things.  The transmit and receive functions
798here interface closely with the transmit and receive interrupt code.
799
800*/
801static inline int pipe_active(struct snd_dbri *dbri, int pipe)
802{
803	return ((pipe >= 0) && (dbri->pipes[pipe].desc != -1));
804}
805
806/* reset_pipe(dbri, pipe)
807 *
808 * Called on an in-use pipe to clear anything being transmitted or received
809 * Lock must be held before calling this.
810 */
811static void reset_pipe(struct snd_dbri *dbri, int pipe)
812{
813	int sdp;
814	int desc;
815	s32 *cmd;
816
817	if (pipe < 0 || pipe > DBRI_MAX_PIPE) {
818		printk(KERN_ERR "DBRI: reset_pipe called with "
819			"illegal pipe number\n");
820		return;
821	}
822
823	sdp = dbri->pipes[pipe].sdp;
824	if (sdp == 0) {
825		printk(KERN_ERR "DBRI: reset_pipe called "
826			"on uninitialized pipe\n");
827		return;
828	}
829
830	cmd = dbri_cmdlock(dbri, 3);
831	*(cmd++) = DBRI_CMD(D_SDP, 0, sdp | D_SDP_C | D_SDP_P);
832	*(cmd++) = 0;
833	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
834	dbri_cmdsend(dbri, cmd, 3);
835
836	desc = dbri->pipes[pipe].first_desc;
837	if (desc >= 0)
838		do {
839			dbri->dma->desc[desc].ba = 0;
840			dbri->dma->desc[desc].nda = 0;
841			desc = dbri->next_desc[desc];
842		} while (desc != -1 && desc != dbri->pipes[pipe].first_desc);
843
844	dbri->pipes[pipe].desc = -1;
845	dbri->pipes[pipe].first_desc = -1;
846}
847
848/*
849 * Lock must be held before calling this.
850 */
851static void setup_pipe(struct snd_dbri *dbri, int pipe, int sdp)
852{
853	if (pipe < 0 || pipe > DBRI_MAX_PIPE) {
854		printk(KERN_ERR "DBRI: setup_pipe called "
855			"with illegal pipe number\n");
856		return;
857	}
858
859	if ((sdp & 0xf800) != sdp) {
860		printk(KERN_ERR "DBRI: setup_pipe called "
861			"with strange SDP value\n");
862		/* sdp &= 0xf800; */
863	}
864
865	/* If this is a fixed receive pipe, arrange for an interrupt
866	 * every time its data changes
867	 */
868	if (D_SDP_MODE(sdp) == D_SDP_FIXED && !(sdp & D_SDP_TO_SER))
869		sdp |= D_SDP_CHANGE;
870
871	sdp |= D_PIPE(pipe);
872	dbri->pipes[pipe].sdp = sdp;
873	dbri->pipes[pipe].desc = -1;
874	dbri->pipes[pipe].first_desc = -1;
875
876	reset_pipe(dbri, pipe);
877}
878
879/*
880 * Lock must be held before calling this.
881 */
882static void link_time_slot(struct snd_dbri *dbri, int pipe,
883			   int prevpipe, int nextpipe,
884			   int length, int cycle)
885{
886	s32 *cmd;
887	int val;
888
889	if (pipe < 0 || pipe > DBRI_MAX_PIPE
890			|| prevpipe < 0 || prevpipe > DBRI_MAX_PIPE
891			|| nextpipe < 0 || nextpipe > DBRI_MAX_PIPE) {
892		printk(KERN_ERR
893		    "DBRI: link_time_slot called with illegal pipe number\n");
894		return;
895	}
896
897	if (dbri->pipes[pipe].sdp == 0
898			|| dbri->pipes[prevpipe].sdp == 0
899			|| dbri->pipes[nextpipe].sdp == 0) {
900		printk(KERN_ERR "DBRI: link_time_slot called "
901			"on uninitialized pipe\n");
902		return;
903	}
904
905	dbri->pipes[prevpipe].nextpipe = pipe;
906	dbri->pipes[pipe].nextpipe = nextpipe;
907	dbri->pipes[pipe].length = length;
908
909	cmd = dbri_cmdlock(dbri, 4);
910
911	if (dbri->pipes[pipe].sdp & D_SDP_TO_SER) {
912		/* Deal with CHI special case:
913		 * "If transmission on edges 0 or 1 is desired, then cycle n
914		 *  (where n = # of bit times per frame...) must be used."
915		 *                  - DBRI data sheet, page 11
916		 */
917		if (prevpipe == 16 && cycle == 0)
918			cycle = dbri->chi_bpf;
919
920		val = D_DTS_VO | D_DTS_INS | D_DTS_PRVOUT(prevpipe) | pipe;
921		*(cmd++) = DBRI_CMD(D_DTS, 0, val);
922		*(cmd++) = 0;
923		*(cmd++) =
924		    D_TS_LEN(length) | D_TS_CYCLE(cycle) | D_TS_NEXT(nextpipe);
925	} else {
926		val = D_DTS_VI | D_DTS_INS | D_DTS_PRVIN(prevpipe) | pipe;
927		*(cmd++) = DBRI_CMD(D_DTS, 0, val);
928		*(cmd++) =
929		    D_TS_LEN(length) | D_TS_CYCLE(cycle) | D_TS_NEXT(nextpipe);
930		*(cmd++) = 0;
931	}
932	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
933
934	dbri_cmdsend(dbri, cmd, 4);
935}
936
937#if 0
938/*
939 * Lock must be held before calling this.
940 */
941static void unlink_time_slot(struct snd_dbri *dbri, int pipe,
942			     enum in_or_out direction, int prevpipe,
943			     int nextpipe)
944{
945	s32 *cmd;
946	int val;
947
948	if (pipe < 0 || pipe > DBRI_MAX_PIPE
949			|| prevpipe < 0 || prevpipe > DBRI_MAX_PIPE
950			|| nextpipe < 0 || nextpipe > DBRI_MAX_PIPE) {
951		printk(KERN_ERR
952		    "DBRI: unlink_time_slot called with illegal pipe number\n");
953		return;
954	}
955
956	cmd = dbri_cmdlock(dbri, 4);
957
958	if (direction == PIPEinput) {
959		val = D_DTS_VI | D_DTS_DEL | D_DTS_PRVIN(prevpipe) | pipe;
960		*(cmd++) = DBRI_CMD(D_DTS, 0, val);
961		*(cmd++) = D_TS_NEXT(nextpipe);
962		*(cmd++) = 0;
963	} else {
964		val = D_DTS_VO | D_DTS_DEL | D_DTS_PRVOUT(prevpipe) | pipe;
965		*(cmd++) = DBRI_CMD(D_DTS, 0, val);
966		*(cmd++) = 0;
967		*(cmd++) = D_TS_NEXT(nextpipe);
968	}
969	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
970
971	dbri_cmdsend(dbri, cmd, 4);
972}
973#endif
974
975/* xmit_fixed() / recv_fixed()
976 *
977 * Transmit/receive data on a "fixed" pipe - i.e, one whose contents are not
978 * expected to change much, and which we don't need to buffer.
979 * The DBRI only interrupts us when the data changes (receive pipes),
980 * or only changes the data when this function is called (transmit pipes).
981 * Only short pipes (numbers 16-31) can be used in fixed data mode.
982 *
983 * These function operate on a 32-bit field, no matter how large
984 * the actual time slot is.  The interrupt handler takes care of bit
985 * ordering and alignment.  An 8-bit time slot will always end up
986 * in the low-order 8 bits, filled either MSB-first or LSB-first,
987 * depending on the settings passed to setup_pipe().
988 *
989 * Lock must not be held before calling it.
990 */
991static void xmit_fixed(struct snd_dbri *dbri, int pipe, unsigned int data)
992{
993	s32 *cmd;
994	unsigned long flags;
995
996	if (pipe < 16 || pipe > DBRI_MAX_PIPE) {
997		printk(KERN_ERR "DBRI: xmit_fixed: Illegal pipe number\n");
998		return;
999	}
1000
1001	if (D_SDP_MODE(dbri->pipes[pipe].sdp) == 0) {
1002		printk(KERN_ERR "DBRI: xmit_fixed: "
1003			"Uninitialized pipe %d\n", pipe);
1004		return;
1005	}
1006
1007	if (D_SDP_MODE(dbri->pipes[pipe].sdp) != D_SDP_FIXED) {
1008		printk(KERN_ERR "DBRI: xmit_fixed: Non-fixed pipe %d\n", pipe);
1009		return;
1010	}
1011
1012	if (!(dbri->pipes[pipe].sdp & D_SDP_TO_SER)) {
1013		printk(KERN_ERR "DBRI: xmit_fixed: Called on receive pipe %d\n",
1014			pipe);
1015		return;
1016	}
1017
1018	/* DBRI short pipes always transmit LSB first */
1019
1020	if (dbri->pipes[pipe].sdp & D_SDP_MSB)
1021		data = reverse_bytes(data, dbri->pipes[pipe].length);
1022
1023	cmd = dbri_cmdlock(dbri, 3);
1024
1025	*(cmd++) = DBRI_CMD(D_SSP, 0, pipe);
1026	*(cmd++) = data;
1027	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1028
1029	spin_lock_irqsave(&dbri->lock, flags);
1030	dbri_cmdsend(dbri, cmd, 3);
1031	spin_unlock_irqrestore(&dbri->lock, flags);
1032	dbri_cmdwait(dbri);
1033
1034}
1035
1036static void recv_fixed(struct snd_dbri *dbri, int pipe, volatile __u32 *ptr)
1037{
1038	if (pipe < 16 || pipe > DBRI_MAX_PIPE) {
1039		printk(KERN_ERR "DBRI: recv_fixed called with "
1040			"illegal pipe number\n");
1041		return;
1042	}
1043
1044	if (D_SDP_MODE(dbri->pipes[pipe].sdp) != D_SDP_FIXED) {
1045		printk(KERN_ERR "DBRI: recv_fixed called on "
1046			"non-fixed pipe %d\n", pipe);
1047		return;
1048	}
1049
1050	if (dbri->pipes[pipe].sdp & D_SDP_TO_SER) {
1051		printk(KERN_ERR "DBRI: recv_fixed called on "
1052			"transmit pipe %d\n", pipe);
1053		return;
1054	}
1055
1056	dbri->pipes[pipe].recv_fixed_ptr = ptr;
1057}
1058
1059/* setup_descs()
1060 *
1061 * Setup transmit/receive data on a "long" pipe - i.e, one associated
1062 * with a DMA buffer.
