dbri.c revision 470f1f1a1c2597fab98339ab0966dbf602d604f0
1/*
2 * Driver for DBRI sound chip found on Sparcs.
3 * Copyright (C) 2004, 2005 Martin Habets (mhabets@users.sourceforge.net)
4 *
5 * Based entirely upon drivers/sbus/audio/dbri.c which is:
6 * Copyright (C) 1997 Rudolf Koenig (rfkoenig@immd4.informatik.uni-erlangen.de)
7 * Copyright (C) 1998, 1999 Brent Baccala (baccala@freesoft.org)
8 *
9 * This is the lowlevel driver for the DBRI & MMCODEC duo used for ISDN & AUDIO
10 * on Sun SPARCstation 10, 20, LX and Voyager models.
11 *
12 * - DBRI: AT&T T5900FX Dual Basic Rates ISDN Interface. It is a 32 channel
13 *   data time multiplexer with ISDN support (aka T7259)
14 *   Interfaces: SBus,ISDN NT & TE, CHI, 4 bits parallel.
15 *   CHI: (spelled ki) Concentration Highway Interface (AT&T or Intel bus ?).
16 *   Documentation:
17 *   - "STP 4000SBus Dual Basic Rate ISDN (DBRI) Tranceiver" from
18 *     Sparc Technology Business (courtesy of Sun Support)
19 *   - Data sheet of the T7903, a newer but very similar ISA bus equivalent
20 *     available from the Lucent (formarly AT&T microelectronics) home
21 *     page.
22 *   - http://www.freesoft.org/Linux/DBRI/
23 * - MMCODEC: Crystal Semiconductor CS4215 16 bit Multimedia Audio Codec
24 *   Interfaces: CHI, Audio In & Out, 2 bits parallel
25 *   Documentation: from the Crystal Semiconductor home page.
26 *
27 * The DBRI is a 32 pipe machine, each pipe can transfer some bits between
28 * memory and a serial device (long pipes, nr 0-15) or between two serial
29 * devices (short pipes, nr 16-31), or simply send a fixed data to a serial
30 * device (short pipes).
31 * A timeslot defines the bit-offset and nr of bits read from a serial device.
32 * The timeslots are linked to 6 circular lists, one for each direction for
33 * each serial device (NT,TE,CHI). A timeslot is associated to 1 or 2 pipes
34 * (the second one is a monitor/tee pipe, valid only for serial input).
35 *
36 * The mmcodec is connected via the CHI bus and needs the data & some
37 * parameters (volume, output selection) timemultiplexed in 8 byte
38 * chunks. It also has a control mode, which serves for audio format setting.
39 *
40 * Looking at the CS4215 data sheet it is easy to set up 2 or 4 codecs on
41 * the same CHI bus, so I thought perhaps it is possible to use the onboard
42 * & the speakerbox codec simultanously, giving 2 (not very independent :-)
43 * audio devices. But the SUN HW group decided against it, at least on my
44 * LX the speakerbox connector has at least 1 pin missing and 1 wrongly
45 * connected.
46 *
47 * I've tried to stick to the following function naming conventions:
48 * snd_*	ALSA stuff
49 * cs4215_*	CS4215 codec specific stuff
50 * dbri_*	DBRI high-level stuff
51 * other	DBRI low-level stuff
52 */
53
54#include <sound/driver.h>
55#include <linux/interrupt.h>
56#include <linux/delay.h>
57
58#include <sound/core.h>
59#include <sound/pcm.h>
60#include <sound/pcm_params.h>
61#include <sound/info.h>
62#include <sound/control.h>
63#include <sound/initval.h>
64
65#include <asm/irq.h>
66#include <asm/io.h>
67#include <asm/sbus.h>
68#include <asm/atomic.h>
69
70MODULE_AUTHOR("Rudolf Koenig, Brent Baccala and Martin Habets");
71MODULE_DESCRIPTION("Sun DBRI");
72MODULE_LICENSE("GPL");
73MODULE_SUPPORTED_DEVICE("{{Sun,DBRI}}");
74
75static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;	/* Index 0-MAX */
76static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;	/* ID for this card */
77static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;	/* Enable this card */
78
79module_param_array(index, int, NULL, 0444);
80MODULE_PARM_DESC(index, "Index value for Sun DBRI soundcard.");
81module_param_array(id, charp, NULL, 0444);
82MODULE_PARM_DESC(id, "ID string for Sun DBRI soundcard.");
83module_param_array(enable, bool, NULL, 0444);
84MODULE_PARM_DESC(enable, "Enable Sun DBRI soundcard.");
85
86#define DBRI_DEBUG
87
88#define D_INT	(1<<0)
89#define D_GEN	(1<<1)
90#define D_CMD	(1<<2)
91#define D_MM	(1<<3)
92#define D_USR	(1<<4)
93#define D_DESC	(1<<5)
94
95static int dbri_debug;
96module_param(dbri_debug, int, 0644);
97MODULE_PARM_DESC(dbri_debug, "Debug value for Sun DBRI soundcard.");
98
99#ifdef DBRI_DEBUG
100static char *cmds[] = {
101	"WAIT", "PAUSE", "JUMP", "IIQ", "REX", "SDP", "CDP", "DTS",
102	"SSP", "CHI", "NT", "TE", "CDEC", "TEST", "CDM", "RESRV"
103};
104
105#define dprintk(a, x...) if(dbri_debug & a) printk(KERN_DEBUG x)
106
107#else
108#define dprintk(a, x...)
109
110#endif				/* DBRI_DEBUG */
111
112#define DBRI_CMD(cmd, intr, value) ((cmd << 28) |	\
113				    (intr << 27) |	\
114				    value)
115
116/***************************************************************************
117	CS4215 specific definitions and structures
118****************************************************************************/
119
120struct cs4215 {
121	__u8 data[4];		/* Data mode: Time slots 5-8 */
122	__u8 ctrl[4];		/* Ctrl mode: Time slots 1-4 */
123	__u8 onboard;
124	__u8 offset;		/* Bit offset from frame sync to time slot 1 */
125	volatile __u32 status;
126	volatile __u32 version;
127	__u8 precision;		/* In bits, either 8 or 16 */
128	__u8 channels;		/* 1 or 2 */
129};
130
131/*
132 * Control mode first
133 */
134
135/* Time Slot 1, Status register */
136#define CS4215_CLB	(1<<2)	/* Control Latch Bit */
137#define CS4215_OLB	(1<<3)	/* 1: line: 2.0V, speaker 4V */
138				/* 0: line: 2.8V, speaker 8V */
139#define CS4215_MLB	(1<<4)	/* 1: Microphone: 20dB gain disabled */
140#define CS4215_RSRVD_1  (1<<5)
141
142/* Time Slot 2, Data Format Register */
143#define CS4215_DFR_LINEAR16	0
144#define CS4215_DFR_ULAW		1
145#define CS4215_DFR_ALAW		2
146#define CS4215_DFR_LINEAR8	3
147#define CS4215_DFR_STEREO	(1<<2)
148static struct {
149	unsigned short freq;
150	unsigned char xtal;
151	unsigned char csval;
152} CS4215_FREQ[] = {
153	{  8000, (1 << 4), (0 << 3) },
154	{ 16000, (1 << 4), (1 << 3) },
155	{ 27429, (1 << 4), (2 << 3) },	/* Actually 24428.57 */
156	{ 32000, (1 << 4), (3 << 3) },
157     /* {    NA, (1 << 4), (4 << 3) }, */
158     /* {    NA, (1 << 4), (5 << 3) }, */
159	{ 48000, (1 << 4), (6 << 3) },
160	{  9600, (1 << 4), (7 << 3) },
161	{  5513, (2 << 4), (0 << 3) },	/* Actually 5512.5 */
162	{ 11025, (2 << 4), (1 << 3) },
163	{ 18900, (2 << 4), (2 << 3) },
164	{ 22050, (2 << 4), (3 << 3) },
165	{ 37800, (2 << 4), (4 << 3) },
166	{ 44100, (2 << 4), (5 << 3) },
167	{ 33075, (2 << 4), (6 << 3) },
168	{  6615, (2 << 4), (7 << 3) },
169	{ 0, 0, 0}
170};
171
172#define CS4215_HPF	(1<<7)	/* High Pass Filter, 1: Enabled */
173
174#define CS4215_12_MASK	0xfcbf	/* Mask off reserved bits in slot 1 & 2 */
175
176/* Time Slot 3, Serial Port Control register */
177#define CS4215_XEN	(1<<0)	/* 0: Enable serial output */
178#define CS4215_XCLK	(1<<1)	/* 1: Master mode: Generate SCLK */
179#define CS4215_BSEL_64	(0<<2)	/* Bitrate: 64 bits per frame */
180#define CS4215_BSEL_128	(1<<2)
181#define CS4215_BSEL_256	(2<<2)
182#define CS4215_MCK_MAST (0<<4)	/* Master clock */
183#define CS4215_MCK_XTL1 (1<<4)	/* 24.576 MHz clock source */
184#define CS4215_MCK_XTL2 (2<<4)	/* 16.9344 MHz clock source */
185#define CS4215_MCK_CLK1 (3<<4)	/* Clockin, 256 x Fs */
186#define CS4215_MCK_CLK2 (4<<4)	/* Clockin, see DFR */
187
188/* Time Slot 4, Test Register */
189#define CS4215_DAD	(1<<0)	/* 0:Digital-Dig loop, 1:Dig-Analog-Dig loop */
190#define CS4215_ENL	(1<<1)	/* Enable Loopback Testing */
191
192/* Time Slot 5, Parallel Port Register */
193/* Read only here and the same as the in data mode */
194
195/* Time Slot 6, Reserved  */
196
197/* Time Slot 7, Version Register  */
198#define CS4215_VERSION_MASK 0xf	/* Known versions 0/C, 1/D, 2/E */
199
200/* Time Slot 8, Reserved  */
201
202/*
203 * Data mode
204 */
205/* Time Slot 1-2: Left Channel Data, 2-3: Right Channel Data  */
206
207/* Time Slot 5, Output Setting  */
208#define CS4215_LO(v)	v	/* Left Output Attenuation 0x3f: -94.5 dB */
209#define CS4215_LE	(1<<6)	/* Line Out Enable */
210#define CS4215_HE	(1<<7)	/* Headphone Enable */
211
212/* Time Slot 6, Output Setting  */
213#define CS4215_RO(v)	v	/* Right Output Attenuation 0x3f: -94.5 dB */
214#define CS4215_SE	(1<<6)	/* Speaker Enable */
215#define CS4215_ADI	(1<<7)	/* A/D Data Invalid: Busy in calibration */
216
217/* Time Slot 7, Input Setting */
218#define CS4215_LG(v)	v	/* Left Gain Setting 0xf: 22.5 dB */
219#define CS4215_IS	(1<<4)	/* Input Select: 1=Microphone, 0=Line */
220#define CS4215_OVR	(1<<5)	/* 1: Overrange condition occurred */
221#define CS4215_PIO0	(1<<6)	/* Parallel I/O 0 */
222#define CS4215_PIO1	(1<<7)
223
224/* Time Slot 8, Input Setting */
225#define CS4215_RG(v)	v	/* Right Gain Setting 0xf: 22.5 dB */
226#define CS4215_MA(v)	(v<<4)	/* Monitor Path Attenuation 0xf: mute */
227
228/***************************************************************************
229		DBRI specific definitions and structures
230****************************************************************************/
231
232/* DBRI main registers */
233#define REG0	0x00UL		/* Status and Control */
234#define REG1	0x04UL		/* Mode and Interrupt */
235#define REG2	0x08UL		/* Parallel IO */
236#define REG3	0x0cUL		/* Test */
237#define REG8	0x20UL		/* Command Queue Pointer */
238#define REG9	0x24UL		/* Interrupt Queue Pointer */
239
240#define DBRI_NO_CMDS	64
241#define DBRI_INT_BLK	64
242#define DBRI_NO_DESCS	64
243#define DBRI_NO_PIPES	32
244#define DBRI_MAX_PIPE	(DBRI_NO_PIPES - 1)
245
246#define DBRI_REC	0
247#define DBRI_PLAY	1
248#define DBRI_NO_STREAMS	2
249
250/* One transmit/receive descriptor */
251/* When ba != 0 descriptor is used */
252struct dbri_mem {
253	volatile __u32 word1;
254	__u32 ba;	/* Transmit/Receive Buffer Address */
255	__u32 nda;	/* Next Descriptor Address */
256	volatile __u32 word4;
257};
258
259/* This structure is in a DMA region where it can accessed by both
260 * the CPU and the DBRI
261 */
262struct dbri_dma {
263	volatile s32 cmd[DBRI_NO_CMDS];	/* Place for commands       */
264	volatile s32 intr[DBRI_INT_BLK];	/* Interrupt field  */
265	struct dbri_mem desc[DBRI_NO_DESCS];	/* Xmit/receive descriptors */
266};
267
268#define dbri_dma_off(member, elem)	\
269	((u32)(unsigned long)		\
270	 (&(((struct dbri_dma *)0)->member[elem])))
271
272enum in_or_out { PIPEinput, PIPEoutput };
273
274struct dbri_pipe {
275	u32 sdp;		/* SDP command word */
276	int nextpipe;		/* Next pipe in linked list */
277	int cycle;		/* Offset of timeslot (bits) */
278	int length;		/* Length of timeslot (bits) */
279	int first_desc;		/* Index of first descriptor */
280	int desc;		/* Index of active descriptor */
281	volatile __u32 *recv_fixed_ptr;	/* Ptr to receive fixed data */
282};
283
284/* Per stream (playback or record) information */
285struct dbri_streaminfo {
286	struct snd_pcm_substream *substream;
287	u32 dvma_buffer;	/* Device view of Alsa DMA buffer */
288	int left;		/* # of bytes left in DMA buffer  */
289	int size;		/* Size of DMA buffer             */
290	size_t offset;		/* offset in user buffer          */
291	int pipe;		/* Data pipe used                 */
292	int left_gain;		/* mixer elements                 */
293	int right_gain;
294};
295
296/* This structure holds the information for both chips (DBRI & CS4215) */
297struct snd_dbri {
298	struct snd_card *card;	/* ALSA card */
299
300	int regs_size, irq;	/* Needed for unload */
301	struct sbus_dev *sdev;	/* SBUS device info */
302	spinlock_t lock;
303
304	struct dbri_dma *dma;	/* Pointer to our DMA block */
305	u32 dma_dvma;		/* DBRI visible DMA address */
306
307	void __iomem *regs;	/* dbri HW regs */
308	int dbri_irqp;		/* intr queue pointer */
309	int wait_send;		/* sequence of command buffers send */
310	int wait_ackd;		/* sequence of command buffers acknowledged */
311
