sock.c revision 20d4947353be60e909e6b1a79d241457edd6833f
1/*
2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
3 *		operating system.  INET is implemented using the  BSD Socket
4 *		interface as the means of communication with the user level.
5 *
6 *		Generic socket support routines. Memory allocators, socket lock/release
7 *		handler for protocols to use and generic option handler.
8 *
9 *
10 * Authors:	Ross Biro
11 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 *		Florian La Roche, <flla@stud.uni-sb.de>
13 *		Alan Cox, <A.Cox@swansea.ac.uk>
14 *
15 * Fixes:
16 *		Alan Cox	: 	Numerous verify_area() problems
17 *		Alan Cox	:	Connecting on a connecting socket
18 *					now returns an error for tcp.
19 *		Alan Cox	:	sock->protocol is set correctly.
20 *					and is not sometimes left as 0.
21 *		Alan Cox	:	connect handles icmp errors on a
22 *					connect properly. Unfortunately there
23 *					is a restart syscall nasty there. I
24 *					can't match BSD without hacking the C
25 *					library. Ideas urgently sought!
26 *		Alan Cox	:	Disallow bind() to addresses that are
27 *					not ours - especially broadcast ones!!
28 *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
29 *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
30 *					instead they leave that for the DESTROY timer.
31 *		Alan Cox	:	Clean up error flag in accept
32 *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
33 *					was buggy. Put a remove_sock() in the handler
34 *					for memory when we hit 0. Also altered the timer
35 *					code. The ACK stuff can wait and needs major
36 *					TCP layer surgery.
37 *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
38 *					and fixed timer/inet_bh race.
39 *		Alan Cox	:	Added zapped flag for TCP
40 *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
41 *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
43 *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
46 *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
47 *	Pauline Middelink	:	identd support
48 *		Alan Cox	:	Fixed connect() taking signals I think.
49 *		Alan Cox	:	SO_LINGER supported
50 *		Alan Cox	:	Error reporting fixes
51 *		Anonymous	:	inet_create tidied up (sk->reuse setting)
52 *		Alan Cox	:	inet sockets don't set sk->type!
53 *		Alan Cox	:	Split socket option code
54 *		Alan Cox	:	Callbacks
55 *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
56 *		Alex		:	Removed restriction on inet fioctl
57 *		Alan Cox	:	Splitting INET from NET core
58 *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
59 *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
60 *		Alan Cox	:	Split IP from generic code
61 *		Alan Cox	:	New kfree_skbmem()
62 *		Alan Cox	:	Make SO_DEBUG superuser only.
63 *		Alan Cox	:	Allow anyone to clear SO_DEBUG
64 *					(compatibility fix)
65 *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
66 *		Alan Cox	:	Allocator for a socket is settable.
67 *		Alan Cox	:	SO_ERROR includes soft errors.
68 *		Alan Cox	:	Allow NULL arguments on some SO_ opts
69 *		Alan Cox	: 	Generic socket allocation to make hooks
70 *					easier (suggested by Craig Metz).
71 *		Michael Pall	:	SO_ERROR returns positive errno again
72 *              Steve Whitehouse:       Added default destructor to free
73 *                                      protocol private data.
74 *              Steve Whitehouse:       Added various other default routines
75 *                                      common to several socket families.
76 *              Chris Evans     :       Call suser() check last on F_SETOWN
77 *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
79 *		Andi Kleen	:	Fix write_space callback
80 *		Chris Evans	:	Security fixes - signedness again
81 *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
82 *
83 * To Fix:
84 *
85 *
86 *		This program is free software; you can redistribute it and/or
87 *		modify it under the terms of the GNU General Public License
88 *		as published by the Free Software Foundation; either version
89 *		2 of the License, or (at your option) any later version.
90 */
91
92#include <linux/capability.h>
93#include <linux/errno.h>
94#include <linux/types.h>
95#include <linux/socket.h>
96#include <linux/in.h>
97#include <linux/kernel.h>
98#include <linux/module.h>
99#include <linux/proc_fs.h>
100#include <linux/seq_file.h>
101#include <linux/sched.h>
102#include <linux/timer.h>
103#include <linux/string.h>
104#include <linux/sockios.h>
105#include <linux/net.h>
106#include <linux/mm.h>
107#include <linux/slab.h>
108#include <linux/interrupt.h>
109#include <linux/poll.h>
110#include <linux/tcp.h>
111#include <linux/init.h>
112#include <linux/highmem.h>
113
114#include <asm/uaccess.h>
115#include <asm/system.h>
116
117#include <linux/netdevice.h>
118#include <net/protocol.h>
119#include <linux/skbuff.h>
120#include <net/net_namespace.h>
121#include <net/request_sock.h>
122#include <net/sock.h>
123#include <linux/net_tstamp.h>
124#include <net/xfrm.h>
125#include <linux/ipsec.h>
126
127#include <linux/filter.h>
128
129#ifdef CONFIG_INET
130#include <net/tcp.h>
131#endif
132
133/*
134 * Each address family might have different locking rules, so we have
135 * one slock key per address family:
136 */
137static struct lock_class_key af_family_keys[AF_MAX];
138static struct lock_class_key af_family_slock_keys[AF_MAX];
139
140/*
141 * Make lock validator output more readable. (we pre-construct these
142 * strings build-time, so that runtime initialization of socket
143 * locks is fast):
144 */
145static const char *af_family_key_strings[AF_MAX+1] = {
146  "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX"     , "sk_lock-AF_INET"     ,
147  "sk_lock-AF_AX25"  , "sk_lock-AF_IPX"      , "sk_lock-AF_APPLETALK",
148  "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE"   , "sk_lock-AF_ATMPVC"   ,
149  "sk_lock-AF_X25"   , "sk_lock-AF_INET6"    , "sk_lock-AF_ROSE"     ,
150  "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI"  , "sk_lock-AF_SECURITY" ,
151  "sk_lock-AF_KEY"   , "sk_lock-AF_NETLINK"  , "sk_lock-AF_PACKET"   ,
152  "sk_lock-AF_ASH"   , "sk_lock-AF_ECONET"   , "sk_lock-AF_ATMSVC"   ,
153  "sk_lock-21"       , "sk_lock-AF_SNA"      , "sk_lock-AF_IRDA"     ,
154  "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE"  , "sk_lock-AF_LLC"      ,
155  "sk_lock-27"       , "sk_lock-28"          , "sk_lock-AF_CAN"      ,
156  "sk_lock-AF_TIPC"  , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV"        ,
157  "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN"     , "sk_lock-AF_PHONET"   ,
158  "sk_lock-AF_MAX"
159};
160static const char *af_family_slock_key_strings[AF_MAX+1] = {
161  "slock-AF_UNSPEC", "slock-AF_UNIX"     , "slock-AF_INET"     ,
162  "slock-AF_AX25"  , "slock-AF_IPX"      , "slock-AF_APPLETALK",
163  "slock-AF_NETROM", "slock-AF_BRIDGE"   , "slock-AF_ATMPVC"   ,
164  "slock-AF_X25"   , "slock-AF_INET6"    , "slock-AF_ROSE"     ,
165  "slock-AF_DECnet", "slock-AF_NETBEUI"  , "slock-AF_SECURITY" ,
166  "slock-AF_KEY"   , "slock-AF_NETLINK"  , "slock-AF_PACKET"   ,
167  "slock-AF_ASH"   , "slock-AF_ECONET"   , "slock-AF_ATMSVC"   ,
168  "slock-21"       , "slock-AF_SNA"      , "slock-AF_IRDA"     ,
169  "slock-AF_PPPOX" , "slock-AF_WANPIPE"  , "slock-AF_LLC"      ,
170  "slock-27"       , "slock-28"          , "slock-AF_CAN"      ,
171  "slock-AF_TIPC"  , "slock-AF_BLUETOOTH", "slock-AF_IUCV"     ,
172  "slock-AF_RXRPC" , "slock-AF_ISDN"     , "slock-AF_PHONET"   ,
173  "slock-AF_MAX"
174};
175static const char *af_family_clock_key_strings[AF_MAX+1] = {
176  "clock-AF_UNSPEC", "clock-AF_UNIX"     , "clock-AF_INET"     ,
177  "clock-AF_AX25"  , "clock-AF_IPX"      , "clock-AF_APPLETALK",
178  "clock-AF_NETROM", "clock-AF_BRIDGE"   , "clock-AF_ATMPVC"   ,
179  "clock-AF_X25"   , "clock-AF_INET6"    , "clock-AF_ROSE"     ,
180  "clock-AF_DECnet", "clock-AF_NETBEUI"  , "clock-AF_SECURITY" ,
181  "clock-AF_KEY"   , "clock-AF_NETLINK"  , "clock-AF_PACKET"   ,
182  "clock-AF_ASH"   , "clock-AF_ECONET"   , "clock-AF_ATMSVC"   ,
183  "clock-21"       , "clock-AF_SNA"      , "clock-AF_IRDA"     ,
184  "clock-AF_PPPOX" , "clock-AF_WANPIPE"  , "clock-AF_LLC"      ,
185  "clock-27"       , "clock-28"          , "clock-AF_CAN"      ,
186  "clock-AF_TIPC"  , "clock-AF_BLUETOOTH", "clock-AF_IUCV"     ,
187  "clock-AF_RXRPC" , "clock-AF_ISDN"     , "clock-AF_PHONET"   ,
188  "clock-AF_MAX"
189};
190
191/*
192 * sk_callback_lock locking rules are per-address-family,
193 * so split the lock classes by using a per-AF key:
194 */
195static struct lock_class_key af_callback_keys[AF_MAX];
196
197/* Take into consideration the size of the struct sk_buff overhead in the
198 * determination of these values, since that is non-constant across
199 * platforms.  This makes socket queueing behavior and performance
200 * not depend upon such differences.
