sock.c revision 25cc4ae913a46bcc11b03c37bec59568f2122a36
1/*
2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
3 *		operating system.  INET is implemented using the  BSD Socket
4 *		interface as the means of communication with the user level.
5 *
6 *		Generic socket support routines. Memory allocators, socket lock/release
7 *		handler for protocols to use and generic option handler.
8 *
9 *
10 * Authors:	Ross Biro
11 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 *		Florian La Roche, <flla@stud.uni-sb.de>
13 *		Alan Cox, <A.Cox@swansea.ac.uk>
14 *
15 * Fixes:
16 *		Alan Cox	: 	Numerous verify_area() problems
17 *		Alan Cox	:	Connecting on a connecting socket
18 *					now returns an error for tcp.
19 *		Alan Cox	:	sock->protocol is set correctly.
20 *					and is not sometimes left as 0.
21 *		Alan Cox	:	connect handles icmp errors on a
22 *					connect properly. Unfortunately there
23 *					is a restart syscall nasty there. I
24 *					can't match BSD without hacking the C
25 *					library. Ideas urgently sought!
26 *		Alan Cox	:	Disallow bind() to addresses that are
27 *					not ours - especially broadcast ones!!
28 *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
29 *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
30 *					instead they leave that for the DESTROY timer.
31 *		Alan Cox	:	Clean up error flag in accept
32 *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
33 *					was buggy. Put a remove_sock() in the handler
34 *					for memory when we hit 0. Also altered the timer
35 *					code. The ACK stuff can wait and needs major
36 *					TCP layer surgery.
37 *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
38 *					and fixed timer/inet_bh race.
39 *		Alan Cox	:	Added zapped flag for TCP
40 *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
41 *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
43 *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
46 *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
47 *	Pauline Middelink	:	identd support
48 *		Alan Cox	:	Fixed connect() taking signals I think.
49 *		Alan Cox	:	SO_LINGER supported
50 *		Alan Cox	:	Error reporting fixes
51 *		Anonymous	:	inet_create tidied up (sk->reuse setting)
52 *		Alan Cox	:	inet sockets don't set sk->type!
53 *		Alan Cox	:	Split socket option code
54 *		Alan Cox	:	Callbacks
55 *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
56 *		Alex		:	Removed restriction on inet fioctl
57 *		Alan Cox	:	Splitting INET from NET core
58 *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
59 *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
60 *		Alan Cox	:	Split IP from generic code
61 *		Alan Cox	:	New kfree_skbmem()
62 *		Alan Cox	:	Make SO_DEBUG superuser only.
63 *		Alan Cox	:	Allow anyone to clear SO_DEBUG
64 *					(compatibility fix)
65 *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
66 *		Alan Cox	:	Allocator for a socket is settable.
67 *		Alan Cox	:	SO_ERROR includes soft errors.
68 *		Alan Cox	:	Allow NULL arguments on some SO_ opts
69 *		Alan Cox	: 	Generic socket allocation to make hooks
70 *					easier (suggested by Craig Metz).
71 *		Michael Pall	:	SO_ERROR returns positive errno again
72 *              Steve Whitehouse:       Added default destructor to free
73 *                                      protocol private data.
74 *              Steve Whitehouse:       Added various other default routines
75 *                                      common to several socket families.
76 *              Chris Evans     :       Call suser() check last on F_SETOWN
77 *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
79 *		Andi Kleen	:	Fix write_space callback
80 *		Chris Evans	:	Security fixes - signedness again
81 *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
82 *
83 * To Fix:
84 *
85 *
86 *		This program is free software; you can redistribute it and/or
87 *		modify it under the terms of the GNU General Public License
88 *		as published by the Free Software Foundation; either version
89 *		2 of the License, or (at your option) any later version.
90 */
91
92#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
93
94#include <linux/capability.h>
95#include <linux/errno.h>
96#include <linux/types.h>
97#include <linux/socket.h>
98#include <linux/in.h>
99#include <linux/kernel.h>
100#include <linux/module.h>
101#include <linux/proc_fs.h>
102#include <linux/seq_file.h>
103#include <linux/sched.h>
104#include <linux/timer.h>
105#include <linux/string.h>
106#include <linux/sockios.h>
107#include <linux/net.h>
108#include <linux/mm.h>
109#include <linux/slab.h>
110#include <linux/interrupt.h>
111#include <linux/poll.h>
112#include <linux/tcp.h>
113#include <linux/init.h>
114#include <linux/highmem.h>
115#include <linux/user_namespace.h>
116#include <linux/static_key.h>
117#include <linux/memcontrol.h>
118#include <linux/prefetch.h>
119
120#include <asm/uaccess.h>
121
122#include <linux/netdevice.h>
123#include <net/protocol.h>
124#include <linux/skbuff.h>
125#include <net/net_namespace.h>
126#include <net/request_sock.h>
127#include <net/sock.h>
128#include <linux/net_tstamp.h>
129#include <net/xfrm.h>
130#include <linux/ipsec.h>
131#include <net/cls_cgroup.h>
132#include <net/netprio_cgroup.h>
133
134#include <linux/filter.h>
135
136#include <trace/events/sock.h>
137
138#ifdef CONFIG_INET
139#include <net/tcp.h>
140#endif
141
142static DEFINE_MUTEX(proto_list_mutex);
143static LIST_HEAD(proto_list);
144
145#ifdef CONFIG_MEMCG_KMEM
146int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
147{
148	struct proto *proto;
149	int ret = 0;
150
151	mutex_lock(&proto_list_mutex);
152	list_for_each_entry(proto, &proto_list, node) {
153		if (proto->init_cgroup) {
154			ret = proto->init_cgroup(memcg, ss);
155			if (ret)
156				goto out;
157		}
158	}
159
160	mutex_unlock(&proto_list_mutex);
161	return ret;
162out:
163	list_for_each_entry_continue_reverse(proto, &proto_list, node)
164		if (proto->destroy_cgroup)
165			proto->destroy_cgroup(memcg);
166	mutex_unlock(&proto_list_mutex);
167	return ret;
168}
169
170void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
171{
172	struct proto *proto;
173
174	mutex_lock(&proto_list_mutex);
175	list_for_each_entry_reverse(proto, &proto_list, node)
176		if (proto->destroy_cgroup)
177			proto->destroy_cgroup(memcg);
178	mutex_unlock(&proto_list_mutex);
179}
180#endif
181
182/*
183 * Each address family might have different locking rules, so we have
184 * one slock key per address family:
185 */
186static struct lock_class_key af_family_keys[AF_MAX];
187static struct lock_class_key af_family_slock_keys[AF_MAX];
188
189struct static_key memcg_socket_limit_enabled;
190EXPORT_SYMBOL(memcg_socket_limit_enabled);
191
192/*
193 * Make lock validator output more readable. (we pre-construct these
194 * strings build-time, so that runtime initialization of socket
195 * locks is fast):
196 */
197static const char *const af_family_key_strings[AF_MAX+1] = {
198  "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX"     , "sk_lock-AF_INET"     ,
199  "sk_lock-AF_AX25"  , "sk_lock-AF_IPX"      , "sk_lock-AF_APPLETALK",
200  "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE"   , "sk_lock-AF_ATMPVC"   ,
201  "sk_lock-AF_X25"   , "sk_lock-AF_INET6"    , "sk_lock-AF_ROSE"     ,
202  "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI"  , "sk_lock-AF_SECURITY" ,
203  "sk_lock-AF_KEY"   , "sk_lock-AF_NETLINK"  , "sk_lock-AF_PACKET"   ,
204  "sk_lock-AF_ASH"   , "sk_lock-AF_ECONET"   , "sk_lock-AF_ATMSVC"   ,
205  "sk_lock-AF_RDS"   , "sk_lock-AF_SNA"      , "sk_lock-AF_IRDA"     ,
206  "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE"  , "sk_lock-AF_LLC"      ,
207  "sk_lock-27"       , "sk_lock-28"          , "sk_lock-AF_CAN"      ,
208  "sk_lock-AF_TIPC"  , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV"        ,
209  "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN"     , "sk_lock-AF_PHONET"   ,
210  "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG"      ,
211  "sk_lock-AF_NFC"   , "sk_lock-AF_MAX"
212};
213static const char *const af_family_slock_key_strings[AF_MAX+1] = {
214  "slock-AF_UNSPEC", "slock-AF_UNIX"     , "slock-AF_INET"     ,
215  "slock-AF_AX25"  , "slock-AF_IPX"      , "slock-AF_APPLETALK",
216  "slock-AF_NETROM", "slock-AF_BRIDGE"   , "slock-AF_ATMPVC"   ,
217  "slock-AF_X25"   , "slock-AF_INET6"    , "slock-AF_ROSE"     ,
218  "slock-AF_DECnet", "slock-AF_NETBEUI"  , "slock-AF_SECURITY" ,
219  "slock-AF_KEY"   , "slock-AF_NETLINK"  , "slock-AF_PACKET"   ,
220  "slock-AF_ASH"   , "slock-AF_ECONET"   , "slock-AF_ATMSVC"   ,
221  "slock-AF_RDS"   , "slock-AF_SNA"      , "slock-AF_IRDA"     ,
222  "slock-AF_PPPOX" , "slock-AF_WANPIPE"  , "slock-AF_LLC"      ,
223  "slock-27"       , "slock-28"          , "slock-AF_CAN"      ,
224  "slock-AF_TIPC"  , "slock-AF_BLUETOOTH", "slock-AF_IUCV"     ,
225  "slock-AF_RXRPC" , "slock-AF_ISDN"     , "slock-AF_PHONET"   ,
226  "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG"      ,
227  "slock-AF_NFC"   , "slock-AF_MAX"
228};
229static const char *const af_family_clock_key_strings[AF_MAX+1] = {
230  "clock-AF_UNSPEC", "clock-AF_UNIX"     , "clock-AF_INET"     ,
231  "clock-AF_AX25"  , "clock-AF_IPX"      , "clock-AF_APPLETALK",
232  "clock-AF_NETROM", "clock-AF_BRIDGE"   , "clock-AF_ATMPVC"   ,
233  "clock-AF_X25"   , "clock-AF_INET6"    , "clock-AF_ROSE"     ,
234  "clock-AF_DECnet", "clock-AF_NETBEUI"  , "clock-AF_SECURITY" ,
235  "clock-AF_KEY"   , "clock-AF_NETLINK"  , "clock-AF_PACKET"   ,
236  "clock-AF_ASH"   , "clock-AF_ECONET"   , "clock-AF_ATMSVC"   ,
237  "clock-AF_RDS"   , "clock-AF_SNA"      , "clock-AF_IRDA"     ,
238  "clock-AF_PPPOX" , "clock-AF_WANPIPE"  , "clock-AF_LLC"      ,
239  "clock-27"       , "clock-28"          , "clock-AF_CAN"      ,
240  "clock-AF_TIPC"  , "clock-AF_BLUETOOTH", "clock-AF_IUCV"     ,
241  "clock-AF_RXRPC" , "clock-AF_ISDN"     , "clock-AF_PHONET"   ,
242  "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG"      ,
243  "clock-AF_NFC"   , "clock-AF_MAX"
244};
245
246/*
247 * sk_callback_lock locking rules are per-address-family,
248 * so split the lock classes by using a per-AF key:
249 */
250static struct lock_class_key af_callback_keys[AF_MAX];
251
252/* Take into consideration the size of the struct sk_buff overhead in the
253 * determination of these values, since that is non-constant across
254 * platforms.  This makes socket queueing behavior and performance
255 * not depend upon such differences.