1063 *
1064 * Only pipe numbers 0-15 can be used in this mode.
1065 *
1066 * This function takes a stream number pointing to a data buffer,
1067 * and work by building chains of descriptors which identify the
1068 * data buffers.  Buffers too large for a single descriptor will
1069 * be spread across multiple descriptors.
1070 *
1071 * All descriptors create a ring buffer.
1072 *
1073 * Lock must be held before calling this.
1074 */
1075static int setup_descs(struct snd_dbri *dbri, int streamno, unsigned int period)
1076{
1077	struct dbri_streaminfo *info = &dbri->stream_info[streamno];
1078	__u32 dvma_buffer;
1079	int desc;
1080	int len;
1081	int first_desc = -1;
1082	int last_desc = -1;
1083
1084	if (info->pipe < 0 || info->pipe > 15) {
1085		printk(KERN_ERR "DBRI: setup_descs: Illegal pipe number\n");
1086		return -2;
1087	}
1088
1089	if (dbri->pipes[info->pipe].sdp == 0) {
1090		printk(KERN_ERR "DBRI: setup_descs: Uninitialized pipe %d\n",
1091		       info->pipe);
1092		return -2;
1093	}
1094
1095	dvma_buffer = info->dvma_buffer;
1096	len = info->size;
1097
1098	if (streamno == DBRI_PLAY) {
1099		if (!(dbri->pipes[info->pipe].sdp & D_SDP_TO_SER)) {
1100			printk(KERN_ERR "DBRI: setup_descs: "
1101				"Called on receive pipe %d\n", info->pipe);
1102			return -2;
1103		}
1104	} else {
1105		if (dbri->pipes[info->pipe].sdp & D_SDP_TO_SER) {
1106			printk(KERN_ERR
1107			    "DBRI: setup_descs: Called on transmit pipe %d\n",
1108			     info->pipe);
1109			return -2;
1110		}
1111		/* Should be able to queue multiple buffers
1112		 * to receive on a pipe
1113		 */
1114		if (pipe_active(dbri, info->pipe)) {
1115			printk(KERN_ERR "DBRI: recv_on_pipe: "
1116				"Called on active pipe %d\n", info->pipe);
1117			return -2;
1118		}
1119
1120		/* Make sure buffer size is multiple of four */
1121		len &= ~3;
1122	}
1123
1124	/* Free descriptors if pipe has any */
1125	desc = dbri->pipes[info->pipe].first_desc;
1126	if (desc >= 0)
1127		do {
1128			dbri->dma->desc[desc].ba = 0;
1129			dbri->dma->desc[desc].nda = 0;
1130			desc = dbri->next_desc[desc];
1131		} while (desc != -1 &&
1132			 desc != dbri->pipes[info->pipe].first_desc);
1133
1134	dbri->pipes[info->pipe].desc = -1;
1135	dbri->pipes[info->pipe].first_desc = -1;
1136
1137	desc = 0;
1138	while (len > 0) {
1139		int mylen;
1140
1141		for (; desc < DBRI_NO_DESCS; desc++) {
1142			if (!dbri->dma->desc[desc].ba)
1143				break;
1144		}
1145
1146		if (desc == DBRI_NO_DESCS) {
1147			printk(KERN_ERR "DBRI: setup_descs: No descriptors\n");
1148			return -1;
1149		}
1150
1151		if (len > DBRI_TD_MAXCNT)
1152			mylen = DBRI_TD_MAXCNT;	/* 8KB - 4 */
1153		else
1154			mylen = len;
1155
1156		if (mylen > period)
1157			mylen = period;
1158
1159		dbri->next_desc[desc] = -1;
1160		dbri->dma->desc[desc].ba = dvma_buffer;
1161		dbri->dma->desc[desc].nda = 0;
1162
1163		if (streamno == DBRI_PLAY) {
1164			dbri->dma->desc[desc].word1 = DBRI_TD_CNT(mylen);
1165			dbri->dma->desc[desc].word4 = 0;
1166			dbri->dma->desc[desc].word1 |= DBRI_TD_F | DBRI_TD_B;
1167		} else {
1168			dbri->dma->desc[desc].word1 = 0;
1169			dbri->dma->desc[desc].word4 =
1170			    DBRI_RD_B | DBRI_RD_BCNT(mylen);
1171		}
1172
1173		if (first_desc == -1)
1174			first_desc = desc;
1175		else {
1176			dbri->next_desc[last_desc] = desc;
1177			dbri->dma->desc[last_desc].nda =
1178			    dbri->dma_dvma + dbri_dma_off(desc, desc);
1179		}
1180
1181		last_desc = desc;
1182		dvma_buffer += mylen;
1183		len -= mylen;
1184	}
1185
1186	if (first_desc == -1 || last_desc == -1) {
1187		printk(KERN_ERR "DBRI: setup_descs: "
1188			" Not enough descriptors available\n");
1189		return -1;
1190	}
1191
1192	dbri->dma->desc[last_desc].nda =
1193	    dbri->dma_dvma + dbri_dma_off(desc, first_desc);
1194	dbri->next_desc[last_desc] = first_desc;
1195	dbri->pipes[info->pipe].first_desc = first_desc;
1196	dbri->pipes[info->pipe].desc = first_desc;
1197
1198#ifdef DBRI_DEBUG
1199	for (desc = first_desc; desc != -1;) {
1200		dprintk(D_DESC, "DESC %d: %08x %08x %08x %08x\n",
1201			desc,
1202			dbri->dma->desc[desc].word1,
1203			dbri->dma->desc[desc].ba,
1204			dbri->dma->desc[desc].nda, dbri->dma->desc[desc].word4);
1205			desc = dbri->next_desc[desc];
1206			if (desc == first_desc)
1207				break;
1208	}
1209#endif
1210	return 0;
1211}
1212
1213/*
1214****************************************************************************
1215************************** DBRI - CHI interface ****************************
1216****************************************************************************
1217
1218The CHI is a four-wire (clock, frame sync, data in, data out) time-division
1219multiplexed serial interface which the DBRI can operate in either master
1220(give clock/frame sync) or slave (take clock/frame sync) mode.
1221
1222*/
1223
1224enum master_or_slave { CHImaster, CHIslave };
1225
1226/*
1227 * Lock must not be held before calling it.
1228 */
1229static void reset_chi(struct snd_dbri *dbri,
1230		      enum master_or_slave master_or_slave,
1231		      int bits_per_frame)
1232{
1233	s32 *cmd;
1234	int val;
1235
1236	/* Set CHI Anchor: Pipe 16 */
1237
1238	cmd = dbri_cmdlock(dbri, 4);
1239	val = D_DTS_VO | D_DTS_VI | D_DTS_INS
1240		| D_DTS_PRVIN(16) | D_PIPE(16) | D_DTS_PRVOUT(16);
1241	*(cmd++) = DBRI_CMD(D_DTS, 0, val);
1242	*(cmd++) = D_TS_ANCHOR | D_TS_NEXT(16);
1243	*(cmd++) = D_TS_ANCHOR | D_TS_NEXT(16);
1244	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1245	dbri_cmdsend(dbri, cmd, 4);
1246
1247	dbri->pipes[16].sdp = 1;
1248	dbri->pipes[16].nextpipe = 16;
1249
1250	cmd = dbri_cmdlock(dbri, 4);
1251
1252	if (master_or_slave == CHIslave) {
1253		/* Setup DBRI for CHI Slave - receive clock, frame sync (FS)
1254		 *
1255		 * CHICM  = 0 (slave mode, 8 kHz frame rate)
1256		 * IR     = give immediate CHI status interrupt
1257		 * EN     = give CHI status interrupt upon change
1258		 */
1259		*(cmd++) = DBRI_CMD(D_CHI, 0, D_CHI_CHICM(0));
1260	} else {
1261		/* Setup DBRI for CHI Master - generate clock, FS
1262		 *
1263		 * BPF				=  bits per 8 kHz frame
1264		 * 12.288 MHz / CHICM_divisor	= clock rate
1265		 * FD = 1 - drive CHIFS on rising edge of CHICK
1266		 */
1267		int clockrate = bits_per_frame * 8;
1268		int divisor = 12288 / clockrate;
1269
1270		if (divisor > 255 || divisor * clockrate != 12288)
1271			printk(KERN_ERR "DBRI: illegal bits_per_frame "
1272				"in setup_chi\n");
1273
1274		*(cmd++) = DBRI_CMD(D_CHI, 0, D_CHI_CHICM(divisor) | D_CHI_FD
1275				    | D_CHI_BPF(bits_per_frame));
1276	}
1277
1278	dbri->chi_bpf = bits_per_frame;
1279
1280	/* CHI Data Mode
1281	 *
1282	 * RCE   =  0 - receive on falling edge of CHICK
1283	 * XCE   =  1 - transmit on rising edge of CHICK
1284	 * XEN   =  1 - enable transmitter
1285	 * REN   =  1 - enable receiver
1286	 */
1287
1288	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1289	*(cmd++) = DBRI_CMD(D_CDM, 0, D_CDM_XCE | D_CDM_XEN | D_CDM_REN);
1290	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1291
1292	dbri_cmdsend(dbri, cmd, 4);
1293}
1294
1295/*
1296****************************************************************************
1297*********************** CS4215 audio codec management **********************
1298****************************************************************************
1299
1300In the standard SPARC audio configuration, the CS4215 codec is attached
1301to the DBRI via the CHI interface and few of the DBRI's PIO pins.