201 */
202#define _SK_MEM_PACKETS		256
203#define _SK_MEM_OVERHEAD	(sizeof(struct sk_buff) + 256)
204#define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
205#define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
206
207/* Run time adjustable parameters. */
208__u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
209__u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
210__u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
211__u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
212
213/* Maximal space eaten by iovec or ancilliary data plus some space */
214int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
215
216static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
217{
218	struct timeval tv;
219
220	if (optlen < sizeof(tv))
221		return -EINVAL;
222	if (copy_from_user(&tv, optval, sizeof(tv)))
223		return -EFAULT;
224	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
225		return -EDOM;
226
227	if (tv.tv_sec < 0) {
228		static int warned __read_mostly;
229
230		*timeo_p = 0;
231		if (warned < 10 && net_ratelimit()) {
232			warned++;
233			printk(KERN_INFO "sock_set_timeout: `%s' (pid %d) "
234			       "tries to set negative timeout\n",
235				current->comm, task_pid_nr(current));
236		}
237		return 0;
238	}
239	*timeo_p = MAX_SCHEDULE_TIMEOUT;
240	if (tv.tv_sec == 0 && tv.tv_usec == 0)
241		return 0;
242	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
243		*timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
244	return 0;
245}
246
247static void sock_warn_obsolete_bsdism(const char *name)
248{
249	static int warned;
250	static char warncomm[TASK_COMM_LEN];
251	if (strcmp(warncomm, current->comm) && warned < 5) {
252		strcpy(warncomm,  current->comm);
253		printk(KERN_WARNING "process `%s' is using obsolete "
254		       "%s SO_BSDCOMPAT\n", warncomm, name);
255		warned++;
256	}
257}
258
259static void sock_disable_timestamp(struct sock *sk, int flag)
260{
261	if (sock_flag(sk, flag)) {
262		sock_reset_flag(sk, flag);
263		if (!sock_flag(sk, SOCK_TIMESTAMP) &&
264		    !sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE)) {
265			net_disable_timestamp();
266		}
267	}
268}
269
270
271int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
272{
273	int err = 0;
274	int skb_len;
275
276	/* Cast sk->rcvbuf to unsigned... It's pointless, but reduces
277	   number of warnings when compiling with -W --ANK
278	 */
279	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
280	    (unsigned)sk->sk_rcvbuf) {
281		err = -ENOMEM;
282		goto out;
283	}
284
285	err = sk_filter(sk, skb);
286	if (err)
287		goto out;
288
289	if (!sk_rmem_schedule(sk, skb->truesize)) {
290		err = -ENOBUFS;
291		goto out;
292	}
293
294	skb->dev = NULL;
295	skb_set_owner_r(skb, sk);
296
297	/* Cache the SKB length before we tack it onto the receive
298	 * queue.  Once it is added it no longer belongs to us and
299	 * may be freed by other threads of control pulling packets
300	 * from the queue.
301	 */
302	skb_len = skb->len;
303
304	skb_queue_tail(&sk->sk_receive_queue, skb);
305
306	if (!sock_flag(sk, SOCK_DEAD))
307		sk->sk_data_ready(sk, skb_len);
308out:
309	return err;
310}
311EXPORT_SYMBOL(sock_queue_rcv_skb);
312
313int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
314{
315	int rc = NET_RX_SUCCESS;
316
317	if (sk_filter(sk, skb))
318		goto discard_and_relse;
319
320	skb->dev = NULL;
321
322	if (nested)
323		bh_lock_sock_nested(sk);
324	else
325		bh_lock_sock(sk);
326	if (!sock_owned_by_user(sk)) {
327		/*
328		 * trylock + unlock semantics:
329		 */
330		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
331
332		rc = sk_backlog_rcv(sk, skb);
333
334		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
335	} else
336		sk_add_backlog(sk, skb);
337	bh_unlock_sock(sk);
338out:
339	sock_put(sk);
340	return rc;
341discard_and_relse:
342	kfree_skb(skb);
343	goto out;
344}
345EXPORT_SYMBOL(sk_receive_skb);
346
347struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
348{
349	struct dst_entry *dst = sk->sk_dst_cache;
350
351	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
352		sk->sk_dst_cache = NULL;
353		dst_release(dst);
354		return NULL;
355	}
356
357	return dst;
358}
359EXPORT_SYMBOL(__sk_dst_check);
360
361struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
362{
363	struct dst_entry *dst = sk_dst_get(sk);
364
365	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
366		sk_dst_reset(sk);
367		dst_release(dst);
368		return NULL;
369	}
370
371	return dst;
372}
373EXPORT_SYMBOL(sk_dst_check);
374
375static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
376{
377	int ret = -ENOPROTOOPT;
378#ifdef CONFIG_NETDEVICES
379	struct net *net = sock_net(sk);
380	char devname[IFNAMSIZ];
381	int index;
382
383	/* Sorry... */
384	ret = -EPERM;
385	if (!capable(CAP_NET_RAW))
386		goto out;
387
388	ret = -EINVAL;
389	if (optlen < 0)
390		goto out;
391
392	/* Bind this socket to a particular device like "eth0",
393	 * as specified in the passed interface name. If the
394	 * name is "" or the option length is zero the socket
395	 * is not bound.
396	 */
397	if (optlen > IFNAMSIZ - 1)
398		optlen = IFNAMSIZ - 1;
399	memset(devname, 0, sizeof(devname));
400
401	ret = -EFAULT;
402	if (copy_from_user(devname, optval, optlen))
403		goto out;
404
405	if (devname[0] == '\0') {
406		index = 0;
407	} else {
408		struct net_device *dev = dev_get_by_name(net, devname);
409
410		ret = -ENODEV;
411		if (!dev)
412			goto out;
413
414		index = dev->ifindex;
415		dev_put(dev);
416	}
417
418	lock_sock(sk);
419	sk->sk_bound_dev_if = index;
420	sk_dst_reset(sk);
421	release_sock(sk);
422
423	ret = 0;
424
425out:
426#endif
427
428	return ret;
429}
430
431static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
432{
433	if (valbool)
434		sock_set_flag(sk, bit);
435	else
436		sock_reset_flag(sk, bit);
437}
438
439/*
440 *	This is meant for all protocols to use and covers goings on
441 *	at the socket level. Everything here is generic.
442 */
443
444int sock_setsockopt(struct socket *sock, int level, int optname,
445		    char __user *optval, int optlen)
446{
447	struct sock *sk=sock->sk;
448	int val;
449	int valbool;
450	struct linger ling;
451	int ret = 0;
452
453	/*
454	 *	Options without arguments
455	 */
456
457	if (optname == SO_BINDTODEVICE)
458		return sock_bindtodevice(sk, optval, optlen);
459
460	if (optlen < sizeof(int))
461		return -EINVAL;
462
463	if (get_user(val, (int __user *)optval))
464		return -EFAULT;
465
466	valbool = val?1:0;
467
468	lock_sock(sk);
469
470	switch(optname) {
471	case SO_DEBUG:
472		if (val && !capable(CAP_NET_ADMIN)) {
473			ret = -EACCES;
474		} else
475			sock_valbool_flag(sk, SOCK_DBG, valbool);
476		break;
477	case SO_REUSEADDR:
478		sk->sk_reuse = valbool;
479		break;
480	case SO_TYPE:
481	case SO_ERROR:
482		ret = -ENOPROTOOPT;
483		break;
484	case SO_DONTROUTE:
485		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
486		break;
487	case SO_BROADCAST:
488		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
489		break;
490	case SO_SNDBUF:
491		/* Don't error on this BSD doesn't and if you think
492		   about it this is right. Otherwise apps have to
493		   play 'guess the biggest size' games. RCVBUF/SNDBUF
494		   are treated in BSD as hints */
495
496		if (val > sysctl_wmem_max)
497			val = sysctl_wmem_max;
498set_sndbuf:
499		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
500		if ((val * 2) < SOCK_MIN_SNDBUF)
501			sk->sk_sndbuf = SOCK_MIN_SNDBUF;
502		else
503			sk->sk_sndbuf = val * 2;
504
505		/*
506		 *	Wake up sending tasks if we
507		 *	upped the value.
508		 */
509		sk->sk_write_space(sk);
510		break;
511
512	case SO_SNDBUFFORCE:
513		if (!capable(CAP_NET_ADMIN)) {
514			ret = -EPERM;
515			break;
516		}
517		goto set_sndbuf;
518
519	case SO_RCVBUF:
520		/* Don't error on this BSD doesn't and if you think
521		   about it this is right. Otherwise apps have to
522		   play 'guess the biggest size' games. RCVBUF/SNDBUF
523		   are treated in BSD as hints */
524
525		if (val > sysctl_rmem_max)
526			val = sysctl_rmem_max;
527set_rcvbuf:
528		sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
529		/*
530		 * We double it on the way in to account for
531		 * "struct sk_buff" etc. overhead.   Applications
532		 * assume that the SO_RCVBUF setting they make will
533		 * allow that much actual data to be received on that
534		 * socket.
