sock.c revision 17926a79320afa9b95df6b977b40cca6d8713cea
1/*
2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
3 *		operating system.  INET is implemented using the  BSD Socket
4 *		interface as the means of communication with the user level.
5 *
6 *		Generic socket support routines. Memory allocators, socket lock/release
7 *		handler for protocols to use and generic option handler.
8 *
9 *
10 * Version:	$Id: sock.c,v 1.117 2002/02/01 22:01:03 davem Exp $
11 *
12 * Authors:	Ross Biro
13 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
14 *		Florian La Roche, <flla@stud.uni-sb.de>
15 *		Alan Cox, <A.Cox@swansea.ac.uk>
16 *
17 * Fixes:
18 *		Alan Cox	: 	Numerous verify_area() problems
19 *		Alan Cox	:	Connecting on a connecting socket
20 *					now returns an error for tcp.
21 *		Alan Cox	:	sock->protocol is set correctly.
22 *					and is not sometimes left as 0.
23 *		Alan Cox	:	connect handles icmp errors on a
24 *					connect properly. Unfortunately there
25 *					is a restart syscall nasty there. I
26 *					can't match BSD without hacking the C
27 *					library. Ideas urgently sought!
28 *		Alan Cox	:	Disallow bind() to addresses that are
29 *					not ours - especially broadcast ones!!
30 *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
31 *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
32 *					instead they leave that for the DESTROY timer.
33 *		Alan Cox	:	Clean up error flag in accept
34 *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
35 *					was buggy. Put a remove_sock() in the handler
36 *					for memory when we hit 0. Also altered the timer
37 *					code. The ACK stuff can wait and needs major
38 *					TCP layer surgery.
39 *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
40 *					and fixed timer/inet_bh race.
41 *		Alan Cox	:	Added zapped flag for TCP
42 *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
43 *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
44 *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
45 *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
46 *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
47 *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
48 *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
49 *	Pauline Middelink	:	identd support
50 *		Alan Cox	:	Fixed connect() taking signals I think.
51 *		Alan Cox	:	SO_LINGER supported
52 *		Alan Cox	:	Error reporting fixes
53 *		Anonymous	:	inet_create tidied up (sk->reuse setting)
54 *		Alan Cox	:	inet sockets don't set sk->type!
55 *		Alan Cox	:	Split socket option code
56 *		Alan Cox	:	Callbacks
57 *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
58 *		Alex		:	Removed restriction on inet fioctl
59 *		Alan Cox	:	Splitting INET from NET core
60 *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
61 *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
62 *		Alan Cox	:	Split IP from generic code
63 *		Alan Cox	:	New kfree_skbmem()
64 *		Alan Cox	:	Make SO_DEBUG superuser only.
65 *		Alan Cox	:	Allow anyone to clear SO_DEBUG
66 *					(compatibility fix)
67 *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
68 *		Alan Cox	:	Allocator for a socket is settable.
69 *		Alan Cox	:	SO_ERROR includes soft errors.
70 *		Alan Cox	:	Allow NULL arguments on some SO_ opts
71 *		Alan Cox	: 	Generic socket allocation to make hooks
72 *					easier (suggested by Craig Metz).
73 *		Michael Pall	:	SO_ERROR returns positive errno again
74 *              Steve Whitehouse:       Added default destructor to free
75 *                                      protocol private data.
76 *              Steve Whitehouse:       Added various other default routines
77 *                                      common to several socket families.
78 *              Chris Evans     :       Call suser() check last on F_SETOWN
79 *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
80 *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
81 *		Andi Kleen	:	Fix write_space callback
82 *		Chris Evans	:	Security fixes - signedness again
83 *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
84 *
85 * To Fix:
86 *
87 *
88 *		This program is free software; you can redistribute it and/or
89 *		modify it under the terms of the GNU General Public License
90 *		as published by the Free Software Foundation; either version
91 *		2 of the License, or (at your option) any later version.
92 */
93
94#include <linux/capability.h>
95#include <linux/errno.h>
96#include <linux/types.h>
97#include <linux/socket.h>
98#include <linux/in.h>
99#include <linux/kernel.h>
100#include <linux/module.h>
101#include <linux/proc_fs.h>
102#include <linux/seq_file.h>
103#include <linux/sched.h>
104#include <linux/timer.h>
105#include <linux/string.h>
106#include <linux/sockios.h>
107#include <linux/net.h>
108#include <linux/mm.h>
109#include <linux/slab.h>
110#include <linux/interrupt.h>
111#include <linux/poll.h>
112#include <linux/tcp.h>
113#include <linux/init.h>
114#include <linux/highmem.h>
115
116#include <asm/uaccess.h>
117#include <asm/system.h>
118
119#include <linux/netdevice.h>
120#include <net/protocol.h>
121#include <linux/skbuff.h>
122#include <net/request_sock.h>
123#include <net/sock.h>
124#include <net/xfrm.h>
125#include <linux/ipsec.h>
126
127#include <linux/filter.h>
128
129#ifdef CONFIG_INET
130#include <net/tcp.h>
131#endif
132
133/*
134 * Each address family might have different locking rules, so we have
135 * one slock key per address family:
136 */
137static struct lock_class_key af_family_keys[AF_MAX];
138static struct lock_class_key af_family_slock_keys[AF_MAX];
139
140#ifdef CONFIG_DEBUG_LOCK_ALLOC
141/*
142 * Make lock validator output more readable. (we pre-construct these
143 * strings build-time, so that runtime initialization of socket
144 * locks is fast):
145 */
146static const char *af_family_key_strings[AF_MAX+1] = {
147  "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX"     , "sk_lock-AF_INET"     ,
148  "sk_lock-AF_AX25"  , "sk_lock-AF_IPX"      , "sk_lock-AF_APPLETALK",
149  "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE"   , "sk_lock-AF_ATMPVC"   ,
150  "sk_lock-AF_X25"   , "sk_lock-AF_INET6"    , "sk_lock-AF_ROSE"     ,
151  "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI"  , "sk_lock-AF_SECURITY" ,
152  "sk_lock-AF_KEY"   , "sk_lock-AF_NETLINK"  , "sk_lock-AF_PACKET"   ,
153  "sk_lock-AF_ASH"   , "sk_lock-AF_ECONET"   , "sk_lock-AF_ATMSVC"   ,
154  "sk_lock-21"       , "sk_lock-AF_SNA"      , "sk_lock-AF_IRDA"     ,
155  "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE"  , "sk_lock-AF_LLC"      ,
156  "sk_lock-27"       , "sk_lock-28"          , "sk_lock-29"          ,
157  "sk_lock-AF_TIPC"  , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV"        ,
158  "sk_lock-AF_RXRPC" , "sk_lock-AF_MAX"
159};
160static const char *af_family_slock_key_strings[AF_MAX+1] = {
161  "slock-AF_UNSPEC", "slock-AF_UNIX"     , "slock-AF_INET"     ,
162  "slock-AF_AX25"  , "slock-AF_IPX"      , "slock-AF_APPLETALK",
163  "slock-AF_NETROM", "slock-AF_BRIDGE"   , "slock-AF_ATMPVC"   ,
164  "slock-AF_X25"   , "slock-AF_INET6"    , "slock-AF_ROSE"     ,
165  "slock-AF_DECnet", "slock-AF_NETBEUI"  , "slock-AF_SECURITY" ,
166  "slock-AF_KEY"   , "slock-AF_NETLINK"  , "slock-AF_PACKET"   ,
167  "slock-AF_ASH"   , "slock-AF_ECONET"   , "slock-AF_ATMSVC"   ,
168  "slock-21"       , "slock-AF_SNA"      , "slock-AF_IRDA"     ,
169  "slock-AF_PPPOX" , "slock-AF_WANPIPE"  , "slock-AF_LLC"      ,
170  "slock-27"       , "slock-28"          , "slock-29"          ,
171  "slock-AF_TIPC"  , "slock-AF_BLUETOOTH", "slock-AF_IUCV"     ,
172  "slock-AF_RXRPC" , "slock-AF_MAX"
173};
174#endif
175
176/*
177 * sk_callback_lock locking rules are per-address-family,
178 * so split the lock classes by using a per-AF key:
179 */
180static struct lock_class_key af_callback_keys[AF_MAX];
181
182/* Take into consideration the size of the struct sk_buff overhead in the
183 * determination of these values, since that is non-constant across
184 * platforms.  This makes socket queueing behavior and performance
185 * not depend upon such differences.