256 */
257#define _SK_MEM_PACKETS		256
258#define _SK_MEM_OVERHEAD	SKB_TRUESIZE(256)
259#define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
260#define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
261
262/* Run time adjustable parameters. */
263__u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
264EXPORT_SYMBOL(sysctl_wmem_max);
265__u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
266EXPORT_SYMBOL(sysctl_rmem_max);
267__u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
268__u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
269
270/* Maximal space eaten by iovec or ancillary data plus some space */
271int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
272EXPORT_SYMBOL(sysctl_optmem_max);
273
274struct static_key memalloc_socks = STATIC_KEY_INIT_FALSE;
275EXPORT_SYMBOL_GPL(memalloc_socks);
276
277/**
278 * sk_set_memalloc - sets %SOCK_MEMALLOC
279 * @sk: socket to set it on
280 *
281 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
282 * It's the responsibility of the admin to adjust min_free_kbytes
283 * to meet the requirements
284 */
285void sk_set_memalloc(struct sock *sk)
286{
287	sock_set_flag(sk, SOCK_MEMALLOC);
288	sk->sk_allocation |= __GFP_MEMALLOC;
289	static_key_slow_inc(&memalloc_socks);
290}
291EXPORT_SYMBOL_GPL(sk_set_memalloc);
292
293void sk_clear_memalloc(struct sock *sk)
294{
295	sock_reset_flag(sk, SOCK_MEMALLOC);
296	sk->sk_allocation &= ~__GFP_MEMALLOC;
297	static_key_slow_dec(&memalloc_socks);
298
299	/*
300	 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
301	 * progress of swapping. However, if SOCK_MEMALLOC is cleared while
302	 * it has rmem allocations there is a risk that the user of the
303	 * socket cannot make forward progress due to exceeding the rmem
304	 * limits. By rights, sk_clear_memalloc() should only be called
305	 * on sockets being torn down but warn and reset the accounting if
306	 * that assumption breaks.
307	 */
308	if (WARN_ON(sk->sk_forward_alloc))
309		sk_mem_reclaim(sk);
310}
311EXPORT_SYMBOL_GPL(sk_clear_memalloc);
312
313int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
314{
315	int ret;
316	unsigned long pflags = current->flags;
317
318	/* these should have been dropped before queueing */
319	BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
320
321	current->flags |= PF_MEMALLOC;
322	ret = sk->sk_backlog_rcv(sk, skb);
323	tsk_restore_flags(current, pflags, PF_MEMALLOC);
324
325	return ret;
326}
327EXPORT_SYMBOL(__sk_backlog_rcv);
328
329static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
330{
331	struct timeval tv;
332
333	if (optlen < sizeof(tv))
334		return -EINVAL;
335	if (copy_from_user(&tv, optval, sizeof(tv)))
336		return -EFAULT;
337	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
338		return -EDOM;
339
340	if (tv.tv_sec < 0) {
341		static int warned __read_mostly;
342
343		*timeo_p = 0;
344		if (warned < 10 && net_ratelimit()) {
345			warned++;
346			pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
347				__func__, current->comm, task_pid_nr(current));
348		}
349		return 0;
350	}
351	*timeo_p = MAX_SCHEDULE_TIMEOUT;
352	if (tv.tv_sec == 0 && tv.tv_usec == 0)
353		return 0;
354	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
355		*timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
356	return 0;
357}
358
359static void sock_warn_obsolete_bsdism(const char *name)
360{
361	static int warned;
362	static char warncomm[TASK_COMM_LEN];
363	if (strcmp(warncomm, current->comm) && warned < 5) {
364		strcpy(warncomm,  current->comm);
365		pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
366			warncomm, name);
367		warned++;
368	}
369}
370
371#define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
372
373static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
374{
375	if (sk->sk_flags & flags) {
376		sk->sk_flags &= ~flags;
377		if (!(sk->sk_flags & SK_FLAGS_TIMESTAMP))
378			net_disable_timestamp();
379	}
380}
381
382
383int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
384{
385	int err;
386	int skb_len;
387	unsigned long flags;
388	struct sk_buff_head *list = &sk->sk_receive_queue;
389
390	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
391		atomic_inc(&sk->sk_drops);
392		trace_sock_rcvqueue_full(sk, skb);
393		return -ENOMEM;
394	}
395
396	err = sk_filter(sk, skb);
397	if (err)
398		return err;
399
400	if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
401		atomic_inc(&sk->sk_drops);
402		return -ENOBUFS;
403	}
404
405	skb->dev = NULL;
406	skb_set_owner_r(skb, sk);
407
408	/* Cache the SKB length before we tack it onto the receive
409	 * queue.  Once it is added it no longer belongs to us and
410	 * may be freed by other threads of control pulling packets
411	 * from the queue.
412	 */
413	skb_len = skb->len;
414
415	/* we escape from rcu protected region, make sure we dont leak
416	 * a norefcounted dst
417	 */
418	skb_dst_force(skb);
419
420	spin_lock_irqsave(&list->lock, flags);
421	skb->dropcount = atomic_read(&sk->sk_drops);
422	__skb_queue_tail(list, skb);
423	spin_unlock_irqrestore(&list->lock, flags);
424
425	if (!sock_flag(sk, SOCK_DEAD))
426		sk->sk_data_ready(sk, skb_len);
427	return 0;
428}
429EXPORT_SYMBOL(sock_queue_rcv_skb);
430
431int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
432{
433	int rc = NET_RX_SUCCESS;
434
435	if (sk_filter(sk, skb))
436		goto discard_and_relse;
437
438	skb->dev = NULL;
439
440	if (sk_rcvqueues_full(sk, skb, sk->sk_rcvbuf)) {
441		atomic_inc(&sk->sk_drops);
442		goto discard_and_relse;
443	}
444	if (nested)
445		bh_lock_sock_nested(sk);
446	else
447		bh_lock_sock(sk);
448	if (!sock_owned_by_user(sk)) {
449		/*
450		 * trylock + unlock semantics:
451		 */
452		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
453
454		rc = sk_backlog_rcv(sk, skb);
455
456		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
457	} else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
458		bh_unlock_sock(sk);
459		atomic_inc(&sk->sk_drops);
460		goto discard_and_relse;
461	}
462
463	bh_unlock_sock(sk);
464out:
465	sock_put(sk);
466	return rc;
467discard_and_relse:
468	kfree_skb(skb);
469	goto out;
470}
471EXPORT_SYMBOL(sk_receive_skb);
472
473void sk_reset_txq(struct sock *sk)
474{
475	sk_tx_queue_clear(sk);
476}
477EXPORT_SYMBOL(sk_reset_txq);
478
479struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
480{
481	struct dst_entry *dst = __sk_dst_get(sk);
482
483	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
484		sk_tx_queue_clear(sk);
485		RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
486		dst_release(dst);
487		return NULL;
488	}
489
490	return dst;
491}
492EXPORT_SYMBOL(__sk_dst_check);
493
494struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
495{
496	struct dst_entry *dst = sk_dst_get(sk);
497
498	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
499		sk_dst_reset(sk);
500		dst_release(dst);
501		return NULL;
502	}
503
504	return dst;
505}
506EXPORT_SYMBOL(sk_dst_check);
507
508static int sock_setbindtodevice(struct sock *sk, char __user *optval,
509				int optlen)
510{
511	int ret = -ENOPROTOOPT;
512#ifdef CONFIG_NETDEVICES
513	struct net *net = sock_net(sk);
514	char devname[IFNAMSIZ];
515	int index;
516
517	/* Sorry... */
518	ret = -EPERM;
519	if (!ns_capable(net->user_ns, CAP_NET_RAW))
520		goto out;
521
522	ret = -EINVAL;
523	if (optlen < 0)
524		goto out;
525
526	/* Bind this socket to a particular device like "eth0",
527	 * as specified in the passed interface name. If the
528	 * name is "" or the option length is zero the socket
529	 * is not bound.
530	 */
531	if (optlen > IFNAMSIZ - 1)
532		optlen = IFNAMSIZ - 1;
533	memset(devname, 0, sizeof(devname));
534
535	ret = -EFAULT;
536	if (copy_from_user(devname, optval, optlen))
537		goto out;
538
539	index = 0;
540	if (devname[0] != '\0') {
541		struct net_device *dev;
542
543		rcu_read_lock();
544		dev = dev_get_by_name_rcu(net, devname);
545		if (dev)
546			index = dev->ifindex;
547		rcu_read_unlock();
548		ret = -ENODEV;
549		if (!dev)
550			goto out;
551	}
552
553	lock_sock(sk);
554	sk->sk_bound_dev_if = index;
555	sk_dst_reset(sk);
556	release_sock(sk);
557
558	ret = 0;
559
560out:
561#endif
562
563	return ret;
564}
565
566static int sock_getbindtodevice(struct sock *sk, char __user *optval,
567				int __user *optlen, int len)
568{
569	int ret = -ENOPROTOOPT;
570#ifdef CONFIG_NETDEVICES
571	struct net *net = sock_net(sk);
572	struct net_device *dev;
573	char devname[IFNAMSIZ];
574	unsigned seq;
575
576	if (sk->sk_bound_dev_if == 0) {
577		len = 0;
578		goto zero;
579	}
580
581	ret = -EINVAL;
582	if (len < IFNAMSIZ)
583		goto out;
584
585retry:
586	seq = read_seqcount_begin(&devnet_rename_seq);
587	rcu_read_lock();
588	dev = dev_get_by_index_rcu(net, sk->sk_bound_dev_if);
589	ret = -ENODEV;
590	if (!dev) {
591		rcu_read_unlock();
592		goto out;
593	}
594
595	strcpy(devname, dev->name);
596	rcu_read_unlock();
597	if (read_seqcount_retry(&devnet_rename_seq, seq))
598		goto retry;
599
600	len = strlen(devname) + 1;
601
602	ret = -EFAULT;
603	if (copy_to_user(optval, devname, len))
604		goto out;
605
606zero:
607	ret = -EFAULT;
608	if (put_user(len, optlen))
609		goto out;
610
611	ret = 0;
612
613out:
614#endif
615
616	return ret;
617}
618
619static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
620{
621	if (valbool)
622		sock_set_flag(sk, bit);
623	else
624		sock_reset_flag(sk, bit);
625}
626
627/*
628 *	This is meant for all protocols to use and covers goings on
629 *	at the socket level. Everything here is generic.
