sock.c revision 2b73bc65e2771372c818db7955709c8caedbf8b9
1/*
2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
3 *		operating system.  INET is implemented using the  BSD Socket
4 *		interface as the means of communication with the user level.
5 *
6 *		Generic socket support routines. Memory allocators, socket lock/release
7 *		handler for protocols to use and generic option handler.
8 *
9 *
10 * Authors:	Ross Biro
11 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 *		Florian La Roche, <flla@stud.uni-sb.de>
13 *		Alan Cox, <A.Cox@swansea.ac.uk>
14 *
15 * Fixes:
16 *		Alan Cox	: 	Numerous verify_area() problems
17 *		Alan Cox	:	Connecting on a connecting socket
18 *					now returns an error for tcp.
19 *		Alan Cox	:	sock->protocol is set correctly.
20 *					and is not sometimes left as 0.
21 *		Alan Cox	:	connect handles icmp errors on a
22 *					connect properly. Unfortunately there
23 *					is a restart syscall nasty there. I
24 *					can't match BSD without hacking the C
25 *					library. Ideas urgently sought!
26 *		Alan Cox	:	Disallow bind() to addresses that are
27 *					not ours - especially broadcast ones!!
28 *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
29 *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
30 *					instead they leave that for the DESTROY timer.
31 *		Alan Cox	:	Clean up error flag in accept
32 *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
33 *					was buggy. Put a remove_sock() in the handler
34 *					for memory when we hit 0. Also altered the timer
35 *					code. The ACK stuff can wait and needs major
36 *					TCP layer surgery.
37 *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
38 *					and fixed timer/inet_bh race.
39 *		Alan Cox	:	Added zapped flag for TCP
40 *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
41 *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
43 *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
46 *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
47 *	Pauline Middelink	:	identd support
48 *		Alan Cox	:	Fixed connect() taking signals I think.
49 *		Alan Cox	:	SO_LINGER supported
50 *		Alan Cox	:	Error reporting fixes
51 *		Anonymous	:	inet_create tidied up (sk->reuse setting)
52 *		Alan Cox	:	inet sockets don't set sk->type!
53 *		Alan Cox	:	Split socket option code
54 *		Alan Cox	:	Callbacks
55 *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
56 *		Alex		:	Removed restriction on inet fioctl
57 *		Alan Cox	:	Splitting INET from NET core
58 *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
59 *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
60 *		Alan Cox	:	Split IP from generic code
61 *		Alan Cox	:	New kfree_skbmem()
62 *		Alan Cox	:	Make SO_DEBUG superuser only.
63 *		Alan Cox	:	Allow anyone to clear SO_DEBUG
64 *					(compatibility fix)
65 *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
66 *		Alan Cox	:	Allocator for a socket is settable.
67 *		Alan Cox	:	SO_ERROR includes soft errors.
68 *		Alan Cox	:	Allow NULL arguments on some SO_ opts
69 *		Alan Cox	: 	Generic socket allocation to make hooks
70 *					easier (suggested by Craig Metz).
71 *		Michael Pall	:	SO_ERROR returns positive errno again
72 *              Steve Whitehouse:       Added default destructor to free
73 *                                      protocol private data.
74 *              Steve Whitehouse:       Added various other default routines
75 *                                      common to several socket families.
76 *              Chris Evans     :       Call suser() check last on F_SETOWN
77 *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
79 *		Andi Kleen	:	Fix write_space callback
80 *		Chris Evans	:	Security fixes - signedness again
81 *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
82 *
83 * To Fix:
84 *
85 *
86 *		This program is free software; you can redistribute it and/or
87 *		modify it under the terms of the GNU General Public License
88 *		as published by the Free Software Foundation; either version
89 *		2 of the License, or (at your option) any later version.