312	struct dbri_pipe pipes[DBRI_NO_PIPES];	/* DBRI's 32 data pipes */
313	int next_desc[DBRI_NO_DESCS];		/* Index of next desc, or -1 */
314
315	int chi_in_pipe;
316	int chi_out_pipe;
317	int chi_bpf;
318
319	struct cs4215 mm;	/* mmcodec special info */
320				/* per stream (playback/record) info */
321	struct dbri_streaminfo stream_info[DBRI_NO_STREAMS];
322
323	struct snd_dbri *next;
324};
325
326#define DBRI_MAX_VOLUME		63	/* Output volume */
327#define DBRI_MAX_GAIN		15	/* Input gain */
328
329/* DBRI Reg0 - Status Control Register - defines. (Page 17) */
330#define D_P		(1<<15)	/* Program command & queue pointer valid */
331#define D_G		(1<<14)	/* Allow 4-Word SBus Burst */
332#define D_S		(1<<13)	/* Allow 16-Word SBus Burst */
333#define D_E		(1<<12)	/* Allow 8-Word SBus Burst */
334#define D_X		(1<<7)	/* Sanity Timer Disable */
335#define D_T		(1<<6)	/* Permit activation of the TE interface */
336#define D_N		(1<<5)	/* Permit activation of the NT interface */
337#define D_C		(1<<4)	/* Permit activation of the CHI interface */
338#define D_F		(1<<3)	/* Force Sanity Timer Time-Out */
339#define D_D		(1<<2)	/* Disable Master Mode */
340#define D_H		(1<<1)	/* Halt for Analysis */
341#define D_R		(1<<0)	/* Soft Reset */
342
343/* DBRI Reg1 - Mode and Interrupt Register - defines. (Page 18) */
344#define D_LITTLE_END	(1<<8)	/* Byte Order */
345#define D_BIG_END	(0<<8)	/* Byte Order */
346#define D_MRR		(1<<4)	/* Multiple Error Ack on SBus (readonly) */
347#define D_MLE		(1<<3)	/* Multiple Late Error on SBus (readonly) */
348#define D_LBG		(1<<2)	/* Lost Bus Grant on SBus (readonly) */
349#define D_MBE		(1<<1)	/* Burst Error on SBus (readonly) */
350#define D_IR		(1<<0)	/* Interrupt Indicator (readonly) */
351
352/* DBRI Reg2 - Parallel IO Register - defines. (Page 18) */
353#define D_ENPIO3	(1<<7)	/* Enable Pin 3 */
354#define D_ENPIO2	(1<<6)	/* Enable Pin 2 */
355#define D_ENPIO1	(1<<5)	/* Enable Pin 1 */
356#define D_ENPIO0	(1<<4)	/* Enable Pin 0 */
357#define D_ENPIO		(0xf0)	/* Enable all the pins */
358#define D_PIO3		(1<<3)	/* Pin 3: 1: Data mode, 0: Ctrl mode */
359#define D_PIO2		(1<<2)	/* Pin 2: 1: Onboard PDN */
360#define D_PIO1		(1<<1)	/* Pin 1: 0: Reset */
361#define D_PIO0		(1<<0)	/* Pin 0: 1: Speakerbox PDN */
362
363/* DBRI Commands (Page 20) */
364#define D_WAIT		0x0	/* Stop execution */
365#define D_PAUSE		0x1	/* Flush long pipes */
366#define D_JUMP		0x2	/* New command queue */
367#define D_IIQ		0x3	/* Initialize Interrupt Queue */
368#define D_REX		0x4	/* Report command execution via interrupt */
369#define D_SDP		0x5	/* Setup Data Pipe */
370#define D_CDP		0x6	/* Continue Data Pipe (reread NULL Pointer) */
371#define D_DTS		0x7	/* Define Time Slot */
372#define D_SSP		0x8	/* Set short Data Pipe */
373#define D_CHI		0x9	/* Set CHI Global Mode */
374#define D_NT		0xa	/* NT Command */
375#define D_TE		0xb	/* TE Command */
376#define D_CDEC		0xc	/* Codec setup */
377#define D_TEST		0xd	/* No comment */
378#define D_CDM		0xe	/* CHI Data mode command */
379
380/* Special bits for some commands */
381#define D_PIPE(v)      ((v)<<0)	/* Pipe Nr: 0-15 long, 16-21 short */
382
383/* Setup Data Pipe */
384/* IRM */
385#define D_SDP_2SAME	(1<<18)	/* Report 2nd time in a row value rcvd */
386#define D_SDP_CHANGE	(2<<18)	/* Report any changes */
387#define D_SDP_EVERY	(3<<18)	/* Report any changes */
388#define D_SDP_EOL	(1<<17)	/* EOL interrupt enable */
389#define D_SDP_IDLE	(1<<16)	/* HDLC idle interrupt enable */
390
391/* Pipe data MODE */
392#define D_SDP_MEM	(0<<13)	/* To/from memory */
393#define D_SDP_HDLC	(2<<13)
394#define D_SDP_HDLC_D	(3<<13)	/* D Channel (prio control) */
395#define D_SDP_SER	(4<<13)	/* Serial to serial */
396#define D_SDP_FIXED	(6<<13)	/* Short only */
397#define D_SDP_MODE(v)	((v)&(7<<13))
398
399#define D_SDP_TO_SER	(1<<12)	/* Direction */
400#define D_SDP_FROM_SER	(0<<12)	/* Direction */
401#define D_SDP_MSB	(1<<11)	/* Bit order within Byte */
402#define D_SDP_LSB	(0<<11)	/* Bit order within Byte */
403#define D_SDP_P		(1<<10)	/* Pointer Valid */
404#define D_SDP_A		(1<<8)	/* Abort */
405#define D_SDP_C		(1<<7)	/* Clear */
406
407/* Define Time Slot */
408#define D_DTS_VI	(1<<17)	/* Valid Input Time-Slot Descriptor */
409#define D_DTS_VO	(1<<16)	/* Valid Output Time-Slot Descriptor */
410#define D_DTS_INS	(1<<15)	/* Insert Time Slot */
411#define D_DTS_DEL	(0<<15)	/* Delete Time Slot */
412#define D_DTS_PRVIN(v) ((v)<<10)	/* Previous In Pipe */
413#define D_DTS_PRVOUT(v)        ((v)<<5)	/* Previous Out Pipe */
414
415/* Time Slot defines */
416#define D_TS_LEN(v)	((v)<<24)	/* Number of bits in this time slot */
417#define D_TS_CYCLE(v)	((v)<<14)	/* Bit Count at start of TS */
418#define D_TS_DI		(1<<13)	/* Data Invert */
419#define D_TS_1CHANNEL	(0<<10)	/* Single Channel / Normal mode */
420#define D_TS_MONITOR	(2<<10)	/* Monitor pipe */
421#define D_TS_NONCONTIG	(3<<10)	/* Non contiguous mode */
422#define D_TS_ANCHOR	(7<<10)	/* Starting short pipes */
423#define D_TS_MON(v)    ((v)<<5)	/* Monitor Pipe */
424#define D_TS_NEXT(v)   ((v)<<0)	/* Pipe Nr: 0-15 long, 16-21 short */
425
426/* Concentration Highway Interface Modes */
427#define D_CHI_CHICM(v)	((v)<<16)	/* Clock mode */
428#define D_CHI_IR	(1<<15)	/* Immediate Interrupt Report */
429#define D_CHI_EN	(1<<14)	/* CHIL Interrupt enabled */
430#define D_CHI_OD	(1<<13)	/* Open Drain Enable */
431#define D_CHI_FE	(1<<12)	/* Sample CHIFS on Rising Frame Edge */
432#define D_CHI_FD	(1<<11)	/* Frame Drive */
433#define D_CHI_BPF(v)	((v)<<0)	/* Bits per Frame */
434
435/* NT: These are here for completeness */
436#define D_NT_FBIT	(1<<17)	/* Frame Bit */
437#define D_NT_NBF	(1<<16)	/* Number of bad frames to loose framing */
438#define D_NT_IRM_IMM	(1<<15)	/* Interrupt Report & Mask: Immediate */
439#define D_NT_IRM_EN	(1<<14)	/* Interrupt Report & Mask: Enable */
440#define D_NT_ISNT	(1<<13)	/* Configfure interface as NT */
441#define D_NT_FT		(1<<12)	/* Fixed Timing */
442#define D_NT_EZ		(1<<11)	/* Echo Channel is Zeros */
443#define D_NT_IFA	(1<<10)	/* Inhibit Final Activation */
444#define D_NT_ACT	(1<<9)	/* Activate Interface */
445#define D_NT_MFE	(1<<8)	/* Multiframe Enable */
446#define D_NT_RLB(v)	((v)<<5)	/* Remote Loopback */
447#define D_NT_LLB(v)	((v)<<2)	/* Local Loopback */
448#define D_NT_FACT	(1<<1)	/* Force Activation */
449#define D_NT_ABV	(1<<0)	/* Activate Bipolar Violation */
450
451/* Codec Setup */
452#define D_CDEC_CK(v)	((v)<<24)	/* Clock Select */
453#define D_CDEC_FED(v)	((v)<<12)	/* FSCOD Falling Edge Delay */
454#define D_CDEC_RED(v)	((v)<<0)	/* FSCOD Rising Edge Delay */
455
456/* Test */
457#define D_TEST_RAM(v)	((v)<<16)	/* RAM Pointer */
458#define D_TEST_SIZE(v)	((v)<<11)	/* */
459#define D_TEST_ROMONOFF	0x5	/* Toggle ROM opcode monitor on/off */
460#define D_TEST_PROC	0x6	/* MicroProcessor test */
461#define D_TEST_SER	0x7	/* Serial-Controller test */
462#define D_TEST_RAMREAD	0x8	/* Copy from Ram to system memory */
463#define D_TEST_RAMWRITE	0x9	/* Copy into Ram from system memory */
464#define D_TEST_RAMBIST	0xa	/* RAM Built-In Self Test */
465#define D_TEST_MCBIST	0xb	/* Microcontroller Built-In Self Test */
466#define D_TEST_DUMP	0xe	/* ROM Dump */
467
468/* CHI Data Mode */
469#define D_CDM_THI	(1<<8)	/* Transmit Data on CHIDR Pin */
470#define D_CDM_RHI	(1<<7)	/* Receive Data on CHIDX Pin */
471#define D_CDM_RCE	(1<<6)	/* Receive on Rising Edge of CHICK */
472#define D_CDM_XCE	(1<<2)	/* Transmit Data on Rising Edge of CHICK */
473#define D_CDM_XEN	(1<<1)	/* Transmit Highway Enable */
474#define D_CDM_REN	(1<<0)	/* Receive Highway Enable */
475
476/* The Interrupts */
477#define D_INTR_BRDY	1	/* Buffer Ready for processing */
478#define D_INTR_MINT	2	/* Marked Interrupt in RD/TD */
479#define D_INTR_IBEG	3	/* Flag to idle transition detected (HDLC) */
480#define D_INTR_IEND	4	/* Idle to flag transition detected (HDLC) */
481#define D_INTR_EOL	5	/* End of List */
482#define D_INTR_CMDI	6	/* Command has bean read */
483#define D_INTR_XCMP	8	/* Transmission of frame complete */
484#define D_INTR_SBRI	9	/* BRI status change info */
485#define D_INTR_FXDT	10	/* Fixed data change */
486#define D_INTR_CHIL	11	/* CHI lost frame sync (channel 36 only) */
487#define D_INTR_COLL	11	/* Unrecoverable D-Channel collision */
488#define D_INTR_DBYT	12	/* Dropped by frame slip */
489#define D_INTR_RBYT	13	/* Repeated by frame slip */
490#define D_INTR_LINT	14	/* Lost Interrupt */
491#define D_INTR_UNDR	15	/* DMA underrun */
492
493#define D_INTR_TE	32
494#define D_INTR_NT	34
495#define D_INTR_CHI	36
496#define D_INTR_CMD	38
497
498#define D_INTR_GETCHAN(v)	(((v)>>24) & 0x3f)
499#define D_INTR_GETCODE(v)	(((v)>>20) & 0xf)
500#define D_INTR_GETCMD(v)	(((v)>>16) & 0xf)
501#define D_INTR_GETVAL(v)	((v) & 0xffff)
502#define D_INTR_GETRVAL(v)	((v) & 0xfffff)
503
504#define D_P_0		0	/* TE receive anchor */
505#define D_P_1		1	/* TE transmit anchor */
506#define D_P_2		2	/* NT transmit anchor */
507#define D_P_3		3	/* NT receive anchor */
508#define D_P_4		4	/* CHI send data */
509#define D_P_5		5	/* CHI receive data */
510#define D_P_6		6	/* */
511#define D_P_7		7	/* */
512#define D_P_8		8	/* */
513#define D_P_9		9	/* */
514#define D_P_10		10	/* */
515#define D_P_11		11	/* */
516#define D_P_12		12	/* */
517#define D_P_13		13	/* */
518#define D_P_14		14	/* */
519#define D_P_15		15	/* */
520#define D_P_16		16	/* CHI anchor pipe */
521#define D_P_17		17	/* CHI send */
522#define D_P_18		18	/* CHI receive */
523#define D_P_19		19	/* CHI receive */
524#define D_P_20		20	/* CHI receive */
525#define D_P_21		21	/* */
526#define D_P_22		22	/* */
527#define D_P_23		23	/* */
528#define D_P_24		24	/* */
529#define D_P_25		25	/* */
530#define D_P_26		26	/* */
531#define D_P_27		27	/* */
532#define D_P_28		28	/* */
533#define D_P_29		29	/* */
534#define D_P_30		30	/* */
535#define D_P_31		31	/* */
536
537/* Transmit descriptor defines */
538#define DBRI_TD_F	(1<<31)	/* End of Frame */
539#define DBRI_TD_D	(1<<30)	/* Do not append CRC */
540#define DBRI_TD_CNT(v)	((v)<<16)	/* Number of valid bytes in the buffer */
541#define DBRI_TD_B	(1<<15)	/* Final interrupt */
542#define DBRI_TD_M	(1<<14)	/* Marker interrupt */
543#define DBRI_TD_I	(1<<13)	/* Transmit Idle Characters */
544#define DBRI_TD_FCNT(v)	(v)	/* Flag Count */
545#define DBRI_TD_UNR	(1<<3)	/* Underrun: transmitter is out of data */
546#define DBRI_TD_ABT	(1<<2)	/* Abort: frame aborted */
547#define DBRI_TD_TBC	(1<<0)	/* Transmit buffer Complete */
548#define DBRI_TD_STATUS(v)       ((v)&0xff)	/* Transmit status */
549			/* Maximum buffer size per TD: almost 8Kb */
550#define DBRI_TD_MAXCNT	((1 << 13) - 1)
551
552/* Receive descriptor defines */
553#define DBRI_RD_F	(1<<31)	/* End of Frame */
554#define DBRI_RD_C	(1<<30)	/* Completed buffer */
555#define DBRI_RD_B	(1<<15)	/* Final interrupt */
556#define DBRI_RD_M	(1<<14)	/* Marker interrupt */
557#define DBRI_RD_BCNT(v)	(v)	/* Buffer size */
558#define DBRI_RD_CRC	(1<<7)	/* 0: CRC is correct */
559#define DBRI_RD_BBC	(1<<6)	/* 1: Bad Byte received */
560#define DBRI_RD_ABT	(1<<5)	/* Abort: frame aborted */
561#define DBRI_RD_OVRN	(1<<3)	/* Overrun: data lost */
562#define DBRI_RD_STATUS(v)      ((v)&0xff)	/* Receive status */
563#define DBRI_RD_CNT(v) (((v)>>16)&0x1fff)	/* Valid bytes in the buffer */
564
565/* stream_info[] access */
566/* Translate the ALSA direction into the array index */
567#define DBRI_STREAMNO(substream)				\
568		(substream->stream == 				\
569		 SNDRV_PCM_STREAM_PLAYBACK? DBRI_PLAY: DBRI_REC)
570
571/* Return a pointer to dbri_streaminfo */
572#define DBRI_STREAM(dbri, substream)	&dbri->stream_info[DBRI_STREAMNO(substream)]
573
574static struct snd_dbri *dbri_list;	/* All DBRI devices */
575
576/*
577 * Short data pipes transmit LSB first. The CS4215 receives MSB first. Grrr.