1302
1303 * Lock must not be held before calling it.
1304
1305*/
1306static __devinit void cs4215_setup_pipes(struct snd_dbri *dbri)
1307{
1308	unsigned long flags;
1309
1310	spin_lock_irqsave(&dbri->lock, flags);
1311	/*
1312	 * Data mode:
1313	 * Pipe  4: Send timeslots 1-4 (audio data)
1314	 * Pipe 20: Send timeslots 5-8 (part of ctrl data)
1315	 * Pipe  6: Receive timeslots 1-4 (audio data)
1316	 * Pipe 21: Receive timeslots 6-7. We can only receive 20 bits via
1317	 *          interrupt, and the rest of the data (slot 5 and 8) is
1318	 *          not relevant for us (only for doublechecking).
1319	 *
1320	 * Control mode:
1321	 * Pipe 17: Send timeslots 1-4 (slots 5-8 are read only)
1322	 * Pipe 18: Receive timeslot 1 (clb).
1323	 * Pipe 19: Receive timeslot 7 (version).
1324	 */
1325
1326	setup_pipe(dbri, 4, D_SDP_MEM | D_SDP_TO_SER | D_SDP_MSB);
1327	setup_pipe(dbri, 20, D_SDP_FIXED | D_SDP_TO_SER | D_SDP_MSB);
1328	setup_pipe(dbri, 6, D_SDP_MEM | D_SDP_FROM_SER | D_SDP_MSB);
1329	setup_pipe(dbri, 21, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1330
1331	setup_pipe(dbri, 17, D_SDP_FIXED | D_SDP_TO_SER | D_SDP_MSB);
1332	setup_pipe(dbri, 18, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1333	setup_pipe(dbri, 19, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1334	spin_unlock_irqrestore(&dbri->lock, flags);
1335
1336	dbri_cmdwait(dbri);
1337}
1338
1339static __devinit int cs4215_init_data(struct cs4215 *mm)
1340{
1341	/*
1342	 * No action, memory resetting only.
1343	 *
1344	 * Data Time Slot 5-8
1345	 * Speaker,Line and Headphone enable. Gain set to the half.
1346	 * Input is mike.
1347	 */
1348	mm->data[0] = CS4215_LO(0x20) | CS4215_HE | CS4215_LE;
1349	mm->data[1] = CS4215_RO(0x20) | CS4215_SE;
1350	mm->data[2] = CS4215_LG(0x8) | CS4215_IS | CS4215_PIO0 | CS4215_PIO1;
1351	mm->data[3] = CS4215_RG(0x8) | CS4215_MA(0xf);
1352
1353	/*
1354	 * Control Time Slot 1-4
1355	 * 0: Default I/O voltage scale
1356	 * 1: 8 bit ulaw, 8kHz, mono, high pass filter disabled
1357	 * 2: Serial enable, CHI master, 128 bits per frame, clock 1
1358	 * 3: Tests disabled
1359	 */
1360	mm->ctrl[0] = CS4215_RSRVD_1 | CS4215_MLB;
1361	mm->ctrl[1] = CS4215_DFR_ULAW | CS4215_FREQ[0].csval;
1362	mm->ctrl[2] = CS4215_XCLK | CS4215_BSEL_128 | CS4215_FREQ[0].xtal;
1363	mm->ctrl[3] = 0;
1364
1365	mm->status = 0;
1366	mm->version = 0xff;
1367	mm->precision = 8;	/* For ULAW */
1368	mm->channels = 1;
1369
1370	return 0;
1371}
1372
1373static void cs4215_setdata(struct snd_dbri *dbri, int muted)
1374{
1375	if (muted) {
1376		dbri->mm.data[0] |= 63;
1377		dbri->mm.data[1] |= 63;
1378		dbri->mm.data[2] &= ~15;
1379		dbri->mm.data[3] &= ~15;
1380	} else {
1381		/* Start by setting the playback attenuation. */
1382		struct dbri_streaminfo *info = &dbri->stream_info[DBRI_PLAY];
1383		int left_gain = info->left_gain & 0x3f;
1384		int right_gain = info->right_gain & 0x3f;
1385
1386		dbri->mm.data[0] &= ~0x3f;	/* Reset the volume bits */
1387		dbri->mm.data[1] &= ~0x3f;
1388		dbri->mm.data[0] |= (DBRI_MAX_VOLUME - left_gain);
1389		dbri->mm.data[1] |= (DBRI_MAX_VOLUME - right_gain);
1390
1391		/* Now set the recording gain. */
1392		info = &dbri->stream_info[DBRI_REC];
1393		left_gain = info->left_gain & 0xf;
1394		right_gain = info->right_gain & 0xf;
1395		dbri->mm.data[2] |= CS4215_LG(left_gain);
1396		dbri->mm.data[3] |= CS4215_RG(right_gain);
1397	}
1398
1399	xmit_fixed(dbri, 20, *(int *)dbri->mm.data);
1400}
1401
1402/*
1403 * Set the CS4215 to data mode.
1404 */
1405static void cs4215_open(struct snd_dbri *dbri)
1406{
1407	int data_width;
1408	u32 tmp;
1409	unsigned long flags;
1410
1411	dprintk(D_MM, "cs4215_open: %d channels, %d bits\n",
1412		dbri->mm.channels, dbri->mm.precision);
1413
1414	/* Temporarily mute outputs, and wait 1/8000 sec (125 us)
1415	 * to make sure this takes.  This avoids clicking noises.
1416	 */
1417
1418	cs4215_setdata(dbri, 1);
1419	udelay(125);
1420
1421	/*
1422	 * Data mode:
1423	 * Pipe  4: Send timeslots 1-4 (audio data)
1424	 * Pipe 20: Send timeslots 5-8 (part of ctrl data)
1425	 * Pipe  6: Receive timeslots 1-4 (audio data)
1426	 * Pipe 21: Receive timeslots 6-7. We can only receive 20 bits via
1427	 *          interrupt, and the rest of the data (slot 5 and 8) is
1428	 *          not relevant for us (only for doublechecking).
1429	 *
1430	 * Just like in control mode, the time slots are all offset by eight
1431	 * bits.  The CS4215, it seems, observes TSIN (the delayed signal)
1432	 * even if it's the CHI master.  Don't ask me...
1433	 */
1434	spin_lock_irqsave(&dbri->lock, flags);
1435	tmp = sbus_readl(dbri->regs + REG0);
1436	tmp &= ~(D_C);		/* Disable CHI */
1437	sbus_writel(tmp, dbri->regs + REG0);
1438
1439	/* Switch CS4215 to data mode - set PIO3 to 1 */
1440	sbus_writel(D_ENPIO | D_PIO1 | D_PIO3 |
1441		    (dbri->mm.onboard ? D_PIO0 : D_PIO2), dbri->regs + REG2);
1442
1443	reset_chi(dbri, CHIslave, 128);
1444
1445	/* Note: this next doesn't work for 8-bit stereo, because the two
1446	 * channels would be on timeslots 1 and 3, with 2 and 4 idle.
1447	 * (See CS4215 datasheet Fig 15)
1448	 *
1449	 * DBRI non-contiguous mode would be required to make this work.
1450	 */
1451	data_width = dbri->mm.channels * dbri->mm.precision;
1452
1453	link_time_slot(dbri, 4, 16, 16, data_width, dbri->mm.offset);
1454	link_time_slot(dbri, 20, 4, 16, 32, dbri->mm.offset + 32);
1455	link_time_slot(dbri, 6, 16, 16, data_width, dbri->mm.offset);
1456	link_time_slot(dbri, 21, 6, 16, 16, dbri->mm.offset + 40);
1457
1458	/* FIXME: enable CHI after _setdata? */
1459	tmp = sbus_readl(dbri->regs + REG0);
1460	tmp |= D_C;		/* Enable CHI */
1461	sbus_writel(tmp, dbri->regs + REG0);
1462	spin_unlock_irqrestore(&dbri->lock, flags);
1463
1464	cs4215_setdata(dbri, 0);
1465}
1466
1467/*
1468 * Send the control information (i.e. audio format)
1469 */
1470static int cs4215_setctrl(struct snd_dbri *dbri)
1471{
1472	int i, val;
1473	u32 tmp;
1474	unsigned long flags;
1475
1476	/* FIXME - let the CPU do something useful during these delays */
1477
1478	/* Temporarily mute outputs, and wait 1/8000 sec (125 us)
1479	 * to make sure this takes.  This avoids clicking noises.