90 */
91
92#include <linux/capability.h>
93#include <linux/errno.h>
94#include <linux/types.h>
95#include <linux/socket.h>
96#include <linux/in.h>
97#include <linux/kernel.h>
98#include <linux/module.h>
99#include <linux/proc_fs.h>
100#include <linux/seq_file.h>
101#include <linux/sched.h>
102#include <linux/timer.h>
103#include <linux/string.h>
104#include <linux/sockios.h>
105#include <linux/net.h>
106#include <linux/mm.h>
107#include <linux/slab.h>
108#include <linux/interrupt.h>
109#include <linux/poll.h>
110#include <linux/tcp.h>
111#include <linux/init.h>
112#include <linux/highmem.h>
113#include <linux/user_namespace.h>
114#include <linux/jump_label.h>
115#include <linux/memcontrol.h>
116
117#include <asm/uaccess.h>
118#include <asm/system.h>
119
120#include <linux/netdevice.h>
121#include <net/protocol.h>
122#include <linux/skbuff.h>
123#include <net/net_namespace.h>
124#include <net/request_sock.h>
125#include <net/sock.h>
126#include <linux/net_tstamp.h>
127#include <net/xfrm.h>
128#include <linux/ipsec.h>
129#include <net/cls_cgroup.h>
130#include <net/netprio_cgroup.h>
131
132#include <linux/filter.h>
133
134#include <trace/events/sock.h>
135
136#ifdef CONFIG_INET
137#include <net/tcp.h>
138#endif
139
140static DEFINE_MUTEX(proto_list_mutex);
141static LIST_HEAD(proto_list);
142
143#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
144int mem_cgroup_sockets_init(struct cgroup *cgrp, struct cgroup_subsys *ss)
145{
146	struct proto *proto;
147	int ret = 0;
148
149	mutex_lock(&proto_list_mutex);
150	list_for_each_entry(proto, &proto_list, node) {
151		if (proto->init_cgroup) {
152			ret = proto->init_cgroup(cgrp, ss);
153			if (ret)
154				goto out;
155		}
156	}
157
158	mutex_unlock(&proto_list_mutex);
159	return ret;
160out:
161	list_for_each_entry_continue_reverse(proto, &proto_list, node)
162		if (proto->destroy_cgroup)
163			proto->destroy_cgroup(cgrp, ss);
164	mutex_unlock(&proto_list_mutex);
165	return ret;
166}
167
168void mem_cgroup_sockets_destroy(struct cgroup *cgrp, struct cgroup_subsys *ss)
169{
170	struct proto *proto;
171
172	mutex_lock(&proto_list_mutex);
173	list_for_each_entry_reverse(proto, &proto_list, node)
174		if (proto->destroy_cgroup)
175			proto->destroy_cgroup(cgrp, ss);
176	mutex_unlock(&proto_list_mutex);
177}
178#endif
179
180/*
181 * Each address family might have different locking rules, so we have
182 * one slock key per address family:
183 */
184static struct lock_class_key af_family_keys[AF_MAX];
185static struct lock_class_key af_family_slock_keys[AF_MAX];
186
187struct jump_label_key memcg_socket_limit_enabled;
188EXPORT_SYMBOL(memcg_socket_limit_enabled);
189
190/*
191 * Make lock validator output more readable. (we pre-construct these
192 * strings build-time, so that runtime initialization of socket
193 * locks is fast):
194 */
195static const char *const af_family_key_strings[AF_MAX+1] = {
196  "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX"     , "sk_lock-AF_INET"     ,
197  "sk_lock-AF_AX25"  , "sk_lock-AF_IPX"      , "sk_lock-AF_APPLETALK",
198  "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE"   , "sk_lock-AF_ATMPVC"   ,
199  "sk_lock-AF_X25"   , "sk_lock-AF_INET6"    , "sk_lock-AF_ROSE"     ,
200  "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI"  , "sk_lock-AF_SECURITY" ,
201  "sk_lock-AF_KEY"   , "sk_lock-AF_NETLINK"  , "sk_lock-AF_PACKET"   ,
202  "sk_lock-AF_ASH"   , "sk_lock-AF_ECONET"   , "sk_lock-AF_ATMSVC"   ,
203  "sk_lock-AF_RDS"   , "sk_lock-AF_SNA"      , "sk_lock-AF_IRDA"     ,
204  "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE"  , "sk_lock-AF_LLC"      ,
205  "sk_lock-27"       , "sk_lock-28"          , "sk_lock-AF_CAN"      ,
206  "sk_lock-AF_TIPC"  , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV"        ,
207  "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN"     , "sk_lock-AF_PHONET"   ,
208  "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG"      ,
209  "sk_lock-AF_NFC"   , "sk_lock-AF_MAX"
210};
211static const char *const af_family_slock_key_strings[AF_MAX+1] = {
212  "slock-AF_UNSPEC", "slock-AF_UNIX"     , "slock-AF_INET"     ,
213  "slock-AF_AX25"  , "slock-AF_IPX"      , "slock-AF_APPLETALK",
214  "slock-AF_NETROM", "slock-AF_BRIDGE"   , "slock-AF_ATMPVC"   ,
215  "slock-AF_X25"   , "slock-AF_INET6"    , "slock-AF_ROSE"     ,
216  "slock-AF_DECnet", "slock-AF_NETBEUI"  , "slock-AF_SECURITY" ,
217  "slock-AF_KEY"   , "slock-AF_NETLINK"  , "slock-AF_PACKET"   ,
218  "slock-AF_ASH"   , "slock-AF_ECONET"   , "slock-AF_ATMSVC"   ,
219  "slock-AF_RDS"   , "slock-AF_SNA"      , "slock-AF_IRDA"     ,
220  "slock-AF_PPPOX" , "slock-AF_WANPIPE"  , "slock-AF_LLC"      ,
221  "slock-27"       , "slock-28"          , "slock-AF_CAN"      ,
222  "slock-AF_TIPC"  , "slock-AF_BLUETOOTH", "slock-AF_IUCV"     ,
223  "slock-AF_RXRPC" , "slock-AF_ISDN"     , "slock-AF_PHONET"   ,