578 * So we have to reverse the bits. Note: not all bit lengths are supported
579 */
580static __u32 reverse_bytes(__u32 b, int len)
581{
582	switch (len) {
583	case 32:
584		b = ((b & 0xffff0000) >> 16) | ((b & 0x0000ffff) << 16);
585	case 16:
586		b = ((b & 0xff00ff00) >> 8) | ((b & 0x00ff00ff) << 8);
587	case 8:
588		b = ((b & 0xf0f0f0f0) >> 4) | ((b & 0x0f0f0f0f) << 4);
589	case 4:
590		b = ((b & 0xcccccccc) >> 2) | ((b & 0x33333333) << 2);
591	case 2:
592		b = ((b & 0xaaaaaaaa) >> 1) | ((b & 0x55555555) << 1);
593	case 1:
594	case 0:
595		break;
596	default:
597		printk(KERN_ERR "DBRI reverse_bytes: unsupported length\n");
598	};
599
600	return b;
601}
602
603/*
604****************************************************************************
605************** DBRI initialization and command synchronization *************
606****************************************************************************
607
608Commands are sent to the DBRI by building a list of them in memory,
609then writing the address of the first list item to DBRI register 8.
610The list is terminated with a WAIT command, which generates a
611CPU interrupt to signal completion.
612
613Since the DBRI can run in parallel with the CPU, several means of
614synchronization present themselves.  The method implemented here is close
615to the original scheme (Rudolf's), and uses 2 counters (wait_send and
616wait_ackd) to synchronize the command buffer between the CPU and the DBRI.
617
618A more sophisticated scheme might involve a circular command buffer
619or an array of command buffers.  A routine could fill one with
620commands and link it onto a list.  When a interrupt signaled
621completion of the current command buffer, look on the list for
622the next one.
623
624Every time a routine wants to write commands to the DBRI, it must
625first call dbri_cmdlock() and get an initial pointer into dbri->dma->cmd
626in return. dbri_cmdlock() will block if the previous commands have not
627been completed yet. After this the commands can be written to the buffer,
628and dbri_cmdsend() is called with the final pointer value to send them
629to the DBRI.
630
631*/
632
633static void dbri_process_interrupt_buffer(struct snd_dbri * dbri);
634
635enum dbri_lock { NoGetLock, GetLock };
636#define MAXLOOPS 10
637
638static volatile s32 *dbri_cmdlock(struct snd_dbri * dbri, enum dbri_lock get)
639{
640	int maxloops = MAXLOOPS;
641
642#ifndef SMP
643	if ((get == GetLock) && spin_is_locked(&dbri->lock)) {
644		printk(KERN_ERR "DBRI: cmdlock called while in spinlock.");
645	}
646#endif
647
648	/* Delay if previous commands are still being processed */
649	while ((--maxloops) > 0 && (dbri->wait_send != dbri->wait_ackd)) {
650		msleep_interruptible(1);
651	}
652	if (maxloops == 0) {
653		printk(KERN_ERR "DBRI: Chip never completed command buffer %d\n",
654			dbri->wait_send);
655	} else {
656		dprintk(D_CMD, "Chip completed command buffer (%d)\n",
657			MAXLOOPS - maxloops - 1);
658	}
659
660	/*if (get == GetLock) spin_lock(&dbri->lock); */
661	return &dbri->dma->cmd[0];
662}
663
664static void dbri_cmdsend(struct snd_dbri * dbri, volatile s32 * cmd)
665{
666	volatile s32 *ptr;
667
668	for (ptr = &dbri->dma->cmd[0]; ptr < cmd; ptr++) {
669		dprintk(D_CMD, "cmd: %lx:%08x\n", (unsigned long)ptr, *ptr);
670	}
671
672	if ((cmd - &dbri->dma->cmd[0]) >= DBRI_NO_CMDS - 1) {
673		printk(KERN_ERR "DBRI: Command buffer overflow! (bug in driver)\n");
674		/* Ignore the last part. */
675		cmd = &dbri->dma->cmd[DBRI_NO_CMDS - 3];
676	}
677
678	dbri->wait_send++;
679	dbri->wait_send &= 0xffff;	/* restrict it to a 16 bit counter. */
680	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
681	*(cmd++) = DBRI_CMD(D_WAIT, 1, dbri->wait_send);
682
683	/* Set command pointer and signal it is valid. */
684	sbus_writel(dbri->dma_dvma, dbri->regs + REG8);
685
686	/*spin_unlock(&dbri->lock); */
687}
688
689/* Lock must be held when calling this */
690static void dbri_reset(struct snd_dbri * dbri)
691{
692	int i;
693
694	dprintk(D_GEN, "reset 0:%x 2:%x 8:%x 9:%x\n",
695		sbus_readl(dbri->regs + REG0),
696		sbus_readl(dbri->regs + REG2),
697		sbus_readl(dbri->regs + REG8), sbus_readl(dbri->regs + REG9));
698
699	sbus_writel(D_R, dbri->regs + REG0);	/* Soft Reset */
700	for (i = 0; (sbus_readl(dbri->regs + REG0) & D_R) && i < 64; i++)
701		udelay(10);
702}
703
704/* Lock must not be held before calling this */
705static void dbri_initialize(struct snd_dbri * dbri)
706{
707	volatile s32 *cmd;
708	u32 dma_addr, tmp;
709	unsigned long flags;
710	int n;
711
712	spin_lock_irqsave(&dbri->lock, flags);
713
714	dbri_reset(dbri);
715
716	cmd = dbri_cmdlock(dbri, NoGetLock);
717	dprintk(D_GEN, "init: cmd: %p, int: %p\n",
718		&dbri->dma->cmd[0], &dbri->dma->intr[0]);
719
720	/* Initialize pipes */
721	for (n = 0; n < DBRI_NO_PIPES; n++)
722		dbri->pipes[n].desc = dbri->pipes[n].first_desc = -1;
723
724	/* A brute approach - DBRI falls back to working burst size by itself
725	 * On SS20 D_S does not work, so do not try so high. */
726	tmp = sbus_readl(dbri->regs + REG0);
727	tmp |= D_G | D_E;
728	tmp &= ~D_S;
729	sbus_writel(tmp, dbri->regs + REG0);
730
731	/*
732	 * Initialize the interrupt ringbuffer.
733	 */
734	dma_addr = dbri->dma_dvma + dbri_dma_off(intr, 0);
735	dbri->dma->intr[0] = dma_addr;
736	dbri->dbri_irqp = 1;
737	/*
738	 * Set up the interrupt queue
739	 */
740	*(cmd++) = DBRI_CMD(D_IIQ, 0, 0);
741	*(cmd++) = dma_addr;
742
743	dbri_cmdsend(dbri, cmd);
744	spin_unlock_irqrestore(&dbri->lock, flags);
745}
746
747/*
748****************************************************************************
749************************** DBRI data pipe management ***********************
750****************************************************************************
751
752While DBRI control functions use the command and interrupt buffers, the
753main data path takes the form of data pipes, which can be short (command
754and interrupt driven), or long (attached to DMA buffers).  These functions
755provide a rudimentary means of setting up and managing the DBRI's pipes,
756but the calling functions have to make sure they respect the pipes' linked
757list ordering, among other things.  The transmit and receive functions
758here interface closely with the transmit and receive interrupt code.
759
760*/
761static int pipe_active(struct snd_dbri * dbri, int pipe)
762{
763	return ((pipe >= 0) && (dbri->pipes[pipe].desc != -1));
764}
765
766/* reset_pipe(dbri, pipe)
767 *
768 * Called on an in-use pipe to clear anything being transmitted or received
769 * Lock must be held before calling this.
770 */
771static void reset_pipe(struct snd_dbri * dbri, int pipe)
772{
773	int sdp;
774	int desc;
775	volatile int *cmd;
776
777	if (pipe < 0 || pipe > DBRI_MAX_PIPE) {
778		printk(KERN_ERR "DBRI: reset_pipe called with illegal pipe number\n");
779		return;
780	}
781
782	sdp = dbri->pipes[pipe].sdp;
783	if (sdp == 0) {
784		printk(KERN_ERR "DBRI: reset_pipe called on uninitialized pipe\n");
785		return;
786	}
787
788	cmd = dbri_cmdlock(dbri, NoGetLock);
789	*(cmd++) = DBRI_CMD(D_SDP, 0, sdp | D_SDP_C | D_SDP_P);
790	*(cmd++) = 0;
791	dbri_cmdsend(dbri, cmd);
792
793	desc = dbri->pipes[pipe].first_desc;
794	while (desc != -1) {
795		dbri->dma->desc[desc].nda = dbri->dma->desc[desc].ba = 0;
796		desc = dbri->next_desc[desc];
797	}
798
799	dbri->pipes[pipe].desc = -1;
800	dbri->pipes[pipe].first_desc = -1;
801}
802
803static void setup_pipe(struct snd_dbri * dbri, int pipe, int sdp)
804{
805	if (pipe < 0 || pipe > DBRI_MAX_PIPE) {
806		printk(KERN_ERR "DBRI: setup_pipe called with illegal pipe number\n");
807		return;
808	}
809
810	if ((sdp & 0xf800) != sdp) {
811		printk(KERN_ERR "DBRI: setup_pipe called with strange SDP value\n");
812		/* sdp &= 0xf800; */
813	}
814
815	/* If this is a fixed receive pipe, arrange for an interrupt
816	 * every time its data changes
817	 */
818	if (D_SDP_MODE(sdp) == D_SDP_FIXED && !(sdp & D_SDP_TO_SER))
819		sdp |= D_SDP_CHANGE;
820
821	sdp |= D_PIPE(pipe);
822	dbri->pipes[pipe].sdp = sdp;
823	dbri->pipes[pipe].desc = -1;
824	dbri->pipes[pipe].first_desc = -1;
825
826	reset_pipe(dbri, pipe);
827}
828
829/* FIXME: direction not needed */
830static void link_time_slot(struct snd_dbri * dbri, int pipe,
831			   enum in_or_out direction, int basepipe,
832			   int length, int cycle)
833{
834	volatile s32 *cmd;
835	int val;
836	int prevpipe;
837	int nextpipe;
838
839	if (pipe < 0 || pipe > DBRI_MAX_PIPE || basepipe < 0 || basepipe > DBRI_MAX_PIPE) {
840		printk(KERN_ERR
841		    "DBRI: link_time_slot called with illegal pipe number\n");
842		return;
843	}
844
845	if (dbri->pipes[pipe].sdp == 0 || dbri->pipes[basepipe].sdp == 0) {
846		printk(KERN_ERR "DBRI: link_time_slot called on uninitialized pipe\n");
847		return;
848	}
849
850	/* Deal with CHI special case:
851	 * "If transmission on edges 0 or 1 is desired, then cycle n
852	 *  (where n = # of bit times per frame...) must be used."
853	 *                  - DBRI data sheet, page 11
854	 */
855	if (basepipe == 16 && direction == PIPEoutput && cycle == 0)
856		cycle = dbri->chi_bpf;
857
858	if (basepipe == pipe) {
859		prevpipe = pipe;
860		nextpipe = pipe;
861	} else {
862		/* We're not initializing a new linked list (basepipe != pipe),
863		 * so run through the linked list and find where this pipe
864		 * should be sloted in, based on its cycle.  CHI confuses
865		 * things a bit, since it has a single anchor for both its
866		 * transmit and receive lists.