630 */
631
632int sock_setsockopt(struct socket *sock, int level, int optname,
633		    char __user *optval, unsigned int optlen)
634{
635	struct sock *sk = sock->sk;
636	int val;
637	int valbool;
638	struct linger ling;
639	int ret = 0;
640
641	/*
642	 *	Options without arguments
643	 */
644
645	if (optname == SO_BINDTODEVICE)
646		return sock_setbindtodevice(sk, optval, optlen);
647
648	if (optlen < sizeof(int))
649		return -EINVAL;
650
651	if (get_user(val, (int __user *)optval))
652		return -EFAULT;
653
654	valbool = val ? 1 : 0;
655
656	lock_sock(sk);
657
658	switch (optname) {
659	case SO_DEBUG:
660		if (val && !capable(CAP_NET_ADMIN))
661			ret = -EACCES;
662		else
663			sock_valbool_flag(sk, SOCK_DBG, valbool);
664		break;
665	case SO_REUSEADDR:
666		sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
667		break;
668	case SO_REUSEPORT:
669		sk->sk_reuseport = valbool;
670		break;
671	case SO_TYPE:
672	case SO_PROTOCOL:
673	case SO_DOMAIN:
674	case SO_ERROR:
675		ret = -ENOPROTOOPT;
676		break;
677	case SO_DONTROUTE:
678		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
679		break;
680	case SO_BROADCAST:
681		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
682		break;
683	case SO_SNDBUF:
684		/* Don't error on this BSD doesn't and if you think
685		 * about it this is right. Otherwise apps have to
686		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
687		 * are treated in BSD as hints
688		 */
689		val = min_t(u32, val, sysctl_wmem_max);
690set_sndbuf:
691		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
692		sk->sk_sndbuf = max_t(u32, val * 2, SOCK_MIN_SNDBUF);
693		/* Wake up sending tasks if we upped the value. */
694		sk->sk_write_space(sk);
695		break;
696
697	case SO_SNDBUFFORCE:
698		if (!capable(CAP_NET_ADMIN)) {
699			ret = -EPERM;
700			break;
701		}
702		goto set_sndbuf;
703
704	case SO_RCVBUF:
705		/* Don't error on this BSD doesn't and if you think
706		 * about it this is right. Otherwise apps have to
707		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
708		 * are treated in BSD as hints
709		 */
710		val = min_t(u32, val, sysctl_rmem_max);
711set_rcvbuf:
712		sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
713		/*
714		 * We double it on the way in to account for
715		 * "struct sk_buff" etc. overhead.   Applications
716		 * assume that the SO_RCVBUF setting they make will
717		 * allow that much actual data to be received on that
718		 * socket.
719		 *
720		 * Applications are unaware that "struct sk_buff" and
721		 * other overheads allocate from the receive buffer
722		 * during socket buffer allocation.
723		 *
724		 * And after considering the possible alternatives,
725		 * returning the value we actually used in getsockopt
726		 * is the most desirable behavior.
727		 */
728		sk->sk_rcvbuf = max_t(u32, val * 2, SOCK_MIN_RCVBUF);
729		break;
730
731	case SO_RCVBUFFORCE:
732		if (!capable(CAP_NET_ADMIN)) {
733			ret = -EPERM;
734			break;
735		}
736		goto set_rcvbuf;
737
738	case SO_KEEPALIVE:
739#ifdef CONFIG_INET
740		if (sk->sk_protocol == IPPROTO_TCP &&
741		    sk->sk_type == SOCK_STREAM)
742			tcp_set_keepalive(sk, valbool);
743#endif
744		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
745		break;
746
747	case SO_OOBINLINE:
748		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
749		break;
750
751	case SO_NO_CHECK:
752		sk->sk_no_check = valbool;
753		break;
754
755	case SO_PRIORITY:
756		if ((val >= 0 && val <= 6) ||
757		    ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
758			sk->sk_priority = val;
759		else
760			ret = -EPERM;
761		break;
762
763	case SO_LINGER:
764		if (optlen < sizeof(ling)) {
765			ret = -EINVAL;	/* 1003.1g */
766			break;
767		}
768		if (copy_from_user(&ling, optval, sizeof(ling))) {
769			ret = -EFAULT;
770			break;
771		}
772		if (!ling.l_onoff)
773			sock_reset_flag(sk, SOCK_LINGER);
774		else {
775#if (BITS_PER_LONG == 32)
776			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
777				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
778			else
779#endif
780				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
781			sock_set_flag(sk, SOCK_LINGER);
782		}
783		break;
784
785	case SO_BSDCOMPAT:
786		sock_warn_obsolete_bsdism("setsockopt");
787		break;
788
789	case SO_PASSCRED:
790		if (valbool)
791			set_bit(SOCK_PASSCRED, &sock->flags);
792		else
793			clear_bit(SOCK_PASSCRED, &sock->flags);
794		break;
795
796	case SO_TIMESTAMP:
797	case SO_TIMESTAMPNS:
798		if (valbool)  {
799			if (optname == SO_TIMESTAMP)
800				sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
801			else
802				sock_set_flag(sk, SOCK_RCVTSTAMPNS);
803			sock_set_flag(sk, SOCK_RCVTSTAMP);
804			sock_enable_timestamp(sk, SOCK_TIMESTAMP);
805		} else {
806			sock_reset_flag(sk, SOCK_RCVTSTAMP);
807			sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
808		}
809		break;
810
811	case SO_TIMESTAMPING:
812		if (val & ~SOF_TIMESTAMPING_MASK) {
813			ret = -EINVAL;
814			break;
815		}
816		sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE,
817				  val & SOF_TIMESTAMPING_TX_HARDWARE);
818		sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE,
819				  val & SOF_TIMESTAMPING_TX_SOFTWARE);
820		sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE,
821				  val & SOF_TIMESTAMPING_RX_HARDWARE);
822		if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
823			sock_enable_timestamp(sk,
824					      SOCK_TIMESTAMPING_RX_SOFTWARE);
825		else
826			sock_disable_timestamp(sk,
827					       (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
828		sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE,
829				  val & SOF_TIMESTAMPING_SOFTWARE);
830		sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE,
831				  val & SOF_TIMESTAMPING_SYS_HARDWARE);
832		sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE,
833				  val & SOF_TIMESTAMPING_RAW_HARDWARE);
834		break;
835
836	case SO_RCVLOWAT:
837		if (val < 0)
838			val = INT_MAX;
839		sk->sk_rcvlowat = val ? : 1;
840		break;
841
842	case SO_RCVTIMEO:
843		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
844		break;
845
846	case SO_SNDTIMEO:
847		ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
848		break;
849
850	case SO_ATTACH_FILTER:
851		ret = -EINVAL;
852		if (optlen == sizeof(struct sock_fprog)) {
853			struct sock_fprog fprog;
854
855			ret = -EFAULT;
856			if (copy_from_user(&fprog, optval, sizeof(fprog)))
857				break;
858
859			ret = sk_attach_filter(&fprog, sk);
860		}
861		break;
862
863	case SO_DETACH_FILTER:
864		ret = sk_detach_filter(sk);
865		break;
866
867	case SO_LOCK_FILTER:
868		if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
869			ret = -EPERM;
870		else
871			sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
872		break;
873
874	case SO_PASSSEC:
875		if (valbool)
876			set_bit(SOCK_PASSSEC, &sock->flags);
877		else
878			clear_bit(SOCK_PASSSEC, &sock->flags);
879		break;
880	case SO_MARK:
881		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
882			ret = -EPERM;
883		else
884			sk->sk_mark = val;
885		break;
886
887		/* We implement the SO_SNDLOWAT etc to
888		   not be settable (1003.1g 5.3) */
889	case SO_RXQ_OVFL:
890		sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
891		break;
892
893	case SO_WIFI_STATUS:
894		sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
895		break;
896
897	case SO_PEEK_OFF:
898		if (sock->ops->set_peek_off)
899			sock->ops->set_peek_off(sk, val);
900		else
901			ret = -EOPNOTSUPP;
902		break;
903
904	case SO_NOFCS:
905		sock_valbool_flag(sk, SOCK_NOFCS, valbool);
906		break;
907
908	default:
909		ret = -ENOPROTOOPT;
910		break;
911	}
912	release_sock(sk);
913	return ret;
914}
915EXPORT_SYMBOL(sock_setsockopt);
916
917
918void cred_to_ucred(struct pid *pid, const struct cred *cred,
919		   struct ucred *ucred)
920{
921	ucred->pid = pid_vnr(pid);
922	ucred->uid = ucred->gid = -1;
923	if (cred) {
924		struct user_namespace *current_ns = current_user_ns();
925
926		ucred->uid = from_kuid_munged(current_ns, cred->euid);
927		ucred->gid = from_kgid_munged(current_ns, cred->egid);
928	}
929}
930EXPORT_SYMBOL_GPL(cred_to_ucred);
931
932int sock_getsockopt(struct socket *sock, int level, int optname,
933		    char __user *optval, int __user *optlen)
934{
935	struct sock *sk = sock->sk;
936
937	union {
938		int val;
939		struct linger ling;
940		struct timeval tm;
941	} v;
942
943	int lv = sizeof(int);
944	int len;
945
946	if (get_user(len, optlen))
947		return -EFAULT;
948	if (len < 0)
949		return -EINVAL;
950
951	memset(&v, 0, sizeof(v));
952
953	switch (optname) {
954	case SO_DEBUG:
955		v.val = sock_flag(sk, SOCK_DBG);
956		break;
957
958	case SO_DONTROUTE:
959		v.val = sock_flag(sk, SOCK_LOCALROUTE);
960		break;
961
962	case SO_BROADCAST:
963		v.val = sock_flag(sk, SOCK_BROADCAST);
964		break;
965
966	case SO_SNDBUF:
967		v.val = sk->sk_sndbuf;
968		break;
969
970	case SO_RCVBUF:
971		v.val = sk->sk_rcvbuf;
972		break;
973
974	case SO_REUSEADDR:
975		v.val = sk->sk_reuse;
976		break;
977
978	case SO_REUSEPORT:
979		v.val = sk->sk_reuseport;
980		break;
981
982	case SO_KEEPALIVE:
983		v.val = sock_flag(sk, SOCK_KEEPOPEN);
984		break;
985
986	case SO_TYPE:
987		v.val = sk->sk_type;
988		break;
989
990	case SO_PROTOCOL:
991		v.val = sk->sk_protocol;
992		break;
993
994	case SO_DOMAIN:
995		v.val = sk->sk_family;
996		break;
997
998	case SO_ERROR:
999		v.val = -sock_error(sk);
1000		if (v.val == 0)
1001			v.val = xchg(&sk->sk_err_soft, 0);
1002		break;
1003
1004	case SO_OOBINLINE:
1005		v.val = sock_flag(sk, SOCK_URGINLINE);
1006		break;
1007
1008	case SO_NO_CHECK:
1009		v.val = sk->sk_no_check;
1010		break;
1011
1012	case SO_PRIORITY:
1013		v.val = sk->sk_priority;
1014		break;
1015
1016	case SO_LINGER:
1017		lv		= sizeof(v.ling);
1018		v.ling.l_onoff	= sock_flag(sk, SOCK_LINGER);
1019		v.ling.l_linger	= sk->sk_lingertime / HZ;
1020		break;
1021
1022	case SO_BSDCOMPAT:
1023		sock_warn_obsolete_bsdism("getsockopt");
1024		break;
1025
1026	case SO_TIMESTAMP:
1027		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1028				!sock_flag(sk, SOCK_RCVTSTAMPNS);
1029		break;
1030
1031	case SO_TIMESTAMPNS:
1032		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
1033		break;
1034
1035	case SO_TIMESTAMPING:
1036		v.val = 0;
1037		if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
1038			v.val |= SOF_TIMESTAMPING_TX_HARDWARE;
1039		if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
1040			v.val |= SOF_TIMESTAMPING_TX_SOFTWARE;
1041		if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE))
1042			v.val |= SOF_TIMESTAMPING_RX_HARDWARE;
1043		if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE))
1044			v.val |= SOF_TIMESTAMPING_RX_SOFTWARE;
1045		if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE))
1046			v.val |= SOF_TIMESTAMPING_SOFTWARE;
1047		if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))
1048			v.val |= SOF_TIMESTAMPING_SYS_HARDWARE;
1049		if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE))
1050			v.val |= SOF_TIMESTAMPING_RAW_HARDWARE;
1051		break;
1052
1053	case SO_RCVTIMEO:
1054		lv = sizeof(struct timeval);
1055		if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
1056			v.tm.tv_sec = 0;
1057			v.tm.tv_usec = 0;
1058		} else {
1059			v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
1060			v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
1061		}
1062		break;
1063
1064	case SO_SNDTIMEO:
1065		lv = sizeof(struct timeval);
1066		if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
1067			v.tm.tv_sec = 0;
1068			v.tm.tv_usec = 0;
1069		} else {
1070			v.tm.tv_sec = sk->sk_sndtimeo / HZ;
1071			v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
1072		}
1073		break;
1074
1075	case SO_RCVLOWAT:
1076		v.val = sk->sk_rcvlowat;
1077		break;
1078
1079	case SO_SNDLOWAT:
1080		v.val = 1;
1081		break;
1082
1083	case SO_PASSCRED:
1084		v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1085		break;
1086
1087	case SO_PEERCRED:
1088	{
1089		struct ucred peercred;
1090		if (len > sizeof(peercred))
1091			len = sizeof(peercred);
1092		cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1093		if (copy_to_user(optval, &peercred, len))
1094			return -EFAULT;
1095		goto lenout;
1096	}
1097
1098	case SO_PEERNAME:
1099	{
1100		char address[128];
1101
1102		if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
1103			return -ENOTCONN;
1104		if (lv < len)
1105			return -EINVAL;
1106		if (copy_to_user(optval, address, len))
1107			return -EFAULT;
1108		goto lenout;
1109	}
1110
1111	/* Dubious BSD thing... Probably nobody even uses it, but
1112	 * the UNIX standard wants it for whatever reason... -DaveM
1113	 */
1114	case SO_ACCEPTCONN:
1115		v.val = sk->sk_state == TCP_LISTEN;
1116		break;
1117
1118	case SO_PASSSEC:
1119		v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1120		break;
1121
1122	case SO_PEERSEC:
1123		return security_socket_getpeersec_stream(sock, optval, optlen, len);
1124
1125	case SO_MARK:
1126		v.val = sk->sk_mark;
1127		break;
1128
1129	case SO_RXQ_OVFL:
1130		v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1131		break;
1132
1133	case SO_WIFI_STATUS:
1134		v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1135		break;
1136
1137	case SO_PEEK_OFF:
1138		if (!sock->ops->set_peek_off)
1139			return -EOPNOTSUPP;
1140
1141		v.val = sk->sk_peek_off;
1142		break;
1143	case SO_NOFCS:
1144		v.val = sock_flag(sk, SOCK_NOFCS);
1145		break;
1146
1147	case SO_BINDTODEVICE:
1148		return sock_getbindtodevice(sk, optval, optlen, len);
1149
1150	case SO_GET_FILTER:
1151		len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1152		if (len < 0)
1153			return len;
1154
1155		goto lenout;
1156
1157	case SO_LOCK_FILTER:
1158		v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1159		break;
1160
1161	default:
1162		return -ENOPROTOOPT;
1163	}
1164
1165	if (len > lv)
1166		len = lv;
1167	if (copy_to_user(optval, &v, len))
1168		return -EFAULT;
1169lenout:
1170	if (put_user(len, optlen))
1171		return -EFAULT;
1172	return 0;
1173}
1174
1175/*
1176 * Initialize an sk_lock.
1177 *
1178 * (We also register the sk_lock with the lock validator.)
1179 */
1180static inline void sock_lock_init(struct sock *sk)
1181{
1182	sock_lock_init_class_and_name(sk,
1183			af_family_slock_key_strings[sk->sk_family],
1184			af_family_slock_keys + sk->sk_family,
1185			af_family_key_strings[sk->sk_family],
1186			af_family_keys + sk->sk_family);
1187}
1188
1189/*
1190 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1191 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1192 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1193 */
1194static void sock_copy(struct sock *nsk, const struct sock *osk)
1195{
1196#ifdef CONFIG_SECURITY_NETWORK
1197	void *sptr = nsk->sk_security;
1198#endif
1199	memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1200
1201	memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1202	       osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1203
1204#ifdef CONFIG_SECURITY_NETWORK
1205	nsk->sk_security = sptr;
1206	security_sk_clone(osk, nsk);
1207#endif
1208}
1209
1210/*
1211 * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
1212 * un-modified. Special care is taken when initializing object to zero.
1213 */
1214static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1215{
1216	if (offsetof(struct sock, sk_node.next) != 0)
1217		memset(sk, 0, offsetof(struct sock, sk_node.next));
1218	memset(&sk->sk_node.pprev, 0,
1219	       size - offsetof(struct sock, sk_node.pprev));
1220}
1221
1222void sk_prot_clear_portaddr_nulls(struct sock *sk, int size)
1223{
1224	unsigned long nulls1, nulls2;
1225
1226	nulls1 = offsetof(struct sock, __sk_common.skc_node.next);
1227	nulls2 = offsetof(struct sock, __sk_common.skc_portaddr_node.next);
1228	if (nulls1 > nulls2)
1229		swap(nulls1, nulls2);
1230
1231	if (nulls1 != 0)
1232		memset((char *)sk, 0, nulls1);
1233	memset((char *)sk + nulls1 + sizeof(void *), 0,
1234	       nulls2 - nulls1 - sizeof(void *));
1235	memset((char *)sk + nulls2 + sizeof(void *), 0,
1236	       size - nulls2 - sizeof(void *));
1237}
1238EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls);
1239
1240static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1241		int family)
1242{
1243	struct sock *sk;
1244	struct kmem_cache *slab;
1245
1246	slab = prot->slab;
1247	if (slab != NULL) {
1248		sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1249		if (!sk)
1250			return sk;
1251		if (priority & __GFP_ZERO) {
1252			if (prot->clear_sk)
1253				prot->clear_sk(sk, prot->obj_size);
1254			else
1255				sk_prot_clear_nulls(sk, prot->obj_size);
1256		}
1257	} else
1258		sk = kmalloc(prot->obj_size, priority);
1259
1260	if (sk != NULL) {
1261		kmemcheck_annotate_bitfield(sk, flags);
1262
1263		if (security_sk_alloc(sk, family, priority))
1264			goto out_free;
1265
1266		if (!try_module_get(prot->owner))
1267			goto out_free_sec;
1268		sk_tx_queue_clear(sk);
1269	}
1270
1271	return sk;
1272
1273out_free_sec:
1274	security_sk_free(sk);
1275out_free:
1276	if (slab != NULL)
1277		kmem_cache_free(slab, sk);
1278	else
1279		kfree(sk);
1280	return NULL;
1281}
1282
1283static void sk_prot_free(struct proto *prot, struct sock *sk)
1284{
1285	struct kmem_cache *slab;
1286	struct module *owner;
1287
1288	owner = prot->owner;
1289	slab = prot->slab;
1290
1291	security_sk_free(sk);
1292	if (slab != NULL)
1293		kmem_cache_free(slab, sk);
1294	else
1295		kfree(sk);
1296	module_put(owner);
1297}
1298
1299#ifdef CONFIG_CGROUPS
1300#if IS_ENABLED(CONFIG_NET_CLS_CGROUP)
1301void sock_update_classid(struct sock *sk, struct task_struct *task)
1302{
1303	u32 classid;
1304
1305	classid = task_cls_classid(task);
1306	if (classid != sk->sk_classid)
1307		sk->sk_classid = classid;
1308}
1309EXPORT_SYMBOL(sock_update_classid);
1310#endif
1311
1312#if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
1313void sock_update_netprioidx(struct sock *sk, struct task_struct *task)
1314{
1315	if (in_interrupt())
1316		return;
1317
1318	sk->sk_cgrp_prioidx = task_netprioidx(task);
1319}
1320EXPORT_SYMBOL_GPL(sock_update_netprioidx);
1321#endif
1322#endif
1323
1324/**
1325 *	sk_alloc - All socket objects are allocated here
1326 *	@net: the applicable net namespace
1327 *	@family: protocol family
1328 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1329 *	@prot: struct proto associated with this new sock instance
1330 */
1331struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1332		      struct proto *prot)
1333{
1334	struct sock *sk;
1335
1336	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1337	if (sk) {
1338		sk->sk_family = family;
1339		/*
1340		 * See comment in struct sock definition to understand
1341		 * why we need sk_prot_creator -acme
1342		 */
1343		sk->sk_prot = sk->sk_prot_creator = prot;
1344		sock_lock_init(sk);
1345		sock_net_set(sk, get_net(net));
1346		atomic_set(&sk->sk_wmem_alloc, 1);
1347
1348		sock_update_classid(sk, current);
1349		sock_update_netprioidx(sk, current);
1350	}
1351
1352	return sk;
1353}
1354EXPORT_SYMBOL(sk_alloc);
1355
1356static void __sk_free(struct sock *sk)
1357{
1358	struct sk_filter *filter;
1359
1360	if (sk->sk_destruct)
1361		sk->sk_destruct(sk);
1362
1363	filter = rcu_dereference_check(sk->sk_filter,
1364				       atomic_read(&sk->sk_wmem_alloc) == 0);
1365	if (filter) {
1366		sk_filter_uncharge(sk, filter);
1367		RCU_INIT_POINTER(sk->sk_filter, NULL);
1368	}
1369
1370	sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1371
1372	if (atomic_read(&sk->sk_omem_alloc))
1373		pr_debug("%s: optmem leakage (%d bytes) detected\n",
1374			 __func__, atomic_read(&sk->sk_omem_alloc));
1375
1376	if (sk->sk_peer_cred)
1377		put_cred(sk->sk_peer_cred);
1378	put_pid(sk->sk_peer_pid);
1379	put_net(sock_net(sk));
1380	sk_prot_free(sk->sk_prot_creator, sk);
1381}
1382
1383void sk_free(struct sock *sk)
1384{
1385	/*
1386	 * We subtract one from sk_wmem_alloc and can know if
1387	 * some packets are still in some tx queue.
1388	 * If not null, sock_wfree() will call __sk_free(sk) later
1389	 */
1390	if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1391		__sk_free(sk);
1392}
1393EXPORT_SYMBOL(sk_free);
1394
1395/*
1396 * Last sock_put should drop reference to sk->sk_net. It has already
1397 * been dropped in sk_change_net. Taking reference to stopping namespace
1398 * is not an option.
1399 * Take reference to a socket to remove it from hash _alive_ and after that
1400 * destroy it in the context of init_net.