224  "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG"      ,
225  "slock-AF_NFC"   , "slock-AF_MAX"
226};
227static const char *const af_family_clock_key_strings[AF_MAX+1] = {
228  "clock-AF_UNSPEC", "clock-AF_UNIX"     , "clock-AF_INET"     ,
229  "clock-AF_AX25"  , "clock-AF_IPX"      , "clock-AF_APPLETALK",
230  "clock-AF_NETROM", "clock-AF_BRIDGE"   , "clock-AF_ATMPVC"   ,
231  "clock-AF_X25"   , "clock-AF_INET6"    , "clock-AF_ROSE"     ,
232  "clock-AF_DECnet", "clock-AF_NETBEUI"  , "clock-AF_SECURITY" ,
233  "clock-AF_KEY"   , "clock-AF_NETLINK"  , "clock-AF_PACKET"   ,
234  "clock-AF_ASH"   , "clock-AF_ECONET"   , "clock-AF_ATMSVC"   ,
235  "clock-AF_RDS"   , "clock-AF_SNA"      , "clock-AF_IRDA"     ,
236  "clock-AF_PPPOX" , "clock-AF_WANPIPE"  , "clock-AF_LLC"      ,
237  "clock-27"       , "clock-28"          , "clock-AF_CAN"      ,
238  "clock-AF_TIPC"  , "clock-AF_BLUETOOTH", "clock-AF_IUCV"     ,
239  "clock-AF_RXRPC" , "clock-AF_ISDN"     , "clock-AF_PHONET"   ,
240  "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG"      ,
241  "clock-AF_NFC"   , "clock-AF_MAX"
242};
243
244/*
245 * sk_callback_lock locking rules are per-address-family,
246 * so split the lock classes by using a per-AF key:
247 */
248static struct lock_class_key af_callback_keys[AF_MAX];
249
250/* Take into consideration the size of the struct sk_buff overhead in the
251 * determination of these values, since that is non-constant across
252 * platforms.  This makes socket queueing behavior and performance
253 * not depend upon such differences.
254 */
255#define _SK_MEM_PACKETS		256
256#define _SK_MEM_OVERHEAD	SKB_TRUESIZE(256)
257#define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
258#define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
259
260/* Run time adjustable parameters. */
261__u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
262__u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
263__u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
264__u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
265
266/* Maximal space eaten by iovec or ancillary data plus some space */
267int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
268EXPORT_SYMBOL(sysctl_optmem_max);
269
270#if defined(CONFIG_CGROUPS)
271#if !defined(CONFIG_NET_CLS_CGROUP)
272int net_cls_subsys_id = -1;
273EXPORT_SYMBOL_GPL(net_cls_subsys_id);
274#endif
275#if !defined(CONFIG_NETPRIO_CGROUP)
276int net_prio_subsys_id = -1;
277EXPORT_SYMBOL_GPL(net_prio_subsys_id);
278#endif
279#endif
280
281static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
282{
283	struct timeval tv;
284
285	if (optlen < sizeof(tv))
286		return -EINVAL;
287	if (copy_from_user(&tv, optval, sizeof(tv)))
288		return -EFAULT;
289	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
290		return -EDOM;
291
292	if (tv.tv_sec < 0) {
293		static int warned __read_mostly;
294
295		*timeo_p = 0;
296		if (warned < 10 && net_ratelimit()) {
297			warned++;
298			printk(KERN_INFO "sock_set_timeout: `%s' (pid %d) "
299			       "tries to set negative timeout\n",
300				current->comm, task_pid_nr(current));
301		}
302		return 0;
303	}
304	*timeo_p = MAX_SCHEDULE_TIMEOUT;
305	if (tv.tv_sec == 0 && tv.tv_usec == 0)
306		return 0;
307	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
308		*timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
309	return 0;
310}
311
312static void sock_warn_obsolete_bsdism(const char *name)
313{
314	static int warned;
315	static char warncomm[TASK_COMM_LEN];
316	if (strcmp(warncomm, current->comm) && warned < 5) {
317		strcpy(warncomm,  current->comm);
318		printk(KERN_WARNING "process `%s' is using obsolete "
319		       "%s SO_BSDCOMPAT\n", warncomm, name);
320		warned++;
321	}
322}
323
324#define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
325
326static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
327{
328	if (sk->sk_flags & flags) {
329		sk->sk_flags &= ~flags;
330		if (!(sk->sk_flags & SK_FLAGS_TIMESTAMP))
331			net_disable_timestamp();
332	}
333}
334
335
336int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
337{
338	int err;
339	int skb_len;
340	unsigned long flags;
341	struct sk_buff_head *list = &sk->sk_receive_queue;
342
343	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
344		atomic_inc(&sk->sk_drops);
345		trace_sock_rcvqueue_full(sk, skb);
346		return -ENOMEM;
347	}
348
349	err = sk_filter(sk, skb);
350	if (err)
351		return err;
352
353	if (!sk_rmem_schedule(sk, skb->truesize)) {
354		atomic_inc(&sk->sk_drops);
355		return -ENOBUFS;
356	}
357
358	skb->dev = NULL;
359	skb_set_owner_r(skb, sk);
360
361	/* Cache the SKB length before we tack it onto the receive
362	 * queue.  Once it is added it no longer belongs to us and
363	 * may be freed by other threads of control pulling packets
364	 * from the queue.