535		 *
536		 * Applications are unaware that "struct sk_buff" and
537		 * other overheads allocate from the receive buffer
538		 * during socket buffer allocation.
539		 *
540		 * And after considering the possible alternatives,
541		 * returning the value we actually used in getsockopt
542		 * is the most desirable behavior.
543		 */
544		if ((val * 2) < SOCK_MIN_RCVBUF)
545			sk->sk_rcvbuf = SOCK_MIN_RCVBUF;
546		else
547			sk->sk_rcvbuf = val * 2;
548		break;
549
550	case SO_RCVBUFFORCE:
551		if (!capable(CAP_NET_ADMIN)) {
552			ret = -EPERM;
553			break;
554		}
555		goto set_rcvbuf;
556
557	case SO_KEEPALIVE:
558#ifdef CONFIG_INET
559		if (sk->sk_protocol == IPPROTO_TCP)
560			tcp_set_keepalive(sk, valbool);
561#endif
562		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
563		break;
564
565	case SO_OOBINLINE:
566		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
567		break;
568
569	case SO_NO_CHECK:
570		sk->sk_no_check = valbool;
571		break;
572
573	case SO_PRIORITY:
574		if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
575			sk->sk_priority = val;
576		else
577			ret = -EPERM;
578		break;
579
580	case SO_LINGER:
581		if (optlen < sizeof(ling)) {
582			ret = -EINVAL;	/* 1003.1g */
583			break;
584		}
585		if (copy_from_user(&ling,optval,sizeof(ling))) {
586			ret = -EFAULT;
587			break;
588		}
589		if (!ling.l_onoff)
590			sock_reset_flag(sk, SOCK_LINGER);
591		else {
592#if (BITS_PER_LONG == 32)
593			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
594				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
595			else
596#endif
597				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
598			sock_set_flag(sk, SOCK_LINGER);
599		}
600		break;
601
602	case SO_BSDCOMPAT:
603		sock_warn_obsolete_bsdism("setsockopt");
604		break;
605
606	case SO_PASSCRED:
607		if (valbool)
608			set_bit(SOCK_PASSCRED, &sock->flags);
609		else
610			clear_bit(SOCK_PASSCRED, &sock->flags);
611		break;
612
613	case SO_TIMESTAMP:
614	case SO_TIMESTAMPNS:
615		if (valbool)  {
616			if (optname == SO_TIMESTAMP)
617				sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
618			else
619				sock_set_flag(sk, SOCK_RCVTSTAMPNS);
620			sock_set_flag(sk, SOCK_RCVTSTAMP);
621			sock_enable_timestamp(sk, SOCK_TIMESTAMP);
622		} else {
623			sock_reset_flag(sk, SOCK_RCVTSTAMP);
624			sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
625		}
626		break;
627
628	case SO_TIMESTAMPING:
629		if (val & ~SOF_TIMESTAMPING_MASK) {
630			ret = EINVAL;
631			break;
632		}
633		sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE,
634				  val & SOF_TIMESTAMPING_TX_HARDWARE);
635		sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE,
636				  val & SOF_TIMESTAMPING_TX_SOFTWARE);
637		sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE,
638				  val & SOF_TIMESTAMPING_RX_HARDWARE);
639		if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
640			sock_enable_timestamp(sk,
641					      SOCK_TIMESTAMPING_RX_SOFTWARE);
642		else
643			sock_disable_timestamp(sk,
644					       SOCK_TIMESTAMPING_RX_SOFTWARE);
645		sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE,
646				  val & SOF_TIMESTAMPING_SOFTWARE);
647		sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE,
648				  val & SOF_TIMESTAMPING_SYS_HARDWARE);
649		sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE,
650				  val & SOF_TIMESTAMPING_RAW_HARDWARE);
651		break;
652
653	case SO_RCVLOWAT:
654		if (val < 0)
655			val = INT_MAX;
656		sk->sk_rcvlowat = val ? : 1;
657		break;
658
659	case SO_RCVTIMEO:
660		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
661		break;
662
663	case SO_SNDTIMEO:
664		ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
665		break;
666
667	case SO_ATTACH_FILTER:
668		ret = -EINVAL;
669		if (optlen == sizeof(struct sock_fprog)) {
670			struct sock_fprog fprog;
671
672			ret = -EFAULT;
673			if (copy_from_user(&fprog, optval, sizeof(fprog)))
674				break;
675
676			ret = sk_attach_filter(&fprog, sk);
677		}
678		break;
679
680	case SO_DETACH_FILTER:
681		ret = sk_detach_filter(sk);
682		break;
683
684	case SO_PASSSEC:
685		if (valbool)
686			set_bit(SOCK_PASSSEC, &sock->flags);
687		else
688			clear_bit(SOCK_PASSSEC, &sock->flags);
689		break;
690	case SO_MARK:
691		if (!capable(CAP_NET_ADMIN))
692			ret = -EPERM;
693		else {
694			sk->sk_mark = val;
695		}
696		break;
697
698		/* We implement the SO_SNDLOWAT etc to
699		   not be settable (1003.1g 5.3) */
700	default:
701		ret = -ENOPROTOOPT;
702		break;
703	}
704	release_sock(sk);
705	return ret;
706}
707
708
709int sock_getsockopt(struct socket *sock, int level, int optname,
710		    char __user *optval, int __user *optlen)
711{
712	struct sock *sk = sock->sk;
713
714	union {
715		int val;
716		struct linger ling;
717		struct timeval tm;
718	} v;
719
720	unsigned int lv = sizeof(int);
721	int len;
722
723	if (get_user(len, optlen))
724		return -EFAULT;
725	if (len < 0)
726		return -EINVAL;
727
728	v.val = 0;
729
730	switch(optname) {
731	case SO_DEBUG:
732		v.val = sock_flag(sk, SOCK_DBG);
733		break;
734
735	case SO_DONTROUTE:
736		v.val = sock_flag(sk, SOCK_LOCALROUTE);
737		break;
738
739	case SO_BROADCAST:
740		v.val = !!sock_flag(sk, SOCK_BROADCAST);
741		break;
742
743	case SO_SNDBUF:
744		v.val = sk->sk_sndbuf;
745		break;
746
747	case SO_RCVBUF:
748		v.val = sk->sk_rcvbuf;
749		break;
750
751	case SO_REUSEADDR:
752		v.val = sk->sk_reuse;
753		break;
754
755	case SO_KEEPALIVE:
756		v.val = !!sock_flag(sk, SOCK_KEEPOPEN);
757		break;
758
759	case SO_TYPE:
760		v.val = sk->sk_type;
761		break;
762
763	case SO_ERROR:
764		v.val = -sock_error(sk);
765		if (v.val==0)
766			v.val = xchg(&sk->sk_err_soft, 0);
767		break;
768
769	case SO_OOBINLINE:
770		v.val = !!sock_flag(sk, SOCK_URGINLINE);
771		break;
772
773	case SO_NO_CHECK:
774		v.val = sk->sk_no_check;
775		break;
776
777	case SO_PRIORITY:
778		v.val = sk->sk_priority;
779		break;
780
781	case SO_LINGER:
782		lv		= sizeof(v.ling);
783		v.ling.l_onoff	= !!sock_flag(sk, SOCK_LINGER);
784		v.ling.l_linger	= sk->sk_lingertime / HZ;
785		break;
786
787	case SO_BSDCOMPAT:
788		sock_warn_obsolete_bsdism("getsockopt");
789		break;
790
791	case SO_TIMESTAMP:
792		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
793				!sock_flag(sk, SOCK_RCVTSTAMPNS);
794		break;
795
796	case SO_TIMESTAMPNS:
797		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
798		break;
799
800	case SO_TIMESTAMPING:
801		v.val = 0;
802		if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
803			v.val |= SOF_TIMESTAMPING_TX_HARDWARE;
804		if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
805			v.val |= SOF_TIMESTAMPING_TX_SOFTWARE;
806		if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE))
807			v.val |= SOF_TIMESTAMPING_RX_HARDWARE;
808		if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE))
809			v.val |= SOF_TIMESTAMPING_RX_SOFTWARE;
810		if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE))
811			v.val |= SOF_TIMESTAMPING_SOFTWARE;
812		if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))
813			v.val |= SOF_TIMESTAMPING_SYS_HARDWARE;
814		if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE))
815			v.val |= SOF_TIMESTAMPING_RAW_HARDWARE;
816		break;
817
818	case SO_RCVTIMEO:
819		lv=sizeof(struct timeval);
820		if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
821			v.tm.tv_sec = 0;
822			v.tm.tv_usec = 0;
823		} else {
824			v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
825			v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
826		}
827		break;
828
829	case SO_SNDTIMEO:
830		lv=sizeof(struct timeval);
831		if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
832			v.tm.tv_sec = 0;
833			v.tm.tv_usec = 0;
834		} else {
835			v.tm.tv_sec = sk->sk_sndtimeo / HZ;
836			v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
837		}
838		break;
839
840	case SO_RCVLOWAT:
841		v.val = sk->sk_rcvlowat;
842		break;
843
844	case SO_SNDLOWAT:
845		v.val=1;
846		break;
847
848	case SO_PASSCRED:
849		v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0;
850		break;
851
852	case SO_PEERCRED:
853		if (len > sizeof(sk->sk_peercred))
854			len = sizeof(sk->sk_peercred);
855		if (copy_to_user(optval, &sk->sk_peercred, len))
856			return -EFAULT;
857		goto lenout;
858
859	case SO_PEERNAME:
860	{
861		char address[128];
862
863		if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
864			return -ENOTCONN;
865		if (lv < len)
866			return -EINVAL;
867		if (copy_to_user(optval, address, len))
868			return -EFAULT;
869		goto lenout;
870	}
871
872	/* Dubious BSD thing... Probably nobody even uses it, but
873	 * the UNIX standard wants it for whatever reason... -DaveM
874	 */
875	case SO_ACCEPTCONN:
876		v.val = sk->sk_state == TCP_LISTEN;
877		break;
878
879	case SO_PASSSEC:
880		v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0;
881		break;
882
883	case SO_PEERSEC:
884		return security_socket_getpeersec_stream(sock, optval, optlen, len);
885
886	case SO_MARK:
887		v.val = sk->sk_mark;
888		break;
889
890	default:
891		return -ENOPROTOOPT;
892	}
893
894	if (len > lv)
895		len = lv;
896	if (copy_to_user(optval, &v, len))
897		return -EFAULT;
898lenout:
899	if (put_user(len, optlen))
900		return -EFAULT;
901	return 0;
902}
903
904/*
905 * Initialize an sk_lock.