1401 */
1402void sk_release_kernel(struct sock *sk)
1403{
1404	if (sk == NULL || sk->sk_socket == NULL)
1405		return;
1406
1407	sock_hold(sk);
1408	sock_release(sk->sk_socket);
1409	release_net(sock_net(sk));
1410	sock_net_set(sk, get_net(&init_net));
1411	sock_put(sk);
1412}
1413EXPORT_SYMBOL(sk_release_kernel);
1414
1415static void sk_update_clone(const struct sock *sk, struct sock *newsk)
1416{
1417	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1418		sock_update_memcg(newsk);
1419}
1420
1421/**
1422 *	sk_clone_lock - clone a socket, and lock its clone
1423 *	@sk: the socket to clone
1424 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1425 *
1426 *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1427 */
1428struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1429{
1430	struct sock *newsk;
1431
1432	newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1433	if (newsk != NULL) {
1434		struct sk_filter *filter;
1435
1436		sock_copy(newsk, sk);
1437
1438		/* SANITY */
1439		get_net(sock_net(newsk));
1440		sk_node_init(&newsk->sk_node);
1441		sock_lock_init(newsk);
1442		bh_lock_sock(newsk);
1443		newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
1444		newsk->sk_backlog.len = 0;
1445
1446		atomic_set(&newsk->sk_rmem_alloc, 0);
1447		/*
1448		 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1449		 */
1450		atomic_set(&newsk->sk_wmem_alloc, 1);
1451		atomic_set(&newsk->sk_omem_alloc, 0);
1452		skb_queue_head_init(&newsk->sk_receive_queue);
1453		skb_queue_head_init(&newsk->sk_write_queue);
1454#ifdef CONFIG_NET_DMA
1455		skb_queue_head_init(&newsk->sk_async_wait_queue);
1456#endif
1457
1458		spin_lock_init(&newsk->sk_dst_lock);
1459		rwlock_init(&newsk->sk_callback_lock);
1460		lockdep_set_class_and_name(&newsk->sk_callback_lock,
1461				af_callback_keys + newsk->sk_family,
1462				af_family_clock_key_strings[newsk->sk_family]);
1463
1464		newsk->sk_dst_cache	= NULL;
1465		newsk->sk_wmem_queued	= 0;
1466		newsk->sk_forward_alloc = 0;
1467		newsk->sk_send_head	= NULL;
1468		newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1469
1470		sock_reset_flag(newsk, SOCK_DONE);
1471		skb_queue_head_init(&newsk->sk_error_queue);
1472
1473		filter = rcu_dereference_protected(newsk->sk_filter, 1);
1474		if (filter != NULL)
1475			sk_filter_charge(newsk, filter);
1476
1477		if (unlikely(xfrm_sk_clone_policy(newsk))) {
1478			/* It is still raw copy of parent, so invalidate
1479			 * destructor and make plain sk_free() */
1480			newsk->sk_destruct = NULL;
1481			bh_unlock_sock(newsk);
1482			sk_free(newsk);
1483			newsk = NULL;
1484			goto out;
1485		}
1486
1487		newsk->sk_err	   = 0;
1488		newsk->sk_priority = 0;
1489		/*
1490		 * Before updating sk_refcnt, we must commit prior changes to memory
1491		 * (Documentation/RCU/rculist_nulls.txt for details)
1492		 */
1493		smp_wmb();
1494		atomic_set(&newsk->sk_refcnt, 2);
1495
1496		/*
1497		 * Increment the counter in the same struct proto as the master
1498		 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1499		 * is the same as sk->sk_prot->socks, as this field was copied
1500		 * with memcpy).
1501		 *
1502		 * This _changes_ the previous behaviour, where
1503		 * tcp_create_openreq_child always was incrementing the
1504		 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1505		 * to be taken into account in all callers. -acme
1506		 */
1507		sk_refcnt_debug_inc(newsk);
1508		sk_set_socket(newsk, NULL);
1509		newsk->sk_wq = NULL;
1510
1511		sk_update_clone(sk, newsk);
1512
1513		if (newsk->sk_prot->sockets_allocated)
1514			sk_sockets_allocated_inc(newsk);
1515
1516		if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1517			net_enable_timestamp();
1518	}
1519out:
1520	return newsk;
1521}
1522EXPORT_SYMBOL_GPL(sk_clone_lock);
1523
1524void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1525{
1526	__sk_dst_set(sk, dst);
1527	sk->sk_route_caps = dst->dev->features;
1528	if (sk->sk_route_caps & NETIF_F_GSO)
1529		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1530	sk->sk_route_caps &= ~sk->sk_route_nocaps;
1531	if (sk_can_gso(sk)) {
1532		if (dst->header_len) {
1533			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1534		} else {
1535			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1536			sk->sk_gso_max_size = dst->dev->gso_max_size;
1537			sk->sk_gso_max_segs = dst->dev->gso_max_segs;
1538		}
1539	}
1540}
1541EXPORT_SYMBOL_GPL(sk_setup_caps);
1542
1543/*
1544 *	Simple resource managers for sockets.
1545 */
1546
1547
1548/*
1549 * Write buffer destructor automatically called from kfree_skb.
1550 */
1551void sock_wfree(struct sk_buff *skb)
1552{
1553	struct sock *sk = skb->sk;
1554	unsigned int len = skb->truesize;
1555
1556	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1557		/*
1558		 * Keep a reference on sk_wmem_alloc, this will be released
1559		 * after sk_write_space() call
1560		 */
1561		atomic_sub(len - 1, &sk->sk_wmem_alloc);
1562		sk->sk_write_space(sk);
1563		len = 1;
1564	}
1565	/*
1566	 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1567	 * could not do because of in-flight packets
1568	 */
1569	if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1570		__sk_free(sk);
1571}
1572EXPORT_SYMBOL(sock_wfree);
1573
1574/*
1575 * Read buffer destructor automatically called from kfree_skb.
1576 */
1577void sock_rfree(struct sk_buff *skb)
1578{
1579	struct sock *sk = skb->sk;
1580	unsigned int len = skb->truesize;
1581
1582	atomic_sub(len, &sk->sk_rmem_alloc);
1583	sk_mem_uncharge(sk, len);
1584}
1585EXPORT_SYMBOL(sock_rfree);
1586
1587void sock_edemux(struct sk_buff *skb)
1588{
1589	struct sock *sk = skb->sk;
1590
1591#ifdef CONFIG_INET
1592	if (sk->sk_state == TCP_TIME_WAIT)
1593		inet_twsk_put(inet_twsk(sk));
1594	else
1595#endif
1596		sock_put(sk);
1597}
1598EXPORT_SYMBOL(sock_edemux);
1599
1600kuid_t sock_i_uid(struct sock *sk)
1601{
1602	kuid_t uid;
1603
1604	read_lock_bh(&sk->sk_callback_lock);
1605	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
1606	read_unlock_bh(&sk->sk_callback_lock);
1607	return uid;
1608}
1609EXPORT_SYMBOL(sock_i_uid);
1610
1611unsigned long sock_i_ino(struct sock *sk)
1612{
1613	unsigned long ino;
1614
1615	read_lock_bh(&sk->sk_callback_lock);
1616	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1617	read_unlock_bh(&sk->sk_callback_lock);
1618	return ino;
1619}
1620EXPORT_SYMBOL(sock_i_ino);
1621
1622/*
1623 * Allocate a skb from the socket's send buffer.
1624 */
1625struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1626			     gfp_t priority)
1627{
1628	if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1629		struct sk_buff *skb = alloc_skb(size, priority);
1630		if (skb) {
1631			skb_set_owner_w(skb, sk);
1632			return skb;
1633		}
1634	}
1635	return NULL;
1636}
1637EXPORT_SYMBOL(sock_wmalloc);
1638
1639/*
1640 * Allocate a skb from the socket's receive buffer.
1641 */
1642struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1643			     gfp_t priority)
1644{
1645	if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1646		struct sk_buff *skb = alloc_skb(size, priority);
1647		if (skb) {
1648			skb_set_owner_r(skb, sk);
1649			return skb;
1650		}
1651	}
1652	return NULL;
1653}
1654
1655/*
1656 * Allocate a memory block from the socket's option memory buffer.
1657 */
1658void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1659{
1660	if ((unsigned int)size <= sysctl_optmem_max &&
1661	    atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1662		void *mem;
1663		/* First do the add, to avoid the race if kmalloc
1664		 * might sleep.
1665		 */
1666		atomic_add(size, &sk->sk_omem_alloc);
1667		mem = kmalloc(size, priority);
1668		if (mem)
1669			return mem;
1670		atomic_sub(size, &sk->sk_omem_alloc);
1671	}
1672	return NULL;
1673}
1674EXPORT_SYMBOL(sock_kmalloc);
1675
1676/*
1677 * Free an option memory block.
1678 */
1679void sock_kfree_s(struct sock *sk, void *mem, int size)
1680{
1681	kfree(mem);
1682	atomic_sub(size, &sk->sk_omem_alloc);
1683}
1684EXPORT_SYMBOL(sock_kfree_s);
1685
1686/* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1687   I think, these locks should be removed for datagram sockets.
1688 */
1689static long sock_wait_for_wmem(struct sock *sk, long timeo)
1690{
1691	DEFINE_WAIT(wait);
1692
1693	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1694	for (;;) {
1695		if (!timeo)
1696			break;
1697		if (signal_pending(current))
1698			break;
1699		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1700		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1701		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1702			break;
1703		if (sk->sk_shutdown & SEND_SHUTDOWN)
1704			break;
1705		if (sk->sk_err)
1706			break;
1707		timeo = schedule_timeout(timeo);
1708	}
1709	finish_wait(sk_sleep(sk), &wait);
1710	return timeo;
1711}
1712
1713
1714/*
1715 *	Generic send/receive buffer handlers
1716 */
1717
1718struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1719				     unsigned long data_len, int noblock,
1720				     int *errcode)
1721{
1722	struct sk_buff *skb;
1723	gfp_t gfp_mask;
1724	long timeo;
1725	int err;
1726	int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1727
1728	err = -EMSGSIZE;
1729	if (npages > MAX_SKB_FRAGS)
1730		goto failure;
1731
1732	gfp_mask = sk->sk_allocation;
1733	if (gfp_mask & __GFP_WAIT)
1734		gfp_mask |= __GFP_REPEAT;
1735
1736	timeo = sock_sndtimeo(sk, noblock);
1737	while (1) {
1738		err = sock_error(sk);
1739		if (err != 0)
1740			goto failure;
1741
1742		err = -EPIPE;
1743		if (sk->sk_shutdown & SEND_SHUTDOWN)
1744			goto failure;
1745
1746		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1747			skb = alloc_skb(header_len, gfp_mask);
1748			if (skb) {
1749				int i;
1750
1751				/* No pages, we're done... */
1752				if (!data_len)
1753					break;
1754
1755				skb->truesize += data_len;
1756				skb_shinfo(skb)->nr_frags = npages;
1757				for (i = 0; i < npages; i++) {
1758					struct page *page;
1759
1760					page = alloc_pages(sk->sk_allocation, 0);
1761					if (!page) {
1762						err = -ENOBUFS;
1763						skb_shinfo(skb)->nr_frags = i;
1764						kfree_skb(skb);
1765						goto failure;
1766					}
1767
1768					__skb_fill_page_desc(skb, i,
1769							page, 0,
1770							(data_len >= PAGE_SIZE ?