365	 */
366	skb_len = skb->len;
367
368	/* we escape from rcu protected region, make sure we dont leak
369	 * a norefcounted dst
370	 */
371	skb_dst_force(skb);
372
373	spin_lock_irqsave(&list->lock, flags);
374	skb->dropcount = atomic_read(&sk->sk_drops);
375	__skb_queue_tail(list, skb);
376	spin_unlock_irqrestore(&list->lock, flags);
377
378	if (!sock_flag(sk, SOCK_DEAD))
379		sk->sk_data_ready(sk, skb_len);
380	return 0;
381}
382EXPORT_SYMBOL(sock_queue_rcv_skb);
383
384int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
385{
386	int rc = NET_RX_SUCCESS;
387
388	if (sk_filter(sk, skb))
389		goto discard_and_relse;
390
391	skb->dev = NULL;
392
393	if (sk_rcvqueues_full(sk, skb)) {
394		atomic_inc(&sk->sk_drops);
395		goto discard_and_relse;
396	}
397	if (nested)
398		bh_lock_sock_nested(sk);
399	else
400		bh_lock_sock(sk);
401	if (!sock_owned_by_user(sk)) {
402		/*
403		 * trylock + unlock semantics:
404		 */
405		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
406
407		rc = sk_backlog_rcv(sk, skb);
408
409		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
410	} else if (sk_add_backlog(sk, skb)) {
411		bh_unlock_sock(sk);
412		atomic_inc(&sk->sk_drops);
413		goto discard_and_relse;
414	}
415
416	bh_unlock_sock(sk);
417out:
418	sock_put(sk);
419	return rc;
420discard_and_relse:
421	kfree_skb(skb);
422	goto out;
423}
424EXPORT_SYMBOL(sk_receive_skb);
425
426void sk_reset_txq(struct sock *sk)
427{
428	sk_tx_queue_clear(sk);
429}
430EXPORT_SYMBOL(sk_reset_txq);
431
432struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
433{
434	struct dst_entry *dst = __sk_dst_get(sk);
435
436	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
437		sk_tx_queue_clear(sk);
438		RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
439		dst_release(dst);
440		return NULL;
441	}
442
443	return dst;
444}
445EXPORT_SYMBOL(__sk_dst_check);
446
447struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
448{
449	struct dst_entry *dst = sk_dst_get(sk);
450
451	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
452		sk_dst_reset(sk);
453		dst_release(dst);
454		return NULL;
455	}
456
457	return dst;
458}
459EXPORT_SYMBOL(sk_dst_check);
460
461static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
462{
463	int ret = -ENOPROTOOPT;
464#ifdef CONFIG_NETDEVICES
465	struct net *net = sock_net(sk);
466	char devname[IFNAMSIZ];
467	int index;
468
469	/* Sorry... */
470	ret = -EPERM;
471	if (!capable(CAP_NET_RAW))
472		goto out;
473
474	ret = -EINVAL;
475	if (optlen < 0)
476		goto out;
477
478	/* Bind this socket to a particular device like "eth0",
479	 * as specified in the passed interface name. If the
480	 * name is "" or the option length is zero the socket
481	 * is not bound.
482	 */
483	if (optlen > IFNAMSIZ - 1)
484		optlen = IFNAMSIZ - 1;
485	memset(devname, 0, sizeof(devname));
486
487	ret = -EFAULT;
488	if (copy_from_user(devname, optval, optlen))
489		goto out;
490
491	index = 0;
492	if (devname[0] != '\0') {
493		struct net_device *dev;
494
495		rcu_read_lock();
496		dev = dev_get_by_name_rcu(net, devname);
497		if (dev)
498			index = dev->ifindex;
499		rcu_read_unlock();
500		ret = -ENODEV;
501		if (!dev)
502			goto out;
503	}
504
505	lock_sock(sk);
506	sk->sk_bound_dev_if = index;
507	sk_dst_reset(sk);
508	release_sock(sk);
509
510	ret = 0;
511
512out:
513#endif
514
515	return ret;
516}
517
518static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
519{
520	if (valbool)
521		sock_set_flag(sk, bit);
522	else
523		sock_reset_flag(sk, bit);
524}
525
526/*
527 *	This is meant for all protocols to use and covers goings on
528 *	at the socket level. Everything here is generic.
529 */
530
531int sock_setsockopt(struct socket *sock, int level, int optname,
532		    char __user *optval, unsigned int optlen)
533{
534	struct sock *sk = sock->sk;
535	int val;
536	int valbool;
537	struct linger ling;
538	int ret = 0;
539
540	/*
541	 *	Options without arguments
542	 */
543
544	if (optname == SO_BINDTODEVICE)
545		return sock_bindtodevice(sk, optval, optlen);
546
547	if (optlen < sizeof(int))
548		return -EINVAL;
549
550	if (get_user(val, (int __user *)optval))
551		return -EFAULT;
552
553	valbool = val ? 1 : 0;
554
555	lock_sock(sk);
556
557	switch (optname) {
558	case SO_DEBUG:
559		if (val && !capable(CAP_NET_ADMIN))
560			ret = -EACCES;
561		else
562			sock_valbool_flag(sk, SOCK_DBG, valbool);
563		break;
564	case SO_REUSEADDR:
565		sk->sk_reuse = valbool;
566		break;
567	case SO_TYPE:
568	case SO_PROTOCOL:
569	case SO_DOMAIN:
570	case SO_ERROR:
571		ret = -ENOPROTOOPT;
572		break;
573	case SO_DONTROUTE:
574		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
575		break;
576	case SO_BROADCAST:
577		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
578		break;
579	case SO_SNDBUF:
580		/* Don't error on this BSD doesn't and if you think
581		   about it this is right. Otherwise apps have to
582		   play 'guess the biggest size' games. RCVBUF/SNDBUF
583		   are treated in BSD as hints */
584
585		if (val > sysctl_wmem_max)
586			val = sysctl_wmem_max;
587set_sndbuf:
588		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
589		if ((val * 2) < SOCK_MIN_SNDBUF)
590			sk->sk_sndbuf = SOCK_MIN_SNDBUF;
591		else
592			sk->sk_sndbuf = val * 2;
593
594		/*
595		 *	Wake up sending tasks if we
596		 *	upped the value.