867		 */
868		if (basepipe == 16) {
869			if (direction == PIPEinput) {
870				prevpipe = dbri->chi_in_pipe;
871			} else {
872				prevpipe = dbri->chi_out_pipe;
873			}
874		} else {
875			prevpipe = basepipe;
876		}
877
878		nextpipe = dbri->pipes[prevpipe].nextpipe;
879
880		while (dbri->pipes[nextpipe].cycle < cycle
881		       && dbri->pipes[nextpipe].nextpipe != basepipe) {
882			prevpipe = nextpipe;
883			nextpipe = dbri->pipes[nextpipe].nextpipe;
884		}
885	}
886
887	if (prevpipe == 16) {
888		if (direction == PIPEinput) {
889			dbri->chi_in_pipe = pipe;
890		} else {
891			dbri->chi_out_pipe = pipe;
892		}
893	} else {
894		dbri->pipes[prevpipe].nextpipe = pipe;
895	}
896
897	dbri->pipes[pipe].nextpipe = nextpipe;
898	dbri->pipes[pipe].cycle = cycle;
899	dbri->pipes[pipe].length = length;
900
901	cmd = dbri_cmdlock(dbri, NoGetLock);
902
903	if (direction == PIPEinput) {
904		val = D_DTS_VI | D_DTS_INS | D_DTS_PRVIN(prevpipe) | pipe;
905		*(cmd++) = DBRI_CMD(D_DTS, 0, val);
906		*(cmd++) =
907		    D_TS_LEN(length) | D_TS_CYCLE(cycle) | D_TS_NEXT(nextpipe);
908		*(cmd++) = 0;
909	} else {
910		val = D_DTS_VO | D_DTS_INS | D_DTS_PRVOUT(prevpipe) | pipe;
911		*(cmd++) = DBRI_CMD(D_DTS, 0, val);
912		*(cmd++) = 0;
913		*(cmd++) =
914		    D_TS_LEN(length) | D_TS_CYCLE(cycle) | D_TS_NEXT(nextpipe);
915	}
916
917	dbri_cmdsend(dbri, cmd);
918}
919
920static void unlink_time_slot(struct snd_dbri * dbri, int pipe,
921			     enum in_or_out direction, int prevpipe,
922			     int nextpipe)
923{
924	volatile s32 *cmd;
925	int val;
926
927	if (pipe < 0 || pipe > DBRI_MAX_PIPE
928			|| prevpipe < 0 || prevpipe > DBRI_MAX_PIPE) {
929		printk(KERN_ERR
930		    "DBRI: unlink_time_slot called with illegal pipe number\n");
931		return;
932	}
933
934	cmd = dbri_cmdlock(dbri, NoGetLock);
935
936	if (direction == PIPEinput) {
937		val = D_DTS_VI | D_DTS_DEL | D_DTS_PRVIN(prevpipe) | pipe;
938		*(cmd++) = DBRI_CMD(D_DTS, 0, val);
939		*(cmd++) = D_TS_NEXT(nextpipe);
940		*(cmd++) = 0;
941	} else {
942		val = D_DTS_VO | D_DTS_DEL | D_DTS_PRVOUT(prevpipe) | pipe;
943		*(cmd++) = DBRI_CMD(D_DTS, 0, val);
944		*(cmd++) = 0;
945		*(cmd++) = D_TS_NEXT(nextpipe);
946	}
947
948	dbri_cmdsend(dbri, cmd);
949}
950
951/* xmit_fixed() / recv_fixed()
952 *
953 * Transmit/receive data on a "fixed" pipe - i.e, one whose contents are not
954 * expected to change much, and which we don't need to buffer.
955 * The DBRI only interrupts us when the data changes (receive pipes),
956 * or only changes the data when this function is called (transmit pipes).
957 * Only short pipes (numbers 16-31) can be used in fixed data mode.
958 *
959 * These function operate on a 32-bit field, no matter how large
960 * the actual time slot is.  The interrupt handler takes care of bit
961 * ordering and alignment.  An 8-bit time slot will always end up
962 * in the low-order 8 bits, filled either MSB-first or LSB-first,
963 * depending on the settings passed to setup_pipe()
964 */
965static void xmit_fixed(struct snd_dbri * dbri, int pipe, unsigned int data)
966{
967	volatile s32 *cmd;
968
969	if (pipe < 16 || pipe > DBRI_MAX_PIPE) {
970		printk(KERN_ERR "DBRI: xmit_fixed: Illegal pipe number\n");
971		return;
972	}
973
974	if (D_SDP_MODE(dbri->pipes[pipe].sdp) == 0) {
975		printk(KERN_ERR "DBRI: xmit_fixed: Uninitialized pipe %d\n", pipe);
976		return;
977	}
978
979	if (D_SDP_MODE(dbri->pipes[pipe].sdp) != D_SDP_FIXED) {
980		printk(KERN_ERR "DBRI: xmit_fixed: Non-fixed pipe %d\n", pipe);
981		return;
982	}
983
984	if (!(dbri->pipes[pipe].sdp & D_SDP_TO_SER)) {
985		printk(KERN_ERR "DBRI: xmit_fixed: Called on receive pipe %d\n", pipe);
986		return;
987	}
988
989	/* DBRI short pipes always transmit LSB first */
990
991	if (dbri->pipes[pipe].sdp & D_SDP_MSB)
992		data = reverse_bytes(data, dbri->pipes[pipe].length);
993
994	cmd = dbri_cmdlock(dbri, GetLock);
995
996	*(cmd++) = DBRI_CMD(D_SSP, 0, pipe);
997	*(cmd++) = data;
998
999	dbri_cmdsend(dbri, cmd);
1000}
1001
1002static void recv_fixed(struct snd_dbri * dbri, int pipe, volatile __u32 * ptr)
1003{
1004	if (pipe < 16 || pipe > DBRI_MAX_PIPE) {
1005		printk(KERN_ERR "DBRI: recv_fixed called with illegal pipe number\n");
1006		return;
1007	}
1008
1009	if (D_SDP_MODE(dbri->pipes[pipe].sdp) != D_SDP_FIXED) {
1010		printk(KERN_ERR "DBRI: recv_fixed called on non-fixed pipe %d\n", pipe);
1011		return;
1012	}
1013
1014	if (dbri->pipes[pipe].sdp & D_SDP_TO_SER) {
1015		printk(KERN_ERR "DBRI: recv_fixed called on transmit pipe %d\n", pipe);
1016		return;
1017	}
1018
1019	dbri->pipes[pipe].recv_fixed_ptr = ptr;
1020}
1021
1022/* setup_descs()
1023 *
1024 * Setup transmit/receive data on a "long" pipe - i.e, one associated
1025 * with a DMA buffer.
1026 *
1027 * Only pipe numbers 0-15 can be used in this mode.
1028 *
1029 * This function takes a stream number pointing to a data buffer,
1030 * and work by building chains of descriptors which identify the
1031 * data buffers.  Buffers too large for a single descriptor will
1032 * be spread across multiple descriptors.
1033 */
1034static int setup_descs(struct snd_dbri * dbri, int streamno, unsigned int period)
1035{
1036	struct dbri_streaminfo *info = &dbri->stream_info[streamno];
1037	__u32 dvma_buffer;
1038	int desc = 0;
1039	int len;
1040	int first_desc = -1;
1041	int last_desc = -1;
1042
1043	if (info->pipe < 0 || info->pipe > 15) {
1044		printk(KERN_ERR "DBRI: setup_descs: Illegal pipe number\n");
1045		return -2;
1046	}
1047
1048	if (dbri->pipes[info->pipe].sdp == 0) {
1049		printk(KERN_ERR "DBRI: setup_descs: Uninitialized pipe %d\n",
1050		       info->pipe);
1051		return -2;
1052	}
1053
1054	dvma_buffer = info->dvma_buffer;
1055	len = info->size;
1056
1057	if (streamno == DBRI_PLAY) {
1058		if (!(dbri->pipes[info->pipe].sdp & D_SDP_TO_SER)) {
1059			printk(KERN_ERR "DBRI: setup_descs: Called on receive pipe %d\n",
1060			       info->pipe);
1061			return -2;
1062		}
1063	} else {
1064		if (dbri->pipes[info->pipe].sdp & D_SDP_TO_SER) {
1065			printk(KERN_ERR
1066			    "DBRI: setup_descs: Called on transmit pipe %d\n",
1067			     info->pipe);
1068			return -2;
1069		}
1070		/* Should be able to queue multiple buffers to receive on a pipe */
1071		if (pipe_active(dbri, info->pipe)) {
1072			printk(KERN_ERR "DBRI: recv_on_pipe: Called on active pipe %d\n",
1073			       info->pipe);
1074			return -2;
1075		}
1076
1077		/* Make sure buffer size is multiple of four */
1078		len &= ~3;
1079	}
1080
1081	while (len > 0) {
1082		int mylen;
1083
1084		for (; desc < DBRI_NO_DESCS; desc++) {
1085			if (!dbri->dma->desc[desc].ba)
1086				break;
1087		}
1088		if (desc == DBRI_NO_DESCS) {
1089			printk(KERN_ERR "DBRI: setup_descs: No descriptors\n");
1090			return -1;
1091		}
1092
1093		if (len > DBRI_TD_MAXCNT) {
1094			mylen = DBRI_TD_MAXCNT;	/* 8KB - 1 */
1095		} else {
1096			mylen = len;
1097		}
1098		if (mylen > period) {
1099			mylen = period;
1100		}
1101
1102		dbri->next_desc[desc] = -1;
1103		dbri->dma->desc[desc].ba = dvma_buffer;
1104		dbri->dma->desc[desc].nda = 0;
1105
1106		if (streamno == DBRI_PLAY) {
1107			dbri->dma->desc[desc].word1 = DBRI_TD_CNT(mylen);
1108			dbri->dma->desc[desc].word4 = 0;
1109			if (first_desc != -1)
1110				dbri->dma->desc[desc].word1 |= DBRI_TD_M;
1111		} else {
1112			dbri->dma->desc[desc].word1 = 0;
1113			dbri->dma->desc[desc].word4 =
1114			    DBRI_RD_B | DBRI_RD_BCNT(mylen);
1115		}
1116
1117		if (first_desc == -1) {
1118			first_desc = desc;
1119		} else {
1120			dbri->next_desc[last_desc] = desc;
1121			dbri->dma->desc[last_desc].nda =
1122			    dbri->dma_dvma + dbri_dma_off(desc, desc);
1123		}
1124
1125		last_desc = desc;
1126		dvma_buffer += mylen;
1127		len -= mylen;
1128	}
1129
1130	if (first_desc == -1 || last_desc == -1) {
1131		printk(KERN_ERR "DBRI: setup_descs: Not enough descriptors available\n");
1132		return -1;
1133	}
1134
1135	dbri->dma->desc[last_desc].word1 &= ~DBRI_TD_M;
1136	if (streamno == DBRI_PLAY) {
1137		dbri->dma->desc[last_desc].word1 |=
1138		    DBRI_TD_I | DBRI_TD_F | DBRI_TD_B;
1139	}
1140	dbri->pipes[info->pipe].first_desc = first_desc;
1141	dbri->pipes[info->pipe].desc = first_desc;
1142
1143	for (desc = first_desc; desc != -1; desc = dbri->next_desc[desc]) {
1144		dprintk(D_DESC, "DESC %d: %08x %08x %08x %08x\n",
1145			desc,
1146			dbri->dma->desc[desc].word1,
1147			dbri->dma->desc[desc].ba,
1148			dbri->dma->desc[desc].nda, dbri->dma->desc[desc].word4);
1149	}
1150	return 0;
1151}
1152
1153/*
1154****************************************************************************
1155************************** DBRI - CHI interface ****************************
1156****************************************************************************
1157
1158The CHI is a four-wire (clock, frame sync, data in, data out) time-division
1159multiplexed serial interface which the DBRI can operate in either master
1160(give clock/frame sync) or slave (take clock/frame sync) mode.
1161
1162*/
1163
1164enum master_or_slave { CHImaster, CHIslave };
1165
1166static void reset_chi(struct snd_dbri * dbri, enum master_or_slave master_or_slave,
1167		      int bits_per_frame)
1168{
1169	volatile s32 *cmd;
1170	int val;
1171	static int chi_initialized = 0;	/* FIXME: mutex? */
1172
1173	if (!chi_initialized) {
1174
1175		cmd = dbri_cmdlock(dbri, GetLock);
1176
1177		/* Set CHI Anchor: Pipe 16 */
1178
1179		val = D_DTS_VO | D_DTS_VI | D_DTS_INS
1180			| D_DTS_PRVIN(16) | D_PIPE(16) | D_DTS_PRVOUT(16);
1181		*(cmd++) = DBRI_CMD(D_DTS, 0, val);
1182		*(cmd++) = D_TS_ANCHOR | D_TS_NEXT(16);
1183		*(cmd++) = D_TS_ANCHOR | D_TS_NEXT(16);
1184
1185		dbri->pipes[16].sdp = 1;
1186		dbri->pipes[16].nextpipe = 16;
1187
1188#if 0
1189		chi_initialized++;
1190#endif
1191	} else {
1192		int pipe;
1193
1194		for (pipe = dbri->chi_in_pipe;
1195		     pipe != 16; pipe = dbri->pipes[pipe].nextpipe) {
1196			unlink_time_slot(dbri, pipe, PIPEinput,
1197					 16, dbri->pipes[pipe].nextpipe);
1198		}
1199		for (pipe = dbri->chi_out_pipe;
1200		     pipe != 16; pipe = dbri->pipes[pipe].nextpipe) {
1201			unlink_time_slot(dbri, pipe, PIPEoutput,
1202					 16, dbri->pipes[pipe].nextpipe);
1203		}
1204
1205		cmd = dbri_cmdlock(dbri, GetLock);
1206	}
1207	dbri->chi_in_pipe = 16;
1208	dbri->chi_out_pipe = 16;
1209
1210	if (master_or_slave == CHIslave) {
1211		/* Setup DBRI for CHI Slave - receive clock, frame sync (FS)
1212		 *
1213		 * CHICM  = 0 (slave mode, 8 kHz frame rate)
1214		 * IR     = give immediate CHI status interrupt
1215		 * EN     = give CHI status interrupt upon change
1216		 */
1217		*(cmd++) = DBRI_CMD(D_CHI, 0, D_CHI_CHICM(0));
1218	} else {
1219		/* Setup DBRI for CHI Master - generate clock, FS
1220		 *
1221		 * BPF                          =  bits per 8 kHz frame
1222		 * 12.288 MHz / CHICM_divisor   = clock rate
1223		 * FD  =  1 - drive CHIFS on rising edge of CHICK
1224		 */
1225		int clockrate = bits_per_frame * 8;
1226		int divisor = 12288 / clockrate;
1227
1228		if (divisor > 255 || divisor * clockrate != 12288)
1229			printk(KERN_ERR "DBRI: illegal bits_per_frame in setup_chi\n");
1230
1231		*(cmd++) = DBRI_CMD(D_CHI, 0, D_CHI_CHICM(divisor) | D_CHI_FD
1232				    | D_CHI_BPF(bits_per_frame));
1233	}
1234
1235	dbri->chi_bpf = bits_per_frame;
1236
1237	/* CHI Data Mode
1238	 *
1239	 * RCE   =  0 - receive on falling edge of CHICK
1240	 * XCE   =  1 - transmit on rising edge of CHICK
1241	 * XEN   =  1 - enable transmitter
1242	 * REN   =  1 - enable receiver
1243	 */
1244
1245	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1246	*(cmd++) = DBRI_CMD(D_CDM, 0, D_CDM_XCE | D_CDM_XEN | D_CDM_REN);
1247
1248	dbri_cmdsend(dbri, cmd);
1249}
1250
1251/*
1252****************************************************************************
1253*********************** CS4215 audio codec management **********************
1254****************************************************************************
1255
1256In the standard SPARC audio configuration, the CS4215 codec is attached
1257to the DBRI via the CHI interface and few of the DBRI's PIO pins.