186 */
187#define _SK_MEM_PACKETS		256
188#define _SK_MEM_OVERHEAD	(sizeof(struct sk_buff) + 256)
189#define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
190#define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
191
192/* Run time adjustable parameters. */
193__u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
194__u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
195__u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
196__u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
197
198/* Maximal space eaten by iovec or ancilliary data plus some space */
199int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
200
201static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
202{
203	struct timeval tv;
204
205	if (optlen < sizeof(tv))
206		return -EINVAL;
207	if (copy_from_user(&tv, optval, sizeof(tv)))
208		return -EFAULT;
209
210	*timeo_p = MAX_SCHEDULE_TIMEOUT;
211	if (tv.tv_sec == 0 && tv.tv_usec == 0)
212		return 0;
213	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
214		*timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
215	return 0;
216}
217
218static void sock_warn_obsolete_bsdism(const char *name)
219{
220	static int warned;
221	static char warncomm[TASK_COMM_LEN];
222	if (strcmp(warncomm, current->comm) && warned < 5) {
223		strcpy(warncomm,  current->comm);
224		printk(KERN_WARNING "process `%s' is using obsolete "
225		       "%s SO_BSDCOMPAT\n", warncomm, name);
226		warned++;
227	}
228}
229
230static void sock_disable_timestamp(struct sock *sk)
231{
232	if (sock_flag(sk, SOCK_TIMESTAMP)) {
233		sock_reset_flag(sk, SOCK_TIMESTAMP);
234		net_disable_timestamp();
235	}
236}
237
238
239int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
240{
241	int err = 0;
242	int skb_len;
243
244	/* Cast skb->rcvbuf to unsigned... It's pointless, but reduces
245	   number of warnings when compiling with -W --ANK
246	 */
247	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
248	    (unsigned)sk->sk_rcvbuf) {
249		err = -ENOMEM;
250		goto out;
251	}
252
253	err = sk_filter(sk, skb);
254	if (err)
255		goto out;
256
257	skb->dev = NULL;
258	skb_set_owner_r(skb, sk);
259
260	/* Cache the SKB length before we tack it onto the receive
261	 * queue.  Once it is added it no longer belongs to us and
262	 * may be freed by other threads of control pulling packets
263	 * from the queue.
264	 */
265	skb_len = skb->len;
266
267	skb_queue_tail(&sk->sk_receive_queue, skb);
268
269	if (!sock_flag(sk, SOCK_DEAD))
270		sk->sk_data_ready(sk, skb_len);
271out:
272	return err;
273}
274EXPORT_SYMBOL(sock_queue_rcv_skb);
275
276int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
277{
278	int rc = NET_RX_SUCCESS;
279
280	if (sk_filter(sk, skb))
281		goto discard_and_relse;
282
283	skb->dev = NULL;
284
285	if (nested)
286		bh_lock_sock_nested(sk);
287	else
288		bh_lock_sock(sk);
289	if (!sock_owned_by_user(sk)) {
290		/*
291		 * trylock + unlock semantics:
292		 */
293		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
294
295		rc = sk->sk_backlog_rcv(sk, skb);
296
297		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
298	} else
299		sk_add_backlog(sk, skb);
300	bh_unlock_sock(sk);
301out:
302	sock_put(sk);
303	return rc;
304discard_and_relse:
305	kfree_skb(skb);
306	goto out;
307}
308EXPORT_SYMBOL(sk_receive_skb);
309
310struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
311{
312	struct dst_entry *dst = sk->sk_dst_cache;
313
314	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
315		sk->sk_dst_cache = NULL;
316		dst_release(dst);
317		return NULL;
318	}
319
320	return dst;
321}
322EXPORT_SYMBOL(__sk_dst_check);
323
324struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
325{
326	struct dst_entry *dst = sk_dst_get(sk);
327
328	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
329		sk_dst_reset(sk);
330		dst_release(dst);
331		return NULL;
332	}
333
334	return dst;
335}
336EXPORT_SYMBOL(sk_dst_check);
337
338/*
339 *	This is meant for all protocols to use and covers goings on
340 *	at the socket level. Everything here is generic.
341 */
342
343int sock_setsockopt(struct socket *sock, int level, int optname,
344		    char __user *optval, int optlen)
345{
346	struct sock *sk=sock->sk;
347	struct sk_filter *filter;
348	int val;
349	int valbool;
350	struct linger ling;
351	int ret = 0;
352
353	/*
354	 *	Options without arguments
355	 */
356
357#ifdef SO_DONTLINGER		/* Compatibility item... */
358	if (optname == SO_DONTLINGER) {
359		lock_sock(sk);
360		sock_reset_flag(sk, SOCK_LINGER);
361		release_sock(sk);
362		return 0;
363	}
364#endif
365
366	if (optlen < sizeof(int))
367		return -EINVAL;
368
369	if (get_user(val, (int __user *)optval))
370		return -EFAULT;
371
372	valbool = val?1:0;
373
374	lock_sock(sk);
375
376	switch(optname) {
377	case SO_DEBUG:
378		if (val && !capable(CAP_NET_ADMIN)) {
379			ret = -EACCES;
380		}
381		else if (valbool)
382			sock_set_flag(sk, SOCK_DBG);
383		else
384			sock_reset_flag(sk, SOCK_DBG);
385		break;
386	case SO_REUSEADDR:
387		sk->sk_reuse = valbool;
388		break;
389	case SO_TYPE:
390	case SO_ERROR:
391		ret = -ENOPROTOOPT;
392		break;
393	case SO_DONTROUTE:
394		if (valbool)
395			sock_set_flag(sk, SOCK_LOCALROUTE);
396		else
397			sock_reset_flag(sk, SOCK_LOCALROUTE);
398		break;
399	case SO_BROADCAST:
400		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
401		break;
402	case SO_SNDBUF:
403		/* Don't error on this BSD doesn't and if you think
404		   about it this is right. Otherwise apps have to
405		   play 'guess the biggest size' games. RCVBUF/SNDBUF
406		   are treated in BSD as hints */
407
408		if (val > sysctl_wmem_max)
409			val = sysctl_wmem_max;
410set_sndbuf:
411		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
412		if ((val * 2) < SOCK_MIN_SNDBUF)
413			sk->sk_sndbuf = SOCK_MIN_SNDBUF;
414		else
415			sk->sk_sndbuf = val * 2;
416
417		/*
418		 *	Wake up sending tasks if we
419		 *	upped the value.
420		 */
421		sk->sk_write_space(sk);
422		break;
423
424	case SO_SNDBUFFORCE:
425		if (!capable(CAP_NET_ADMIN)) {
426			ret = -EPERM;
427			break;
428		}
429		goto set_sndbuf;
430
431	case SO_RCVBUF:
432		/* Don't error on this BSD doesn't and if you think
433		   about it this is right. Otherwise apps have to
434		   play 'guess the biggest size' games. RCVBUF/SNDBUF
435		   are treated in BSD as hints */
436
437		if (val > sysctl_rmem_max)
438			val = sysctl_rmem_max;
439set_rcvbuf:
440		sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
441		/*
442		 * We double it on the way in to account for
443		 * "struct sk_buff" etc. overhead.   Applications
444		 * assume that the SO_RCVBUF setting they make will
445		 * allow that much actual data to be received on that
446		 * socket.
447		 *
448		 * Applications are unaware that "struct sk_buff" and
449		 * other overheads allocate from the receive buffer
450		 * during socket buffer allocation.
451		 *
452		 * And after considering the possible alternatives,
453		 * returning the value we actually used in getsockopt
454		 * is the most desirable behavior.