1480	 */
1481	cs4215_setdata(dbri, 1);
1482	udelay(125);
1483
1484	/*
1485	 * Enable Control mode: Set DBRI's PIO3 (4215's D/~C) to 0, then wait
1486	 * 12 cycles <= 12/(5512.5*64) sec = 34.01 usec
1487	 */
1488	val = D_ENPIO | D_PIO1 | (dbri->mm.onboard ? D_PIO0 : D_PIO2);
1489	sbus_writel(val, dbri->regs + REG2);
1490	dprintk(D_MM, "cs4215_setctrl: reg2=0x%x\n", val);
1491	udelay(34);
1492
1493	/* In Control mode, the CS4215 is a slave device, so the DBRI must
1494	 * operate as CHI master, supplying clocking and frame synchronization.
1495	 *
1496	 * In Data mode, however, the CS4215 must be CHI master to insure
1497	 * that its data stream is synchronous with its codec.
1498	 *
1499	 * The upshot of all this?  We start by putting the DBRI into master
1500	 * mode, program the CS4215 in Control mode, then switch the CS4215
1501	 * into Data mode and put the DBRI into slave mode.  Various timing
1502	 * requirements must be observed along the way.
1503	 *
1504	 * Oh, and one more thing, on a SPARCStation 20 (and maybe
1505	 * others?), the addressing of the CS4215's time slots is
1506	 * offset by eight bits, so we add eight to all the "cycle"
1507	 * values in the Define Time Slot (DTS) commands.  This is
1508	 * done in hardware by a TI 248 that delays the DBRI->4215
1509	 * frame sync signal by eight clock cycles.  Anybody know why?
1510	 */
1511	spin_lock_irqsave(&dbri->lock, flags);
1512	tmp = sbus_readl(dbri->regs + REG0);
1513	tmp &= ~D_C;		/* Disable CHI */
1514	sbus_writel(tmp, dbri->regs + REG0);
1515
1516	reset_chi(dbri, CHImaster, 128);
1517
1518	/*
1519	 * Control mode:
1520	 * Pipe 17: Send timeslots 1-4 (slots 5-8 are read only)
1521	 * Pipe 18: Receive timeslot 1 (clb).
1522	 * Pipe 19: Receive timeslot 7 (version).
1523	 */
1524
1525	link_time_slot(dbri, 17, 16, 16, 32, dbri->mm.offset);
1526	link_time_slot(dbri, 18, 16, 16, 8, dbri->mm.offset);
1527	link_time_slot(dbri, 19, 18, 16, 8, dbri->mm.offset + 48);
1528	spin_unlock_irqrestore(&dbri->lock, flags);
1529
1530	/* Wait for the chip to echo back CLB (Control Latch Bit) as zero */
1531	dbri->mm.ctrl[0] &= ~CS4215_CLB;
1532	xmit_fixed(dbri, 17, *(int *)dbri->mm.ctrl);
1533
1534	spin_lock_irqsave(&dbri->lock, flags);
1535	tmp = sbus_readl(dbri->regs + REG0);
1536	tmp |= D_C;		/* Enable CHI */
1537	sbus_writel(tmp, dbri->regs + REG0);
1538	spin_unlock_irqrestore(&dbri->lock, flags);
1539
1540	for (i = 10; ((dbri->mm.status & 0xe4) != 0x20); --i)
1541		msleep_interruptible(1);
1542
1543	if (i == 0) {
1544		dprintk(D_MM, "CS4215 didn't respond to CLB (0x%02x)\n",
1545			dbri->mm.status);
1546		return -1;
1547	}
1548
1549	/* Disable changes to our copy of the version number, as we are about
1550	 * to leave control mode.
1551	 */
1552	recv_fixed(dbri, 19, NULL);
1553
1554	/* Terminate CS4215 control mode - data sheet says
1555	 * "Set CLB=1 and send two more frames of valid control info"
1556	 */
1557	dbri->mm.ctrl[0] |= CS4215_CLB;
1558	xmit_fixed(dbri, 17, *(int *)dbri->mm.ctrl);
1559
1560	/* Two frames of control info @ 8kHz frame rate = 250 us delay */
1561	udelay(250);
1562
1563	cs4215_setdata(dbri, 0);
1564
1565	return 0;
1566}
1567
1568/*
1569 * Setup the codec with the sampling rate, audio format and number of
1570 * channels.
1571 * As part of the process we resend the settings for the data
1572 * timeslots as well.
1573 */
1574static int cs4215_prepare(struct snd_dbri *dbri, unsigned int rate,
1575			  snd_pcm_format_t format, unsigned int channels)
1576{
1577	int freq_idx;
1578	int ret = 0;
1579
1580	/* Lookup index for this rate */
1581	for (freq_idx = 0; CS4215_FREQ[freq_idx].freq != 0; freq_idx++) {
1582		if (CS4215_FREQ[freq_idx].freq == rate)
1583			break;
1584	}
1585	if (CS4215_FREQ[freq_idx].freq != rate) {
1586		printk(KERN_WARNING "DBRI: Unsupported rate %d Hz\n", rate);
1587		return -1;
1588	}
1589
1590	switch (format) {
1591	case SNDRV_PCM_FORMAT_MU_LAW:
1592		dbri->mm.ctrl[1] = CS4215_DFR_ULAW;
1593		dbri->mm.precision = 8;
1594		break;
1595	case SNDRV_PCM_FORMAT_A_LAW:
1596		dbri->mm.ctrl[1] = CS4215_DFR_ALAW;
1597		dbri->mm.precision = 8;
1598		break;
1599	case SNDRV_PCM_FORMAT_U8:
1600		dbri->mm.ctrl[1] = CS4215_DFR_LINEAR8;
1601		dbri->mm.precision = 8;
1602		break;
1603	case SNDRV_PCM_FORMAT_S16_BE:
1604		dbri->mm.ctrl[1] = CS4215_DFR_LINEAR16;
1605		dbri->mm.precision = 16;
1606		break;
1607	default:
1608		printk(KERN_WARNING "DBRI: Unsupported format %d\n", format);
1609		return -1;
1610	}
1611
1612	/* Add rate parameters */
1613	dbri->mm.ctrl[1] |= CS4215_FREQ[freq_idx].csval;
1614	dbri->mm.ctrl[2] = CS4215_XCLK |
1615	    CS4215_BSEL_128 | CS4215_FREQ[freq_idx].xtal;
1616
1617	dbri->mm.channels = channels;
1618	if (channels == 2)
1619		dbri->mm.ctrl[1] |= CS4215_DFR_STEREO;
1620
1621	ret = cs4215_setctrl(dbri);
1622	if (ret == 0)
1623		cs4215_open(dbri);	/* set codec to data mode */
1624
1625	return ret;
1626}
1627
1628/*
1629 *
1630 */
1631static __devinit int cs4215_init(struct snd_dbri *dbri)
1632{
1633	u32 reg2 = sbus_readl(dbri->regs + REG2);
1634	dprintk(D_MM, "cs4215_init: reg2=0x%x\n", reg2);
1635
1636	/* Look for the cs4215 chips */
1637	if (reg2 & D_PIO2) {
1638		dprintk(D_MM, "Onboard CS4215 detected\n");
1639		dbri->mm.onboard = 1;
1640	}
1641	if (reg2 & D_PIO0) {
1642		dprintk(D_MM, "Speakerbox detected\n");
1643		dbri->mm.onboard = 0;
1644
1645		if (reg2 & D_PIO2) {
1646			printk(KERN_INFO "DBRI: Using speakerbox / "
1647			       "ignoring onboard mmcodec.\n");
1648			sbus_writel(D_ENPIO2, dbri->regs + REG2);
1649		}
1650	}
1651
1652	if (!(reg2 & (D_PIO0 | D_PIO2))) {
1653		printk(KERN_ERR "DBRI: no mmcodec found.\n");
1654		return -EIO;
1655	}
1656
1657	cs4215_setup_pipes(dbri);
1658	cs4215_init_data(&dbri->mm);
1659
1660	/* Enable capture of the status & version timeslots. */
1661	recv_fixed(dbri, 18, &dbri->mm.status);
1662	recv_fixed(dbri, 19, &dbri->mm.version);
1663
1664	dbri->mm.offset = dbri->mm.onboard ? 0 : 8;
1665	if (cs4215_setctrl(dbri) == -1 || dbri->mm.version == 0xff) {
1666		dprintk(D_MM, "CS4215 failed probe at offset %d\n",
1667			dbri->mm.offset);
1668		return -EIO;
1669	}
1670	dprintk(D_MM, "Found CS4215 at offset %d\n", dbri->mm.offset);
1671
1672	return 0;
1673}
1674
1675/*
1676****************************************************************************
1677*************************** DBRI interrupt handler *************************
1678****************************************************************************
1679
1680The DBRI communicates with the CPU mainly via a circular interrupt
1681buffer.  When an interrupt is signaled, the CPU walks through the
1682buffer and calls dbri_process_one_interrupt() for each interrupt word.
1683Complicated interrupts are handled by dedicated functions (which
1684appear first in this file).  Any pending interrupts can be serviced by
1685calling dbri_process_interrupt_buffer(), which works even if the CPU's
1686interrupts are disabled.
1687
1688*/
1689
1690/* xmit_descs()
1691 *
1692 * Starts transmitting the current TD's for recording/playing.
1693 * For playback, ALSA has filled the DMA memory with new data (we hope).