1258
1259*/
1260static void cs4215_setup_pipes(struct snd_dbri * dbri)
1261{
1262	/*
1263	 * Data mode:
1264	 * Pipe  4: Send timeslots 1-4 (audio data)
1265	 * Pipe 20: Send timeslots 5-8 (part of ctrl data)
1266	 * Pipe  6: Receive timeslots 1-4 (audio data)
1267	 * Pipe 21: Receive timeslots 6-7. We can only receive 20 bits via
1268	 *          interrupt, and the rest of the data (slot 5 and 8) is
1269	 *          not relevant for us (only for doublechecking).
1270	 *
1271	 * Control mode:
1272	 * Pipe 17: Send timeslots 1-4 (slots 5-8 are readonly)
1273	 * Pipe 18: Receive timeslot 1 (clb).
1274	 * Pipe 19: Receive timeslot 7 (version).
1275	 */
1276
1277	setup_pipe(dbri, 4, D_SDP_MEM | D_SDP_TO_SER | D_SDP_MSB);
1278	setup_pipe(dbri, 20, D_SDP_FIXED | D_SDP_TO_SER | D_SDP_MSB);
1279	setup_pipe(dbri, 6, D_SDP_MEM | D_SDP_FROM_SER | D_SDP_MSB);
1280	setup_pipe(dbri, 21, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1281
1282	setup_pipe(dbri, 17, D_SDP_FIXED | D_SDP_TO_SER | D_SDP_MSB);
1283	setup_pipe(dbri, 18, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1284	setup_pipe(dbri, 19, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1285}
1286
1287static int cs4215_init_data(struct cs4215 *mm)
1288{
1289	/*
1290	 * No action, memory resetting only.
1291	 *
1292	 * Data Time Slot 5-8
1293	 * Speaker,Line and Headphone enable. Gain set to the half.
1294	 * Input is mike.
1295	 */
1296	mm->data[0] = CS4215_LO(0x20) | CS4215_HE | CS4215_LE;
1297	mm->data[1] = CS4215_RO(0x20) | CS4215_SE;
1298	mm->data[2] = CS4215_LG(0x8) | CS4215_IS | CS4215_PIO0 | CS4215_PIO1;
1299	mm->data[3] = CS4215_RG(0x8) | CS4215_MA(0xf);
1300
1301	/*
1302	 * Control Time Slot 1-4
1303	 * 0: Default I/O voltage scale
1304	 * 1: 8 bit ulaw, 8kHz, mono, high pass filter disabled
1305	 * 2: Serial enable, CHI master, 128 bits per frame, clock 1
1306	 * 3: Tests disabled
1307	 */
1308	mm->ctrl[0] = CS4215_RSRVD_1 | CS4215_MLB;
1309	mm->ctrl[1] = CS4215_DFR_ULAW | CS4215_FREQ[0].csval;
1310	mm->ctrl[2] = CS4215_XCLK | CS4215_BSEL_128 | CS4215_FREQ[0].xtal;
1311	mm->ctrl[3] = 0;
1312
1313	mm->status = 0;
1314	mm->version = 0xff;
1315	mm->precision = 8;	/* For ULAW */
1316	mm->channels = 2;
1317
1318	return 0;
1319}
1320
1321static void cs4215_setdata(struct snd_dbri * dbri, int muted)
1322{
1323	if (muted) {
1324		dbri->mm.data[0] |= 63;
1325		dbri->mm.data[1] |= 63;
1326		dbri->mm.data[2] &= ~15;
1327		dbri->mm.data[3] &= ~15;
1328	} else {
1329		/* Start by setting the playback attenuation. */
1330		struct dbri_streaminfo *info = &dbri->stream_info[DBRI_PLAY];
1331		int left_gain = info->left_gain & 0x3f;
1332		int right_gain = info->right_gain & 0x3f;
1333
1334		dbri->mm.data[0] &= ~0x3f;	/* Reset the volume bits */
1335		dbri->mm.data[1] &= ~0x3f;
1336		dbri->mm.data[0] |= (DBRI_MAX_VOLUME - left_gain);
1337		dbri->mm.data[1] |= (DBRI_MAX_VOLUME - right_gain);
1338
1339		/* Now set the recording gain. */
1340		info = &dbri->stream_info[DBRI_REC];
1341		left_gain = info->left_gain & 0xf;
1342		right_gain = info->right_gain & 0xf;
1343		dbri->mm.data[2] |= CS4215_LG(left_gain);
1344		dbri->mm.data[3] |= CS4215_RG(right_gain);
1345	}
1346
1347	xmit_fixed(dbri, 20, *(int *)dbri->mm.data);
1348}
1349
1350/*
1351 * Set the CS4215 to data mode.
1352 */
1353static void cs4215_open(struct snd_dbri * dbri)
1354{
1355	int data_width;
1356	u32 tmp;
1357
1358	dprintk(D_MM, "cs4215_open: %d channels, %d bits\n",
1359		dbri->mm.channels, dbri->mm.precision);
1360
1361	/* Temporarily mute outputs, and wait 1/8000 sec (125 us)
1362	 * to make sure this takes.  This avoids clicking noises.
1363	 */
1364
1365	cs4215_setdata(dbri, 1);
1366	udelay(125);
1367
1368	/*
1369	 * Data mode:
1370	 * Pipe  4: Send timeslots 1-4 (audio data)
1371	 * Pipe 20: Send timeslots 5-8 (part of ctrl data)
1372	 * Pipe  6: Receive timeslots 1-4 (audio data)
1373	 * Pipe 21: Receive timeslots 6-7. We can only receive 20 bits via
1374	 *          interrupt, and the rest of the data (slot 5 and 8) is
1375	 *          not relevant for us (only for doublechecking).
1376	 *
1377	 * Just like in control mode, the time slots are all offset by eight
1378	 * bits.  The CS4215, it seems, observes TSIN (the delayed signal)
1379	 * even if it's the CHI master.  Don't ask me...
1380	 */
1381	tmp = sbus_readl(dbri->regs + REG0);
1382	tmp &= ~(D_C);		/* Disable CHI */
1383	sbus_writel(tmp, dbri->regs + REG0);
1384
1385	/* Switch CS4215 to data mode - set PIO3 to 1 */
1386	sbus_writel(D_ENPIO | D_PIO1 | D_PIO3 |
1387		    (dbri->mm.onboard ? D_PIO0 : D_PIO2), dbri->regs + REG2);
1388
1389	reset_chi(dbri, CHIslave, 128);
1390
1391	/* Note: this next doesn't work for 8-bit stereo, because the two
1392	 * channels would be on timeslots 1 and 3, with 2 and 4 idle.
1393	 * (See CS4215 datasheet Fig 15)
1394	 *
1395	 * DBRI non-contiguous mode would be required to make this work.
1396	 */
1397	data_width = dbri->mm.channels * dbri->mm.precision;
1398
1399	link_time_slot(dbri, 20, PIPEoutput, 16, 32, dbri->mm.offset + 32);
1400	link_time_slot(dbri, 4, PIPEoutput, 16, data_width, dbri->mm.offset);
1401	link_time_slot(dbri, 6, PIPEinput, 16, data_width, dbri->mm.offset);
1402	link_time_slot(dbri, 21, PIPEinput, 16, 16, dbri->mm.offset + 40);
1403
1404	/* FIXME: enable CHI after _setdata? */
1405	tmp = sbus_readl(dbri->regs + REG0);
1406	tmp |= D_C;		/* Enable CHI */
1407	sbus_writel(tmp, dbri->regs + REG0);
1408
1409	cs4215_setdata(dbri, 0);
1410}
1411
1412/*
1413 * Send the control information (i.e. audio format)
1414 */
1415static int cs4215_setctrl(struct snd_dbri * dbri)
1416{
1417	int i, val;
1418	u32 tmp;
1419
1420	/* FIXME - let the CPU do something useful during these delays */
1421
1422	/* Temporarily mute outputs, and wait 1/8000 sec (125 us)
1423	 * to make sure this takes.  This avoids clicking noises.
1424	 */
1425	cs4215_setdata(dbri, 1);
1426	udelay(125);
1427
1428	/*
1429	 * Enable Control mode: Set DBRI's PIO3 (4215's D/~C) to 0, then wait
1430	 * 12 cycles <= 12/(5512.5*64) sec = 34.01 usec
1431	 */
1432	val = D_ENPIO | D_PIO1 | (dbri->mm.onboard ? D_PIO0 : D_PIO2);
1433	sbus_writel(val, dbri->regs + REG2);
1434	dprintk(D_MM, "cs4215_setctrl: reg2=0x%x\n", val);
1435	udelay(34);
1436
1437	/* In Control mode, the CS4215 is a slave device, so the DBRI must
1438	 * operate as CHI master, supplying clocking and frame synchronization.
1439	 *
1440	 * In Data mode, however, the CS4215 must be CHI master to insure
1441	 * that its data stream is synchronous with its codec.
1442	 *
1443	 * The upshot of all this?  We start by putting the DBRI into master
1444	 * mode, program the CS4215 in Control mode, then switch the CS4215
1445	 * into Data mode and put the DBRI into slave mode.  Various timing
1446	 * requirements must be observed along the way.
1447	 *
1448	 * Oh, and one more thing, on a SPARCStation 20 (and maybe
1449	 * others?), the addressing of the CS4215's time slots is
1450	 * offset by eight bits, so we add eight to all the "cycle"
1451	 * values in the Define Time Slot (DTS) commands.  This is
1452	 * done in hardware by a TI 248 that delays the DBRI->4215
1453	 * frame sync signal by eight clock cycles.  Anybody know why?
1454	 */
1455	tmp = sbus_readl(dbri->regs + REG0);
1456	tmp &= ~D_C;		/* Disable CHI */
1457	sbus_writel(tmp, dbri->regs + REG0);
1458
1459	reset_chi(dbri, CHImaster, 128);
1460
1461	/*
1462	 * Control mode:
1463	 * Pipe 17: Send timeslots 1-4 (slots 5-8 are readonly)
1464	 * Pipe 18: Receive timeslot 1 (clb).
1465	 * Pipe 19: Receive timeslot 7 (version).
1466	 */
1467
1468	link_time_slot(dbri, 17, PIPEoutput, 16, 32, dbri->mm.offset);
1469	link_time_slot(dbri, 18, PIPEinput, 16, 8, dbri->mm.offset);
1470	link_time_slot(dbri, 19, PIPEinput, 16, 8, dbri->mm.offset + 48);
1471
1472	/* Wait for the chip to echo back CLB (Control Latch Bit) as zero */
1473	dbri->mm.ctrl[0] &= ~CS4215_CLB;
1474	xmit_fixed(dbri, 17, *(int *)dbri->mm.ctrl);
1475
1476	tmp = sbus_readl(dbri->regs + REG0);
1477	tmp |= D_C;		/* Enable CHI */
1478	sbus_writel(tmp, dbri->regs + REG0);
1479
1480	for (i = 10; ((dbri->mm.status & 0xe4) != 0x20); --i) {
1481		msleep_interruptible(1);
1482	}
1483	if (i == 0) {
1484		dprintk(D_MM, "CS4215 didn't respond to CLB (0x%02x)\n",
1485			dbri->mm.status);
1486		return -1;
1487	}
1488
1489	/* Disable changes to our copy of the version number, as we are about
1490	 * to leave control mode.
1491	 */
1492	recv_fixed(dbri, 19, NULL);
1493
1494	/* Terminate CS4215 control mode - data sheet says
1495	 * "Set CLB=1 and send two more frames of valid control info"
1496	 */
1497	dbri->mm.ctrl[0] |= CS4215_CLB;
1498	xmit_fixed(dbri, 17, *(int *)dbri->mm.ctrl);
1499
1500	/* Two frames of control info @ 8kHz frame rate = 250 us delay */
1501	udelay(250);
1502
1503	cs4215_setdata(dbri, 0);
1504
1505	return 0;
1506}
1507
1508/*
1509 * Setup the codec with the sampling rate, audio format and number of
1510 * channels.
1511 * As part of the process we resend the settings for the data
1512 * timeslots as well.