455		 */
456		if ((val * 2) < SOCK_MIN_RCVBUF)
457			sk->sk_rcvbuf = SOCK_MIN_RCVBUF;
458		else
459			sk->sk_rcvbuf = val * 2;
460		break;
461
462	case SO_RCVBUFFORCE:
463		if (!capable(CAP_NET_ADMIN)) {
464			ret = -EPERM;
465			break;
466		}
467		goto set_rcvbuf;
468
469	case SO_KEEPALIVE:
470#ifdef CONFIG_INET
471		if (sk->sk_protocol == IPPROTO_TCP)
472			tcp_set_keepalive(sk, valbool);
473#endif
474		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
475		break;
476
477	case SO_OOBINLINE:
478		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
479		break;
480
481	case SO_NO_CHECK:
482		sk->sk_no_check = valbool;
483		break;
484
485	case SO_PRIORITY:
486		if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
487			sk->sk_priority = val;
488		else
489			ret = -EPERM;
490		break;
491
492	case SO_LINGER:
493		if (optlen < sizeof(ling)) {
494			ret = -EINVAL;	/* 1003.1g */
495			break;
496		}
497		if (copy_from_user(&ling,optval,sizeof(ling))) {
498			ret = -EFAULT;
499			break;
500		}
501		if (!ling.l_onoff)
502			sock_reset_flag(sk, SOCK_LINGER);
503		else {
504#if (BITS_PER_LONG == 32)
505			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
506				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
507			else
508#endif
509				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
510			sock_set_flag(sk, SOCK_LINGER);
511		}
512		break;
513
514	case SO_BSDCOMPAT:
515		sock_warn_obsolete_bsdism("setsockopt");
516		break;
517
518	case SO_PASSCRED:
519		if (valbool)
520			set_bit(SOCK_PASSCRED, &sock->flags);
521		else
522			clear_bit(SOCK_PASSCRED, &sock->flags);
523		break;
524
525	case SO_TIMESTAMP:
526	case SO_TIMESTAMPNS:
527		if (valbool)  {
528			if (optname == SO_TIMESTAMP)
529				sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
530			else
531				sock_set_flag(sk, SOCK_RCVTSTAMPNS);
532			sock_set_flag(sk, SOCK_RCVTSTAMP);
533			sock_enable_timestamp(sk);
534		} else {
535			sock_reset_flag(sk, SOCK_RCVTSTAMP);
536			sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
537		}
538		break;
539
540	case SO_RCVLOWAT:
541		if (val < 0)
542			val = INT_MAX;
543		sk->sk_rcvlowat = val ? : 1;
544		break;
545
546	case SO_RCVTIMEO:
547		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
548		break;
549
550	case SO_SNDTIMEO:
551		ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
552		break;
553
554#ifdef CONFIG_NETDEVICES
555	case SO_BINDTODEVICE:
556	{
557		char devname[IFNAMSIZ];
558
559		/* Sorry... */
560		if (!capable(CAP_NET_RAW)) {
561			ret = -EPERM;
562			break;
563		}
564
565		/* Bind this socket to a particular device like "eth0",
566		 * as specified in the passed interface name. If the
567		 * name is "" or the option length is zero the socket
568		 * is not bound.
569		 */
570
571		if (!valbool) {
572			sk->sk_bound_dev_if = 0;
573		} else {
574			if (optlen > IFNAMSIZ - 1)
575				optlen = IFNAMSIZ - 1;
576			memset(devname, 0, sizeof(devname));
577			if (copy_from_user(devname, optval, optlen)) {
578				ret = -EFAULT;
579				break;
580			}
581
582			/* Remove any cached route for this socket. */
583			sk_dst_reset(sk);
584
585			if (devname[0] == '\0') {
586				sk->sk_bound_dev_if = 0;
587			} else {
588				struct net_device *dev = dev_get_by_name(devname);
589				if (!dev) {
590					ret = -ENODEV;
591					break;
592				}
593				sk->sk_bound_dev_if = dev->ifindex;
594				dev_put(dev);
595			}
596		}
597		break;
598	}
599#endif
600
601
602	case SO_ATTACH_FILTER:
603		ret = -EINVAL;
604		if (optlen == sizeof(struct sock_fprog)) {
605			struct sock_fprog fprog;
606
607			ret = -EFAULT;
608			if (copy_from_user(&fprog, optval, sizeof(fprog)))
609				break;
610
611			ret = sk_attach_filter(&fprog, sk);
612		}
613		break;
614
615	case SO_DETACH_FILTER:
616		rcu_read_lock_bh();
617		filter = rcu_dereference(sk->sk_filter);
618		if (filter) {
619			rcu_assign_pointer(sk->sk_filter, NULL);
620			sk_filter_release(sk, filter);
621			rcu_read_unlock_bh();
622			break;
623		}
624		rcu_read_unlock_bh();
625		ret = -ENONET;
626		break;
627
628	case SO_PASSSEC:
629		if (valbool)
630			set_bit(SOCK_PASSSEC, &sock->flags);
631		else
632			clear_bit(SOCK_PASSSEC, &sock->flags);
633		break;
634
635		/* We implement the SO_SNDLOWAT etc to
636		   not be settable (1003.1g 5.3) */
637	default:
638		ret = -ENOPROTOOPT;
639		break;
640	}
641	release_sock(sk);
642	return ret;
643}
644
645
646int sock_getsockopt(struct socket *sock, int level, int optname,
647		    char __user *optval, int __user *optlen)
648{
649	struct sock *sk = sock->sk;
650
651	union {
652		int val;
653		struct linger ling;
654		struct timeval tm;
655	} v;
656
657	unsigned int lv = sizeof(int);
658	int len;
659
660	if (get_user(len, optlen))
661		return -EFAULT;
662	if (len < 0)
663		return -EINVAL;
664
665	switch(optname) {
666	case SO_DEBUG:
667		v.val = sock_flag(sk, SOCK_DBG);
668		break;
669
670	case SO_DONTROUTE:
671		v.val = sock_flag(sk, SOCK_LOCALROUTE);
672		break;
673
674	case SO_BROADCAST:
675		v.val = !!sock_flag(sk, SOCK_BROADCAST);
676		break;
677
678	case SO_SNDBUF:
679		v.val = sk->sk_sndbuf;
680		break;
681
682	case SO_RCVBUF:
683		v.val = sk->sk_rcvbuf;
684		break;
685
686	case SO_REUSEADDR:
687		v.val = sk->sk_reuse;
688		break;
689
690	case SO_KEEPALIVE:
691		v.val = !!sock_flag(sk, SOCK_KEEPOPEN);
692		break;
693
694	case SO_TYPE:
695		v.val = sk->sk_type;
696		break;
697
698	case SO_ERROR:
699		v.val = -sock_error(sk);
700		if (v.val==0)
701			v.val = xchg(&sk->sk_err_soft, 0);
702		break;
703
704	case SO_OOBINLINE:
705		v.val = !!sock_flag(sk, SOCK_URGINLINE);
706		break;
707
708	case SO_NO_CHECK:
709		v.val = sk->sk_no_check;
710		break;
711
712	case SO_PRIORITY:
713		v.val = sk->sk_priority;
714		break;
715
716	case SO_LINGER:
717		lv		= sizeof(v.ling);
718		v.ling.l_onoff	= !!sock_flag(sk, SOCK_LINGER);
719		v.ling.l_linger	= sk->sk_lingertime / HZ;
720		break;
721
722	case SO_BSDCOMPAT:
723		sock_warn_obsolete_bsdism("getsockopt");
724		break;
725
726	case SO_TIMESTAMP:
727		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
728				!sock_flag(sk, SOCK_RCVTSTAMPNS);
729		break;
730
731	case SO_TIMESTAMPNS:
732		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
733		break;
734
735	case SO_RCVTIMEO:
736		lv=sizeof(struct timeval);
737		if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
738			v.tm.tv_sec = 0;
739			v.tm.tv_usec = 0;
740		} else {
741			v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
742			v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
743		}
744		break;
745
746	case SO_SNDTIMEO:
747		lv=sizeof(struct timeval);
748		if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
749			v.tm.tv_sec = 0;
750			v.tm.tv_usec = 0;
751		} else {
752			v.tm.tv_sec = sk->sk_sndtimeo / HZ;
753			v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
754		}
755		break;
756
757	case SO_RCVLOWAT:
758		v.val = sk->sk_rcvlowat;
759		break;
760
761	case SO_SNDLOWAT:
762		v.val=1;
763		break;
764
765	case SO_PASSCRED:
766		v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0;
767		break;
768
769	case SO_PEERCRED:
770		if (len > sizeof(sk->sk_peercred))
771			len = sizeof(sk->sk_peercred);
772		if (copy_to_user(optval, &sk->sk_peercred, len))
773			return -EFAULT;
774		goto lenout;
775
776	case SO_PEERNAME:
777	{
778		char address[128];
779
780		if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
781			return -ENOTCONN;
782		if (lv < len)
783			return -EINVAL;
784		if (copy_to_user(optval, address, len))
785			return -EFAULT;
786		goto lenout;
787	}
788
789	/* Dubious BSD thing... Probably nobody even uses it, but
790	 * the UNIX standard wants it for whatever reason... -DaveM
791	 */
792	case SO_ACCEPTCONN:
793		v.val = sk->sk_state == TCP_LISTEN;
794		break;
795
796	case SO_PASSSEC:
797		v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0;
798		break;
799
800	case SO_PEERSEC:
801		return security_socket_getpeersec_stream(sock, optval, optlen, len);
802
803	default:
804		return -ENOPROTOOPT;
805	}
806
807	if (len > lv)
808		len = lv;
809	if (copy_to_user(optval, &v, len))
810		return -EFAULT;
811lenout:
812	if (put_user(len, optlen))
813		return -EFAULT;
814	return 0;
815}
816
817/*
818 * Initialize an sk_lock.