906 *
907 * (We also register the sk_lock with the lock validator.)
908 */
909static inline void sock_lock_init(struct sock *sk)
910{
911	sock_lock_init_class_and_name(sk,
912			af_family_slock_key_strings[sk->sk_family],
913			af_family_slock_keys + sk->sk_family,
914			af_family_key_strings[sk->sk_family],
915			af_family_keys + sk->sk_family);
916}
917
918static void sock_copy(struct sock *nsk, const struct sock *osk)
919{
920#ifdef CONFIG_SECURITY_NETWORK
921	void *sptr = nsk->sk_security;
922#endif
923
924	memcpy(nsk, osk, osk->sk_prot->obj_size);
925#ifdef CONFIG_SECURITY_NETWORK
926	nsk->sk_security = sptr;
927	security_sk_clone(osk, nsk);
928#endif
929}
930
931static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
932		int family)
933{
934	struct sock *sk;
935	struct kmem_cache *slab;
936
937	slab = prot->slab;
938	if (slab != NULL)
939		sk = kmem_cache_alloc(slab, priority);
940	else
941		sk = kmalloc(prot->obj_size, priority);
942
943	if (sk != NULL) {
944		if (security_sk_alloc(sk, family, priority))
945			goto out_free;
946
947		if (!try_module_get(prot->owner))
948			goto out_free_sec;
949	}
950
951	return sk;
952
953out_free_sec:
954	security_sk_free(sk);
955out_free:
956	if (slab != NULL)
957		kmem_cache_free(slab, sk);
958	else
959		kfree(sk);
960	return NULL;
961}
962
963static void sk_prot_free(struct proto *prot, struct sock *sk)
964{
965	struct kmem_cache *slab;
966	struct module *owner;
967
968	owner = prot->owner;
969	slab = prot->slab;
970
971	security_sk_free(sk);
972	if (slab != NULL)
973		kmem_cache_free(slab, sk);
974	else
975		kfree(sk);
976	module_put(owner);
977}
978
979/**
980 *	sk_alloc - All socket objects are allocated here
981 *	@net: the applicable net namespace
982 *	@family: protocol family
983 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
984 *	@prot: struct proto associated with this new sock instance
985 */
986struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
987		      struct proto *prot)
988{
989	struct sock *sk;
990
991	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
992	if (sk) {
993		sk->sk_family = family;
994		/*
995		 * See comment in struct sock definition to understand
996		 * why we need sk_prot_creator -acme
997		 */
998		sk->sk_prot = sk->sk_prot_creator = prot;
999		sock_lock_init(sk);
1000		sock_net_set(sk, get_net(net));
1001	}
1002
1003	return sk;
1004}
1005
1006void sk_free(struct sock *sk)
1007{
1008	struct sk_filter *filter;
1009
1010	if (sk->sk_destruct)
1011		sk->sk_destruct(sk);
1012
1013	filter = rcu_dereference(sk->sk_filter);
1014	if (filter) {
1015		sk_filter_uncharge(sk, filter);
1016		rcu_assign_pointer(sk->sk_filter, NULL);
1017	}
1018
1019	sock_disable_timestamp(sk, SOCK_TIMESTAMP);
1020	sock_disable_timestamp(sk, SOCK_TIMESTAMPING_RX_SOFTWARE);
1021
1022	if (atomic_read(&sk->sk_omem_alloc))
1023		printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n",
1024		       __func__, atomic_read(&sk->sk_omem_alloc));
1025
1026	put_net(sock_net(sk));
1027	sk_prot_free(sk->sk_prot_creator, sk);
1028}
1029
1030/*
1031 * Last sock_put should drop referrence to sk->sk_net. It has already
1032 * been dropped in sk_change_net. Taking referrence to stopping namespace
1033 * is not an option.
1034 * Take referrence to a socket to remove it from hash _alive_ and after that
1035 * destroy it in the context of init_net.
1036 */
1037void sk_release_kernel(struct sock *sk)
1038{
1039	if (sk == NULL || sk->sk_socket == NULL)
1040		return;
1041
1042	sock_hold(sk);
1043	sock_release(sk->sk_socket);
1044	release_net(sock_net(sk));
1045	sock_net_set(sk, get_net(&init_net));
1046	sock_put(sk);
1047}
1048EXPORT_SYMBOL(sk_release_kernel);
1049
1050struct sock *sk_clone(const struct sock *sk, const gfp_t priority)
1051{
1052	struct sock *newsk;
1053
1054	newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1055	if (newsk != NULL) {
1056		struct sk_filter *filter;
1057
1058		sock_copy(newsk, sk);
1059
1060		/* SANITY */
1061		get_net(sock_net(newsk));
1062		sk_node_init(&newsk->sk_node);
1063		sock_lock_init(newsk);
1064		bh_lock_sock(newsk);
1065		newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
1066
1067		atomic_set(&newsk->sk_rmem_alloc, 0);
1068		atomic_set(&newsk->sk_wmem_alloc, 0);
1069		atomic_set(&newsk->sk_omem_alloc, 0);
1070		skb_queue_head_init(&newsk->sk_receive_queue);
1071		skb_queue_head_init(&newsk->sk_write_queue);
1072#ifdef CONFIG_NET_DMA
1073		skb_queue_head_init(&newsk->sk_async_wait_queue);
1074#endif
1075
1076		rwlock_init(&newsk->sk_dst_lock);
1077		rwlock_init(&newsk->sk_callback_lock);
1078		lockdep_set_class_and_name(&newsk->sk_callback_lock,
1079				af_callback_keys + newsk->sk_family,
1080				af_family_clock_key_strings[newsk->sk_family]);
1081
1082		newsk->sk_dst_cache	= NULL;
1083		newsk->sk_wmem_queued	= 0;
1084		newsk->sk_forward_alloc = 0;
1085		newsk->sk_send_head	= NULL;
1086		newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1087
1088		sock_reset_flag(newsk, SOCK_DONE);
1089		skb_queue_head_init(&newsk->sk_error_queue);
1090
1091		filter = newsk->sk_filter;
1092		if (filter != NULL)
1093			sk_filter_charge(newsk, filter);
1094
1095		if (unlikely(xfrm_sk_clone_policy(newsk))) {
1096			/* It is still raw copy of parent, so invalidate
1097			 * destructor and make plain sk_free() */
1098			newsk->sk_destruct = NULL;
1099			sk_free(newsk);
1100			newsk = NULL;
1101			goto out;
1102		}
1103
1104		newsk->sk_err	   = 0;
1105		newsk->sk_priority = 0;
1106		atomic_set(&newsk->sk_refcnt, 2);
1107
1108		/*
1109		 * Increment the counter in the same struct proto as the master
1110		 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1111		 * is the same as sk->sk_prot->socks, as this field was copied
1112		 * with memcpy).
1113		 *
1114		 * This _changes_ the previous behaviour, where
1115		 * tcp_create_openreq_child always was incrementing the
1116		 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1117		 * to be taken into account in all callers. -acme
1118		 */
1119		sk_refcnt_debug_inc(newsk);
1120		sk_set_socket(newsk, NULL);
1121		newsk->sk_sleep	 = NULL;
1122
1123		if (newsk->sk_prot->sockets_allocated)
1124			percpu_counter_inc(newsk->sk_prot->sockets_allocated);
1125	}
1126out:
1127	return newsk;
1128}
1129
1130EXPORT_SYMBOL_GPL(sk_clone);
1131
1132void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1133{
1134	__sk_dst_set(sk, dst);
1135	sk->sk_route_caps = dst->dev->features;
1136	if (sk->sk_route_caps & NETIF_F_GSO)
1137		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1138	if (sk_can_gso(sk)) {
1139		if (dst->header_len) {
1140			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1141		} else {
1142			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1143			sk->sk_gso_max_size = dst->dev->gso_max_size;
1144		}
1145	}
1146}
1147EXPORT_SYMBOL_GPL(sk_setup_caps);
1148
1149void __init sk_init(void)
1150{
1151	if (num_physpages <= 4096) {
1152		sysctl_wmem_max = 32767;
1153		sysctl_rmem_max = 32767;
1154		sysctl_wmem_default = 32767;
1155		sysctl_rmem_default = 32767;
1156	} else if (num_physpages >= 131072) {
1157		sysctl_wmem_max = 131071;
1158		sysctl_rmem_max = 131071;
1159	}
1160}
1161
1162/*
1163 *	Simple resource managers for sockets.