597		 */
598		sk->sk_write_space(sk);
599		break;
600
601	case SO_SNDBUFFORCE:
602		if (!capable(CAP_NET_ADMIN)) {
603			ret = -EPERM;
604			break;
605		}
606		goto set_sndbuf;
607
608	case SO_RCVBUF:
609		/* Don't error on this BSD doesn't and if you think
610		   about it this is right. Otherwise apps have to
611		   play 'guess the biggest size' games. RCVBUF/SNDBUF
612		   are treated in BSD as hints */
613
614		if (val > sysctl_rmem_max)
615			val = sysctl_rmem_max;
616set_rcvbuf:
617		sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
618		/*
619		 * We double it on the way in to account for
620		 * "struct sk_buff" etc. overhead.   Applications
621		 * assume that the SO_RCVBUF setting they make will
622		 * allow that much actual data to be received on that
623		 * socket.
624		 *
625		 * Applications are unaware that "struct sk_buff" and
626		 * other overheads allocate from the receive buffer
627		 * during socket buffer allocation.
628		 *
629		 * And after considering the possible alternatives,
630		 * returning the value we actually used in getsockopt
631		 * is the most desirable behavior.
632		 */
633		if ((val * 2) < SOCK_MIN_RCVBUF)
634			sk->sk_rcvbuf = SOCK_MIN_RCVBUF;
635		else
636			sk->sk_rcvbuf = val * 2;
637		break;
638
639	case SO_RCVBUFFORCE:
640		if (!capable(CAP_NET_ADMIN)) {
641			ret = -EPERM;
642			break;
643		}
644		goto set_rcvbuf;
645
646	case SO_KEEPALIVE:
647#ifdef CONFIG_INET
648		if (sk->sk_protocol == IPPROTO_TCP)
649			tcp_set_keepalive(sk, valbool);
650#endif
651		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
652		break;
653
654	case SO_OOBINLINE:
655		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
656		break;
657
658	case SO_NO_CHECK:
659		sk->sk_no_check = valbool;
660		break;
661
662	case SO_PRIORITY:
663		if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
664			sk->sk_priority = val;
665		else
666			ret = -EPERM;
667		break;
668
669	case SO_LINGER:
670		if (optlen < sizeof(ling)) {
671			ret = -EINVAL;	/* 1003.1g */
672			break;
673		}
674		if (copy_from_user(&ling, optval, sizeof(ling))) {
675			ret = -EFAULT;
676			break;
677		}
678		if (!ling.l_onoff)
679			sock_reset_flag(sk, SOCK_LINGER);
680		else {
681#if (BITS_PER_LONG == 32)
682			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
683				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
684			else
685#endif
686				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
687			sock_set_flag(sk, SOCK_LINGER);
688		}
689		break;
690
691	case SO_BSDCOMPAT:
692		sock_warn_obsolete_bsdism("setsockopt");
693		break;
694
695	case SO_PASSCRED:
696		if (valbool)
697			set_bit(SOCK_PASSCRED, &sock->flags);
698		else
699			clear_bit(SOCK_PASSCRED, &sock->flags);
700		break;
701
702	case SO_TIMESTAMP:
703	case SO_TIMESTAMPNS:
704		if (valbool)  {
705			if (optname == SO_TIMESTAMP)
706				sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
707			else
708				sock_set_flag(sk, SOCK_RCVTSTAMPNS);
709			sock_set_flag(sk, SOCK_RCVTSTAMP);
710			sock_enable_timestamp(sk, SOCK_TIMESTAMP);
711		} else {
712			sock_reset_flag(sk, SOCK_RCVTSTAMP);
713			sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
714		}
715		break;
716
717	case SO_TIMESTAMPING:
718		if (val & ~SOF_TIMESTAMPING_MASK) {
719			ret = -EINVAL;
720			break;
721		}
722		sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE,
723				  val & SOF_TIMESTAMPING_TX_HARDWARE);
724		sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE,
725				  val & SOF_TIMESTAMPING_TX_SOFTWARE);
726		sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE,
727				  val & SOF_TIMESTAMPING_RX_HARDWARE);
728		if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
729			sock_enable_timestamp(sk,
730					      SOCK_TIMESTAMPING_RX_SOFTWARE);
731		else
732			sock_disable_timestamp(sk,
733					       (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
734		sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE,
735				  val & SOF_TIMESTAMPING_SOFTWARE);
736		sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE,
737				  val & SOF_TIMESTAMPING_SYS_HARDWARE);