1694 */
1695static void xmit_descs(struct snd_dbri *dbri)
1696{
1697	struct dbri_streaminfo *info;
1698	s32 *cmd;
1699	unsigned long flags;
1700	int first_td;
1701
1702	if (dbri == NULL)
1703		return;		/* Disabled */
1704
1705	info = &dbri->stream_info[DBRI_REC];
1706	spin_lock_irqsave(&dbri->lock, flags);
1707
1708	if (info->pipe >= 0) {
1709		first_td = dbri->pipes[info->pipe].first_desc;
1710
1711		dprintk(D_DESC, "xmit_descs rec @ TD %d\n", first_td);
1712
1713		/* Stream could be closed by the time we run. */
1714		if (first_td >= 0) {
1715			cmd = dbri_cmdlock(dbri, 2);
1716			*(cmd++) = DBRI_CMD(D_SDP, 0,
1717					    dbri->pipes[info->pipe].sdp
1718					    | D_SDP_P | D_SDP_EVERY | D_SDP_C);
1719			*(cmd++) = dbri->dma_dvma +
1720				   dbri_dma_off(desc, first_td);
1721			dbri_cmdsend(dbri, cmd, 2);
1722
1723			/* Reset our admin of the pipe. */
1724			dbri->pipes[info->pipe].desc = first_td;
1725		}
1726	}
1727
1728	info = &dbri->stream_info[DBRI_PLAY];
1729
1730	if (info->pipe >= 0) {
1731		first_td = dbri->pipes[info->pipe].first_desc;
1732
1733		dprintk(D_DESC, "xmit_descs play @ TD %d\n", first_td);
1734
1735		/* Stream could be closed by the time we run. */
1736		if (first_td >= 0) {
1737			cmd = dbri_cmdlock(dbri, 2);
1738			*(cmd++) = DBRI_CMD(D_SDP, 0,
1739					    dbri->pipes[info->pipe].sdp
1740					    | D_SDP_P | D_SDP_EVERY | D_SDP_C);
1741			*(cmd++) = dbri->dma_dvma +
1742				   dbri_dma_off(desc, first_td);
1743			dbri_cmdsend(dbri, cmd, 2);
1744
1745			/* Reset our admin of the pipe. */
1746			dbri->pipes[info->pipe].desc = first_td;
1747		}
1748	}
1749
1750	spin_unlock_irqrestore(&dbri->lock, flags);
1751}
1752
1753/* transmission_complete_intr()
1754 *
1755 * Called by main interrupt handler when DBRI signals transmission complete
1756 * on a pipe (interrupt triggered by the B bit in a transmit descriptor).
1757 *
1758 * Walks through the pipe's list of transmit buffer descriptors and marks
1759 * them as available. Stops when the first descriptor is found without
1760 * TBC (Transmit Buffer Complete) set, or we've run through them all.
1761 *
1762 * The DMA buffers are not released. They form a ring buffer and
1763 * they are filled by ALSA while others are transmitted by DMA.
1764 *
1765 */
1766
1767static void transmission_complete_intr(struct snd_dbri *dbri, int pipe)
1768{
1769	struct dbri_streaminfo *info = &dbri->stream_info[DBRI_PLAY];
1770	int td = dbri->pipes[pipe].desc;
1771	int status;
1772
1773	while (td >= 0) {
1774		if (td >= DBRI_NO_DESCS) {
1775			printk(KERN_ERR "DBRI: invalid td on pipe %d\n", pipe);
1776			return;
1777		}
1778
1779		status = DBRI_TD_STATUS(dbri->dma->desc[td].word4);
1780		if (!(status & DBRI_TD_TBC))
1781			break;
1782
1783		dprintk(D_INT, "TD %d, status 0x%02x\n", td, status);
1784
1785		dbri->dma->desc[td].word4 = 0;	/* Reset it for next time. */
1786		info->offset += DBRI_RD_CNT(dbri->dma->desc[td].word1);
1787
1788		td = dbri->next_desc[td];
1789		dbri->pipes[pipe].desc = td;
1790	}
1791
1792	/* Notify ALSA */
1793	spin_unlock(&dbri->lock);
1794	snd_pcm_period_elapsed(info->substream);
1795	spin_lock(&dbri->lock);
1796}
1797
1798static void reception_complete_intr(struct snd_dbri *dbri, int pipe)
1799{
1800	struct dbri_streaminfo *info;
1801	int rd = dbri->pipes[pipe].desc;
1802	s32 status;
1803
1804	if (rd < 0 || rd >= DBRI_NO_DESCS) {
1805		printk(KERN_ERR "DBRI: invalid rd on pipe %d\n", pipe);
1806		return;
1807	}
1808
1809	dbri->pipes[pipe].desc = dbri->next_desc[rd];
1810	status = dbri->dma->desc[rd].word1;
1811	dbri->dma->desc[rd].word1 = 0;	/* Reset it for next time. */
1812
1813	info = &dbri->stream_info[DBRI_REC];
1814	info->offset += DBRI_RD_CNT(status);
1815
1816	/* FIXME: Check status */
1817
1818	dprintk(D_INT, "Recv RD %d, status 0x%02x, len %d\n",
1819		rd, DBRI_RD_STATUS(status), DBRI_RD_CNT(status));
1820
1821	/* Notify ALSA */
1822	spin_unlock(&dbri->lock);
1823	snd_pcm_period_elapsed(info->substream);
1824	spin_lock(&dbri->lock);
1825}
1826
1827static void dbri_process_one_interrupt(struct snd_dbri *dbri, int x)
1828{
1829	int val = D_INTR_GETVAL(x);
1830	int channel = D_INTR_GETCHAN(x);
1831	int command = D_INTR_GETCMD(x);
1832	int code = D_INTR_GETCODE(x);
1833#ifdef DBRI_DEBUG
1834	int rval = D_INTR_GETRVAL(x);
1835#endif
1836
1837	if (channel == D_INTR_CMD) {
1838		dprintk(D_CMD, "INTR: Command: %-5s  Value:%d\n",
1839			cmds[command], val);
1840	} else {
1841		dprintk(D_INT, "INTR: Chan:%d Code:%d Val:%#x\n",
1842			channel, code, rval);
1843	}
1844
1845	switch (code) {
1846	case D_INTR_CMDI:
1847		if (command != D_WAIT)
1848			printk(KERN_ERR "DBRI: Command read interrupt\n");
1849		break;
1850	case D_INTR_BRDY:
1851		reception_complete_intr(dbri, channel);
1852		break;
1853	case D_INTR_XCMP:
1854	case D_INTR_MINT:
1855		transmission_complete_intr(dbri, channel);
1856		break;
1857	case D_INTR_UNDR:
1858		/* UNDR - Transmission underrun
1859		 * resend SDP command with clear pipe bit (C) set
1860		 */
1861		{
1862	/* FIXME: do something useful in case of underrun */
1863			printk(KERN_ERR "DBRI: Underrun error\n");
1864#if 0
1865			s32 *cmd;
1866			int pipe = channel;
1867			int td = dbri->pipes[pipe].desc;
1868
1869			dbri->dma->desc[td].word4 = 0;
1870			cmd = dbri_cmdlock(dbri, NoGetLock);
1871			*(cmd++) = DBRI_CMD(D_SDP, 0,
1872					    dbri->pipes[pipe].sdp
1873					    | D_SDP_P | D_SDP_C | D_SDP_2SAME);
1874			*(cmd++) = dbri->dma_dvma + dbri_dma_off(desc, td);
1875			dbri_cmdsend(dbri, cmd);
1876#endif
1877		}
1878		break;
1879	case D_INTR_FXDT:
1880		/* FXDT - Fixed data change */
1881		if (dbri->pipes[channel].sdp & D_SDP_MSB)
1882			val = reverse_bytes(val, dbri->pipes[channel].length);
1883
1884		if (dbri->pipes[channel].recv_fixed_ptr)
1885			*(dbri->pipes[channel].recv_fixed_ptr) = val;
1886		break;
1887	default:
1888		if (channel != D_INTR_CMD)
1889			printk(KERN_WARNING
1890			       "DBRI: Ignored Interrupt: %d (0x%x)\n", code, x);
1891	}
1892}
1893
1894/* dbri_process_interrupt_buffer advances through the DBRI's interrupt
1895 * buffer until it finds a zero word (indicating nothing more to do
1896 * right now).  Non-zero words require processing and are handed off
1897 * to dbri_process_one_interrupt AFTER advancing the pointer.
1898 */
1899static void dbri_process_interrupt_buffer(struct snd_dbri *dbri)
1900{
1901	s32 x;
1902
1903	while ((x = dbri->dma->intr[dbri->dbri_irqp]) != 0) {
1904		dbri->dma->intr[dbri->dbri_irqp] = 0;
1905		dbri->dbri_irqp++;
1906		if (dbri->dbri_irqp == DBRI_INT_BLK)
1907			dbri->dbri_irqp = 1;
1908
1909		dbri_process_one_interrupt(dbri, x);
1910	}
1911}
1912
1913static irqreturn_t snd_dbri_interrupt(int irq, void *dev_id)
1914{
1915	struct snd_dbri *dbri = dev_id;
1916	static int errcnt = 0;
1917	int x;
1918
1919	if (dbri == NULL)
1920		return IRQ_NONE;
1921	spin_lock(&dbri->lock);
1922
1923	/*
1924	 * Read it, so the interrupt goes away.
1925	 */
1926	x = sbus_readl(dbri->regs + REG1);
1927
1928	if (x & (D_MRR | D_MLE | D_LBG | D_MBE)) {
1929		u32 tmp;
1930
1931		if (x & D_MRR)
1932			printk(KERN_ERR
1933			       "DBRI: Multiple Error Ack on SBus reg1=0x%x\n",
1934			       x);
1935		if (x & D_MLE)
1936			printk(KERN_ERR
1937			       "DBRI: Multiple Late Error on SBus reg1=0x%x\n",
1938			       x);
1939		if (x & D_LBG)
1940			printk(KERN_ERR
1941			       "DBRI: Lost Bus Grant on SBus reg1=0x%x\n", x);
1942		if (x & D_MBE)
1943			printk(KERN_ERR
1944			       "DBRI: Burst Error on SBus reg1=0x%x\n", x);
1945
1946		/* Some of these SBus errors cause the chip's SBus circuitry
1947		 * to be disabled, so just re-enable and try to keep going.