1513 */
1514static int cs4215_prepare(struct snd_dbri * dbri, unsigned int rate,
1515			  snd_pcm_format_t format, unsigned int channels)
1516{
1517	int freq_idx;
1518	int ret = 0;
1519
1520	/* Lookup index for this rate */
1521	for (freq_idx = 0; CS4215_FREQ[freq_idx].freq != 0; freq_idx++) {
1522		if (CS4215_FREQ[freq_idx].freq == rate)
1523			break;
1524	}
1525	if (CS4215_FREQ[freq_idx].freq != rate) {
1526		printk(KERN_WARNING "DBRI: Unsupported rate %d Hz\n", rate);
1527		return -1;
1528	}
1529
1530	switch (format) {
1531	case SNDRV_PCM_FORMAT_MU_LAW:
1532		dbri->mm.ctrl[1] = CS4215_DFR_ULAW;
1533		dbri->mm.precision = 8;
1534		break;
1535	case SNDRV_PCM_FORMAT_A_LAW:
1536		dbri->mm.ctrl[1] = CS4215_DFR_ALAW;
1537		dbri->mm.precision = 8;
1538		break;
1539	case SNDRV_PCM_FORMAT_U8:
1540		dbri->mm.ctrl[1] = CS4215_DFR_LINEAR8;
1541		dbri->mm.precision = 8;
1542		break;
1543	case SNDRV_PCM_FORMAT_S16_BE:
1544		dbri->mm.ctrl[1] = CS4215_DFR_LINEAR16;
1545		dbri->mm.precision = 16;
1546		break;
1547	default:
1548		printk(KERN_WARNING "DBRI: Unsupported format %d\n", format);
1549		return -1;
1550	}
1551
1552	/* Add rate parameters */
1553	dbri->mm.ctrl[1] |= CS4215_FREQ[freq_idx].csval;
1554	dbri->mm.ctrl[2] = CS4215_XCLK |
1555	    CS4215_BSEL_128 | CS4215_FREQ[freq_idx].xtal;
1556
1557	dbri->mm.channels = channels;
1558	/* Stereo bit: 8 bit stereo not working yet. */
1559	if ((channels > 1) && (dbri->mm.precision == 16))
1560		dbri->mm.ctrl[1] |= CS4215_DFR_STEREO;
1561
1562	ret = cs4215_setctrl(dbri);
1563	if (ret == 0)
1564		cs4215_open(dbri);	/* set codec to data mode */
1565
1566	return ret;
1567}
1568
1569/*
1570 *
1571 */
1572static int cs4215_init(struct snd_dbri * dbri)
1573{
1574	u32 reg2 = sbus_readl(dbri->regs + REG2);
1575	dprintk(D_MM, "cs4215_init: reg2=0x%x\n", reg2);
1576
1577	/* Look for the cs4215 chips */
1578	if (reg2 & D_PIO2) {
1579		dprintk(D_MM, "Onboard CS4215 detected\n");
1580		dbri->mm.onboard = 1;
1581	}
1582	if (reg2 & D_PIO0) {
1583		dprintk(D_MM, "Speakerbox detected\n");
1584		dbri->mm.onboard = 0;
1585
1586		if (reg2 & D_PIO2) {
1587			printk(KERN_INFO "DBRI: Using speakerbox / "
1588			       "ignoring onboard mmcodec.\n");
1589			sbus_writel(D_ENPIO2, dbri->regs + REG2);
1590		}
1591	}
1592
1593	if (!(reg2 & (D_PIO0 | D_PIO2))) {
1594		printk(KERN_ERR "DBRI: no mmcodec found.\n");
1595		return -EIO;
1596	}
1597
1598	cs4215_setup_pipes(dbri);
1599
1600	cs4215_init_data(&dbri->mm);
1601
1602	/* Enable capture of the status & version timeslots. */
1603	recv_fixed(dbri, 18, &dbri->mm.status);
1604	recv_fixed(dbri, 19, &dbri->mm.version);
1605
1606	dbri->mm.offset = dbri->mm.onboard ? 0 : 8;
1607	if (cs4215_setctrl(dbri) == -1 || dbri->mm.version == 0xff) {
1608		dprintk(D_MM, "CS4215 failed probe at offset %d\n",
1609			dbri->mm.offset);
1610		return -EIO;
1611	}
1612	dprintk(D_MM, "Found CS4215 at offset %d\n", dbri->mm.offset);
1613
1614	return 0;
1615}
1616
1617/*
1618****************************************************************************
1619*************************** DBRI interrupt handler *************************
1620****************************************************************************
1621
1622The DBRI communicates with the CPU mainly via a circular interrupt
1623buffer.  When an interrupt is signaled, the CPU walks through the
1624buffer and calls dbri_process_one_interrupt() for each interrupt word.
1625Complicated interrupts are handled by dedicated functions (which
1626appear first in this file).  Any pending interrupts can be serviced by
1627calling dbri_process_interrupt_buffer(), which works even if the CPU's
1628interrupts are disabled.  This function is used by dbri_cmdlock()
1629to make sure we're synced up with the chip before each command sequence,
1630even if we're running cli'ed.
1631
1632*/
1633
1634/* xmit_descs()
1635 *
1636 * Transmit the current TD's for recording/playing, if needed.
1637 * For playback, ALSA has filled the DMA memory with new data (we hope).
1638 */
1639static void xmit_descs(unsigned long data)
1640{
1641	struct snd_dbri *dbri = (struct snd_dbri *) data;
1642	struct dbri_streaminfo *info;
1643	volatile s32 *cmd;
1644	unsigned long flags;
1645	int first_td;
1646
1647	if (dbri == NULL)
1648		return;		/* Disabled */
1649
1650	/* First check the recording stream for buffer overflow */
1651	info = &dbri->stream_info[DBRI_REC];
1652	spin_lock_irqsave(&dbri->lock, flags);
1653
1654	if ((info->left >= info->size) && (info->pipe >= 0)) {
1655		first_td = dbri->pipes[info->pipe].first_desc;
1656
1657		dprintk(D_DESC, "xmit_descs rec @ TD %d\n", first_td);
1658
1659		/* Stream could be closed by the time we run. */
1660		if (first_td < 0) {
1661			goto play;
1662		}
1663
1664		cmd = dbri_cmdlock(dbri, NoGetLock);
1665		*(cmd++) = DBRI_CMD(D_SDP, 0,
1666				    dbri->pipes[info->pipe].sdp
1667				    | D_SDP_P | D_SDP_EVERY | D_SDP_C);
1668		*(cmd++) = dbri->dma_dvma + dbri_dma_off(desc, first_td);
1669		dbri_cmdsend(dbri, cmd);
1670
1671		/* Reset our admin of the pipe & bytes read. */
1672		dbri->pipes[info->pipe].desc = first_td;
1673		info->left = 0;
1674	}
1675
1676play:
1677	spin_unlock_irqrestore(&dbri->lock, flags);
1678
1679	/* Now check the playback stream for buffer underflow */
1680	info = &dbri->stream_info[DBRI_PLAY];
1681	spin_lock_irqsave(&dbri->lock, flags);
1682
1683	if ((info->left <= 0) && (info->pipe >= 0)) {
1684		first_td = dbri->pipes[info->pipe].first_desc;
1685
1686		dprintk(D_DESC, "xmit_descs play @ TD %d\n", first_td);
1687
1688		/* Stream could be closed by the time we run. */
1689		if (first_td < 0) {
1690			spin_unlock_irqrestore(&dbri->lock, flags);
1691			return;
1692		}
1693
1694		cmd = dbri_cmdlock(dbri, NoGetLock);
1695		*(cmd++) = DBRI_CMD(D_SDP, 0,
1696				    dbri->pipes[info->pipe].sdp
1697				    | D_SDP_P | D_SDP_EVERY | D_SDP_C);
1698		*(cmd++) = dbri->dma_dvma + dbri_dma_off(desc, first_td);
1699		dbri_cmdsend(dbri, cmd);
1700
1701		/* Reset our admin of the pipe & bytes written. */
1702		dbri->pipes[info->pipe].desc = first_td;
1703		info->left = info->size;
1704	}
1705	spin_unlock_irqrestore(&dbri->lock, flags);
1706}
1707
1708static DECLARE_TASKLET(xmit_descs_task, xmit_descs, 0);
1709
1710/* transmission_complete_intr()
1711 *
1712 * Called by main interrupt handler when DBRI signals transmission complete
1713 * on a pipe (interrupt triggered by the B bit in a transmit descriptor).
1714 *
1715 * Walks through the pipe's list of transmit buffer descriptors and marks
1716 * them as available. Stops when the first descriptor is found without
1717 * TBC (Transmit Buffer Complete) set, or we've run through them all.
1718 *
1719 * The DMA buffers are not released, but re-used. Since the transmit buffer
1720 * descriptors are not clobbered, they can be re-submitted as is. This is
1721 * done by the xmit_descs() tasklet above since that could take longer.
1722 */
1723
1724static void transmission_complete_intr(struct snd_dbri * dbri, int pipe)
1725{
1726	struct dbri_streaminfo *info;
1727	int td;
1728	int status;
1729	int len;
1730
1731	info = &dbri->stream_info[DBRI_PLAY];
1732
1733	td = dbri->pipes[pipe].desc;
1734	while (td >= 0) {
1735		if (td >= DBRI_NO_DESCS) {
1736			printk(KERN_ERR "DBRI: invalid td on pipe %d\n", pipe);
1737			return;
1738		}
1739
1740		status = DBRI_TD_STATUS(dbri->dma->desc[td].word4);
1741		if (!(status & DBRI_TD_TBC)) {
1742			break;
1743		}
1744
1745		dprintk(D_INT, "TD %d, status 0x%02x\n", td, status);
1746
1747		dbri->dma->desc[td].word4 = 0;	/* Reset it for next time. */
1748		len = DBRI_RD_CNT(dbri->dma->desc[td].word1);
1749		info->offset += len;
1750		info->left -= len;
1751
1752		/* On the last TD, transmit them all again. */
1753		if (dbri->next_desc[td] == -1) {
1754			if (info->left > 0) {
1755				printk(KERN_WARNING
1756				       "%d bytes left after last transfer.\n",
1757				       info->left);
1758				info->left = 0;
1759			}
1760			tasklet_schedule(&xmit_descs_task);
1761		}
1762
1763		td = dbri->next_desc[td];
1764		dbri->pipes[pipe].desc = td;
1765	}
1766
1767	/* Notify ALSA */
1768	if (spin_is_locked(&dbri->lock)) {
1769		spin_unlock(&dbri->lock);
1770		snd_pcm_period_elapsed(info->substream);
1771		spin_lock(&dbri->lock);
1772	} else
1773		snd_pcm_period_elapsed(info->substream);
1774}
1775
1776static void reception_complete_intr(struct snd_dbri * dbri, int pipe)
1777{
1778	struct dbri_streaminfo *info;
1779	int rd = dbri->pipes[pipe].desc;
1780	s32 status;
1781
1782	if (rd < 0 || rd >= DBRI_NO_DESCS) {
1783		printk(KERN_ERR "DBRI: invalid rd on pipe %d\n", pipe);
1784		return;
1785	}
1786
1787	dbri->dma->desc[rd].ba = 0;
1788	dbri->pipes[pipe].desc = dbri->next_desc[rd];
1789	status = dbri->dma->desc[rd].word1;
1790	dbri->dma->desc[rd].word1 = 0;	/* Reset it for next time. */
1791
1792	info = &dbri->stream_info[DBRI_REC];
1793	info->offset += DBRI_RD_CNT(status);
1794	info->left += DBRI_RD_CNT(status);
1795
1796	/* FIXME: Check status */
1797
1798	dprintk(D_INT, "Recv RD %d, status 0x%02x, len %d\n",
1799		rd, DBRI_RD_STATUS(status), DBRI_RD_CNT(status));
1800
1801	/* On the last TD, transmit them all again. */
1802	if (dbri->next_desc[rd] == -1) {
1803		if (info->left > info->size) {
1804			printk(KERN_WARNING
1805			       "%d bytes recorded in %d size buffer.\n",
1806			       info->left, info->size);
1807		}
1808		tasklet_schedule(&xmit_descs_task);
1809	}
1810
1811	/* Notify ALSA */
1812	if (spin_is_locked(&dbri->lock)) {
1813		spin_unlock(&dbri->lock);
1814		snd_pcm_period_elapsed(info->substream);
1815		spin_lock(&dbri->lock);
1816	} else
1817		snd_pcm_period_elapsed(info->substream);
1818}
1819
1820static void dbri_process_one_interrupt(struct snd_dbri * dbri, int x)
1821{
1822	int val = D_INTR_GETVAL(x);
1823	int channel = D_INTR_GETCHAN(x);
1824	int command = D_INTR_GETCMD(x);
1825	int code = D_INTR_GETCODE(x);
1826#ifdef DBRI_DEBUG
1827	int rval = D_INTR_GETRVAL(x);
1828#endif
1829
1830	if (channel == D_INTR_CMD) {
1831		dprintk(D_CMD, "INTR: Command: %-5s  Value:%d\n",
1832			cmds[command], val);
1833	} else {
1834		dprintk(D_INT, "INTR: Chan:%d Code:%d Val:%#x\n",
1835			channel, code, rval);
1836	}
1837
1838	if (channel == D_INTR_CMD && command == D_WAIT) {
1839		dbri->wait_ackd = val;
1840		if (dbri->wait_send != val) {
1841			printk(KERN_ERR "Processing wait command %d when %d was send.\n",
1842			       val, dbri->wait_send);
1843		}
1844		return;
1845	}
1846
1847	switch (code) {
1848	case D_INTR_BRDY:
1849		reception_complete_intr(dbri, channel);
1850		break;
1851	case D_INTR_XCMP:
1852	case D_INTR_MINT:
1853		transmission_complete_intr(dbri, channel);
1854		break;
1855	case D_INTR_UNDR:
1856		/* UNDR - Transmission underrun
1857		 * resend SDP command with clear pipe bit (C) set
1858		 */
1859		{
1860			volatile s32 *cmd;
1861
1862			int pipe = channel;
1863			int td = dbri->pipes[pipe].desc;
1864
1865			dbri->dma->desc[td].word4 = 0;
1866			cmd = dbri_cmdlock(dbri, NoGetLock);
1867			*(cmd++) = DBRI_CMD(D_SDP, 0,
1868					    dbri->pipes[pipe].sdp
1869					    | D_SDP_P | D_SDP_C | D_SDP_2SAME);
1870			*(cmd++) = dbri->dma_dvma + dbri_dma_off(desc, td);
1871			dbri_cmdsend(dbri, cmd);
1872		}
1873		break;
1874	case D_INTR_FXDT:
1875		/* FXDT - Fixed data change */
1876		if (dbri->pipes[channel].sdp & D_SDP_MSB)
1877			val = reverse_bytes(val, dbri->pipes[channel].length);
1878
1879		if (dbri->pipes[channel].recv_fixed_ptr)
1880			*(dbri->pipes[channel].recv_fixed_ptr) = val;
1881		break;
1882	default:
1883		if (channel != D_INTR_CMD)
1884			printk(KERN_WARNING
1885			       "DBRI: Ignored Interrupt: %d (0x%x)\n", code, x);
1886	}
1887}
1888
1889/* dbri_process_interrupt_buffer advances through the DBRI's interrupt
1890 * buffer until it finds a zero word (indicating nothing more to do
1891 * right now).  Non-zero words require processing and are handed off
1892 * to dbri_process_one_interrupt AFTER advancing the pointer.  This
1893 * order is important since we might recurse back into this function
1894 * and need to make sure the pointer has been advanced first.