1164 */
1165
1166
1167/*
1168 * Write buffer destructor automatically called from kfree_skb.
1169 */
1170void sock_wfree(struct sk_buff *skb)
1171{
1172	struct sock *sk = skb->sk;
1173
1174	/* In case it might be waiting for more memory. */
1175	atomic_sub(skb->truesize, &sk->sk_wmem_alloc);
1176	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE))
1177		sk->sk_write_space(sk);
1178	sock_put(sk);
1179}
1180
1181/*
1182 * Read buffer destructor automatically called from kfree_skb.
1183 */
1184void sock_rfree(struct sk_buff *skb)
1185{
1186	struct sock *sk = skb->sk;
1187
1188	skb_truesize_check(skb);
1189	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1190	sk_mem_uncharge(skb->sk, skb->truesize);
1191}
1192
1193
1194int sock_i_uid(struct sock *sk)
1195{
1196	int uid;
1197
1198	read_lock(&sk->sk_callback_lock);
1199	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1200	read_unlock(&sk->sk_callback_lock);
1201	return uid;
1202}
1203
1204unsigned long sock_i_ino(struct sock *sk)
1205{
1206	unsigned long ino;
1207
1208	read_lock(&sk->sk_callback_lock);
1209	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1210	read_unlock(&sk->sk_callback_lock);
1211	return ino;
1212}
1213
1214/*
1215 * Allocate a skb from the socket's send buffer.
1216 */
1217struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1218			     gfp_t priority)
1219{
1220	if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1221		struct sk_buff * skb = alloc_skb(size, priority);
1222		if (skb) {
1223			skb_set_owner_w(skb, sk);
1224			return skb;
1225		}
1226	}
1227	return NULL;
1228}
1229
1230/*
1231 * Allocate a skb from the socket's receive buffer.
1232 */
1233struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1234			     gfp_t priority)
1235{
1236	if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1237		struct sk_buff *skb = alloc_skb(size, priority);
1238		if (skb) {
1239			skb_set_owner_r(skb, sk);
1240			return skb;
1241		}
1242	}
1243	return NULL;
1244}
1245
1246/*
1247 * Allocate a memory block from the socket's option memory buffer.
1248 */
1249void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1250{
1251	if ((unsigned)size <= sysctl_optmem_max &&
1252	    atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1253		void *mem;
1254		/* First do the add, to avoid the race if kmalloc
1255		 * might sleep.
1256		 */
1257		atomic_add(size, &sk->sk_omem_alloc);
1258		mem = kmalloc(size, priority);
1259		if (mem)
1260			return mem;
1261		atomic_sub(size, &sk->sk_omem_alloc);
1262	}
1263	return NULL;
1264}
1265
1266/*
1267 * Free an option memory block.
1268 */
1269void sock_kfree_s(struct sock *sk, void *mem, int size)
1270{
1271	kfree(mem);
1272	atomic_sub(size, &sk->sk_omem_alloc);
1273}
1274
1275/* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1276   I think, these locks should be removed for datagram sockets.
1277 */
1278static long sock_wait_for_wmem(struct sock * sk, long timeo)
1279{
1280	DEFINE_WAIT(wait);
1281
1282	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1283	for (;;) {
1284		if (!timeo)
1285			break;
1286		if (signal_pending(current))
1287			break;
1288		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1289		prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1290		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1291			break;
1292		if (sk->sk_shutdown & SEND_SHUTDOWN)
1293			break;
1294		if (sk->sk_err)
1295			break;
1296		timeo = schedule_timeout(timeo);
1297	}
1298	finish_wait(sk->sk_sleep, &wait);
1299	return timeo;
1300}
1301
1302
1303/*
1304 *	Generic send/receive buffer handlers
1305 */
1306
1307struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1308				     unsigned long data_len, int noblock,
1309				     int *errcode)
1310{
1311	struct sk_buff *skb;
1312	gfp_t gfp_mask;
1313	long timeo;
1314	int err;
1315
1316	gfp_mask = sk->sk_allocation;
1317	if (gfp_mask & __GFP_WAIT)
1318		gfp_mask |= __GFP_REPEAT;
1319
1320	timeo = sock_sndtimeo(sk, noblock);
1321	while (1) {
1322		err = sock_error(sk);
1323		if (err != 0)
1324			goto failure;
1325
1326		err = -EPIPE;
1327		if (sk->sk_shutdown & SEND_SHUTDOWN)
1328			goto failure;
1329
1330		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1331			skb = alloc_skb(header_len, gfp_mask);
1332			if (skb) {
1333				int npages;
1334				int i;
1335
1336				/* No pages, we're done... */
1337				if (!data_len)
1338					break;
1339
1340				npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1341				skb->truesize += data_len;
1342				skb_shinfo(skb)->nr_frags = npages;
1343				for (i = 0; i < npages; i++) {
1344					struct page *page;
1345					skb_frag_t *frag;
1346
1347					page = alloc_pages(sk->sk_allocation, 0);
1348					if (!page) {
1349						err = -ENOBUFS;
1350						skb_shinfo(skb)->nr_frags = i;
1351						kfree_skb(skb);
1352						goto failure;
1353					}
1354
1355					frag = &skb_shinfo(skb)->frags[i];
1356					frag->page = page;
1357					frag->page_offset = 0;
1358					frag->size = (data_len >= PAGE_SIZE ?
1359						      PAGE_SIZE :
1360						      data_len);
1361					data_len -= PAGE_SIZE;
1362				}
1363
1364				/* Full success... */
1365				break;
1366			}
1367			err = -ENOBUFS;
1368			goto failure;
1369		}
1370		set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1371		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1372		err = -EAGAIN;
1373		if (!timeo)
1374			goto failure;
1375		if (signal_pending(current))
1376			goto interrupted;
1377		timeo = sock_wait_for_wmem(sk, timeo);
1378	}
1379
1380	skb_set_owner_w(skb, sk);
1381	return skb;
1382
1383interrupted:
1384	err = sock_intr_errno(timeo);
1385failure:
1386	*errcode = err;
1387	return NULL;
1388}
1389EXPORT_SYMBOL(sock_alloc_send_pskb);
1390
1391struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1392				    int noblock, int *errcode)
1393{
1394	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1395}
1396
1397static void __lock_sock(struct sock *sk)
1398{
1399	DEFINE_WAIT(wait);
1400
1401	for (;;) {
1402		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1403					TASK_UNINTERRUPTIBLE);
1404		spin_unlock_bh(&sk->sk_lock.slock);
1405		schedule();
1406		spin_lock_bh(&sk->sk_lock.slock);
1407		if (!sock_owned_by_user(sk))
1408			break;
1409	}
1410	finish_wait(&sk->sk_lock.wq, &wait);
1411}
1412
1413static void __release_sock(struct sock *sk)
1414{
1415	struct sk_buff *skb = sk->sk_backlog.head;
1416
1417	do {
1418		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1419		bh_unlock_sock(sk);
1420
1421		do {
1422			struct sk_buff *next = skb->next;
1423
1424			skb->next = NULL;
1425			sk_backlog_rcv(sk, skb);
1426
1427			/*
1428			 * We are in process context here with softirqs
1429			 * disabled, use cond_resched_softirq() to preempt.
1430			 * This is safe to do because we've taken the backlog
1431			 * queue private:
1432			 */
1433			cond_resched_softirq();
1434
1435			skb = next;
1436		} while (skb != NULL);
1437
1438		bh_lock_sock(sk);
1439	} while ((skb = sk->sk_backlog.head) != NULL);
1440}
1441
1442/**
1443 * sk_wait_data - wait for data to arrive at sk_receive_queue
1444 * @sk:    sock to wait on
1445 * @timeo: for how long
1446 *
1447 * Now socket state including sk->sk_err is changed only under lock,
1448 * hence we may omit checks after joining wait queue.
1449 * We check receive queue before schedule() only as optimization;
1450 * it is very likely that release_sock() added new data.
1451 */
1452int sk_wait_data(struct sock *sk, long *timeo)
1453{
1454	int rc;
1455	DEFINE_WAIT(wait);
1456
1457	prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1458	set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1459	rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1460	clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1461	finish_wait(sk->sk_sleep, &wait);
1462	return rc;
1463}
1464
1465EXPORT_SYMBOL(sk_wait_data);
1466
1467/**
1468 *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1469 *	@sk: socket
1470 *	@size: memory size to allocate
1471 *	@kind: allocation type
1472 *
1473 *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1474 *	rmem allocation. This function assumes that protocols which have
1475 *	memory_pressure use sk_wmem_queued as write buffer accounting.