738		sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE,
739				  val & SOF_TIMESTAMPING_RAW_HARDWARE);
740		break;
741
742	case SO_RCVLOWAT:
743		if (val < 0)
744			val = INT_MAX;
745		sk->sk_rcvlowat = val ? : 1;
746		break;
747
748	case SO_RCVTIMEO:
749		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
750		break;
751
752	case SO_SNDTIMEO:
753		ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
754		break;
755
756	case SO_ATTACH_FILTER:
757		ret = -EINVAL;
758		if (optlen == sizeof(struct sock_fprog)) {
759			struct sock_fprog fprog;
760
761			ret = -EFAULT;
762			if (copy_from_user(&fprog, optval, sizeof(fprog)))
763				break;
764
765			ret = sk_attach_filter(&fprog, sk);
766		}
767		break;
768
769	case SO_DETACH_FILTER:
770		ret = sk_detach_filter(sk);
771		break;
772
773	case SO_PASSSEC:
774		if (valbool)
775			set_bit(SOCK_PASSSEC, &sock->flags);
776		else
777			clear_bit(SOCK_PASSSEC, &sock->flags);
778		break;
779	case SO_MARK:
780		if (!capable(CAP_NET_ADMIN))
781			ret = -EPERM;
782		else
783			sk->sk_mark = val;
784		break;
785
786		/* We implement the SO_SNDLOWAT etc to
787		   not be settable (1003.1g 5.3) */
788	case SO_RXQ_OVFL:
789		sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
790		break;
791
792	case SO_WIFI_STATUS:
793		sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
794		break;
795
796	default:
797		ret = -ENOPROTOOPT;
798		break;
799	}
800	release_sock(sk);
801	return ret;
802}
803EXPORT_SYMBOL(sock_setsockopt);
804
805
806void cred_to_ucred(struct pid *pid, const struct cred *cred,
807		   struct ucred *ucred)
808{
809	ucred->pid = pid_vnr(pid);
810	ucred->uid = ucred->gid = -1;
811	if (cred) {
812		struct user_namespace *current_ns = current_user_ns();
813
814		ucred->uid = user_ns_map_uid(current_ns, cred, cred->euid);
815		ucred->gid = user_ns_map_gid(current_ns, cred, cred->egid);
816	}
817}
818EXPORT_SYMBOL_GPL(cred_to_ucred);
819
820int sock_getsockopt(struct socket *sock, int level, int optname,
821		    char __user *optval, int __user *optlen)
822{
823	struct sock *sk = sock->sk;
824
825	union {
826		int val;
827		struct linger ling;
828		struct timeval tm;
829	} v;
830
831	int lv = sizeof(int);
832	int len;
833
834	if (get_user(len, optlen))
835		return -EFAULT;
836	if (len < 0)
837		return -EINVAL;
838
839	memset(&v, 0, sizeof(v));
840
841	switch (optname) {
842	case SO_DEBUG:
843		v.val = sock_flag(sk, SOCK_DBG);
844		break;
845
846	case SO_DONTROUTE:
847		v.val = sock_flag(sk, SOCK_LOCALROUTE);
848		break;
849
850	case SO_BROADCAST:
851		v.val = !!sock_flag(sk, SOCK_BROADCAST);
852		break;
853
854	case SO_SNDBUF:
855		v.val = sk->sk_sndbuf;
856		break;
857
858	case SO_RCVBUF:
859		v.val = sk->sk_rcvbuf;
860		break;
861
862	case SO_REUSEADDR:
863		v.val = sk->sk_reuse;
864		break;
865
866	case SO_KEEPALIVE:
867		v.val = !!sock_flag(sk, SOCK_KEEPOPEN);
868		break;
869
870	case SO_TYPE:
871		v.val = sk->sk_type;
872		break;
873
874	case SO_PROTOCOL:
875		v.val = sk->sk_protocol;
876		break;
877
878	case SO_DOMAIN:
879		v.val = sk->sk_family;
880		break;
881
882	case SO_ERROR:
883		v.val = -sock_error(sk);
884		if (v.val == 0)
885			v.val = xchg(&sk->sk_err_soft, 0);
886		break;
887
888	case SO_OOBINLINE:
889		v.val = !!sock_flag(sk, SOCK_URGINLINE);
890		break;
891
892	case SO_NO_CHECK:
893		v.val = sk->sk_no_check;
894		break;
895
896	case SO_PRIORITY:
897		v.val = sk->sk_priority;
898		break;
899
900	case SO_LINGER:
901		lv		= sizeof(v.ling);
902		v.ling.l_onoff	= !!sock_flag(sk, SOCK_LINGER);
903		v.ling.l_linger	= sk->sk_lingertime / HZ;
904		break;
905
906	case SO_BSDCOMPAT:
907		sock_warn_obsolete_bsdism("getsockopt");
908		break;
909
910	case SO_TIMESTAMP:
911		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
912				!sock_flag(sk, SOCK_RCVTSTAMPNS);
913		break;
914
915	case SO_TIMESTAMPNS:
916		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
917		break;
918
919	case SO_TIMESTAMPING:
920		v.val = 0;
921		if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
922			v.val |= SOF_TIMESTAMPING_TX_HARDWARE;
923		if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