1895 */
1896static void dbri_process_interrupt_buffer(struct snd_dbri * dbri)
1897{
1898	s32 x;
1899
1900	while ((x = dbri->dma->intr[dbri->dbri_irqp]) != 0) {
1901		dbri->dma->intr[dbri->dbri_irqp] = 0;
1902		dbri->dbri_irqp++;
1903		if (dbri->dbri_irqp == DBRI_INT_BLK)
1904			dbri->dbri_irqp = 1;
1905
1906		dbri_process_one_interrupt(dbri, x);
1907	}
1908}
1909
1910static irqreturn_t snd_dbri_interrupt(int irq, void *dev_id,
1911				      struct pt_regs *regs)
1912{
1913	struct snd_dbri *dbri = dev_id;
1914	static int errcnt = 0;
1915	int x;
1916
1917	if (dbri == NULL)
1918		return IRQ_NONE;
1919	spin_lock(&dbri->lock);
1920
1921	/*
1922	 * Read it, so the interrupt goes away.
1923	 */
1924	x = sbus_readl(dbri->regs + REG1);
1925
1926	if (x & (D_MRR | D_MLE | D_LBG | D_MBE)) {
1927		u32 tmp;
1928
1929		if (x & D_MRR)
1930			printk(KERN_ERR
1931			       "DBRI: Multiple Error Ack on SBus reg1=0x%x\n",
1932			       x);
1933		if (x & D_MLE)
1934			printk(KERN_ERR
1935			       "DBRI: Multiple Late Error on SBus reg1=0x%x\n",
1936			       x);
1937		if (x & D_LBG)
1938			printk(KERN_ERR
1939			       "DBRI: Lost Bus Grant on SBus reg1=0x%x\n", x);
1940		if (x & D_MBE)
1941			printk(KERN_ERR
1942			       "DBRI: Burst Error on SBus reg1=0x%x\n", x);
1943
1944		/* Some of these SBus errors cause the chip's SBus circuitry
1945		 * to be disabled, so just re-enable and try to keep going.
1946		 *
1947		 * The only one I've seen is MRR, which will be triggered
1948		 * if you let a transmit pipe underrun, then try to CDP it.
1949		 *
1950		 * If these things persist, we reset the chip.
1951		 */
1952		if ((++errcnt) % 10 == 0) {
1953			dprintk(D_INT, "Interrupt errors exceeded.\n");
1954			dbri_reset(dbri);
1955		} else {
1956			tmp = sbus_readl(dbri->regs + REG0);
1957			tmp &= ~(D_D);
1958			sbus_writel(tmp, dbri->regs + REG0);
1959		}
1960	}
1961
1962	dbri_process_interrupt_buffer(dbri);
1963
1964	/* FIXME: Write 0 into regs to ACK interrupt */
1965
1966	spin_unlock(&dbri->lock);
1967
1968	return IRQ_HANDLED;
1969}
1970
1971/****************************************************************************
1972		PCM Interface
1973****************************************************************************/
1974static struct snd_pcm_hardware snd_dbri_pcm_hw = {
1975	.info			= (SNDRV_PCM_INFO_MMAP |
1976				   SNDRV_PCM_INFO_INTERLEAVED |
1977				   SNDRV_PCM_INFO_BLOCK_TRANSFER |
1978				   SNDRV_PCM_INFO_MMAP_VALID),
1979	.formats		= SNDRV_PCM_FMTBIT_MU_LAW |
1980				  SNDRV_PCM_FMTBIT_A_LAW |
1981				  SNDRV_PCM_FMTBIT_U8 |
1982				  SNDRV_PCM_FMTBIT_S16_BE,
1983	.rates			= SNDRV_PCM_RATE_8000_48000,
1984	.rate_min		= 8000,
1985	.rate_max		= 48000,
1986	.channels_min		= 1,
1987	.channels_max		= 2,
1988	.buffer_bytes_max	= (64 * 1024),
1989	.period_bytes_min	= 1,
1990	.period_bytes_max	= DBRI_TD_MAXCNT,
1991	.periods_min		= 1,
1992	.periods_max		= 1024,
1993};
1994
1995static int snd_dbri_open(struct snd_pcm_substream *substream)
1996{
1997	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
1998	struct snd_pcm_runtime *runtime = substream->runtime;
1999	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2000	unsigned long flags;
2001
2002	dprintk(D_USR, "open audio output.\n");
2003	runtime->hw = snd_dbri_pcm_hw;
2004
2005	spin_lock_irqsave(&dbri->lock, flags);
2006	info->substream = substream;
2007	info->left = 0;
2008	info->offset = 0;
2009	info->dvma_buffer = 0;
2010	info->pipe = -1;
2011	spin_unlock_irqrestore(&dbri->lock, flags);
2012
2013	cs4215_open(dbri);
2014
2015	return 0;
2016}
2017
2018static int snd_dbri_close(struct snd_pcm_substream *substream)
2019{
2020	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2021	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2022
2023	dprintk(D_USR, "close audio output.\n");
2024	info->substream = NULL;
2025	info->left = 0;
2026	info->offset = 0;
2027
2028	return 0;
2029}
2030
2031static int snd_dbri_hw_params(struct snd_pcm_substream *substream,
2032			      struct snd_pcm_hw_params *hw_params)
2033{
2034	struct snd_pcm_runtime *runtime = substream->runtime;
2035	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2036	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2037	int direction;
2038	int ret;
2039
2040	/* set sampling rate, audio format and number of channels */
2041	ret = cs4215_prepare(dbri, params_rate(hw_params),
2042			     params_format(hw_params),
2043			     params_channels(hw_params));
2044	if (ret != 0)
2045		return ret;
2046
2047	if ((ret = snd_pcm_lib_malloc_pages(substream,
2048				params_buffer_bytes(hw_params))) < 0) {
2049		printk(KERN_ERR "malloc_pages failed with %d\n", ret);
2050		return ret;
2051	}
2052
2053	/* hw_params can get called multiple times. Only map the DMA once.
2054	 */
2055	if (info->dvma_buffer == 0) {
2056		if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2057			direction = SBUS_DMA_TODEVICE;
2058		else
2059			direction = SBUS_DMA_FROMDEVICE;
2060
2061		info->dvma_buffer = sbus_map_single(dbri->sdev,
2062					runtime->dma_area,
2063					params_buffer_bytes(hw_params),
2064					direction);
2065	}
2066
2067	direction = params_buffer_bytes(hw_params);
2068	dprintk(D_USR, "hw_params: %d bytes, dvma=%x\n",
2069		direction, info->dvma_buffer);
2070	return 0;
2071}
2072
2073static int snd_dbri_hw_free(struct snd_pcm_substream *substream)
2074{
2075	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2076	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2077	int direction;
2078	dprintk(D_USR, "hw_free.\n");
2079
2080	/* hw_free can get called multiple times. Only unmap the DMA once.
2081	 */
2082	if (info->dvma_buffer) {
2083		if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2084			direction = SBUS_DMA_TODEVICE;
2085		else
2086			direction = SBUS_DMA_FROMDEVICE;
2087
2088		sbus_unmap_single(dbri->sdev, info->dvma_buffer,
2089				  substream->runtime->buffer_size, direction);
2090		info->dvma_buffer = 0;
2091	}
2092	info->pipe = -1;
2093
2094	return snd_pcm_lib_free_pages(substream);
2095}
2096
2097static int snd_dbri_prepare(struct snd_pcm_substream *substream)
2098{
2099	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2100	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2101	struct snd_pcm_runtime *runtime = substream->runtime;
2102	int ret;
2103
2104	info->size = snd_pcm_lib_buffer_bytes(substream);
2105	if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2106		info->pipe = 4;	/* Send pipe */
2107	else {
2108		info->pipe = 6;	/* Receive pipe */
2109		info->left = info->size;	/* To trigger submittal */
2110	}
2111
2112	spin_lock_irq(&dbri->lock);
2113
2114	/* Setup the all the transmit/receive desciptors to cover the
2115	 * whole DMA buffer.
2116	 */
2117	ret = setup_descs(dbri, DBRI_STREAMNO(substream),
2118			  snd_pcm_lib_period_bytes(substream));
2119
2120	runtime->stop_threshold = DBRI_TD_MAXCNT / runtime->channels;
2121
2122	spin_unlock_irq(&dbri->lock);
2123
2124	dprintk(D_USR, "prepare audio output. %d bytes\n", info->size);
2125	return ret;
2126}
2127
2128static int snd_dbri_trigger(struct snd_pcm_substream *substream, int cmd)
2129{
2130	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2131	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2132	int ret = 0;
2133
2134	switch (cmd) {
2135	case SNDRV_PCM_TRIGGER_START:
2136		dprintk(D_USR, "start audio, period is %d bytes\n",
2137			(int)snd_pcm_lib_period_bytes(substream));
2138		/* Enable & schedule the tasklet that re-submits the TDs. */
2139		xmit_descs_task.data = (unsigned long)dbri;
2140		tasklet_schedule(&xmit_descs_task);
2141		break;
2142	case SNDRV_PCM_TRIGGER_STOP:
2143		dprintk(D_USR, "stop audio.\n");
2144		/* Make the tasklet bail out immediately. */
2145		xmit_descs_task.data = 0;
2146		reset_pipe(dbri, info->pipe);
2147		break;
2148	default:
2149		ret = -EINVAL;
2150	}
2151
2152	return ret;
2153}
2154
2155static snd_pcm_uframes_t snd_dbri_pointer(struct snd_pcm_substream *substream)
2156{
2157	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2158	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2159	snd_pcm_uframes_t ret;
2160
2161	ret = bytes_to_frames(substream->runtime, info->offset)
2162		% substream->runtime->buffer_size;
2163	dprintk(D_USR, "I/O pointer: %ld frames, %d bytes left.\n",
2164		ret, info->left);
2165	return ret;
2166}
2167
2168static struct snd_pcm_ops snd_dbri_ops = {
2169	.open = snd_dbri_open,
2170	.close = snd_dbri_close,
2171	.ioctl = snd_pcm_lib_ioctl,
2172	.hw_params = snd_dbri_hw_params,
2173	.hw_free = snd_dbri_hw_free,
2174	.prepare = snd_dbri_prepare,
2175	.trigger = snd_dbri_trigger,
2176	.pointer = snd_dbri_pointer,
2177};
2178
2179static int __devinit snd_dbri_pcm(struct snd_dbri * dbri)
2180{
2181	struct snd_pcm *pcm;
2182	int err;
2183
2184	if ((err = snd_pcm_new(dbri->card,
2185			       /* ID */		    "sun_dbri",
2186			       /* device */	    0,
2187			       /* playback count */ 1,
2188			       /* capture count */  1, &pcm)) < 0)
2189		return err;
2190	snd_assert(pcm != NULL, return -EINVAL);
2191
2192	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_dbri_ops);
2193	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_dbri_ops);
2194
2195	pcm->private_data = dbri;
2196	pcm->info_flags = 0;
2197	strcpy(pcm->name, dbri->card->shortname);
2198
2199	if ((err = snd_pcm_lib_preallocate_pages_for_all(pcm,
2200			SNDRV_DMA_TYPE_CONTINUOUS,
2201			snd_dma_continuous_data(GFP_KERNEL),
2202			64 * 1024, 64 * 1024)) < 0) {
2203		return err;
2204	}
2205
2206	return 0;
2207}
2208
2209/*****************************************************************************
2210			Mixer interface
2211*****************************************************************************/
2212
2213static int snd_cs4215_info_volume(struct snd_kcontrol *kcontrol,
2214				  struct snd_ctl_elem_info *uinfo)
2215{
2216	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2217	uinfo->count = 2;
2218	uinfo->value.integer.min = 0;
2219	if (kcontrol->private_value == DBRI_PLAY) {
2220		uinfo->value.integer.max = DBRI_MAX_VOLUME;
2221	} else {
2222		uinfo->value.integer.max = DBRI_MAX_GAIN;
2223	}
2224	return 0;
2225}
2226
2227static int snd_cs4215_get_volume(struct snd_kcontrol *kcontrol,
2228				 struct snd_ctl_elem_value *ucontrol)
2229{
2230	struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2231	struct dbri_streaminfo *info;
2232	snd_assert(dbri != NULL, return -EINVAL);
2233	info = &dbri->stream_info[kcontrol->private_value];
2234	snd_assert(info != NULL, return -EINVAL);
2235
2236	ucontrol->value.integer.value[0] = info->left_gain;
2237	ucontrol->value.integer.value[1] = info->right_gain;
2238	return 0;
2239}
2240
2241static int snd_cs4215_put_volume(struct snd_kcontrol *kcontrol,
2242				 struct snd_ctl_elem_value *ucontrol)
2243{
2244	struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2245	struct dbri_streaminfo *info = &dbri->stream_info[kcontrol->private_value];
2246	unsigned long flags;
2247	int changed = 0;
2248
2249	if (info->left_gain != ucontrol->value.integer.value[0]) {
2250		info->left_gain = ucontrol->value.integer.value[0];
2251		changed = 1;
2252	}
2253	if (info->right_gain != ucontrol->value.integer.value[1]) {
2254		info->right_gain = ucontrol->value.integer.value[1];
2255		changed = 1;
2256	}
2257	if (changed == 1) {
2258		/* First mute outputs, and wait 1/8000 sec (125 us)
2259		 * to make sure this takes.  This avoids clicking noises.
2260		 */
2261		spin_lock_irqsave(&dbri->lock, flags);
2262
2263		cs4215_setdata(dbri, 1);
2264		udelay(125);
2265		cs4215_setdata(dbri, 0);
2266
2267		spin_unlock_irqrestore(&dbri->lock, flags);
2268	}
2269	return changed;
2270}
2271
2272static int snd_cs4215_info_single(struct snd_kcontrol *kcontrol,
2273				  struct snd_ctl_elem_info *uinfo)
2274{
2275	int mask = (kcontrol->private_value >> 16) & 0xff;
2276
2277	uinfo->type = (mask == 1) ?