819 *
820 * (We also register the sk_lock with the lock validator.)
821 */
822static inline void sock_lock_init(struct sock *sk)
823{
824	sock_lock_init_class_and_name(sk,
825			af_family_slock_key_strings[sk->sk_family],
826			af_family_slock_keys + sk->sk_family,
827			af_family_key_strings[sk->sk_family],
828			af_family_keys + sk->sk_family);
829}
830
831/**
832 *	sk_alloc - All socket objects are allocated here
833 *	@family: protocol family
834 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
835 *	@prot: struct proto associated with this new sock instance
836 *	@zero_it: if we should zero the newly allocated sock
837 */
838struct sock *sk_alloc(int family, gfp_t priority,
839		      struct proto *prot, int zero_it)
840{
841	struct sock *sk = NULL;
842	struct kmem_cache *slab = prot->slab;
843
844	if (slab != NULL)
845		sk = kmem_cache_alloc(slab, priority);
846	else
847		sk = kmalloc(prot->obj_size, priority);
848
849	if (sk) {
850		if (zero_it) {
851			memset(sk, 0, prot->obj_size);
852			sk->sk_family = family;
853			/*
854			 * See comment in struct sock definition to understand
855			 * why we need sk_prot_creator -acme
856			 */
857			sk->sk_prot = sk->sk_prot_creator = prot;
858			sock_lock_init(sk);
859		}
860
861		if (security_sk_alloc(sk, family, priority))
862			goto out_free;
863
864		if (!try_module_get(prot->owner))
865			goto out_free;
866	}
867	return sk;
868
869out_free:
870	if (slab != NULL)
871		kmem_cache_free(slab, sk);
872	else
873		kfree(sk);
874	return NULL;
875}
876
877void sk_free(struct sock *sk)
878{
879	struct sk_filter *filter;
880	struct module *owner = sk->sk_prot_creator->owner;
881
882	if (sk->sk_destruct)
883		sk->sk_destruct(sk);
884
885	filter = rcu_dereference(sk->sk_filter);
886	if (filter) {
887		sk_filter_release(sk, filter);
888		rcu_assign_pointer(sk->sk_filter, NULL);
889	}
890
891	sock_disable_timestamp(sk);
892
893	if (atomic_read(&sk->sk_omem_alloc))
894		printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n",
895		       __FUNCTION__, atomic_read(&sk->sk_omem_alloc));
896
897	security_sk_free(sk);
898	if (sk->sk_prot_creator->slab != NULL)
899		kmem_cache_free(sk->sk_prot_creator->slab, sk);
900	else
901		kfree(sk);
902	module_put(owner);
903}
904
905struct sock *sk_clone(const struct sock *sk, const gfp_t priority)
906{
907	struct sock *newsk = sk_alloc(sk->sk_family, priority, sk->sk_prot, 0);
908
909	if (newsk != NULL) {
910		struct sk_filter *filter;
911
912		sock_copy(newsk, sk);
913
914		/* SANITY */
915		sk_node_init(&newsk->sk_node);
916		sock_lock_init(newsk);
917		bh_lock_sock(newsk);
918		newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
919
920		atomic_set(&newsk->sk_rmem_alloc, 0);
921		atomic_set(&newsk->sk_wmem_alloc, 0);
922		atomic_set(&newsk->sk_omem_alloc, 0);
923		skb_queue_head_init(&newsk->sk_receive_queue);
924		skb_queue_head_init(&newsk->sk_write_queue);
925#ifdef CONFIG_NET_DMA
926		skb_queue_head_init(&newsk->sk_async_wait_queue);
927#endif
928
929		rwlock_init(&newsk->sk_dst_lock);
930		rwlock_init(&newsk->sk_callback_lock);
931		lockdep_set_class(&newsk->sk_callback_lock,
932				   af_callback_keys + newsk->sk_family);
933
934		newsk->sk_dst_cache	= NULL;
935		newsk->sk_wmem_queued	= 0;
936		newsk->sk_forward_alloc = 0;
937		newsk->sk_send_head	= NULL;
938		newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
939
940		sock_reset_flag(newsk, SOCK_DONE);
941		skb_queue_head_init(&newsk->sk_error_queue);
942
943		filter = newsk->sk_filter;
944		if (filter != NULL)
945			sk_filter_charge(newsk, filter);
946
947		if (unlikely(xfrm_sk_clone_policy(newsk))) {
948			/* It is still raw copy of parent, so invalidate
949			 * destructor and make plain sk_free() */
950			newsk->sk_destruct = NULL;
951			sk_free(newsk);
952			newsk = NULL;
953			goto out;
954		}
955
956		newsk->sk_err	   = 0;
957		newsk->sk_priority = 0;
958		atomic_set(&newsk->sk_refcnt, 2);
959
960		/*
961		 * Increment the counter in the same struct proto as the master
962		 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
963		 * is the same as sk->sk_prot->socks, as this field was copied
964		 * with memcpy).
965		 *
966		 * This _changes_ the previous behaviour, where
967		 * tcp_create_openreq_child always was incrementing the
968		 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
969		 * to be taken into account in all callers. -acme
970		 */
971		sk_refcnt_debug_inc(newsk);
972		newsk->sk_socket = NULL;
973		newsk->sk_sleep	 = NULL;
974
975		if (newsk->sk_prot->sockets_allocated)
976			atomic_inc(newsk->sk_prot->sockets_allocated);
977	}
978out:
979	return newsk;
980}
981
982EXPORT_SYMBOL_GPL(sk_clone);
983
984void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
985{
986	__sk_dst_set(sk, dst);
987	sk->sk_route_caps = dst->dev->features;
988	if (sk->sk_route_caps & NETIF_F_GSO)
989		sk->sk_route_caps |= NETIF_F_GSO_MASK;
990	if (sk_can_gso(sk)) {
991		if (dst->header_len)
992			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
993		else
994			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
995	}
996}
997EXPORT_SYMBOL_GPL(sk_setup_caps);
998
999void __init sk_init(void)
1000{
1001	if (num_physpages <= 4096) {
1002		sysctl_wmem_max = 32767;
1003		sysctl_rmem_max = 32767;
1004		sysctl_wmem_default = 32767;
1005		sysctl_rmem_default = 32767;
1006	} else if (num_physpages >= 131072) {
1007		sysctl_wmem_max = 131071;
1008		sysctl_rmem_max = 131071;
1009	}
1010}
1011
1012/*
1013 *	Simple resource managers for sockets.