924			v.val |= SOF_TIMESTAMPING_TX_SOFTWARE;
925		if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE))
926			v.val |= SOF_TIMESTAMPING_RX_HARDWARE;
927		if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE))
928			v.val |= SOF_TIMESTAMPING_RX_SOFTWARE;
929		if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE))
930			v.val |= SOF_TIMESTAMPING_SOFTWARE;
931		if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))
932			v.val |= SOF_TIMESTAMPING_SYS_HARDWARE;
933		if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE))
934			v.val |= SOF_TIMESTAMPING_RAW_HARDWARE;
935		break;
936
937	case SO_RCVTIMEO:
938		lv = sizeof(struct timeval);
939		if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
940			v.tm.tv_sec = 0;
941			v.tm.tv_usec = 0;
942		} else {
943			v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
944			v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
945		}
946		break;
947
948	case SO_SNDTIMEO:
949		lv = sizeof(struct timeval);
950		if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
951			v.tm.tv_sec = 0;
952			v.tm.tv_usec = 0;
953		} else {
954			v.tm.tv_sec = sk->sk_sndtimeo / HZ;
955			v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
956		}
957		break;
958
959	case SO_RCVLOWAT:
960		v.val = sk->sk_rcvlowat;
961		break;
962
963	case SO_SNDLOWAT:
964		v.val = 1;
965		break;
966
967	case SO_PASSCRED:
968		v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0;
969		break;
970
971	case SO_PEERCRED:
972	{
973		struct ucred peercred;
974		if (len > sizeof(peercred))
975			len = sizeof(peercred);
976		cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
977		if (copy_to_user(optval, &peercred, len))
978			return -EFAULT;
979		goto lenout;
980	}
981
982	case SO_PEERNAME:
983	{
984		char address[128];
985
986		if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
987			return -ENOTCONN;
988		if (lv < len)
989			return -EINVAL;
990		if (copy_to_user(optval, address, len))
991			return -EFAULT;
992		goto lenout;
993	}
994
995	/* Dubious BSD thing... Probably nobody even uses it, but
996	 * the UNIX standard wants it for whatever reason... -DaveM
997	 */
998	case SO_ACCEPTCONN:
999		v.val = sk->sk_state == TCP_LISTEN;
1000		break;
1001
1002	case SO_PASSSEC:
1003		v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0;
1004		break;
1005
1006	case SO_PEERSEC:
1007		return security_socket_getpeersec_stream(sock, optval, optlen, len);
1008
1009	case SO_MARK:
1010		v.val = sk->sk_mark;
1011		break;
1012
1013	case SO_RXQ_OVFL:
1014		v.val = !!sock_flag(sk, SOCK_RXQ_OVFL);
1015		break;
1016
1017	case SO_WIFI_STATUS:
1018		v.val = !!sock_flag(sk, SOCK_WIFI_STATUS);
1019		break;
1020
1021	default:
1022		return -ENOPROTOOPT;
1023	}
1024
1025	if (len > lv)
1026		len = lv;
1027	if (copy_to_user(optval, &v, len))
1028		return -EFAULT;
1029lenout:
1030	if (put_user(len, optlen))
1031		return -EFAULT;
1032	return 0;
1033}
1034
1035/*
1036 * Initialize an sk_lock.
1037 *
1038 * (We also register the sk_lock with the lock validator.)
1039 */
1040static inline void sock_lock_init(struct sock *sk)
1041{
1042	sock_lock_init_class_and_name(sk,
1043			af_family_slock_key_strings[sk->sk_family],
1044			af_family_slock_keys + sk->sk_family,
1045			af_family_key_strings[sk->sk_family],
1046			af_family_keys + sk->sk_family);
1047}
1048
1049/*
1050 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1051 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1052 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1053 */
1054static void sock_copy(struct sock *nsk, const struct sock *osk)
1055{
1056#ifdef CONFIG_SECURITY_NETWORK
1057	void *sptr = nsk->sk_security;
1058#endif
1059	memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1060
1061	memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1062	       osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1063
1064#ifdef CONFIG_SECURITY_NETWORK
1065	nsk->sk_security = sptr;
1066	security_sk_clone(osk, nsk);
1067#endif
1068}
1069
1070/*
1071 * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
1072 * un-modified. Special care is taken when initializing object to zero.