1476 */
1477int __sk_mem_schedule(struct sock *sk, int size, int kind)
1478{
1479	struct proto *prot = sk->sk_prot;
1480	int amt = sk_mem_pages(size);
1481	int allocated;
1482
1483	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
1484	allocated = atomic_add_return(amt, prot->memory_allocated);
1485
1486	/* Under limit. */
1487	if (allocated <= prot->sysctl_mem[0]) {
1488		if (prot->memory_pressure && *prot->memory_pressure)
1489			*prot->memory_pressure = 0;
1490		return 1;
1491	}
1492
1493	/* Under pressure. */
1494	if (allocated > prot->sysctl_mem[1])
1495		if (prot->enter_memory_pressure)
1496			prot->enter_memory_pressure(sk);
1497
1498	/* Over hard limit. */
1499	if (allocated > prot->sysctl_mem[2])
1500		goto suppress_allocation;
1501
1502	/* guarantee minimum buffer size under pressure */
1503	if (kind == SK_MEM_RECV) {
1504		if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
1505			return 1;
1506	} else { /* SK_MEM_SEND */
1507		if (sk->sk_type == SOCK_STREAM) {
1508			if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
1509				return 1;
1510		} else if (atomic_read(&sk->sk_wmem_alloc) <
1511			   prot->sysctl_wmem[0])
1512				return 1;
1513	}
1514
1515	if (prot->memory_pressure) {
1516		int alloc;
1517
1518		if (!*prot->memory_pressure)
1519			return 1;
1520		alloc = percpu_counter_read_positive(prot->sockets_allocated);
1521		if (prot->sysctl_mem[2] > alloc *
1522		    sk_mem_pages(sk->sk_wmem_queued +
1523				 atomic_read(&sk->sk_rmem_alloc) +
1524				 sk->sk_forward_alloc))
1525			return 1;
1526	}
1527
1528suppress_allocation:
1529
1530	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
1531		sk_stream_moderate_sndbuf(sk);
1532
1533		/* Fail only if socket is _under_ its sndbuf.
1534		 * In this case we cannot block, so that we have to fail.
1535		 */
1536		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
1537			return 1;
1538	}
1539
1540	/* Alas. Undo changes. */
1541	sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
1542	atomic_sub(amt, prot->memory_allocated);
1543	return 0;
1544}
1545
1546EXPORT_SYMBOL(__sk_mem_schedule);
1547
1548/**
1549 *	__sk_reclaim - reclaim memory_allocated
1550 *	@sk: socket
1551 */
1552void __sk_mem_reclaim(struct sock *sk)
1553{
1554	struct proto *prot = sk->sk_prot;
1555
1556	atomic_sub(sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT,
1557		   prot->memory_allocated);
1558	sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
1559
1560	if (prot->memory_pressure && *prot->memory_pressure &&
1561	    (atomic_read(prot->memory_allocated) < prot->sysctl_mem[0]))
1562		*prot->memory_pressure = 0;
1563}
1564
1565EXPORT_SYMBOL(__sk_mem_reclaim);
1566
1567
1568/*
1569 * Set of default routines for initialising struct proto_ops when
1570 * the protocol does not support a particular function. In certain
1571 * cases where it makes no sense for a protocol to have a "do nothing"
1572 * function, some default processing is provided.
1573 */
1574
1575int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1576{
1577	return -EOPNOTSUPP;
1578}
1579
1580int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1581		    int len, int flags)
1582{
1583	return -EOPNOTSUPP;
1584}
1585
1586int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1587{
1588	return -EOPNOTSUPP;
1589}
1590
1591int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1592{
1593	return -EOPNOTSUPP;
1594}
1595
1596int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1597		    int *len, int peer)
1598{
1599	return -EOPNOTSUPP;
1600}
1601
1602unsigned int sock_no_poll(struct file * file, struct socket *sock, poll_table *pt)
1603{
1604	return 0;
1605}
1606
1607int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1608{
1609	return -EOPNOTSUPP;
1610}
1611
1612int sock_no_listen(struct socket *sock, int backlog)
1613{
1614	return -EOPNOTSUPP;
1615}
1616
1617int sock_no_shutdown(struct socket *sock, int how)
1618{
1619	return -EOPNOTSUPP;
1620}
1621
1622int sock_no_setsockopt(struct socket *sock, int level, int optname,
1623		    char __user *optval, int optlen)
1624{
1625	return -EOPNOTSUPP;
1626}
1627
1628int sock_no_getsockopt(struct socket *sock, int level, int optname,
1629		    char __user *optval, int __user *optlen)
1630{
1631	return -EOPNOTSUPP;
1632}
1633
1634int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1635		    size_t len)
1636{
1637	return -EOPNOTSUPP;
1638}
1639
1640int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1641		    size_t len, int flags)
1642{
1643	return -EOPNOTSUPP;
1644}
1645
1646int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
1647{
1648	/* Mirror missing mmap method error code */
1649	return -ENODEV;
1650}
1651
1652ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
1653{
1654	ssize_t res;
1655	struct msghdr msg = {.msg_flags = flags};
1656	struct kvec iov;
1657	char *kaddr = kmap(page);
1658	iov.iov_base = kaddr + offset;
1659	iov.iov_len = size;
1660	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
1661	kunmap(page);
1662	return res;
1663}
1664
1665/*
1666 *	Default Socket Callbacks
1667 */
1668
1669static void sock_def_wakeup(struct sock *sk)
1670{
1671	read_lock(&sk->sk_callback_lock);
1672	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1673		wake_up_interruptible_all(sk->sk_sleep);
1674	read_unlock(&sk->sk_callback_lock);
1675}
1676
1677static void sock_def_error_report(struct sock *sk)
1678{
1679	read_lock(&sk->sk_callback_lock);
1680	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1681		wake_up_interruptible(sk->sk_sleep);
1682	sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
1683	read_unlock(&sk->sk_callback_lock);
1684}
1685
1686static void sock_def_readable(struct sock *sk, int len)
1687{
1688	read_lock(&sk->sk_callback_lock);
1689	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1690		wake_up_interruptible_sync(sk->sk_sleep);
1691	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
1692	read_unlock(&sk->sk_callback_lock);
1693}
1694
1695static void sock_def_write_space(struct sock *sk)
1696{
1697	read_lock(&sk->sk_callback_lock);
1698
1699	/* Do not wake up a writer until he can make "significant"
1700	 * progress.  --DaveM
1701	 */
1702	if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
1703		if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1704			wake_up_interruptible_sync(sk->sk_sleep);
1705
1706		/* Should agree with poll, otherwise some programs break */
1707		if (sock_writeable(sk))
1708			sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
1709	}
1710
1711	read_unlock(&sk->sk_callback_lock);
1712}
1713
1714static void sock_def_destruct(struct sock *sk)
1715{
1716	kfree(sk->sk_protinfo);
1717}
1718
1719void sk_send_sigurg(struct sock *sk)
1720{
1721	if (sk->sk_socket && sk->sk_socket->file)
1722		if (send_sigurg(&sk->sk_socket->file->f_owner))
1723			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
1724}
1725
1726void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1727		    unsigned long expires)
1728{
1729	if (!mod_timer(timer, expires))
1730		sock_hold(sk);
1731}
1732
1733EXPORT_SYMBOL(sk_reset_timer);
1734
1735void sk_stop_timer(struct sock *sk, struct timer_list* timer)
1736{
1737	if (timer_pending(timer) && del_timer(timer))
1738		__sock_put(sk);
1739}
1740
1741EXPORT_SYMBOL(sk_stop_timer);
1742
1743void sock_init_data(struct socket *sock, struct sock *sk)
1744{
1745	skb_queue_head_init(&sk->sk_receive_queue);
1746	skb_queue_head_init(&sk->sk_write_queue);
1747	skb_queue_head_init(&sk->sk_error_queue);
1748#ifdef CONFIG_NET_DMA
1749	skb_queue_head_init(&sk->sk_async_wait_queue);
1750#endif
1751
1752	sk->sk_send_head	=	NULL;
1753
1754	init_timer(&sk->sk_timer);
1755
1756	sk->sk_allocation	=	GFP_KERNEL;
1757	sk->sk_rcvbuf		=	sysctl_rmem_default;
1758	sk->sk_sndbuf		=	sysctl_wmem_default;
1759	sk->sk_state		=	TCP_CLOSE;
1760	sk_set_socket(sk, sock);
1761
1762	sock_set_flag(sk, SOCK_ZAPPED);
1763
1764	if (sock) {
1765		sk->sk_type	=	sock->type;
1766		sk->sk_sleep	=	&sock->wait;
1767		sock->sk	=	sk;
1768	} else
1769		sk->sk_sleep	=	NULL;
1770
1771	rwlock_init(&sk->sk_dst_lock);
1772	rwlock_init(&sk->sk_callback_lock);
1773	lockdep_set_class_and_name(&sk->sk_callback_lock,
1774			af_callback_keys + sk->sk_family,
1775			af_family_clock_key_strings[sk->sk_family]);
1776
1777	sk->sk_state_change	=	sock_def_wakeup;
1778	sk->sk_data_ready	=	sock_def_readable;
1779	sk->sk_write_space	=	sock_def_write_space;
1780	sk->sk_error_report	=	sock_def_error_report;
1781	sk->sk_destruct		=	sock_def_destruct;
1782
1783	sk->sk_sndmsg_page	=	NULL;
1784	sk->sk_sndmsg_off	=	0;
1785
1786	sk->sk_peercred.pid 	=	0;
1787	sk->sk_peercred.uid	=	-1;
1788	sk->sk_peercred.gid	=	-1;
1789	sk->sk_write_pending	=	0;
1790	sk->sk_rcvlowat		=	1;
1791	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
1792	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
1793
1794	sk->sk_stamp = ktime_set(-1L, 0);
1795
1796	atomic_set(&sk->sk_refcnt, 1);
1797	atomic_set(&sk->sk_drops, 0);
1798}
1799
1800void lock_sock_nested(struct sock *sk, int subclass)
1801{
1802	might_sleep();
1803	spin_lock_bh(&sk->sk_lock.slock);
1804	if (sk->sk_lock.owned)
1805		__lock_sock(sk);
1806	sk->sk_lock.owned = 1;
1807	spin_unlock(&sk->sk_lock.slock);
1808	/*
1809	 * The sk_lock has mutex_lock() semantics here:
1810	 */
1811	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
1812	local_bh_enable();
1813}
1814
1815EXPORT_SYMBOL(lock_sock_nested);
1816
1817void release_sock(struct sock *sk)
1818{
1819	/*
1820	 * The sk_lock has mutex_unlock() semantics:
1821	 */
1822	mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1823
1824	spin_lock_bh(&sk->sk_lock.slock);
1825	if (sk->sk_backlog.tail)
1826		__release_sock(sk);
1827	sk->sk_lock.owned = 0;
1828	if (waitqueue_active(&sk->sk_lock.wq))
1829		wake_up(&sk->sk_lock.wq);
1830	spin_unlock_bh(&sk->sk_lock.slock);
1831}
1832EXPORT_SYMBOL(release_sock);
1833
1834int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
1835{
1836	struct timeval tv;
1837	if (!sock_flag(sk, SOCK_TIMESTAMP))
1838		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
1839	tv = ktime_to_timeval(sk->sk_stamp);
1840	if (tv.tv_sec == -1)
1841		return -ENOENT;
1842	if (tv.tv_sec == 0) {
1843		sk->sk_stamp = ktime_get_real();
1844		tv = ktime_to_timeval(sk->sk_stamp);
1845	}
1846	return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
1847}
1848EXPORT_SYMBOL(sock_get_timestamp);
1849
1850int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
1851{
1852	struct timespec ts;
1853	if (!sock_flag(sk, SOCK_TIMESTAMP))
1854		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
1855	ts = ktime_to_timespec(sk->sk_stamp);
1856	if (ts.tv_sec == -1)
1857		return -ENOENT;
1858	if (ts.tv_sec == 0) {
1859		sk->sk_stamp = ktime_get_real();
1860		ts = ktime_to_timespec(sk->sk_stamp);
1861	}
1862	return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
1863}
1864EXPORT_SYMBOL(sock_get_timestampns);
1865
1866void sock_enable_timestamp(struct sock *sk, int flag)
1867{
1868	if (!sock_flag(sk, flag)) {
1869		sock_set_flag(sk, flag);
1870		/*
1871		 * we just set one of the two flags which require net
1872		 * time stamping, but time stamping might have been on
1873		 * already because of the other one
1874		 */
1875		if (!sock_flag(sk,
1876				flag == SOCK_TIMESTAMP ?