1014 */
1015
1016
1017/*
1018 * Write buffer destructor automatically called from kfree_skb.
1019 */
1020void sock_wfree(struct sk_buff *skb)
1021{
1022	struct sock *sk = skb->sk;
1023
1024	/* In case it might be waiting for more memory. */
1025	atomic_sub(skb->truesize, &sk->sk_wmem_alloc);
1026	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE))
1027		sk->sk_write_space(sk);
1028	sock_put(sk);
1029}
1030
1031/*
1032 * Read buffer destructor automatically called from kfree_skb.
1033 */
1034void sock_rfree(struct sk_buff *skb)
1035{
1036	struct sock *sk = skb->sk;
1037
1038	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1039}
1040
1041
1042int sock_i_uid(struct sock *sk)
1043{
1044	int uid;
1045
1046	read_lock(&sk->sk_callback_lock);
1047	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1048	read_unlock(&sk->sk_callback_lock);
1049	return uid;
1050}
1051
1052unsigned long sock_i_ino(struct sock *sk)
1053{
1054	unsigned long ino;
1055
1056	read_lock(&sk->sk_callback_lock);
1057	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1058	read_unlock(&sk->sk_callback_lock);
1059	return ino;
1060}
1061
1062/*
1063 * Allocate a skb from the socket's send buffer.
1064 */
1065struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1066			     gfp_t priority)
1067{
1068	if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1069		struct sk_buff * skb = alloc_skb(size, priority);
1070		if (skb) {
1071			skb_set_owner_w(skb, sk);
1072			return skb;
1073		}
1074	}
1075	return NULL;
1076}
1077
1078/*
1079 * Allocate a skb from the socket's receive buffer.
1080 */
1081struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1082			     gfp_t priority)
1083{
1084	if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1085		struct sk_buff *skb = alloc_skb(size, priority);
1086		if (skb) {
1087			skb_set_owner_r(skb, sk);
1088			return skb;
1089		}
1090	}
1091	return NULL;
1092}
1093
1094/*
1095 * Allocate a memory block from the socket's option memory buffer.
1096 */
1097void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1098{
1099	if ((unsigned)size <= sysctl_optmem_max &&
1100	    atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1101		void *mem;
1102		/* First do the add, to avoid the race if kmalloc
1103		 * might sleep.
1104		 */
1105		atomic_add(size, &sk->sk_omem_alloc);
1106		mem = kmalloc(size, priority);
1107		if (mem)
1108			return mem;
1109		atomic_sub(size, &sk->sk_omem_alloc);
1110	}
1111	return NULL;
1112}
1113
1114/*
1115 * Free an option memory block.
1116 */
1117void sock_kfree_s(struct sock *sk, void *mem, int size)
1118{
1119	kfree(mem);
1120	atomic_sub(size, &sk->sk_omem_alloc);
1121}
1122
1123/* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1124   I think, these locks should be removed for datagram sockets.
1125 */
1126static long sock_wait_for_wmem(struct sock * sk, long timeo)
1127{
1128	DEFINE_WAIT(wait);
1129
1130	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1131	for (;;) {
1132		if (!timeo)
1133			break;
1134		if (signal_pending(current))
1135			break;
1136		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1137		prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1138		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1139			break;
1140		if (sk->sk_shutdown & SEND_SHUTDOWN)
1141			break;
1142		if (sk->sk_err)
1143			break;
1144		timeo = schedule_timeout(timeo);
1145	}
1146	finish_wait(sk->sk_sleep, &wait);
1147	return timeo;
1148}
1149
1150
1151/*
1152 *	Generic send/receive buffer handlers
1153 */
1154
1155static struct sk_buff *sock_alloc_send_pskb(struct sock *sk,
1156					    unsigned long header_len,
1157					    unsigned long data_len,
1158					    int noblock, int *errcode)
1159{
1160	struct sk_buff *skb;
1161	gfp_t gfp_mask;
1162	long timeo;
1163	int err;
1164
1165	gfp_mask = sk->sk_allocation;
1166	if (gfp_mask & __GFP_WAIT)
1167		gfp_mask |= __GFP_REPEAT;
1168
1169	timeo = sock_sndtimeo(sk, noblock);
1170	while (1) {
1171		err = sock_error(sk);
1172		if (err != 0)
1173			goto failure;
1174
1175		err = -EPIPE;
1176		if (sk->sk_shutdown & SEND_SHUTDOWN)
1177			goto failure;
1178
1179		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1180			skb = alloc_skb(header_len, gfp_mask);
1181			if (skb) {
1182				int npages;
1183				int i;
1184
1185				/* No pages, we're done... */
1186				if (!data_len)
1187					break;
1188
1189				npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1190				skb->truesize += data_len;
1191				skb_shinfo(skb)->nr_frags = npages;
1192				for (i = 0; i < npages; i++) {
1193					struct page *page;
1194					skb_frag_t *frag;
1195
1196					page = alloc_pages(sk->sk_allocation, 0);
1197					if (!page) {
1198						err = -ENOBUFS;
1199						skb_shinfo(skb)->nr_frags = i;
1200						kfree_skb(skb);
1201						goto failure;
1202					}
1203
1204					frag = &skb_shinfo(skb)->frags[i];
1205					frag->page = page;
1206					frag->page_offset = 0;
1207					frag->size = (data_len >= PAGE_SIZE ?
1208						      PAGE_SIZE :
1209						      data_len);
1210					data_len -= PAGE_SIZE;
1211				}
1212
1213				/* Full success... */
1214				break;
1215			}
1216			err = -ENOBUFS;
1217			goto failure;
1218		}
1219		set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1220		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1221		err = -EAGAIN;
1222		if (!timeo)
1223			goto failure;
1224		if (signal_pending(current))
1225			goto interrupted;
1226		timeo = sock_wait_for_wmem(sk, timeo);
1227	}
1228
1229	skb_set_owner_w(skb, sk);
1230	return skb;
1231
1232interrupted:
1233	err = sock_intr_errno(timeo);
1234failure:
1235	*errcode = err;
1236	return NULL;
1237}
1238
1239struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1240				    int noblock, int *errcode)
1241{
1242	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1243}
1244
1245static void __lock_sock(struct sock *sk)
1246{
1247	DEFINE_WAIT(wait);
1248
1249	for (;;) {
1250		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1251					TASK_UNINTERRUPTIBLE);
1252		spin_unlock_bh(&sk->sk_lock.slock);
1253		schedule();
1254		spin_lock_bh(&sk->sk_lock.slock);
1255		if (!sock_owned_by_user(sk))
1256			break;
1257	}
1258	finish_wait(&sk->sk_lock.wq, &wait);
1259}
1260
1261static void __release_sock(struct sock *sk)
1262{
1263	struct sk_buff *skb = sk->sk_backlog.head;
1264
1265	do {
1266		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1267		bh_unlock_sock(sk);
1268
1269		do {
1270			struct sk_buff *next = skb->next;
1271
1272			skb->next = NULL;
1273			sk->sk_backlog_rcv(sk, skb);
1274
1275			/*
1276			 * We are in process context here with softirqs
1277			 * disabled, use cond_resched_softirq() to preempt.
1278			 * This is safe to do because we've taken the backlog
1279			 * queue private:
1280			 */
1281			cond_resched_softirq();
1282
1283			skb = next;
1284		} while (skb != NULL);
1285
1286		bh_lock_sock(sk);
1287	} while ((skb = sk->sk_backlog.head) != NULL);
1288}
1289
1290/**
1291 * sk_wait_data - wait for data to arrive at sk_receive_queue
1292 * @sk:    sock to wait on
1293 * @timeo: for how long
1294 *
1295 * Now socket state including sk->sk_err is changed only under lock,
1296 * hence we may omit checks after joining wait queue.
1297 * We check receive queue before schedule() only as optimization;
1298 * it is very likely that release_sock() added new data.