1948		 *
1949		 * The only one I've seen is MRR, which will be triggered
1950		 * if you let a transmit pipe underrun, then try to CDP it.
1951		 *
1952		 * If these things persist, we reset the chip.
1953		 */
1954		if ((++errcnt) % 10 == 0) {
1955			dprintk(D_INT, "Interrupt errors exceeded.\n");
1956			dbri_reset(dbri);
1957		} else {
1958			tmp = sbus_readl(dbri->regs + REG0);
1959			tmp &= ~(D_D);
1960			sbus_writel(tmp, dbri->regs + REG0);
1961		}
1962	}
1963
1964	dbri_process_interrupt_buffer(dbri);
1965
1966	spin_unlock(&dbri->lock);
1967
1968	return IRQ_HANDLED;
1969}
1970
1971/****************************************************************************
1972		PCM Interface
1973****************************************************************************/
1974static struct snd_pcm_hardware snd_dbri_pcm_hw = {
1975	.info		= SNDRV_PCM_INFO_MMAP |
1976			  SNDRV_PCM_INFO_INTERLEAVED |
1977			  SNDRV_PCM_INFO_BLOCK_TRANSFER |
1978			  SNDRV_PCM_INFO_MMAP_VALID,
1979	.formats	= SNDRV_PCM_FMTBIT_MU_LAW |
1980			  SNDRV_PCM_FMTBIT_A_LAW |
1981			  SNDRV_PCM_FMTBIT_U8 |
1982			  SNDRV_PCM_FMTBIT_S16_BE,
1983	.rates		= SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_5512,
1984	.rate_min		= 5512,
1985	.rate_max		= 48000,
1986	.channels_min		= 1,
1987	.channels_max		= 2,
1988	.buffer_bytes_max	= 64 * 1024,
1989	.period_bytes_min	= 1,
1990	.period_bytes_max	= DBRI_TD_MAXCNT,
1991	.periods_min		= 1,
1992	.periods_max		= 1024,
1993};
1994
1995static int snd_hw_rule_format(struct snd_pcm_hw_params *params,
1996			      struct snd_pcm_hw_rule *rule)
1997{
1998	struct snd_interval *c = hw_param_interval(params,
1999				SNDRV_PCM_HW_PARAM_CHANNELS);
2000	struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
2001	struct snd_mask fmt;
2002
2003	snd_mask_any(&fmt);
2004	if (c->min > 1) {
2005		fmt.bits[0] &= SNDRV_PCM_FMTBIT_S16_BE;
2006		return snd_mask_refine(f, &fmt);
2007	}
2008	return 0;
2009}
2010
2011static int snd_hw_rule_channels(struct snd_pcm_hw_params *params,
2012				struct snd_pcm_hw_rule *rule)
2013{
2014	struct snd_interval *c = hw_param_interval(params,
2015				SNDRV_PCM_HW_PARAM_CHANNELS);
2016	struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
2017	struct snd_interval ch;
2018
2019	snd_interval_any(&ch);
2020	if (!(f->bits[0] & SNDRV_PCM_FMTBIT_S16_BE)) {
2021		ch.min = 1;
2022		ch.max = 1;
2023		ch.integer = 1;
2024		return snd_interval_refine(c, &ch);
2025	}
2026	return 0;
2027}
2028
2029static int snd_dbri_open(struct snd_pcm_substream *substream)
2030{
2031	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2032	struct snd_pcm_runtime *runtime = substream->runtime;
2033	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2034	unsigned long flags;
2035
2036	dprintk(D_USR, "open audio output.\n");
2037	runtime->hw = snd_dbri_pcm_hw;
2038
2039	spin_lock_irqsave(&dbri->lock, flags);
2040	info->substream = substream;
2041	info->offset = 0;
2042	info->dvma_buffer = 0;
2043	info->pipe = -1;
2044	spin_unlock_irqrestore(&dbri->lock, flags);
2045
2046	snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
2047			    snd_hw_rule_format, NULL, SNDRV_PCM_HW_PARAM_FORMAT,
2048			    -1);
2049	snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_FORMAT,
2050			    snd_hw_rule_channels, NULL,
2051			    SNDRV_PCM_HW_PARAM_CHANNELS,
2052			    -1);
2053
2054	cs4215_open(dbri);
2055
2056	return 0;
2057}
2058
2059static int snd_dbri_close(struct snd_pcm_substream *substream)
2060{
2061	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2062	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2063
2064	dprintk(D_USR, "close audio output.\n");
2065	info->substream = NULL;
2066	info->offset = 0;
2067
2068	return 0;
2069}
2070
2071static int snd_dbri_hw_params(struct snd_pcm_substream *substream,
2072			      struct snd_pcm_hw_params *hw_params)
2073{
2074	struct snd_pcm_runtime *runtime = substream->runtime;
2075	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2076	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2077	int direction;
2078	int ret;
2079
2080	/* set sampling rate, audio format and number of channels */
2081	ret = cs4215_prepare(dbri, params_rate(hw_params),
2082			     params_format(hw_params),
2083			     params_channels(hw_params));
2084	if (ret != 0)
2085		return ret;
2086
2087	if ((ret = snd_pcm_lib_malloc_pages(substream,
2088				params_buffer_bytes(hw_params))) < 0) {
2089		printk(KERN_ERR "malloc_pages failed with %d\n", ret);
2090		return ret;
2091	}
2092
2093	/* hw_params can get called multiple times. Only map the DMA once.
2094	 */
2095	if (info->dvma_buffer == 0) {
2096		if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2097			direction = SBUS_DMA_TODEVICE;
2098		else
2099			direction = SBUS_DMA_FROMDEVICE;
2100
2101		info->dvma_buffer = sbus_map_single(dbri->sdev,
2102					runtime->dma_area,
2103					params_buffer_bytes(hw_params),
2104					direction);
2105	}
2106
2107	direction = params_buffer_bytes(hw_params);
2108	dprintk(D_USR, "hw_params: %d bytes, dvma=%x\n",
2109		direction, info->dvma_buffer);
2110	return 0;
2111}
2112
2113static int snd_dbri_hw_free(struct snd_pcm_substream *substream)
2114{
2115	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2116	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2117	int direction;
2118
2119	dprintk(D_USR, "hw_free.\n");
2120
2121	/* hw_free can get called multiple times. Only unmap the DMA once.
2122	 */
2123	if (info->dvma_buffer) {
2124		if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2125			direction = SBUS_DMA_TODEVICE;
2126		else
2127			direction = SBUS_DMA_FROMDEVICE;
2128
2129		sbus_unmap_single(dbri->sdev, info->dvma_buffer,
2130				  substream->runtime->buffer_size, direction);
2131		info->dvma_buffer = 0;
2132	}
2133	if (info->pipe != -1) {
2134		reset_pipe(dbri, info->pipe);
2135		info->pipe = -1;
2136	}
2137
2138	return snd_pcm_lib_free_pages(substream);
2139}
2140
2141static int snd_dbri_prepare(struct snd_pcm_substream *substream)
2142{
2143	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2144	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2145	int ret;
2146
2147	info->size = snd_pcm_lib_buffer_bytes(substream);
2148	if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2149		info->pipe = 4;	/* Send pipe */
2150	else
2151		info->pipe = 6;	/* Receive pipe */
2152
2153	spin_lock_irq(&dbri->lock);
2154	info->offset = 0;
2155
2156	/* Setup the all the transmit/receive descriptors to cover the
2157	 * whole DMA buffer.