2278	    SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2279	uinfo->count = 1;
2280	uinfo->value.integer.min = 0;
2281	uinfo->value.integer.max = mask;
2282	return 0;
2283}
2284
2285static int snd_cs4215_get_single(struct snd_kcontrol *kcontrol,
2286				 struct snd_ctl_elem_value *ucontrol)
2287{
2288	struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2289	int elem = kcontrol->private_value & 0xff;
2290	int shift = (kcontrol->private_value >> 8) & 0xff;
2291	int mask = (kcontrol->private_value >> 16) & 0xff;
2292	int invert = (kcontrol->private_value >> 24) & 1;
2293	snd_assert(dbri != NULL, return -EINVAL);
2294
2295	if (elem < 4) {
2296		ucontrol->value.integer.value[0] =
2297		    (dbri->mm.data[elem] >> shift) & mask;
2298	} else {
2299		ucontrol->value.integer.value[0] =
2300		    (dbri->mm.ctrl[elem - 4] >> shift) & mask;
2301	}
2302
2303	if (invert == 1) {
2304		ucontrol->value.integer.value[0] =
2305		    mask - ucontrol->value.integer.value[0];
2306	}
2307	return 0;
2308}
2309
2310static int snd_cs4215_put_single(struct snd_kcontrol *kcontrol,
2311				 struct snd_ctl_elem_value *ucontrol)
2312{
2313	struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2314	unsigned long flags;
2315	int elem = kcontrol->private_value & 0xff;
2316	int shift = (kcontrol->private_value >> 8) & 0xff;
2317	int mask = (kcontrol->private_value >> 16) & 0xff;
2318	int invert = (kcontrol->private_value >> 24) & 1;
2319	int changed = 0;
2320	unsigned short val;
2321	snd_assert(dbri != NULL, return -EINVAL);
2322
2323	val = (ucontrol->value.integer.value[0] & mask);
2324	if (invert == 1)
2325		val = mask - val;
2326	val <<= shift;
2327
2328	if (elem < 4) {
2329		dbri->mm.data[elem] = (dbri->mm.data[elem] &
2330				       ~(mask << shift)) | val;
2331		changed = (val != dbri->mm.data[elem]);
2332	} else {
2333		dbri->mm.ctrl[elem - 4] = (dbri->mm.ctrl[elem - 4] &
2334					   ~(mask << shift)) | val;
2335		changed = (val != dbri->mm.ctrl[elem - 4]);
2336	}
2337
2338	dprintk(D_GEN, "put_single: mask=0x%x, changed=%d, "
2339		"mixer-value=%ld, mm-value=0x%x\n",
2340		mask, changed, ucontrol->value.integer.value[0],
2341		dbri->mm.data[elem & 3]);
2342
2343	if (changed) {
2344		/* First mute outputs, and wait 1/8000 sec (125 us)
2345		 * to make sure this takes.  This avoids clicking noises.
2346		 */
2347		spin_lock_irqsave(&dbri->lock, flags);
2348
2349		cs4215_setdata(dbri, 1);
2350		udelay(125);
2351		cs4215_setdata(dbri, 0);
2352
2353		spin_unlock_irqrestore(&dbri->lock, flags);
2354	}
2355	return changed;
2356}
2357
2358/* Entries 0-3 map to the 4 data timeslots, entries 4-7 map to the 4 control
2359   timeslots. Shift is the bit offset in the timeslot, mask defines the
2360   number of bits. invert is a boolean for use with attenuation.
2361 */
2362#define CS4215_SINGLE(xname, entry, shift, mask, invert) \
2363{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2364  .info = snd_cs4215_info_single, \
2365  .get = snd_cs4215_get_single, .put = snd_cs4215_put_single, \
2366  .private_value = entry | (shift << 8) | (mask << 16) | (invert << 24) },
2367
2368static struct snd_kcontrol_new dbri_controls[] __devinitdata = {
2369	{
2370	 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2371	 .name  = "Playback Volume",
2372	 .info  = snd_cs4215_info_volume,
2373	 .get   = snd_cs4215_get_volume,
2374	 .put   = snd_cs4215_put_volume,
2375	 .private_value = DBRI_PLAY,
2376	 },
2377	CS4215_SINGLE("Headphone switch", 0, 7, 1, 0)
2378	CS4215_SINGLE("Line out switch", 0, 6, 1, 0)
2379	CS4215_SINGLE("Speaker switch", 1, 6, 1, 0)
2380	{
2381	 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2382	 .name  = "Capture Volume",
2383	 .info  = snd_cs4215_info_volume,
2384	 .get   = snd_cs4215_get_volume,
2385	 .put   = snd_cs4215_put_volume,
2386	 .private_value = DBRI_REC,
2387	 },
2388	/* FIXME: mic/line switch */
2389	CS4215_SINGLE("Line in switch", 2, 4, 1, 0)
2390	CS4215_SINGLE("High Pass Filter switch", 5, 7, 1, 0)
2391	CS4215_SINGLE("Monitor Volume", 3, 4, 0xf, 1)
2392	CS4215_SINGLE("Mic boost", 4, 4, 1, 1)
2393};
2394
2395#define NUM_CS4215_CONTROLS (sizeof(dbri_controls)/sizeof(struct snd_kcontrol_new))
2396
2397static int __init snd_dbri_mixer(struct snd_dbri * dbri)
2398{
2399	struct snd_card *card;
2400	int idx, err;
2401
2402	snd_assert(dbri != NULL && dbri->card != NULL, return -EINVAL);
2403
2404	card = dbri->card;
2405	strcpy(card->mixername, card->shortname);
2406
2407	for (idx = 0; idx < NUM_CS4215_CONTROLS; idx++) {
2408		if ((err = snd_ctl_add(card,
2409				snd_ctl_new1(&dbri_controls[idx], dbri))) < 0)
2410			return err;
2411	}
2412
2413	for (idx = DBRI_REC; idx < DBRI_NO_STREAMS; idx++) {
2414		dbri->stream_info[idx].left_gain = 0;
2415		dbri->stream_info[idx].right_gain = 0;
2416	}
2417
2418	return 0;
2419}
2420
2421/****************************************************************************
2422			/proc interface
2423****************************************************************************/
2424static void dbri_regs_read(struct snd_info_entry * entry, struct snd_info_buffer *buffer)
2425{
2426	struct snd_dbri *dbri = entry->private_data;
2427
2428	snd_iprintf(buffer, "REG0: 0x%x\n", sbus_readl(dbri->regs + REG0));
2429	snd_iprintf(buffer, "REG2: 0x%x\n", sbus_readl(dbri->regs + REG2));
2430	snd_iprintf(buffer, "REG8: 0x%x\n", sbus_readl(dbri->regs + REG8));
2431	snd_iprintf(buffer, "REG9: 0x%x\n", sbus_readl(dbri->regs + REG9));
2432}
2433
2434#ifdef DBRI_DEBUG
2435static void dbri_debug_read(struct snd_info_entry * entry,
2436			    struct snd_info_buffer *buffer)
2437{
2438	struct snd_dbri *dbri = entry->private_data;
2439	int pipe;
2440	snd_iprintf(buffer, "debug=%d\n", dbri_debug);
2441
2442	for (pipe = 0; pipe < 32; pipe++) {
2443		if (pipe_active(dbri, pipe)) {
2444			struct dbri_pipe *pptr = &dbri->pipes[pipe];
2445			snd_iprintf(buffer,
2446				    "Pipe %d: %s SDP=0x%x desc=%d, "
2447				    "len=%d @ %d next %d\n",
2448				    pipe,
2449				   ((pptr->sdp & D_SDP_TO_SER) ? "output" : "input"),
2450				    pptr->sdp, pptr->desc,
2451				    pptr->length, pptr->cycle, pptr->nextpipe);
2452		}
2453	}
2454}
2455#endif
2456
2457void snd_dbri_proc(struct snd_dbri * dbri)
2458{
2459	struct snd_info_entry *entry;
2460
2461	if (! snd_card_proc_new(dbri->card, "regs", &entry))
2462		snd_info_set_text_ops(entry, dbri, dbri_regs_read);
2463
2464#ifdef DBRI_DEBUG
2465	if (! snd_card_proc_new(dbri->card, "debug", &entry)) {
2466		snd_info_set_text_ops(entry, dbri, dbri_debug_read);
2467		entry->mode = S_IFREG | S_IRUGO;	/* Readable only. */
2468	}
2469#endif
2470}
2471
2472/*
2473****************************************************************************
2474**************************** Initialization ********************************
2475****************************************************************************
2476*/
2477static void snd_dbri_free(struct snd_dbri * dbri);
2478
2479static int __init snd_dbri_create(struct snd_card *card,
2480				  struct sbus_dev *sdev,
2481				  struct linux_prom_irqs *irq, int dev)
2482{
2483	struct snd_dbri *dbri = card->private_data;
2484	int err;
2485
2486	spin_lock_init(&dbri->lock);
2487	dbri->card = card;
2488	dbri->sdev = sdev;
2489	dbri->irq = irq->pri;
2490
2491	dbri->dma = sbus_alloc_consistent(sdev, sizeof(struct dbri_dma),
2492					  &dbri->dma_dvma);
2493	memset((void *)dbri->dma, 0, sizeof(struct dbri_dma));
2494
2495	dprintk(D_GEN, "DMA Cmd Block 0x%p (0x%08x)\n",
2496		dbri->dma, dbri->dma_dvma);
2497
2498	/* Map the registers into memory. */
2499	dbri->regs_size = sdev->reg_addrs[0].reg_size;
2500	dbri->regs = sbus_ioremap(&sdev->resource[0], 0,
2501				  dbri->regs_size, "DBRI Registers");
2502	if (!dbri->regs) {
2503		printk(KERN_ERR "DBRI: could not allocate registers\n");
2504		sbus_free_consistent(sdev, sizeof(struct dbri_dma),
2505				     (void *)dbri->dma, dbri->dma_dvma);
2506		return -EIO;
2507	}
2508
2509	err = request_irq(dbri->irq, snd_dbri_interrupt, IRQF_SHARED,
2510			  "DBRI audio", dbri);
2511	if (err) {
2512		printk(KERN_ERR "DBRI: Can't get irq %d\n", dbri->irq);
2513		sbus_iounmap(dbri->regs, dbri->regs_size);
2514		sbus_free_consistent(sdev, sizeof(struct dbri_dma),
2515				     (void *)dbri->dma, dbri->dma_dvma);
2516		return err;
2517	}
2518
2519	/* Do low level initialization of the DBRI and CS4215 chips */
2520	dbri_initialize(dbri);
2521	err = cs4215_init(dbri);
2522	if (err) {
2523		snd_dbri_free(dbri);
2524		return err;
2525	}
2526
2527	dbri->next = dbri_list;
2528	dbri_list = dbri;
2529
2530	return 0;
2531}
2532
2533static void snd_dbri_free(struct snd_dbri * dbri)
2534{
2535	dprintk(D_GEN, "snd_dbri_free\n");
2536	dbri_reset(dbri);
2537
2538	if (dbri->irq)
2539		free_irq(dbri->irq, dbri);
2540
2541	if (dbri->regs)
2542		sbus_iounmap(dbri->regs, dbri->regs_size);
2543
2544	if (dbri->dma)
2545		sbus_free_consistent(dbri->sdev, sizeof(struct dbri_dma),
2546				     (void *)dbri->dma, dbri->dma_dvma);
2547}
2548
2549static int __init dbri_attach(int prom_node, struct sbus_dev *sdev)
2550{
2551	struct snd_dbri *dbri;
2552	struct linux_prom_irqs irq;
2553	struct resource *rp;
2554	struct snd_card *card;
2555	static int dev = 0;
2556	int err;
2557
2558	if (sdev->prom_name[9] < 'e') {
2559		printk(KERN_ERR "DBRI: unsupported chip version %c found.\n",
2560		       sdev->prom_name[9]);
2561		return -EIO;
2562	}
2563
2564	if (dev >= SNDRV_CARDS)
2565		return -ENODEV;
2566	if (!enable[dev]) {
2567		dev++;
2568		return -ENOENT;
2569	}
2570
2571	err = prom_getproperty(prom_node, "intr", (char *)&irq, sizeof(irq));
2572	if (err < 0) {
2573		printk(KERN_ERR "DBRI-%d: Firmware node lacks IRQ property.\n", dev);
2574		return -ENODEV;
2575	}
2576
2577	card = snd_card_new(index[dev], id[dev], THIS_MODULE,
2578			    sizeof(struct snd_dbri));
2579	if (card == NULL)
2580		return -ENOMEM;
2581
2582	strcpy(card->driver, "DBRI");
2583	strcpy(card->shortname, "Sun DBRI");
2584	rp = &sdev->resource[0];
2585	sprintf(card->longname, "%s at 0x%02lx:0x%016Lx, irq %d",
2586		card->shortname,
2587		rp->flags & 0xffL, (unsigned long long)rp->start, irq.pri);
2588
2589	if ((err = snd_dbri_create(card, sdev, &irq, dev)) < 0) {
2590		snd_card_free(card);
2591		return err;
2592	}
2593
2594	dbri = card->private_data;
2595	if ((err = snd_dbri_pcm(dbri)) < 0)
2596		goto _err;
2597
2598	if ((err = snd_dbri_mixer(dbri)) < 0)
2599		goto _err;
2600
2601	/* /proc file handling */
2602	snd_dbri_proc(dbri);
2603
2604	if ((err = snd_card_register(card)) < 0)
2605		goto _err;
2606
2607	printk(KERN_INFO "audio%d at %p (irq %d) is DBRI(%c)+CS4215(%d)\n",
2608	       dev, dbri->regs,
2609	       dbri->irq, sdev->prom_name[9], dbri->mm.version);
2610	dev++;
2611
2612	return 0;
2613
2614 _err:
2615	snd_dbri_free(dbri);
2616	snd_card_free(card);
2617	return err;
2618}
2619
2620/* Probe for the dbri chip and then attach the driver. */
2621static int __init dbri_init(void)
2622{
2623	struct sbus_bus *sbus;
2624	struct sbus_dev *sdev;
2625	int found = 0;
2626
2627	/* Probe each SBUS for the DBRI chip(s). */
2628	for_all_sbusdev(sdev, sbus) {
2629		/*
2630		 * The version is coded in the last character
2631		 */
2632		if (!strncmp(sdev->prom_name, "SUNW,DBRI", 9)) {
2633			dprintk(D_GEN, "DBRI: Found %s in SBUS slot %d\n",
2634				sdev->prom_name, sdev->slot);
2635
2636			if (dbri_attach(sdev->prom_node, sdev) == 0)
2637				found++;
2638		}
2639	}
2640
2641	return (found > 0) ? 0 : -EIO;
2642}
2643
2644static void __exit dbri_exit(void)
2645{
2646	struct snd_dbri *this = dbri_list;
2647
2648	while (this != NULL) {
2649		struct snd_dbri *next = this->next;
2650		struct snd_card *card = this->card;
2651
2652		snd_dbri_free(this);
2653		snd_card_free(card);
2654		this = next;
2655	}
2656	dbri_list = NULL;
2657}
2658
2659module_init(dbri_init);
2660module_exit(dbri_exit);
2661