1299 */
1300int sk_wait_data(struct sock *sk, long *timeo)
1301{
1302	int rc;
1303	DEFINE_WAIT(wait);
1304
1305	prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1306	set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1307	rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1308	clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1309	finish_wait(sk->sk_sleep, &wait);
1310	return rc;
1311}
1312
1313EXPORT_SYMBOL(sk_wait_data);
1314
1315/*
1316 * Set of default routines for initialising struct proto_ops when
1317 * the protocol does not support a particular function. In certain
1318 * cases where it makes no sense for a protocol to have a "do nothing"
1319 * function, some default processing is provided.
1320 */
1321
1322int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1323{
1324	return -EOPNOTSUPP;
1325}
1326
1327int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1328		    int len, int flags)
1329{
1330	return -EOPNOTSUPP;
1331}
1332
1333int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1334{
1335	return -EOPNOTSUPP;
1336}
1337
1338int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1339{
1340	return -EOPNOTSUPP;
1341}
1342
1343int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1344		    int *len, int peer)
1345{
1346	return -EOPNOTSUPP;
1347}
1348
1349unsigned int sock_no_poll(struct file * file, struct socket *sock, poll_table *pt)
1350{
1351	return 0;
1352}
1353
1354int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1355{
1356	return -EOPNOTSUPP;
1357}
1358
1359int sock_no_listen(struct socket *sock, int backlog)
1360{
1361	return -EOPNOTSUPP;
1362}
1363
1364int sock_no_shutdown(struct socket *sock, int how)
1365{
1366	return -EOPNOTSUPP;
1367}
1368
1369int sock_no_setsockopt(struct socket *sock, int level, int optname,
1370		    char __user *optval, int optlen)
1371{
1372	return -EOPNOTSUPP;
1373}
1374
1375int sock_no_getsockopt(struct socket *sock, int level, int optname,
1376		    char __user *optval, int __user *optlen)
1377{
1378	return -EOPNOTSUPP;
1379}
1380
1381int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1382		    size_t len)
1383{
1384	return -EOPNOTSUPP;
1385}
1386
1387int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1388		    size_t len, int flags)
1389{
1390	return -EOPNOTSUPP;
1391}
1392
1393int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
1394{
1395	/* Mirror missing mmap method error code */
1396	return -ENODEV;
1397}
1398
1399ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
1400{
1401	ssize_t res;
1402	struct msghdr msg = {.msg_flags = flags};
1403	struct kvec iov;
1404	char *kaddr = kmap(page);
1405	iov.iov_base = kaddr + offset;
1406	iov.iov_len = size;
1407	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
1408	kunmap(page);
1409	return res;
1410}
1411
1412/*
1413 *	Default Socket Callbacks
1414 */
1415
1416static void sock_def_wakeup(struct sock *sk)
1417{
1418	read_lock(&sk->sk_callback_lock);
1419	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1420		wake_up_interruptible_all(sk->sk_sleep);
1421	read_unlock(&sk->sk_callback_lock);
1422}
1423
1424static void sock_def_error_report(struct sock *sk)
1425{
1426	read_lock(&sk->sk_callback_lock);
1427	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1428		wake_up_interruptible(sk->sk_sleep);
1429	sk_wake_async(sk,0,POLL_ERR);
1430	read_unlock(&sk->sk_callback_lock);
1431}
1432
1433static void sock_def_readable(struct sock *sk, int len)
1434{
1435	read_lock(&sk->sk_callback_lock);
1436	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1437		wake_up_interruptible(sk->sk_sleep);
1438	sk_wake_async(sk,1,POLL_IN);
1439	read_unlock(&sk->sk_callback_lock);
1440}
1441
1442static void sock_def_write_space(struct sock *sk)
1443{
1444	read_lock(&sk->sk_callback_lock);
1445
1446	/* Do not wake up a writer until he can make "significant"
1447	 * progress.  --DaveM
1448	 */
1449	if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
1450		if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1451			wake_up_interruptible(sk->sk_sleep);
1452
1453		/* Should agree with poll, otherwise some programs break */
1454		if (sock_writeable(sk))
1455			sk_wake_async(sk, 2, POLL_OUT);
1456	}
1457
1458	read_unlock(&sk->sk_callback_lock);
1459}
1460
1461static void sock_def_destruct(struct sock *sk)
1462{
1463	kfree(sk->sk_protinfo);
1464}
1465
1466void sk_send_sigurg(struct sock *sk)
1467{
1468	if (sk->sk_socket && sk->sk_socket->file)
1469		if (send_sigurg(&sk->sk_socket->file->f_owner))
1470			sk_wake_async(sk, 3, POLL_PRI);
1471}
1472
1473void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1474		    unsigned long expires)
1475{
1476	if (!mod_timer(timer, expires))
1477		sock_hold(sk);
1478}
1479
1480EXPORT_SYMBOL(sk_reset_timer);
1481
1482void sk_stop_timer(struct sock *sk, struct timer_list* timer)
1483{
1484	if (timer_pending(timer) && del_timer(timer))
1485		__sock_put(sk);
1486}
1487
1488EXPORT_SYMBOL(sk_stop_timer);
1489
1490void sock_init_data(struct socket *sock, struct sock *sk)
1491{
1492	skb_queue_head_init(&sk->sk_receive_queue);
1493	skb_queue_head_init(&sk->sk_write_queue);
1494	skb_queue_head_init(&sk->sk_error_queue);
1495#ifdef CONFIG_NET_DMA
1496	skb_queue_head_init(&sk->sk_async_wait_queue);
1497#endif
1498
1499	sk->sk_send_head	=	NULL;
1500
1501	init_timer(&sk->sk_timer);
1502
1503	sk->sk_allocation	=	GFP_KERNEL;
1504	sk->sk_rcvbuf		=	sysctl_rmem_default;
1505	sk->sk_sndbuf		=	sysctl_wmem_default;
1506	sk->sk_state		=	TCP_CLOSE;
1507	sk->sk_socket		=	sock;
1508
1509	sock_set_flag(sk, SOCK_ZAPPED);
1510
1511	if (sock) {
1512		sk->sk_type	=	sock->type;
1513		sk->sk_sleep	=	&sock->wait;
1514		sock->sk	=	sk;
1515	} else
1516		sk->sk_sleep	=	NULL;
1517
1518	rwlock_init(&sk->sk_dst_lock);
1519	rwlock_init(&sk->sk_callback_lock);
1520	lockdep_set_class(&sk->sk_callback_lock,
1521			   af_callback_keys + sk->sk_family);
1522
1523	sk->sk_state_change	=	sock_def_wakeup;
1524	sk->sk_data_ready	=	sock_def_readable;
1525	sk->sk_write_space	=	sock_def_write_space;
1526	sk->sk_error_report	=	sock_def_error_report;
1527	sk->sk_destruct		=	sock_def_destruct;
1528
1529	sk->sk_sndmsg_page	=	NULL;
1530	sk->sk_sndmsg_off	=	0;
1531
1532	sk->sk_peercred.pid 	=	0;
1533	sk->sk_peercred.uid	=	-1;
1534	sk->sk_peercred.gid	=	-1;
1535	sk->sk_write_pending	=	0;
1536	sk->sk_rcvlowat		=	1;
1537	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
1538	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
1539
1540	sk->sk_stamp = ktime_set(-1L, -1L);
1541
1542	atomic_set(&sk->sk_refcnt, 1);
1543}
1544
1545void fastcall lock_sock_nested(struct sock *sk, int subclass)
1546{
1547	might_sleep();
1548	spin_lock_bh(&sk->sk_lock.slock);
1549	if (sk->sk_lock.owner)
1550		__lock_sock(sk);
1551	sk->sk_lock.owner = (void *)1;
1552	spin_unlock(&sk->sk_lock.slock);
1553	/*
1554	 * The sk_lock has mutex_lock() semantics here:
1555	 */
1556	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
1557	local_bh_enable();
1558}
1559
1560EXPORT_SYMBOL(lock_sock_nested);
1561
1562void fastcall release_sock(struct sock *sk)
1563{
1564	/*
1565	 * The sk_lock has mutex_unlock() semantics:
1566	 */
1567	mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1568
1569	spin_lock_bh(&sk->sk_lock.slock);
1570	if (sk->sk_backlog.tail)
1571		__release_sock(sk);
1572	sk->sk_lock.owner = NULL;
1573	if (waitqueue_active(&sk->sk_lock.wq))
1574		wake_up(&sk->sk_lock.wq);
1575	spin_unlock_bh(&sk->sk_lock.slock);
1576}
1577EXPORT_SYMBOL(release_sock);
1578
1579int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
1580{
1581	struct timeval tv;
1582	if (!sock_flag(sk, SOCK_TIMESTAMP))
1583		sock_enable_timestamp(sk);
1584	tv = ktime_to_timeval(sk->sk_stamp);
1585	if (tv.tv_sec == -1)
1586		return -ENOENT;
1587	if (tv.tv_sec == 0) {
1588		sk->sk_stamp = ktime_get_real();
1589		tv = ktime_to_timeval(sk->sk_stamp);
1590	}
1591	return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
1592}
1593EXPORT_SYMBOL(sock_get_timestamp);
1594
1595int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
1596{
1597	struct timespec ts;
1598	if (!sock_flag(sk, SOCK_TIMESTAMP))
1599		sock_enable_timestamp(sk);
1600	ts = ktime_to_timespec(sk->sk_stamp);
1601	if (ts.tv_sec == -1)
1602		return -ENOENT;
1603	if (ts.tv_sec == 0) {
1604		sk->sk_stamp = ktime_get_real();
1605		ts = ktime_to_timespec(sk->sk_stamp);
1606	}
1607	return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
1608}
1609EXPORT_SYMBOL(sock_get_timestampns);
1610
1611void sock_enable_timestamp(struct sock *sk)
1612{
1613	if (!sock_flag(sk, SOCK_TIMESTAMP)) {
1614		sock_set_flag(sk, SOCK_TIMESTAMP);
1615		net_enable_timestamp();
1616	}
1617}
1618EXPORT_SYMBOL(sock_enable_timestamp);
1619
1620/*
1621 *	Get a socket option on an socket.