2158	 */
2159	ret = setup_descs(dbri, DBRI_STREAMNO(substream),
2160			  snd_pcm_lib_period_bytes(substream));
2161
2162	spin_unlock_irq(&dbri->lock);
2163
2164	dprintk(D_USR, "prepare audio output. %d bytes\n", info->size);
2165	return ret;
2166}
2167
2168static int snd_dbri_trigger(struct snd_pcm_substream *substream, int cmd)
2169{
2170	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2171	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2172	int ret = 0;
2173
2174	switch (cmd) {
2175	case SNDRV_PCM_TRIGGER_START:
2176		dprintk(D_USR, "start audio, period is %d bytes\n",
2177			(int)snd_pcm_lib_period_bytes(substream));
2178		/* Re-submit the TDs. */
2179		xmit_descs(dbri);
2180		break;
2181	case SNDRV_PCM_TRIGGER_STOP:
2182		dprintk(D_USR, "stop audio.\n");
2183		reset_pipe(dbri, info->pipe);
2184		break;
2185	default:
2186		ret = -EINVAL;
2187	}
2188
2189	return ret;
2190}
2191
2192static snd_pcm_uframes_t snd_dbri_pointer(struct snd_pcm_substream *substream)
2193{
2194	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2195	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2196	snd_pcm_uframes_t ret;
2197
2198	ret = bytes_to_frames(substream->runtime, info->offset)
2199		% substream->runtime->buffer_size;
2200	dprintk(D_USR, "I/O pointer: %ld frames of %ld.\n",
2201		ret, substream->runtime->buffer_size);
2202	return ret;
2203}
2204
2205static struct snd_pcm_ops snd_dbri_ops = {
2206	.open = snd_dbri_open,
2207	.close = snd_dbri_close,
2208	.ioctl = snd_pcm_lib_ioctl,
2209	.hw_params = snd_dbri_hw_params,
2210	.hw_free = snd_dbri_hw_free,
2211	.prepare = snd_dbri_prepare,
2212	.trigger = snd_dbri_trigger,
2213	.pointer = snd_dbri_pointer,
2214};
2215
2216static int __devinit snd_dbri_pcm(struct snd_card *card)
2217{
2218	struct snd_pcm *pcm;
2219	int err;
2220
2221	if ((err = snd_pcm_new(card,
2222			       /* ID */		    "sun_dbri",
2223			       /* device */	    0,
2224			       /* playback count */ 1,
2225			       /* capture count */  1, &pcm)) < 0)
2226		return err;
2227	snd_assert(pcm != NULL, return -EINVAL);
2228
2229	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_dbri_ops);
2230	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_dbri_ops);
2231
2232	pcm->private_data = card->private_data;
2233	pcm->info_flags = 0;
2234	strcpy(pcm->name, card->shortname);
2235
2236	if ((err = snd_pcm_lib_preallocate_pages_for_all(pcm,
2237			SNDRV_DMA_TYPE_CONTINUOUS,
2238			snd_dma_continuous_data(GFP_KERNEL),
2239			64 * 1024, 64 * 1024)) < 0)
2240		return err;
2241
2242	return 0;
2243}
2244
2245/*****************************************************************************
2246			Mixer interface
2247*****************************************************************************/
2248
2249static int snd_cs4215_info_volume(struct snd_kcontrol *kcontrol,
2250				  struct snd_ctl_elem_info *uinfo)
2251{
2252	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2253	uinfo->count = 2;
2254	uinfo->value.integer.min = 0;
2255	if (kcontrol->private_value == DBRI_PLAY)
2256		uinfo->value.integer.max = DBRI_MAX_VOLUME;
2257	else
2258		uinfo->value.integer.max = DBRI_MAX_GAIN;
2259	return 0;
2260}
2261
2262static int snd_cs4215_get_volume(struct snd_kcontrol *kcontrol,
2263				 struct snd_ctl_elem_value *ucontrol)
2264{
2265	struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2266	struct dbri_streaminfo *info;
2267	snd_assert(dbri != NULL, return -EINVAL);
2268	info = &dbri->stream_info[kcontrol->private_value];
2269	snd_assert(info != NULL, return -EINVAL);
2270
2271	ucontrol->value.integer.value[0] = info->left_gain;
2272	ucontrol->value.integer.value[1] = info->right_gain;
2273	return 0;
2274}
2275
2276static int snd_cs4215_put_volume(struct snd_kcontrol *kcontrol,
2277				 struct snd_ctl_elem_value *ucontrol)
2278{
2279	struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2280	struct dbri_streaminfo *info =
2281				&dbri->stream_info[kcontrol->private_value];
2282	unsigned int vol[2];
2283	int changed = 0;
2284
2285	vol[0] = ucontrol->value.integer.value[0];
2286	vol[1] = ucontrol->value.integer.value[1];
2287	if (kcontrol->private_value == DBRI_PLAY) {
2288		if (vol[0] > DBRI_MAX_VOLUME || vol[1] > DBRI_MAX_VOLUME)
2289			return -EINVAL;
2290	} else {
2291		if (vol[0] > DBRI_MAX_GAIN || vol[1] > DBRI_MAX_GAIN)
2292			return -EINVAL;
2293	}
2294
2295	if (info->left_gain != vol[0]) {
2296		info->left_gain = vol[0];
2297		changed = 1;
2298	}
2299	if (info->right_gain != vol[1]) {
2300		info->right_gain = vol[1];
2301		changed = 1;
2302	}
2303	if (changed) {
2304		/* First mute outputs, and wait 1/8000 sec (125 us)
2305		 * to make sure this takes.  This avoids clicking noises.
2306		 */
2307		cs4215_setdata(dbri, 1);
2308		udelay(125);
2309		cs4215_setdata(dbri, 0);
2310	}
2311	return changed;
2312}
2313
2314static int snd_cs4215_info_single(struct snd_kcontrol *kcontrol,
2315				  struct snd_ctl_elem_info *uinfo)
2316{
2317	int mask = (kcontrol->private_value >> 16) & 0xff;
2318
2319	uinfo->type = (mask == 1) ?
2320	    SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2321	uinfo->count = 1;
2322	uinfo->value.integer.min = 0;
2323	uinfo->value.integer.max = mask;
2324	return 0;
2325}
2326
2327static int snd_cs4215_get_single(struct snd_kcontrol *kcontrol,
2328				 struct snd_ctl_elem_value *ucontrol)
2329{
2330	struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2331	int elem = kcontrol->private_value & 0xff;
2332	int shift = (kcontrol->private_value >> 8) & 0xff;
2333	int mask = (kcontrol->private_value >> 16) & 0xff;
2334	int invert = (kcontrol->private_value >> 24) & 1;
2335	snd_assert(dbri != NULL, return -EINVAL);
2336
2337	if (elem < 4)
2338		ucontrol->value.integer.value[0] =
2339		    (dbri->mm.data[elem] >> shift) & mask;
2340	else
2341		ucontrol->value.integer.value[0] =
2342		    (dbri->mm.ctrl[elem - 4] >> shift) & mask;
2343
2344	if (invert == 1)
2345		ucontrol->value.integer.value[0] =
2346		    mask - ucontrol->value.integer.value[0];
2347	return 0;
2348}
2349
2350static int snd_cs4215_put_single(struct snd_kcontrol *kcontrol,
2351				 struct snd_ctl_elem_value *ucontrol)
2352{
2353	struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2354	int elem = kcontrol->private_value & 0xff;
2355	int shift = (kcontrol->private_value >> 8) & 0xff;
2356	int mask = (kcontrol->private_value >> 16) & 0xff;
2357	int invert = (kcontrol->private_value >> 24) & 1;
2358	int changed = 0;
2359	unsigned short val;
2360	snd_assert(dbri != NULL, return -EINVAL);
2361
2362	val = (ucontrol->value.integer.value[0] & mask);
2363	if (invert == 1)
2364		val = mask - val;
2365	val <<= shift;
2366
2367	if (elem < 4) {
2368		dbri->mm.data[elem] = (dbri->mm.data[elem] &
2369				       ~(mask << shift)) | val;
2370		changed = (val != dbri->mm.data[elem]);
2371	} else {
2372		dbri->mm.ctrl[elem - 4] = (dbri->mm.ctrl[elem - 4] &
2373					   ~(mask << shift)) | val;
2374		changed = (val != dbri->mm.ctrl[elem - 4]);
2375	}
2376
2377	dprintk(D_GEN, "put_single: mask=0x%x, changed=%d, "
2378		"mixer-value=%ld, mm-value=0x%x\n",
2379		mask, changed, ucontrol->value.integer.value[0],
2380		dbri->mm.data[elem & 3]);
2381
2382	if (changed) {
2383		/* First mute outputs, and wait 1/8000 sec (125 us)
2384		 * to make sure this takes.  This avoids clicking noises.
2385		 */
2386		cs4215_setdata(dbri, 1);
2387		udelay(125);
2388		cs4215_setdata(dbri, 0);
2389	}
2390	return changed;
2391}
2392
2393/* Entries 0-3 map to the 4 data timeslots, entries 4-7 map to the 4 control
2394   timeslots. Shift is the bit offset in the timeslot, mask defines the
2395   number of bits. invert is a boolean for use with attenuation.