1771							 PAGE_SIZE :
1772							 data_len));
1773					data_len -= PAGE_SIZE;
1774				}
1775
1776				/* Full success... */
1777				break;
1778			}
1779			err = -ENOBUFS;
1780			goto failure;
1781		}
1782		set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1783		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1784		err = -EAGAIN;
1785		if (!timeo)
1786			goto failure;
1787		if (signal_pending(current))
1788			goto interrupted;
1789		timeo = sock_wait_for_wmem(sk, timeo);
1790	}
1791
1792	skb_set_owner_w(skb, sk);
1793	return skb;
1794
1795interrupted:
1796	err = sock_intr_errno(timeo);
1797failure:
1798	*errcode = err;
1799	return NULL;
1800}
1801EXPORT_SYMBOL(sock_alloc_send_pskb);
1802
1803struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1804				    int noblock, int *errcode)
1805{
1806	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1807}
1808EXPORT_SYMBOL(sock_alloc_send_skb);
1809
1810/* On 32bit arches, an skb frag is limited to 2^15 */
1811#define SKB_FRAG_PAGE_ORDER	get_order(32768)
1812
1813bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
1814{
1815	int order;
1816
1817	if (pfrag->page) {
1818		if (atomic_read(&pfrag->page->_count) == 1) {
1819			pfrag->offset = 0;
1820			return true;
1821		}
1822		if (pfrag->offset < pfrag->size)
1823			return true;
1824		put_page(pfrag->page);
1825	}
1826
1827	/* We restrict high order allocations to users that can afford to wait */
1828	order = (sk->sk_allocation & __GFP_WAIT) ? SKB_FRAG_PAGE_ORDER : 0;
1829
1830	do {
1831		gfp_t gfp = sk->sk_allocation;
1832
1833		if (order)
1834			gfp |= __GFP_COMP | __GFP_NOWARN;
1835		pfrag->page = alloc_pages(gfp, order);
1836		if (likely(pfrag->page)) {
1837			pfrag->offset = 0;
1838			pfrag->size = PAGE_SIZE << order;
1839			return true;
1840		}
1841	} while (--order >= 0);
1842
1843	sk_enter_memory_pressure(sk);
1844	sk_stream_moderate_sndbuf(sk);
1845	return false;
1846}
1847EXPORT_SYMBOL(sk_page_frag_refill);
1848
1849static void __lock_sock(struct sock *sk)
1850	__releases(&sk->sk_lock.slock)
1851	__acquires(&sk->sk_lock.slock)
1852{
1853	DEFINE_WAIT(wait);
1854
1855	for (;;) {
1856		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1857					TASK_UNINTERRUPTIBLE);
1858		spin_unlock_bh(&sk->sk_lock.slock);
1859		schedule();
1860		spin_lock_bh(&sk->sk_lock.slock);
1861		if (!sock_owned_by_user(sk))
1862			break;
1863	}
1864	finish_wait(&sk->sk_lock.wq, &wait);
1865}
1866
1867static void __release_sock(struct sock *sk)
1868	__releases(&sk->sk_lock.slock)
1869	__acquires(&sk->sk_lock.slock)
1870{
1871	struct sk_buff *skb = sk->sk_backlog.head;
1872
1873	do {
1874		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1875		bh_unlock_sock(sk);
1876
1877		do {
1878			struct sk_buff *next = skb->next;
1879
1880			prefetch(next);
1881			WARN_ON_ONCE(skb_dst_is_noref(skb));
1882			skb->next = NULL;
1883			sk_backlog_rcv(sk, skb);
1884
1885			/*
1886			 * We are in process context here with softirqs
1887			 * disabled, use cond_resched_softirq() to preempt.
1888			 * This is safe to do because we've taken the backlog
1889			 * queue private:
1890			 */
1891			cond_resched_softirq();
1892
1893			skb = next;
1894		} while (skb != NULL);
1895
1896		bh_lock_sock(sk);
1897	} while ((skb = sk->sk_backlog.head) != NULL);
1898
1899	/*
1900	 * Doing the zeroing here guarantee we can not loop forever
1901	 * while a wild producer attempts to flood us.
1902	 */
1903	sk->sk_backlog.len = 0;
1904}
1905
1906/**
1907 * sk_wait_data - wait for data to arrive at sk_receive_queue
1908 * @sk:    sock to wait on
1909 * @timeo: for how long
1910 *
1911 * Now socket state including sk->sk_err is changed only under lock,
1912 * hence we may omit checks after joining wait queue.
1913 * We check receive queue before schedule() only as optimization;
1914 * it is very likely that release_sock() added new data.
1915 */
1916int sk_wait_data(struct sock *sk, long *timeo)
1917{
1918	int rc;
1919	DEFINE_WAIT(wait);
1920
1921	prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1922	set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1923	rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1924	clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1925	finish_wait(sk_sleep(sk), &wait);
1926	return rc;
1927}
1928EXPORT_SYMBOL(sk_wait_data);
1929
1930/**
1931 *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1932 *	@sk: socket
1933 *	@size: memory size to allocate
1934 *	@kind: allocation type
1935 *
1936 *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1937 *	rmem allocation. This function assumes that protocols which have
1938 *	memory_pressure use sk_wmem_queued as write buffer accounting.
1939 */
1940int __sk_mem_schedule(struct sock *sk, int size, int kind)
1941{
1942	struct proto *prot = sk->sk_prot;
1943	int amt = sk_mem_pages(size);
1944	long allocated;
1945	int parent_status = UNDER_LIMIT;
1946
1947	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
1948
1949	allocated = sk_memory_allocated_add(sk, amt, &parent_status);
1950
1951	/* Under limit. */
1952	if (parent_status == UNDER_LIMIT &&
1953			allocated <= sk_prot_mem_limits(sk, 0)) {
1954		sk_leave_memory_pressure(sk);
1955		return 1;
1956	}
1957
1958	/* Under pressure. (we or our parents) */
1959	if ((parent_status > SOFT_LIMIT) ||
1960			allocated > sk_prot_mem_limits(sk, 1))
1961		sk_enter_memory_pressure(sk);
1962
1963	/* Over hard limit (we or our parents) */
1964	if ((parent_status == OVER_LIMIT) ||
1965			(allocated > sk_prot_mem_limits(sk, 2)))
1966		goto suppress_allocation;
1967
1968	/* guarantee minimum buffer size under pressure */
1969	if (kind == SK_MEM_RECV) {
1970		if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
1971			return 1;
1972
1973	} else { /* SK_MEM_SEND */
1974		if (sk->sk_type == SOCK_STREAM) {
1975			if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
1976				return 1;
1977		} else if (atomic_read(&sk->sk_wmem_alloc) <
1978			   prot->sysctl_wmem[0])
1979				return 1;
1980	}
1981
1982	if (sk_has_memory_pressure(sk)) {
1983		int alloc;
1984
1985		if (!sk_under_memory_pressure(sk))
1986			return 1;
1987		alloc = sk_sockets_allocated_read_positive(sk);
1988		if (sk_prot_mem_limits(sk, 2) > alloc *
1989		    sk_mem_pages(sk->sk_wmem_queued +
1990				 atomic_read(&sk->sk_rmem_alloc) +
1991				 sk->sk_forward_alloc))
1992			return 1;
1993	}
1994
1995suppress_allocation:
1996
1997	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
1998		sk_stream_moderate_sndbuf(sk);
1999
2000		/* Fail only if socket is _under_ its sndbuf.
2001		 * In this case we cannot block, so that we have to fail.
2002		 */
2003		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
2004			return 1;
2005	}
2006
2007	trace_sock_exceed_buf_limit(sk, prot, allocated);
2008
2009	/* Alas. Undo changes. */
2010	sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
2011
2012	sk_memory_allocated_sub(sk, amt);
2013
2014	return 0;
2015}
2016EXPORT_SYMBOL(__sk_mem_schedule);
2017
2018/**
2019 *	__sk_reclaim - reclaim memory_allocated
2020 *	@sk: socket
2021 */
2022void __sk_mem_reclaim(struct sock *sk)
2023{
2024	sk_memory_allocated_sub(sk,
2025				sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT);
2026	sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
2027
2028	if (sk_under_memory_pressure(sk) &&
2029	    (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2030		sk_leave_memory_pressure(sk);
2031}
2032EXPORT_SYMBOL(__sk_mem_reclaim);
2033
2034
2035/*
2036 * Set of default routines for initialising struct proto_ops when
2037 * the protocol does not support a particular function. In certain
2038 * cases where it makes no sense for a protocol to have a "do nothing"
2039 * function, some default processing is provided.
2040 */
2041
2042int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2043{
2044	return -EOPNOTSUPP;
2045}
2046EXPORT_SYMBOL(sock_no_bind);
2047
2048int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2049		    int len, int flags)
2050{
2051	return -EOPNOTSUPP;
2052}
2053EXPORT_SYMBOL(sock_no_connect);
2054
2055int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2056{
2057	return -EOPNOTSUPP;
2058}
2059EXPORT_SYMBOL(sock_no_socketpair);
2060
2061int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
2062{
2063	return -EOPNOTSUPP;
2064}
2065EXPORT_SYMBOL(sock_no_accept);
2066
2067int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2068		    int *len, int peer)
2069{
2070	return -EOPNOTSUPP;
2071}
2072EXPORT_SYMBOL(sock_no_getname);
2073
2074unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
2075{
2076	return 0;
2077}
2078EXPORT_SYMBOL(sock_no_poll);
2079
2080int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2081{
2082	return -EOPNOTSUPP;
2083}
2084EXPORT_SYMBOL(sock_no_ioctl);
2085
2086int sock_no_listen(struct socket *sock, int backlog)
2087{
2088	return -EOPNOTSUPP;
2089}
2090EXPORT_SYMBOL(sock_no_listen);
2091
2092int sock_no_shutdown(struct socket *sock, int how)
2093{
2094	return -EOPNOTSUPP;
2095}
2096EXPORT_SYMBOL(sock_no_shutdown);
2097
2098int sock_no_setsockopt(struct socket *sock, int level, int optname,
2099		    char __user *optval, unsigned int optlen)
2100{
2101	return -EOPNOTSUPP;
2102}
2103EXPORT_SYMBOL(sock_no_setsockopt);
2104
2105int sock_no_getsockopt(struct socket *sock, int level, int optname,
2106		    char __user *optval, int __user *optlen)
2107{
2108	return -EOPNOTSUPP;
2109}
2110EXPORT_SYMBOL(sock_no_getsockopt);
2111
2112int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
2113		    size_t len)
2114{
2115	return -EOPNOTSUPP;
2116}
2117EXPORT_SYMBOL(sock_no_sendmsg);
2118
2119int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
2120		    size_t len, int flags)
2121{
2122	return -EOPNOTSUPP;
2123}
2124EXPORT_SYMBOL(sock_no_recvmsg);
2125
2126int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2127{
2128	/* Mirror missing mmap method error code */
2129	return -ENODEV;
2130}
2131EXPORT_SYMBOL(sock_no_mmap);
2132
2133ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2134{
2135	ssize_t res;
2136	struct msghdr msg = {.msg_flags = flags};
2137	struct kvec iov;
2138	char *kaddr = kmap(page);
2139	iov.iov_base = kaddr + offset;
2140	iov.iov_len = size;
2141	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2142	kunmap(page);