1622 *
1623 *	FIX: POSIX 1003.1g is very ambiguous here. It states that
1624 *	asynchronous errors should be reported by getsockopt. We assume
1625 *	this means if you specify SO_ERROR (otherwise whats the point of it).
1626 */
1627int sock_common_getsockopt(struct socket *sock, int level, int optname,
1628			   char __user *optval, int __user *optlen)
1629{
1630	struct sock *sk = sock->sk;
1631
1632	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1633}
1634
1635EXPORT_SYMBOL(sock_common_getsockopt);
1636
1637#ifdef CONFIG_COMPAT
1638int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
1639				  char __user *optval, int __user *optlen)
1640{
1641	struct sock *sk = sock->sk;
1642
1643	if (sk->sk_prot->compat_getsockopt != NULL)
1644		return sk->sk_prot->compat_getsockopt(sk, level, optname,
1645						      optval, optlen);
1646	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1647}
1648EXPORT_SYMBOL(compat_sock_common_getsockopt);
1649#endif
1650
1651int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1652			struct msghdr *msg, size_t size, int flags)
1653{
1654	struct sock *sk = sock->sk;
1655	int addr_len = 0;
1656	int err;
1657
1658	err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
1659				   flags & ~MSG_DONTWAIT, &addr_len);
1660	if (err >= 0)
1661		msg->msg_namelen = addr_len;
1662	return err;
1663}
1664
1665EXPORT_SYMBOL(sock_common_recvmsg);
1666
1667/*
1668 *	Set socket options on an inet socket.
1669 */
1670int sock_common_setsockopt(struct socket *sock, int level, int optname,
1671			   char __user *optval, int optlen)
1672{
1673	struct sock *sk = sock->sk;
1674
1675	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
1676}
1677
1678EXPORT_SYMBOL(sock_common_setsockopt);
1679
1680#ifdef CONFIG_COMPAT
1681int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
1682				  char __user *optval, int optlen)
1683{
1684	struct sock *sk = sock->sk;
1685
1686	if (sk->sk_prot->compat_setsockopt != NULL)
1687		return sk->sk_prot->compat_setsockopt(sk, level, optname,
1688						      optval, optlen);
1689	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
1690}
1691EXPORT_SYMBOL(compat_sock_common_setsockopt);
1692#endif
1693
1694void sk_common_release(struct sock *sk)
1695{
1696	if (sk->sk_prot->destroy)
1697		sk->sk_prot->destroy(sk);
1698
1699	/*
1700	 * Observation: when sock_common_release is called, processes have
1701	 * no access to socket. But net still has.
1702	 * Step one, detach it from networking:
1703	 *
1704	 * A. Remove from hash tables.
1705	 */
1706
1707	sk->sk_prot->unhash(sk);
1708
1709	/*
1710	 * In this point socket cannot receive new packets, but it is possible
1711	 * that some packets are in flight because some CPU runs receiver and
1712	 * did hash table lookup before we unhashed socket. They will achieve
1713	 * receive queue and will be purged by socket destructor.
1714	 *
1715	 * Also we still have packets pending on receive queue and probably,
1716	 * our own packets waiting in device queues. sock_destroy will drain
1717	 * receive queue, but transmitted packets will delay socket destruction
1718	 * until the last reference will be released.
1719	 */
1720
1721	sock_orphan(sk);
1722
1723	xfrm_sk_free_policy(sk);
1724
1725	sk_refcnt_debug_release(sk);
1726	sock_put(sk);
1727}
1728
1729EXPORT_SYMBOL(sk_common_release);
1730
1731static DEFINE_RWLOCK(proto_list_lock);
1732static LIST_HEAD(proto_list);
1733
1734int proto_register(struct proto *prot, int alloc_slab)
1735{
1736	char *request_sock_slab_name = NULL;
1737	char *timewait_sock_slab_name;
1738	int rc = -ENOBUFS;
1739
1740	if (alloc_slab) {
1741		prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
1742					       SLAB_HWCACHE_ALIGN, NULL, NULL);
1743
1744		if (prot->slab == NULL) {
1745			printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n",
1746			       prot->name);
1747			goto out;
1748		}
1749
1750		if (prot->rsk_prot != NULL) {
1751			static const char mask[] = "request_sock_%s";
1752
1753			request_sock_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
1754			if (request_sock_slab_name == NULL)
1755				goto out_free_sock_slab;
1756
1757			sprintf(request_sock_slab_name, mask, prot->name);
1758			prot->rsk_prot->slab = kmem_cache_create(request_sock_slab_name,
1759								 prot->rsk_prot->obj_size, 0,
1760								 SLAB_HWCACHE_ALIGN, NULL, NULL);
1761
1762			if (prot->rsk_prot->slab == NULL) {
1763				printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n",
1764				       prot->name);
1765				goto out_free_request_sock_slab_name;
1766			}
1767		}
1768
1769		if (prot->twsk_prot != NULL) {
1770			static const char mask[] = "tw_sock_%s";
1771
1772			timewait_sock_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
1773
1774			if (timewait_sock_slab_name == NULL)
1775				goto out_free_request_sock_slab;
1776
1777			sprintf(timewait_sock_slab_name, mask, prot->name);
1778			prot->twsk_prot->twsk_slab =
1779				kmem_cache_create(timewait_sock_slab_name,
1780						  prot->twsk_prot->twsk_obj_size,
1781						  0, SLAB_HWCACHE_ALIGN,
1782						  NULL, NULL);
1783			if (prot->twsk_prot->twsk_slab == NULL)
1784				goto out_free_timewait_sock_slab_name;
1785		}
1786	}
1787
1788	write_lock(&proto_list_lock);
1789	list_add(&prot->node, &proto_list);
1790	write_unlock(&proto_list_lock);
1791	rc = 0;
1792out:
1793	return rc;
1794out_free_timewait_sock_slab_name:
1795	kfree(timewait_sock_slab_name);
1796out_free_request_sock_slab:
1797	if (prot->rsk_prot && prot->rsk_prot->slab) {
1798		kmem_cache_destroy(prot->rsk_prot->slab);
1799		prot->rsk_prot->slab = NULL;
1800	}
1801out_free_request_sock_slab_name:
1802	kfree(request_sock_slab_name);
1803out_free_sock_slab:
1804	kmem_cache_destroy(prot->slab);
1805	prot->slab = NULL;
1806	goto out;
1807}
1808
1809EXPORT_SYMBOL(proto_register);
1810
1811void proto_unregister(struct proto *prot)
1812{
1813	write_lock(&proto_list_lock);
1814	list_del(&prot->node);
1815	write_unlock(&proto_list_lock);