2396 */
2397#define CS4215_SINGLE(xname, entry, shift, mask, invert)	\
2398{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = (xname),		\
2399  .info = snd_cs4215_info_single,				\
2400  .get = snd_cs4215_get_single, .put = snd_cs4215_put_single,	\
2401  .private_value = (entry) | ((shift) << 8) | ((mask) << 16) |	\
2402			((invert) << 24) },
2403
2404static struct snd_kcontrol_new dbri_controls[] __devinitdata = {
2405	{
2406	 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2407	 .name  = "Playback Volume",
2408	 .info  = snd_cs4215_info_volume,
2409	 .get   = snd_cs4215_get_volume,
2410	 .put   = snd_cs4215_put_volume,
2411	 .private_value = DBRI_PLAY,
2412	 },
2413	CS4215_SINGLE("Headphone switch", 0, 7, 1, 0)
2414	CS4215_SINGLE("Line out switch", 0, 6, 1, 0)
2415	CS4215_SINGLE("Speaker switch", 1, 6, 1, 0)
2416	{
2417	 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2418	 .name  = "Capture Volume",
2419	 .info  = snd_cs4215_info_volume,
2420	 .get   = snd_cs4215_get_volume,
2421	 .put   = snd_cs4215_put_volume,
2422	 .private_value = DBRI_REC,
2423	 },
2424	/* FIXME: mic/line switch */
2425	CS4215_SINGLE("Line in switch", 2, 4, 1, 0)
2426	CS4215_SINGLE("High Pass Filter switch", 5, 7, 1, 0)
2427	CS4215_SINGLE("Monitor Volume", 3, 4, 0xf, 1)
2428	CS4215_SINGLE("Mic boost", 4, 4, 1, 1)
2429};
2430
2431static int __devinit snd_dbri_mixer(struct snd_card *card)
2432{
2433	int idx, err;
2434	struct snd_dbri *dbri;
2435
2436	snd_assert(card != NULL && card->private_data != NULL, return -EINVAL);
2437	dbri = card->private_data;
2438
2439	strcpy(card->mixername, card->shortname);
2440
2441	for (idx = 0; idx < ARRAY_SIZE(dbri_controls); idx++) {
2442		err = snd_ctl_add(card,
2443				snd_ctl_new1(&dbri_controls[idx], dbri));
2444		if (err < 0)
2445			return err;
2446	}
2447
2448	for (idx = DBRI_REC; idx < DBRI_NO_STREAMS; idx++) {
2449		dbri->stream_info[idx].left_gain = 0;
2450		dbri->stream_info[idx].right_gain = 0;
2451	}
2452
2453	return 0;
2454}
2455
2456/****************************************************************************
2457			/proc interface
2458****************************************************************************/
2459static void dbri_regs_read(struct snd_info_entry *entry,
2460			   struct snd_info_buffer *buffer)
2461{
2462	struct snd_dbri *dbri = entry->private_data;
2463
2464	snd_iprintf(buffer, "REG0: 0x%x\n", sbus_readl(dbri->regs + REG0));
2465	snd_iprintf(buffer, "REG2: 0x%x\n", sbus_readl(dbri->regs + REG2));
2466	snd_iprintf(buffer, "REG8: 0x%x\n", sbus_readl(dbri->regs + REG8));
2467	snd_iprintf(buffer, "REG9: 0x%x\n", sbus_readl(dbri->regs + REG9));
2468}
2469
2470#ifdef DBRI_DEBUG
2471static void dbri_debug_read(struct snd_info_entry *entry,
2472			    struct snd_info_buffer *buffer)
2473{
2474	struct snd_dbri *dbri = entry->private_data;
2475	int pipe;
2476	snd_iprintf(buffer, "debug=%d\n", dbri_debug);
2477
2478	for (pipe = 0; pipe < 32; pipe++) {
2479		if (pipe_active(dbri, pipe)) {
2480			struct dbri_pipe *pptr = &dbri->pipes[pipe];
2481			snd_iprintf(buffer,
2482				    "Pipe %d: %s SDP=0x%x desc=%d, "
2483				    "len=%d next %d\n",
2484				    pipe,
2485				   (pptr->sdp & D_SDP_TO_SER) ? "output" :
2486								 "input",
2487				    pptr->sdp, pptr->desc,
2488				    pptr->length, pptr->nextpipe);
2489		}
2490	}
2491}
2492#endif
2493
2494void __devinit snd_dbri_proc(struct snd_card *card)
2495{
2496	struct snd_dbri *dbri = card->private_data;
2497	struct snd_info_entry *entry;
2498
2499	if (!snd_card_proc_new(card, "regs", &entry))
2500		snd_info_set_text_ops(entry, dbri, dbri_regs_read);
2501
2502#ifdef DBRI_DEBUG
2503	if (!snd_card_proc_new(card, "debug", &entry)) {
2504		snd_info_set_text_ops(entry, dbri, dbri_debug_read);
2505		entry->mode = S_IFREG | S_IRUGO;	/* Readable only. */
2506	}
2507#endif
2508}
2509
2510/*
2511****************************************************************************
2512**************************** Initialization ********************************
2513****************************************************************************
2514*/
2515static void snd_dbri_free(struct snd_dbri *dbri);
2516
2517static int __devinit snd_dbri_create(struct snd_card *card,
2518				  struct sbus_dev *sdev,
2519				  int irq, int dev)
2520{
2521	struct snd_dbri *dbri = card->private_data;
2522	int err;
2523
2524	spin_lock_init(&dbri->lock);
2525	dbri->sdev = sdev;
2526	dbri->irq = irq;
2527
2528	dbri->dma = sbus_alloc_consistent(sdev, sizeof(struct dbri_dma),
2529					  &dbri->dma_dvma);
2530	memset((void *)dbri->dma, 0, sizeof(struct dbri_dma));
2531
2532	dprintk(D_GEN, "DMA Cmd Block 0x%p (0x%08x)\n",
2533		dbri->dma, dbri->dma_dvma);
2534
2535	/* Map the registers into memory. */
2536	dbri->regs_size = sdev->reg_addrs[0].reg_size;
2537	dbri->regs = sbus_ioremap(&sdev->resource[0], 0,
2538				  dbri->regs_size, "DBRI Registers");
2539	if (!dbri->regs) {
2540		printk(KERN_ERR "DBRI: could not allocate registers\n");
2541		sbus_free_consistent(sdev, sizeof(struct dbri_dma),
2542				     (void *)dbri->dma, dbri->dma_dvma);
2543		return -EIO;
2544	}
2545
2546	err = request_irq(dbri->irq, snd_dbri_interrupt, IRQF_SHARED,
2547			  "DBRI audio", dbri);
2548	if (err) {
2549		printk(KERN_ERR "DBRI: Can't get irq %d\n", dbri->irq);
2550		sbus_iounmap(dbri->regs, dbri->regs_size);
2551		sbus_free_consistent(sdev, sizeof(struct dbri_dma),
2552				     (void *)dbri->dma, dbri->dma_dvma);
2553		return err;
2554	}
2555
2556	/* Do low level initialization of the DBRI and CS4215 chips */
2557	dbri_initialize(dbri);
2558	err = cs4215_init(dbri);
2559	if (err) {
2560		snd_dbri_free(dbri);
2561		return err;
2562	}
2563
2564	return 0;
2565}
2566
2567static void snd_dbri_free(struct snd_dbri *dbri)
2568{
2569	dprintk(D_GEN, "snd_dbri_free\n");
2570	dbri_reset(dbri);
2571
2572	if (dbri->irq)
2573		free_irq(dbri->irq, dbri);
2574
2575	if (dbri->regs)
2576		sbus_iounmap(dbri->regs, dbri->regs_size);
2577
2578	if (dbri->dma)
2579		sbus_free_consistent(dbri->sdev, sizeof(struct dbri_dma),
2580				     (void *)dbri->dma, dbri->dma_dvma);
2581}
2582
2583static int __devinit dbri_probe(struct of_device *of_dev,
2584				const struct of_device_id *match)
2585{
2586	struct sbus_dev *sdev = to_sbus_device(&of_dev->dev);
2587	struct snd_dbri *dbri;
2588	int irq;
2589	struct resource *rp;
2590	struct snd_card *card;
2591	static int dev = 0;
2592	int err;
2593
2594	dprintk(D_GEN, "DBRI: Found %s in SBUS slot %d\n",
2595		sdev->prom_name, sdev->slot);
2596
2597	if (dev >= SNDRV_CARDS)
2598		return -ENODEV;
2599	if (!enable[dev]) {
2600		dev++;
2601		return -ENOENT;
2602	}
2603
2604	irq = sdev->irqs[0];
2605	if (irq <= 0) {
2606		printk(KERN_ERR "DBRI-%d: No IRQ.\n", dev);
2607		return -ENODEV;
2608	}
2609
2610	card = snd_card_new(index[dev], id[dev], THIS_MODULE,
2611			    sizeof(struct snd_dbri));
2612	if (card == NULL)
2613		return -ENOMEM;
2614
2615	strcpy(card->driver, "DBRI");
2616	strcpy(card->shortname, "Sun DBRI");
2617	rp = &sdev->resource[0];
2618	sprintf(card->longname, "%s at 0x%02lx:0x%016Lx, irq %d",
2619		card->shortname,
2620		rp->flags & 0xffL, (unsigned long long)rp->start, irq);
2621
2622	err = snd_dbri_create(card, sdev, irq, dev);
2623	if (err < 0) {
2624		snd_card_free(card);
2625		return err;
2626	}
2627
2628	dbri = card->private_data;
2629	err = snd_dbri_pcm(card);
2630	if (err < 0)
2631		goto _err;
2632
2633	err = snd_dbri_mixer(card);
2634	if (err < 0)
2635		goto _err;
2636
2637	/* /proc file handling */
2638	snd_dbri_proc(card);
2639	dev_set_drvdata(&of_dev->dev, card);
2640
2641	err = snd_card_register(card);
2642	if (err < 0)
2643		goto _err;
2644
2645	printk(KERN_INFO "audio%d at %p (irq %d) is DBRI(%c)+CS4215(%d)\n",
2646	       dev, dbri->regs,
2647	       dbri->irq, sdev->prom_name[9], dbri->mm.version);
2648	dev++;
2649
2650	return 0;
2651
2652_err:
2653	snd_dbri_free(dbri);
2654	snd_card_free(card);
2655	return err;
2656}
2657
2658static int __devexit dbri_remove(struct of_device *dev)
2659{
2660	struct snd_card *card = dev_get_drvdata(&dev->dev);
2661
2662	snd_dbri_free(card->private_data);
2663	snd_card_free(card);
2664
2665	dev_set_drvdata(&dev->dev, NULL);
2666
2667	return 0;
2668}
2669
2670static struct of_device_id dbri_match[] = {
2671	{
2672		.name = "SUNW,DBRIe",
2673	},
2674	{
2675		.name = "SUNW,DBRIf",
2676	},
2677	{},
2678};
2679
2680MODULE_DEVICE_TABLE(of, dbri_match);
2681
2682static struct of_platform_driver dbri_sbus_driver = {
2683	.name		= "dbri",
2684	.match_table	= dbri_match,
2685	.probe		= dbri_probe,
2686	.remove		= __devexit_p(dbri_remove),
2687};
2688
2689/* Probe for the dbri chip and then attach the driver. */
2690static int __init dbri_init(void)
2691{
2692	return of_register_driver(&dbri_sbus_driver, &sbus_bus_type);
2693}
2694
2695static void __exit dbri_exit(void)
2696{
2697	of_unregister_driver(&dbri_sbus_driver);
2698}
2699
2700module_init(dbri_init);
2701module_exit(dbri_exit);
2702