2143	return res;
2144}
2145EXPORT_SYMBOL(sock_no_sendpage);
2146
2147/*
2148 *	Default Socket Callbacks
2149 */
2150
2151static void sock_def_wakeup(struct sock *sk)
2152{
2153	struct socket_wq *wq;
2154
2155	rcu_read_lock();
2156	wq = rcu_dereference(sk->sk_wq);
2157	if (wq_has_sleeper(wq))
2158		wake_up_interruptible_all(&wq->wait);
2159	rcu_read_unlock();
2160}
2161
2162static void sock_def_error_report(struct sock *sk)
2163{
2164	struct socket_wq *wq;
2165
2166	rcu_read_lock();
2167	wq = rcu_dereference(sk->sk_wq);
2168	if (wq_has_sleeper(wq))
2169		wake_up_interruptible_poll(&wq->wait, POLLERR);
2170	sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2171	rcu_read_unlock();
2172}
2173
2174static void sock_def_readable(struct sock *sk, int len)
2175{
2176	struct socket_wq *wq;
2177
2178	rcu_read_lock();
2179	wq = rcu_dereference(sk->sk_wq);
2180	if (wq_has_sleeper(wq))
2181		wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
2182						POLLRDNORM | POLLRDBAND);
2183	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2184	rcu_read_unlock();
2185}
2186
2187static void sock_def_write_space(struct sock *sk)
2188{
2189	struct socket_wq *wq;
2190
2191	rcu_read_lock();
2192
2193	/* Do not wake up a writer until he can make "significant"
2194	 * progress.  --DaveM
2195	 */
2196	if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
2197		wq = rcu_dereference(sk->sk_wq);
2198		if (wq_has_sleeper(wq))
2199			wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
2200						POLLWRNORM | POLLWRBAND);
2201
2202		/* Should agree with poll, otherwise some programs break */
2203		if (sock_writeable(sk))
2204			sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2205	}
2206
2207	rcu_read_unlock();
2208}
2209
2210static void sock_def_destruct(struct sock *sk)
2211{
2212	kfree(sk->sk_protinfo);
2213}
2214
2215void sk_send_sigurg(struct sock *sk)
2216{
2217	if (sk->sk_socket && sk->sk_socket->file)
2218		if (send_sigurg(&sk->sk_socket->file->f_owner))
2219			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2220}
2221EXPORT_SYMBOL(sk_send_sigurg);
2222
2223void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2224		    unsigned long expires)
2225{
2226	if (!mod_timer(timer, expires))
2227		sock_hold(sk);
2228}
2229EXPORT_SYMBOL(sk_reset_timer);
2230
2231void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2232{
2233	if (del_timer(timer))
2234		__sock_put(sk);
2235}
2236EXPORT_SYMBOL(sk_stop_timer);
2237
2238void sock_init_data(struct socket *sock, struct sock *sk)
2239{
2240	skb_queue_head_init(&sk->sk_receive_queue);
2241	skb_queue_head_init(&sk->sk_write_queue);
2242	skb_queue_head_init(&sk->sk_error_queue);
2243#ifdef CONFIG_NET_DMA
2244	skb_queue_head_init(&sk->sk_async_wait_queue);
2245#endif
2246
2247	sk->sk_send_head	=	NULL;
2248
2249	init_timer(&sk->sk_timer);
2250
2251	sk->sk_allocation	=	GFP_KERNEL;
2252	sk->sk_rcvbuf		=	sysctl_rmem_default;
2253	sk->sk_sndbuf		=	sysctl_wmem_default;
2254	sk->sk_state		=	TCP_CLOSE;
2255	sk_set_socket(sk, sock);
2256
2257	sock_set_flag(sk, SOCK_ZAPPED);
2258
2259	if (sock) {
2260		sk->sk_type	=	sock->type;
2261		sk->sk_wq	=	sock->wq;
2262		sock->sk	=	sk;
2263	} else
2264		sk->sk_wq	=	NULL;
2265
2266	spin_lock_init(&sk->sk_dst_lock);
2267	rwlock_init(&sk->sk_callback_lock);
2268	lockdep_set_class_and_name(&sk->sk_callback_lock,
2269			af_callback_keys + sk->sk_family,
2270			af_family_clock_key_strings[sk->sk_family]);
2271
2272	sk->sk_state_change	=	sock_def_wakeup;
2273	sk->sk_data_ready	=	sock_def_readable;
2274	sk->sk_write_space	=	sock_def_write_space;
2275	sk->sk_error_report	=	sock_def_error_report;
2276	sk->sk_destruct		=	sock_def_destruct;
2277
2278	sk->sk_frag.page	=	NULL;
2279	sk->sk_frag.offset	=	0;
2280	sk->sk_peek_off		=	-1;
2281
2282	sk->sk_peer_pid 	=	NULL;
2283	sk->sk_peer_cred	=	NULL;
2284	sk->sk_write_pending	=	0;
2285	sk->sk_rcvlowat		=	1;
2286	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
2287	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
2288
2289	sk->sk_stamp = ktime_set(-1L, 0);
2290
2291	/*
2292	 * Before updating sk_refcnt, we must commit prior changes to memory
2293	 * (Documentation/RCU/rculist_nulls.txt for details)
2294	 */
2295	smp_wmb();
2296	atomic_set(&sk->sk_refcnt, 1);
2297	atomic_set(&sk->sk_drops, 0);
2298}
2299EXPORT_SYMBOL(sock_init_data);
2300
2301void lock_sock_nested(struct sock *sk, int subclass)
2302{
2303	might_sleep();
2304	spin_lock_bh(&sk->sk_lock.slock);
2305	if (sk->sk_lock.owned)
2306		__lock_sock(sk);
2307	sk->sk_lock.owned = 1;
2308	spin_unlock(&sk->sk_lock.slock);
2309	/*
2310	 * The sk_lock has mutex_lock() semantics here:
2311	 */
2312	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2313	local_bh_enable();
2314}
2315EXPORT_SYMBOL(lock_sock_nested);
2316
2317void release_sock(struct sock *sk)
2318{
2319	/*
2320	 * The sk_lock has mutex_unlock() semantics:
2321	 */
2322	mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
2323
2324	spin_lock_bh(&sk->sk_lock.slock);
2325	if (sk->sk_backlog.tail)
2326		__release_sock(sk);
2327
2328	if (sk->sk_prot->release_cb)
2329		sk->sk_prot->release_cb(sk);
2330
2331	sk->sk_lock.owned = 0;
2332	if (waitqueue_active(&sk->sk_lock.wq))
2333		wake_up(&sk->sk_lock.wq);
2334	spin_unlock_bh(&sk->sk_lock.slock);
2335}
2336EXPORT_SYMBOL(release_sock);
2337
2338/**
2339 * lock_sock_fast - fast version of lock_sock
2340 * @sk: socket
2341 *
2342 * This version should be used for very small section, where process wont block
2343 * return false if fast path is taken
2344 *   sk_lock.slock locked, owned = 0, BH disabled
2345 * return true if slow path is taken
2346 *   sk_lock.slock unlocked, owned = 1, BH enabled
2347 */
2348bool lock_sock_fast(struct sock *sk)
2349{
2350	might_sleep();
2351	spin_lock_bh(&sk->sk_lock.slock);
2352
2353	if (!sk->sk_lock.owned)
2354		/*
2355		 * Note : We must disable BH
2356		 */
2357		return false;
2358
2359	__lock_sock(sk);
2360	sk->sk_lock.owned = 1;
2361	spin_unlock(&sk->sk_lock.slock);
2362	/*
2363	 * The sk_lock has mutex_lock() semantics here:
2364	 */
2365	mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2366	local_bh_enable();
2367	return true;
2368}
2369EXPORT_SYMBOL(lock_sock_fast);
2370
2371int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2372{
2373	struct timeval tv;
2374	if (!sock_flag(sk, SOCK_TIMESTAMP))
2375		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2376	tv = ktime_to_timeval(sk->sk_stamp);
2377	if (tv.tv_sec == -1)
2378		return -ENOENT;
2379	if (tv.tv_sec == 0) {
2380		sk->sk_stamp = ktime_get_real();
2381		tv = ktime_to_timeval(sk->sk_stamp);
2382	}
2383	return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2384}
2385EXPORT_SYMBOL(sock_get_timestamp);
2386
2387int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2388{
2389	struct timespec ts;
2390	if (!sock_flag(sk, SOCK_TIMESTAMP))
2391		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2392	ts = ktime_to_timespec(sk->sk_stamp);
2393	if (ts.tv_sec == -1)
2394		return -ENOENT;
2395	if (ts.tv_sec == 0) {
2396		sk->sk_stamp = ktime_get_real();
2397		ts = ktime_to_timespec(sk->sk_stamp);
2398	}
2399	return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2400}
2401EXPORT_SYMBOL(sock_get_timestampns);
2402
2403void sock_enable_timestamp(struct sock *sk, int flag)
2404{
2405	if (!sock_flag(sk, flag)) {
2406		unsigned long previous_flags = sk->sk_flags;
2407
2408		sock_set_flag(sk, flag);
2409		/*
2410		 * we just set one of the two flags which require net
2411		 * time stamping, but time stamping might have been on
2412		 * already because of the other one
2413		 */
2414		if (!(previous_flags & SK_FLAGS_TIMESTAMP))
2415			net_enable_timestamp();
2416	}
2417}
2418
2419/*
2420 *	Get a socket option on an socket.
2421 *
2422 *	FIX: POSIX 1003.1g is very ambiguous here. It states that
2423 *	asynchronous errors should be reported by getsockopt. We assume
2424 *	this means if you specify SO_ERROR (otherwise whats the point of it).
2425 */
2426int sock_common_getsockopt(struct socket *sock, int level, int optname,
2427			   char __user *optval, int __user *optlen)
2428{
2429	struct sock *sk = sock->sk;
2430
2431	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2432}
2433EXPORT_SYMBOL(sock_common_getsockopt);
2434
2435#ifdef CONFIG_COMPAT
2436int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2437				  char __user *optval, int __user *optlen)
2438{
2439	struct sock *sk = sock->sk;
2440
2441	if (sk->sk_prot->compat_getsockopt != NULL)
2442		return sk->sk_prot->compat_getsockopt(sk, level, optname,
2443						      optval, optlen);
2444	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2445}
2446EXPORT_SYMBOL(compat_sock_common_getsockopt);
2447#endif
2448
2449int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
2450			struct msghdr *msg, size_t size, int flags)
2451{
2452	struct sock *sk = sock->sk;
2453	int addr_len = 0;
2454	int err;
2455
2456	err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
2457				   flags & ~MSG_DONTWAIT, &addr_len);
2458	if (err >= 0)
2459		msg->msg_namelen = addr_len;
2460	return err;
2461}
2462EXPORT_SYMBOL(sock_common_recvmsg);
2463
2464/*
2465 *	Set socket options on an inet socket.
2466 */
2467int sock_common_setsockopt(struct socket *sock, int level, int optname,
2468			   char __user *optval, unsigned int optlen)
2469{
2470	struct sock *sk = sock->sk;
2471
2472	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2473}
2474EXPORT_SYMBOL(sock_common_setsockopt);
2475
2476#ifdef CONFIG_COMPAT
2477int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2478				  char __user *optval, unsigned int optlen)
2479{
2480	struct sock *sk = sock->sk;
2481
2482	if (sk->sk_prot->compat_setsockopt != NULL)
2483		return sk->sk_prot->compat_setsockopt(sk, level, optname,
2484						      optval, optlen);
2485	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2486}
2487EXPORT_SYMBOL(compat_sock_common_setsockopt);
2488#endif
2489
2490void sk_common_release(struct sock *sk)
2491{
2492	if (sk->sk_prot->destroy)
2493		sk->sk_prot->destroy(sk);
2494
2495	/*
2496	 * Observation: when sock_common_release is called, processes have
2497	 * no access to socket. But net still has.
2498	 * Step one, detach it from networking:
2499	 *
2500	 * A. Remove from hash tables.