1816
1817	if (prot->slab != NULL) {
1818		kmem_cache_destroy(prot->slab);
1819		prot->slab = NULL;
1820	}
1821
1822	if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
1823		const char *name = kmem_cache_name(prot->rsk_prot->slab);
1824
1825		kmem_cache_destroy(prot->rsk_prot->slab);
1826		kfree(name);
1827		prot->rsk_prot->slab = NULL;
1828	}
1829
1830	if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
1831		const char *name = kmem_cache_name(prot->twsk_prot->twsk_slab);
1832
1833		kmem_cache_destroy(prot->twsk_prot->twsk_slab);
1834		kfree(name);
1835		prot->twsk_prot->twsk_slab = NULL;
1836	}
1837}
1838
1839EXPORT_SYMBOL(proto_unregister);
1840
1841#ifdef CONFIG_PROC_FS
1842static inline struct proto *__proto_head(void)
1843{
1844	return list_entry(proto_list.next, struct proto, node);
1845}
1846
1847static inline struct proto *proto_head(void)
1848{
1849	return list_empty(&proto_list) ? NULL : __proto_head();
1850}
1851
1852static inline struct proto *proto_next(struct proto *proto)
1853{
1854	return proto->node.next == &proto_list ? NULL :
1855		list_entry(proto->node.next, struct proto, node);
1856}
1857
1858static inline struct proto *proto_get_idx(loff_t pos)
1859{
1860	struct proto *proto;
1861	loff_t i = 0;
1862
1863	list_for_each_entry(proto, &proto_list, node)
1864		if (i++ == pos)
1865			goto out;
1866
1867	proto = NULL;
1868out:
1869	return proto;
1870}
1871
1872static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
1873{
1874	read_lock(&proto_list_lock);
1875	return *pos ? proto_get_idx(*pos - 1) : SEQ_START_TOKEN;
1876}
1877
1878static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1879{
1880	++*pos;
1881	return v == SEQ_START_TOKEN ? proto_head() : proto_next(v);
1882}
1883
1884static void proto_seq_stop(struct seq_file *seq, void *v)
1885{
1886	read_unlock(&proto_list_lock);
1887}
1888
1889static char proto_method_implemented(const void *method)
1890{
1891	return method == NULL ? 'n' : 'y';
1892}
1893
1894static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
1895{
1896	seq_printf(seq, "%-9s %4u %6d  %6d   %-3s %6u   %-3s  %-10s "
1897			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
1898		   proto->name,
1899		   proto->obj_size,
1900		   proto->sockets_allocated != NULL ? atomic_read(proto->sockets_allocated) : -1,
1901		   proto->memory_allocated != NULL ? atomic_read(proto->memory_allocated) : -1,
1902		   proto->memory_pressure != NULL ? *proto->memory_pressure ? "yes" : "no" : "NI",
1903		   proto->max_header,
1904		   proto->slab == NULL ? "no" : "yes",
1905		   module_name(proto->owner),
1906		   proto_method_implemented(proto->close),
1907		   proto_method_implemented(proto->connect),
1908		   proto_method_implemented(proto->disconnect),
1909		   proto_method_implemented(proto->accept),
1910		   proto_method_implemented(proto->ioctl),
1911		   proto_method_implemented(proto->init),
1912		   proto_method_implemented(proto->destroy),
1913		   proto_method_implemented(proto->shutdown),
1914		   proto_method_implemented(proto->setsockopt),
1915		   proto_method_implemented(proto->getsockopt),
1916		   proto_method_implemented(proto->sendmsg),
1917		   proto_method_implemented(proto->recvmsg),
1918		   proto_method_implemented(proto->sendpage),
1919		   proto_method_implemented(proto->bind),
1920		   proto_method_implemented(proto->backlog_rcv),
1921		   proto_method_implemented(proto->hash),
1922		   proto_method_implemented(proto->unhash),
1923		   proto_method_implemented(proto->get_port),
1924		   proto_method_implemented(proto->enter_memory_pressure));
1925}
1926
1927static int proto_seq_show(struct seq_file *seq, void *v)
1928{
1929	if (v == SEQ_START_TOKEN)
1930		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
1931			   "protocol",
1932			   "size",
1933			   "sockets",
1934			   "memory",
1935			   "press",
1936			   "maxhdr",
1937			   "slab",
1938			   "module",
1939			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
1940	else
1941		proto_seq_printf(seq, v);
1942	return 0;
1943}
1944
1945static const struct seq_operations proto_seq_ops = {
1946	.start  = proto_seq_start,
1947	.next   = proto_seq_next,
1948	.stop   = proto_seq_stop,
1949	.show   = proto_seq_show,
1950};
1951
1952static int proto_seq_open(struct inode *inode, struct file *file)
1953{
1954	return seq_open(file, &proto_seq_ops);
1955}
1956
1957static const struct file_operations proto_seq_fops = {
1958	.owner		= THIS_MODULE,
1959	.open		= proto_seq_open,
1960	.read		= seq_read,
1961	.llseek		= seq_lseek,
1962	.release	= seq_release,
1963};
1964
1965static int __init proto_init(void)
1966{
1967	/* register /proc/net/protocols */
1968	return proc_net_fops_create("protocols", S_IRUGO, &proto_seq_fops) == NULL ? -ENOBUFS : 0;
1969}
1970
1971subsys_initcall(proto_init);
1972
1973#endif /* PROC_FS */
1974
1975EXPORT_SYMBOL(sk_alloc);
1976EXPORT_SYMBOL(sk_free);
1977EXPORT_SYMBOL(sk_send_sigurg);
1978EXPORT_SYMBOL(sock_alloc_send_skb);
1979EXPORT_SYMBOL(sock_init_data);
1980EXPORT_SYMBOL(sock_kfree_s);
1981EXPORT_SYMBOL(sock_kmalloc);
1982EXPORT_SYMBOL(sock_no_accept);
1983EXPORT_SYMBOL(sock_no_bind);
1984EXPORT_SYMBOL(sock_no_connect);
1985EXPORT_SYMBOL(sock_no_getname);
1986EXPORT_SYMBOL(sock_no_getsockopt);
1987EXPORT_SYMBOL(sock_no_ioctl);
1988EXPORT_SYMBOL(sock_no_listen);
1989EXPORT_SYMBOL(sock_no_mmap);
1990EXPORT_SYMBOL(sock_no_poll);
1991EXPORT_SYMBOL(sock_no_recvmsg);
1992EXPORT_SYMBOL(sock_no_sendmsg);
1993EXPORT_SYMBOL(sock_no_sendpage);
1994EXPORT_SYMBOL(sock_no_setsockopt);
1995EXPORT_SYMBOL(sock_no_shutdown);
1996EXPORT_SYMBOL(sock_no_socketpair);
1997EXPORT_SYMBOL(sock_rfree);
1998EXPORT_SYMBOL(sock_setsockopt);
1999EXPORT_SYMBOL(sock_wfree);
2000EXPORT_SYMBOL(sock_wmalloc);
2001EXPORT_SYMBOL(sock_i_uid);
2002EXPORT_SYMBOL(sock_i_ino);
2003EXPORT_SYMBOL(sysctl_optmem_max);
2004#ifdef CONFIG_SYSCTL
2005EXPORT_SYMBOL(sysctl_rmem_max);
2006EXPORT_SYMBOL(sysctl_wmem_max);
2007#endif
2008