1877				SOCK_TIMESTAMPING_RX_SOFTWARE :
1878				SOCK_TIMESTAMP))
1879			net_enable_timestamp();
1880	}
1881}
1882
1883/*
1884 *	Get a socket option on an socket.
1885 *
1886 *	FIX: POSIX 1003.1g is very ambiguous here. It states that
1887 *	asynchronous errors should be reported by getsockopt. We assume
1888 *	this means if you specify SO_ERROR (otherwise whats the point of it).
1889 */
1890int sock_common_getsockopt(struct socket *sock, int level, int optname,
1891			   char __user *optval, int __user *optlen)
1892{
1893	struct sock *sk = sock->sk;
1894
1895	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1896}
1897
1898EXPORT_SYMBOL(sock_common_getsockopt);
1899
1900#ifdef CONFIG_COMPAT
1901int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
1902				  char __user *optval, int __user *optlen)
1903{
1904	struct sock *sk = sock->sk;
1905
1906	if (sk->sk_prot->compat_getsockopt != NULL)
1907		return sk->sk_prot->compat_getsockopt(sk, level, optname,
1908						      optval, optlen);
1909	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1910}
1911EXPORT_SYMBOL(compat_sock_common_getsockopt);
1912#endif
1913
1914int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1915			struct msghdr *msg, size_t size, int flags)
1916{
1917	struct sock *sk = sock->sk;
1918	int addr_len = 0;
1919	int err;
1920
1921	err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
1922				   flags & ~MSG_DONTWAIT, &addr_len);
1923	if (err >= 0)
1924		msg->msg_namelen = addr_len;
1925	return err;
1926}
1927
1928EXPORT_SYMBOL(sock_common_recvmsg);
1929
1930/*
1931 *	Set socket options on an inet socket.
1932 */
1933int sock_common_setsockopt(struct socket *sock, int level, int optname,
1934			   char __user *optval, int optlen)
1935{
1936	struct sock *sk = sock->sk;
1937
1938	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
1939}
1940
1941EXPORT_SYMBOL(sock_common_setsockopt);
1942
1943#ifdef CONFIG_COMPAT
1944int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
1945				  char __user *optval, int optlen)
1946{
1947	struct sock *sk = sock->sk;
1948
1949	if (sk->sk_prot->compat_setsockopt != NULL)
1950		return sk->sk_prot->compat_setsockopt(sk, level, optname,
1951						      optval, optlen);
1952	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
1953}
1954EXPORT_SYMBOL(compat_sock_common_setsockopt);
1955#endif
1956
1957void sk_common_release(struct sock *sk)
1958{
1959	if (sk->sk_prot->destroy)
1960		sk->sk_prot->destroy(sk);
1961
1962	/*
1963	 * Observation: when sock_common_release is called, processes have
1964	 * no access to socket. But net still has.
1965	 * Step one, detach it from networking:
1966	 *
1967	 * A. Remove from hash tables.
1968	 */
1969
1970	sk->sk_prot->unhash(sk);
1971
1972	/*
1973	 * In this point socket cannot receive new packets, but it is possible
1974	 * that some packets are in flight because some CPU runs receiver and
1975	 * did hash table lookup before we unhashed socket. They will achieve
1976	 * receive queue and will be purged by socket destructor.
1977	 *
1978	 * Also we still have packets pending on receive queue and probably,
1979	 * our own packets waiting in device queues. sock_destroy will drain
1980	 * receive queue, but transmitted packets will delay socket destruction
1981	 * until the last reference will be released.
1982	 */
1983
1984	sock_orphan(sk);
1985
1986	xfrm_sk_free_policy(sk);
1987
1988	sk_refcnt_debug_release(sk);
1989	sock_put(sk);
1990}
1991
1992EXPORT_SYMBOL(sk_common_release);
1993
1994static DEFINE_RWLOCK(proto_list_lock);
1995static LIST_HEAD(proto_list);
1996
1997#ifdef CONFIG_PROC_FS
1998#define PROTO_INUSE_NR	64	/* should be enough for the first time */
1999struct prot_inuse {
2000	int val[PROTO_INUSE_NR];
2001};
2002
2003static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2004
2005#ifdef CONFIG_NET_NS
2006void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2007{
2008	int cpu = smp_processor_id();
2009	per_cpu_ptr(net->core.inuse, cpu)->val[prot->inuse_idx] += val;
2010}
2011EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2012
2013int sock_prot_inuse_get(struct net *net, struct proto *prot)
2014{
2015	int cpu, idx = prot->inuse_idx;
2016	int res = 0;
2017
2018	for_each_possible_cpu(cpu)
2019		res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2020
2021	return res >= 0 ? res : 0;
2022}
2023EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2024
2025static int sock_inuse_init_net(struct net *net)
2026{
2027	net->core.inuse = alloc_percpu(struct prot_inuse);
2028	return net->core.inuse ? 0 : -ENOMEM;
2029}
2030
2031static void sock_inuse_exit_net(struct net *net)
2032{
2033	free_percpu(net->core.inuse);
2034}
2035
2036static struct pernet_operations net_inuse_ops = {
2037	.init = sock_inuse_init_net,
2038	.exit = sock_inuse_exit_net,
2039};
2040
2041static __init int net_inuse_init(void)
2042{
2043	if (register_pernet_subsys(&net_inuse_ops))
2044		panic("Cannot initialize net inuse counters");
2045
2046	return 0;
2047}
2048
2049core_initcall(net_inuse_init);
2050#else
2051static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2052
2053void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2054{
2055	__get_cpu_var(prot_inuse).val[prot->inuse_idx] += val;
2056}
2057EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2058
2059int sock_prot_inuse_get(struct net *net, struct proto *prot)
2060{
2061	int cpu, idx = prot->inuse_idx;
2062	int res = 0;
2063
2064	for_each_possible_cpu(cpu)
2065		res += per_cpu(prot_inuse, cpu).val[idx];
2066
2067	return res >= 0 ? res : 0;
2068}
2069EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2070#endif
2071
2072static void assign_proto_idx(struct proto *prot)
2073{
2074	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2075
2076	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2077		printk(KERN_ERR "PROTO_INUSE_NR exhausted\n");
2078		return;
2079	}
2080
2081	set_bit(prot->inuse_idx, proto_inuse_idx);
2082}
2083
2084static void release_proto_idx(struct proto *prot)
2085{
2086	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2087		clear_bit(prot->inuse_idx, proto_inuse_idx);
2088}
2089#else
2090static inline void assign_proto_idx(struct proto *prot)
2091{
2092}
2093
2094static inline void release_proto_idx(struct proto *prot)
2095{
2096}
2097#endif
2098
2099int proto_register(struct proto *prot, int alloc_slab)
2100{
2101	if (alloc_slab) {
2102		prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2103					SLAB_HWCACHE_ALIGN | prot->slab_flags,
2104					NULL);
2105
2106		if (prot->slab == NULL) {
2107			printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n",
2108			       prot->name);
2109			goto out;
2110		}
2111
2112		if (prot->rsk_prot != NULL) {
2113			static const char mask[] = "request_sock_%s";
2114
2115			prot->rsk_prot->slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
2116			if (prot->rsk_prot->slab_name == NULL)
2117				goto out_free_sock_slab;
2118
2119			sprintf(prot->rsk_prot->slab_name, mask, prot->name);
2120			prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
2121								 prot->rsk_prot->obj_size, 0,
2122								 SLAB_HWCACHE_ALIGN, NULL);
2123
2124			if (prot->rsk_prot->slab == NULL) {