2501	 */
2502
2503	sk->sk_prot->unhash(sk);
2504
2505	/*
2506	 * In this point socket cannot receive new packets, but it is possible
2507	 * that some packets are in flight because some CPU runs receiver and
2508	 * did hash table lookup before we unhashed socket. They will achieve
2509	 * receive queue and will be purged by socket destructor.
2510	 *
2511	 * Also we still have packets pending on receive queue and probably,
2512	 * our own packets waiting in device queues. sock_destroy will drain
2513	 * receive queue, but transmitted packets will delay socket destruction
2514	 * until the last reference will be released.
2515	 */
2516
2517	sock_orphan(sk);
2518
2519	xfrm_sk_free_policy(sk);
2520
2521	sk_refcnt_debug_release(sk);
2522
2523	if (sk->sk_frag.page) {
2524		put_page(sk->sk_frag.page);
2525		sk->sk_frag.page = NULL;
2526	}
2527
2528	sock_put(sk);
2529}
2530EXPORT_SYMBOL(sk_common_release);
2531
2532#ifdef CONFIG_PROC_FS
2533#define PROTO_INUSE_NR	64	/* should be enough for the first time */
2534struct prot_inuse {
2535	int val[PROTO_INUSE_NR];
2536};
2537
2538static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2539
2540#ifdef CONFIG_NET_NS
2541void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2542{
2543	__this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
2544}
2545EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2546
2547int sock_prot_inuse_get(struct net *net, struct proto *prot)
2548{
2549	int cpu, idx = prot->inuse_idx;
2550	int res = 0;
2551
2552	for_each_possible_cpu(cpu)
2553		res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2554
2555	return res >= 0 ? res : 0;
2556}
2557EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2558
2559static int __net_init sock_inuse_init_net(struct net *net)
2560{
2561	net->core.inuse = alloc_percpu(struct prot_inuse);
2562	return net->core.inuse ? 0 : -ENOMEM;
2563}
2564
2565static void __net_exit sock_inuse_exit_net(struct net *net)
2566{
2567	free_percpu(net->core.inuse);
2568}
2569
2570static struct pernet_operations net_inuse_ops = {
2571	.init = sock_inuse_init_net,
2572	.exit = sock_inuse_exit_net,
2573};
2574
2575static __init int net_inuse_init(void)
2576{
2577	if (register_pernet_subsys(&net_inuse_ops))
2578		panic("Cannot initialize net inuse counters");
2579
2580	return 0;
2581}
2582
2583core_initcall(net_inuse_init);
2584#else
2585static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2586
2587void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2588{
2589	__this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
2590}
2591EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2592
2593int sock_prot_inuse_get(struct net *net, struct proto *prot)
2594{
2595	int cpu, idx = prot->inuse_idx;
2596	int res = 0;
2597
2598	for_each_possible_cpu(cpu)
2599		res += per_cpu(prot_inuse, cpu).val[idx];
2600
2601	return res >= 0 ? res : 0;
2602}
2603EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2604#endif
2605
2606static void assign_proto_idx(struct proto *prot)
2607{
2608	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2609
2610	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2611		pr_err("PROTO_INUSE_NR exhausted\n");
2612		return;
2613	}
2614
2615	set_bit(prot->inuse_idx, proto_inuse_idx);
2616}
2617
2618static void release_proto_idx(struct proto *prot)
2619{
2620	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2621		clear_bit(prot->inuse_idx, proto_inuse_idx);
2622}
2623#else
2624static inline void assign_proto_idx(struct proto *prot)
2625{
2626}
2627
2628static inline void release_proto_idx(struct proto *prot)
2629{
2630}
2631#endif
2632
2633int proto_register(struct proto *prot, int alloc_slab)
2634{
2635	if (alloc_slab) {
2636		prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2637					SLAB_HWCACHE_ALIGN | prot->slab_flags,
2638					NULL);
2639
2640		if (prot->slab == NULL) {
2641			pr_crit("%s: Can't create sock SLAB cache!\n",
2642				prot->name);
2643			goto out;
2644		}
2645
2646		if (prot->rsk_prot != NULL) {
2647			prot->rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", prot->name);
2648			if (prot->rsk_prot->slab_name == NULL)
2649				goto out_free_sock_slab;
2650
2651			prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
2652								 prot->rsk_prot->obj_size, 0,
2653								 SLAB_HWCACHE_ALIGN, NULL);
2654
2655			if (prot->rsk_prot->slab == NULL) {
2656				pr_crit("%s: Can't create request sock SLAB cache!\n",
2657					prot->name);
2658				goto out_free_request_sock_slab_name;
2659			}
2660		}
2661
2662		if (prot->twsk_prot != NULL) {
2663			prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
2664
2665			if (prot->twsk_prot->twsk_slab_name == NULL)
2666				goto out_free_request_sock_slab;
2667
2668			prot->twsk_prot->twsk_slab =
2669				kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2670						  prot->twsk_prot->twsk_obj_size,
2671						  0,
2672						  SLAB_HWCACHE_ALIGN |
2673							prot->slab_flags,
2674						  NULL);
2675			if (prot->twsk_prot->twsk_slab == NULL)
2676				goto out_free_timewait_sock_slab_name;
2677		}
2678	}
2679
2680	mutex_lock(&proto_list_mutex);
2681	list_add(&prot->node, &proto_list);
2682	assign_proto_idx(prot);
2683	mutex_unlock(&proto_list_mutex);
2684	return 0;
2685
2686out_free_timewait_sock_slab_name:
2687	kfree(prot->twsk_prot->twsk_slab_name);
2688out_free_request_sock_slab:
2689	if (prot->rsk_prot && prot->rsk_prot->slab) {
2690		kmem_cache_destroy(prot->rsk_prot->slab);
2691		prot->rsk_prot->slab = NULL;
2692	}
2693out_free_request_sock_slab_name:
2694	if (prot->rsk_prot)
2695		kfree(prot->rsk_prot->slab_name);
2696out_free_sock_slab:
2697	kmem_cache_destroy(prot->slab);
2698	prot->slab = NULL;
2699out:
2700	return -ENOBUFS;
2701}
2702EXPORT_SYMBOL(proto_register);
2703
2704void proto_unregister(struct proto *prot)
2705{
2706	mutex_lock(&proto_list_mutex);
2707	release_proto_idx(prot);
2708	list_del(&prot->node);
2709	mutex_unlock(&proto_list_mutex);
2710
2711	if (prot->slab != NULL) {
2712		kmem_cache_destroy(prot->slab);
2713		prot->slab = NULL;
2714	}
2715
2716	if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2717		kmem_cache_destroy(prot->rsk_prot->slab);
2718		kfree(prot->rsk_prot->slab_name);
2719		prot->rsk_prot->slab = NULL;
2720	}
2721
2722	if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2723		kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2724		kfree(prot->twsk_prot->twsk_slab_name);
2725		prot->twsk_prot->twsk_slab = NULL;
2726	}
2727}
2728EXPORT_SYMBOL(proto_unregister);
2729
2730#ifdef CONFIG_PROC_FS
2731static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2732	__acquires(proto_list_mutex)
2733{
2734	mutex_lock(&proto_list_mutex);
2735	return seq_list_start_head(&proto_list, *pos);
2736}
2737
2738static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2739{
2740	return seq_list_next(v, &proto_list, pos);
2741}
2742
2743static void proto_seq_stop(struct seq_file *seq, void *v)
2744	__releases(proto_list_mutex)
2745{
2746	mutex_unlock(&proto_list_mutex);
2747}
2748
2749static char proto_method_implemented(const void *method)
2750{
2751	return method == NULL ? 'n' : 'y';
2752}
2753static long sock_prot_memory_allocated(struct proto *proto)
2754{
2755	return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
2756}
2757
2758static char *sock_prot_memory_pressure(struct proto *proto)
2759{
2760	return proto->memory_pressure != NULL ?
2761	proto_memory_pressure(proto) ? "yes" : "no" : "NI";
2762}
2763
2764static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2765{
2766
2767	seq_printf(seq, "%-9s %4u %6d  %6ld   %-3s %6u   %-3s  %-10s "
2768			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2769		   proto->name,
2770		   proto->obj_size,
2771		   sock_prot_inuse_get(seq_file_net(seq), proto),
2772		   sock_prot_memory_allocated(proto),
2773		   sock_prot_memory_pressure(proto),
2774		   proto->max_header,
2775		   proto->slab == NULL ? "no" : "yes",
2776		   module_name(proto->owner),
2777		   proto_method_implemented(proto->close),
2778		   proto_method_implemented(proto->connect),
2779		   proto_method_implemented(proto->disconnect),
2780		   proto_method_implemented(proto->accept),
2781		   proto_method_implemented(proto->ioctl),
2782		   proto_method_implemented(proto->init),
2783		   proto_method_implemented(proto->destroy),
2784		   proto_method_implemented(proto->shutdown),
2785		   proto_method_implemented(proto->setsockopt),
2786		   proto_method_implemented(proto->getsockopt),
2787		   proto_method_implemented(proto->sendmsg),
2788		   proto_method_implemented(proto->recvmsg),
2789		   proto_method_implemented(proto->sendpage),
2790		   proto_method_implemented(proto->bind),
2791		   proto_method_implemented(proto->backlog_rcv),
2792		   proto_method_implemented(proto->hash),
2793		   proto_method_implemented(proto->unhash),
2794		   proto_method_implemented(proto->get_port),
2795		   proto_method_implemented(proto->enter_memory_pressure));
2796}
2797
2798static int proto_seq_show(struct seq_file *seq, void *v)
2799{
2800	if (v == &proto_list)
2801		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2802			   "protocol",
2803			   "size",
2804			   "sockets",
2805			   "memory",
2806			   "press",
2807			   "maxhdr",
2808			   "slab",
2809			   "module",
2810			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2811	else
2812		proto_seq_printf(seq, list_entry(v, struct proto, node));
2813	return 0;
2814}
2815
2816static const struct seq_operations proto_seq_ops = {
2817	.start  = proto_seq_start,
2818	.next   = proto_seq_next,
2819	.stop   = proto_seq_stop,
2820	.show   = proto_seq_show,
2821};
2822
2823static int proto_seq_open(struct inode *inode, struct file *file)
2824{
2825	return seq_open_net(inode, file, &proto_seq_ops,
2826			    sizeof(struct seq_net_private));
2827}
2828
2829static const struct file_operations proto_seq_fops = {
2830	.owner		= THIS_MODULE,
2831	.open		= proto_seq_open,
2832	.read		= seq_read,
2833	.llseek		= seq_lseek,
2834	.release	= seq_release_net,
2835};
2836
2837static __net_init int proto_init_net(struct net *net)
2838{
2839	if (!proc_net_fops_create(net, "protocols", S_IRUGO, &proto_seq_fops))
2840		return -ENOMEM;
2841
2842	return 0;
2843}
2844
2845static __net_exit void proto_exit_net(struct net *net)
2846{
2847	proc_net_remove(net, "protocols");
2848}
2849
2850
2851static __net_initdata struct pernet_operations proto_net_ops = {
2852	.init = proto_init_net,
2853	.exit = proto_exit_net,
2854};
2855
2856static int __init proto_init(void)
2857{
2858	return register_pernet_subsys(&proto_net_ops);
2859}
2860
2861subsys_initcall(proto_init);
2862
2863#endif /* PROC_FS */
2864