2125				printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n",
2126				       prot->name);
2127				goto out_free_request_sock_slab_name;
2128			}
2129		}
2130
2131		if (prot->twsk_prot != NULL) {
2132			static const char mask[] = "tw_sock_%s";
2133
2134			prot->twsk_prot->twsk_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
2135
2136			if (prot->twsk_prot->twsk_slab_name == NULL)
2137				goto out_free_request_sock_slab;
2138
2139			sprintf(prot->twsk_prot->twsk_slab_name, mask, prot->name);
2140			prot->twsk_prot->twsk_slab =
2141				kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2142						  prot->twsk_prot->twsk_obj_size,
2143						  0,
2144						  SLAB_HWCACHE_ALIGN |
2145							prot->slab_flags,
2146						  NULL);
2147			if (prot->twsk_prot->twsk_slab == NULL)
2148				goto out_free_timewait_sock_slab_name;
2149		}
2150	}
2151
2152	write_lock(&proto_list_lock);
2153	list_add(&prot->node, &proto_list);
2154	assign_proto_idx(prot);
2155	write_unlock(&proto_list_lock);
2156	return 0;
2157
2158out_free_timewait_sock_slab_name:
2159	kfree(prot->twsk_prot->twsk_slab_name);
2160out_free_request_sock_slab:
2161	if (prot->rsk_prot && prot->rsk_prot->slab) {
2162		kmem_cache_destroy(prot->rsk_prot->slab);
2163		prot->rsk_prot->slab = NULL;
2164	}
2165out_free_request_sock_slab_name:
2166	kfree(prot->rsk_prot->slab_name);
2167out_free_sock_slab:
2168	kmem_cache_destroy(prot->slab);
2169	prot->slab = NULL;
2170out:
2171	return -ENOBUFS;
2172}
2173
2174EXPORT_SYMBOL(proto_register);
2175
2176void proto_unregister(struct proto *prot)
2177{
2178	write_lock(&proto_list_lock);
2179	release_proto_idx(prot);
2180	list_del(&prot->node);
2181	write_unlock(&proto_list_lock);
2182
2183	if (prot->slab != NULL) {
2184		kmem_cache_destroy(prot->slab);
2185		prot->slab = NULL;
2186	}
2187
2188	if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2189		kmem_cache_destroy(prot->rsk_prot->slab);
2190		kfree(prot->rsk_prot->slab_name);
2191		prot->rsk_prot->slab = NULL;
2192	}
2193
2194	if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2195		kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2196		kfree(prot->twsk_prot->twsk_slab_name);
2197		prot->twsk_prot->twsk_slab = NULL;
2198	}
2199}
2200
2201EXPORT_SYMBOL(proto_unregister);
2202
2203#ifdef CONFIG_PROC_FS
2204static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2205	__acquires(proto_list_lock)
2206{
2207	read_lock(&proto_list_lock);
2208	return seq_list_start_head(&proto_list, *pos);
2209}
2210
2211static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2212{
2213	return seq_list_next(v, &proto_list, pos);
2214}
2215
2216static void proto_seq_stop(struct seq_file *seq, void *v)
2217	__releases(proto_list_lock)
2218{
2219	read_unlock(&proto_list_lock);
2220}
2221
2222static char proto_method_implemented(const void *method)
2223{
2224	return method == NULL ? 'n' : 'y';
2225}
2226
2227static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2228{
2229	seq_printf(seq, "%-9s %4u %6d  %6d   %-3s %6u   %-3s  %-10s "
2230			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2231		   proto->name,
2232		   proto->obj_size,
2233		   sock_prot_inuse_get(seq_file_net(seq), proto),
2234		   proto->memory_allocated != NULL ? atomic_read(proto->memory_allocated) : -1,
2235		   proto->memory_pressure != NULL ? *proto->memory_pressure ? "yes" : "no" : "NI",
2236		   proto->max_header,
2237		   proto->slab == NULL ? "no" : "yes",
2238		   module_name(proto->owner),
2239		   proto_method_implemented(proto->close),
2240		   proto_method_implemented(proto->connect),
2241		   proto_method_implemented(proto->disconnect),
2242		   proto_method_implemented(proto->accept),
2243		   proto_method_implemented(proto->ioctl),
2244		   proto_method_implemented(proto->init),
2245		   proto_method_implemented(proto->destroy),
2246		   proto_method_implemented(proto->shutdown),
2247		   proto_method_implemented(proto->setsockopt),
2248		   proto_method_implemented(proto->getsockopt),
2249		   proto_method_implemented(proto->sendmsg),
2250		   proto_method_implemented(proto->recvmsg),
2251		   proto_method_implemented(proto->sendpage),
2252		   proto_method_implemented(proto->bind),
2253		   proto_method_implemented(proto->backlog_rcv),
2254		   proto_method_implemented(proto->hash),
2255		   proto_method_implemented(proto->unhash),
2256		   proto_method_implemented(proto->get_port),
2257		   proto_method_implemented(proto->enter_memory_pressure));
2258}
2259
2260static int proto_seq_show(struct seq_file *seq, void *v)
2261{
2262	if (v == &proto_list)
2263		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2264			   "protocol",
2265			   "size",
2266			   "sockets",
2267			   "memory",
2268			   "press",
2269			   "maxhdr",
2270			   "slab",
2271			   "module",
2272			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2273	else
2274		proto_seq_printf(seq, list_entry(v, struct proto, node));
2275	return 0;
2276}
2277
2278static const struct seq_operations proto_seq_ops = {
2279	.start  = proto_seq_start,
2280	.next   = proto_seq_next,
2281	.stop   = proto_seq_stop,
2282	.show   = proto_seq_show,
2283};
2284
2285static int proto_seq_open(struct inode *inode, struct file *file)
2286{
2287	return seq_open_net(inode, file, &proto_seq_ops,
2288			    sizeof(struct seq_net_private));
2289}
2290
2291static const struct file_operations proto_seq_fops = {
2292	.owner		= THIS_MODULE,
2293	.open		= proto_seq_open,
2294	.read		= seq_read,
2295	.llseek		= seq_lseek,
2296	.release	= seq_release_net,
2297};
2298
2299static __net_init int proto_init_net(struct net *net)
2300{
2301	if (!proc_net_fops_create(net, "protocols", S_IRUGO, &proto_seq_fops))
2302		return -ENOMEM;
2303
2304	return 0;
2305}
2306
2307static __net_exit void proto_exit_net(struct net *net)
2308{
2309	proc_net_remove(net, "protocols");
2310}
2311
2312
2313static __net_initdata struct pernet_operations proto_net_ops = {
2314	.init = proto_init_net,
2315	.exit = proto_exit_net,
2316};
2317
2318static int __init proto_init(void)
2319{
2320	return register_pernet_subsys(&proto_net_ops);
2321}
2322
2323subsys_initcall(proto_init);
2324
2325#endif /* PROC_FS */
2326
2327EXPORT_SYMBOL(sk_alloc);
2328EXPORT_SYMBOL(sk_free);
2329EXPORT_SYMBOL(sk_send_sigurg);
2330EXPORT_SYMBOL(sock_alloc_send_skb);
2331EXPORT_SYMBOL(sock_init_data);
2332EXPORT_SYMBOL(sock_kfree_s);
2333EXPORT_SYMBOL(sock_kmalloc);
2334EXPORT_SYMBOL(sock_no_accept);
2335EXPORT_SYMBOL(sock_no_bind);
2336EXPORT_SYMBOL(sock_no_connect);
2337EXPORT_SYMBOL(sock_no_getname);
2338EXPORT_SYMBOL(sock_no_getsockopt);
2339EXPORT_SYMBOL(sock_no_ioctl);
2340EXPORT_SYMBOL(sock_no_listen);
2341EXPORT_SYMBOL(sock_no_mmap);
2342EXPORT_SYMBOL(sock_no_poll);
2343EXPORT_SYMBOL(sock_no_recvmsg);
2344EXPORT_SYMBOL(sock_no_sendmsg);
2345EXPORT_SYMBOL(sock_no_sendpage);
2346EXPORT_SYMBOL(sock_no_setsockopt);
2347EXPORT_SYMBOL(sock_no_shutdown);
2348EXPORT_SYMBOL(sock_no_socketpair);
2349EXPORT_SYMBOL(sock_rfree);
2350EXPORT_SYMBOL(sock_setsockopt);
2351EXPORT_SYMBOL(sock_wfree);
2352EXPORT_SYMBOL(sock_wmalloc);
2353EXPORT_SYMBOL(sock_i_uid);
2354EXPORT_SYMBOL(sock_i_ino);
2355EXPORT_SYMBOL(sysctl_optmem_max);
2356