1073 */
1074static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1075{
1076	if (offsetof(struct sock, sk_node.next) != 0)
1077		memset(sk, 0, offsetof(struct sock, sk_node.next));
1078	memset(&sk->sk_node.pprev, 0,
1079	       size - offsetof(struct sock, sk_node.pprev));
1080}
1081
1082void sk_prot_clear_portaddr_nulls(struct sock *sk, int size)
1083{
1084	unsigned long nulls1, nulls2;
1085
1086	nulls1 = offsetof(struct sock, __sk_common.skc_node.next);
1087	nulls2 = offsetof(struct sock, __sk_common.skc_portaddr_node.next);
1088	if (nulls1 > nulls2)
1089		swap(nulls1, nulls2);
1090
1091	if (nulls1 != 0)
1092		memset((char *)sk, 0, nulls1);
1093	memset((char *)sk + nulls1 + sizeof(void *), 0,
1094	       nulls2 - nulls1 - sizeof(void *));
1095	memset((char *)sk + nulls2 + sizeof(void *), 0,
1096	       size - nulls2 - sizeof(void *));
1097}
1098EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls);
1099
1100static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1101		int family)
1102{
1103	struct sock *sk;
1104	struct kmem_cache *slab;
1105
1106	slab = prot->slab;
1107	if (slab != NULL) {
1108		sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1109		if (!sk)
1110			return sk;
1111		if (priority & __GFP_ZERO) {
1112			if (prot->clear_sk)
1113				prot->clear_sk(sk, prot->obj_size);
1114			else
1115				sk_prot_clear_nulls(sk, prot->obj_size);
1116		}
1117	} else
1118		sk = kmalloc(prot->obj_size, priority);
1119
1120	if (sk != NULL) {
1121		kmemcheck_annotate_bitfield(sk, flags);
1122
1123		if (security_sk_alloc(sk, family, priority))
1124			goto out_free;
1125
1126		if (!try_module_get(prot->owner))
1127			goto out_free_sec;
1128		sk_tx_queue_clear(sk);
1129	}
1130
1131	return sk;
1132
1133out_free_sec:
1134	security_sk_free(sk);
1135out_free:
1136	if (slab != NULL)
1137		kmem_cache_free(slab, sk);
1138	else
1139		kfree(sk);
1140	return NULL;
1141}
1142
1143static void sk_prot_free(struct proto *prot, struct sock *sk)
1144{
1145	struct kmem_cache *slab;
1146	struct module *owner;
1147
1148	owner = prot->owner;
1149	slab = prot->slab;
1150
1151	security_sk_free(sk);
1152	if (slab != NULL)
1153		kmem_cache_free(slab, sk);
1154	else
1155		kfree(sk);
1156	module_put(owner);
1157}
1158
1159#ifdef CONFIG_CGROUPS
1160void sock_update_classid(struct sock *sk)
1161{
1162	u32 classid;
1163
1164	rcu_read_lock();  /* doing current task, which cannot vanish. */
1165	classid = task_cls_classid(current);
1166	rcu_read_unlock();
1167	if (classid && classid != sk->sk_classid)
1168		sk->sk_classid = classid;
1169}
1170EXPORT_SYMBOL(sock_update_classid);
1171
1172void sock_update_netprioidx(struct sock *sk)
1173{
1174	if (in_interrupt())
1175		return;
1176
1177	sk->sk_cgrp_prioidx = task_netprioidx(current);
1178}
1179EXPORT_SYMBOL_GPL(sock_update_netprioidx);
1180#endif
1181
1182/**
1183 *	sk_alloc - All socket objects are allocated here
1184 *	@net: the applicable net namespace
1185 *	@family: protocol family
1186 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1187 *	@prot: struct proto associated with this new sock instance
1188 */
1189struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1190		      struct proto *prot)
1191{
1192	struct sock *sk;
1193
1194	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1195	if (sk) {
1196		sk->sk_family = family;
1197		/*
1198		 * See comment in struct sock definition to understand
1199		 * why we need sk_prot_creator -acme
1200		 */
1201		sk->sk_prot = sk->sk_prot_creator = prot;
1202		sock_lock_init(sk);
1203		sock_net_set(sk, get_net(net));
1204		atomic_set(&sk->sk_wmem_alloc, 1);
1205
1206		sock_update_classid(sk);
1207		sock_update_netprioidx(sk);
1208	}
1209
1210	return sk;
1211}
1212EXPORT_SYMBOL(sk_alloc);
1213
1214static void __sk_free(struct sock *sk)
1215{
1216	struct sk_filter *filter;
1217
1218	if (sk->sk_destruct)
1219		sk->sk_destruct(sk);
1220
1221	filter = rcu_dereference_check(sk->sk_filter,
1222				       atomic_read(&sk->sk_wmem_alloc) == 0);
1223	if (filter) {
1224		sk_filter_uncharge(sk, filter);
1225		RCU_INIT_POINTER(sk->sk_filter, NULL);
1226	}
1227
1228	sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1229
1230	if (atomic_read(&sk->sk_omem_alloc))
1231		printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n",
1232		       __func__, atomic_read(&sk->sk_omem_alloc));
1233
1234	if (sk->sk_peer_cred)
1235		put_cred(sk->sk_peer_cred);
1236	put_pid(sk->sk_peer_pid);
1237	put_net(sock_net(sk));
1238	sk_prot_free(sk->sk_prot_creator, sk);
1239}
1240
1241void sk_free(struct sock *sk)
1242{
1243	/*
1244	 * We subtract one from sk_wmem_alloc and can know if
1245	 * some packets are still in some tx queue.
1246	 * If not null, sock_wfree() will call __sk_free(sk) later
1247	 */
1248	if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1249		__sk_free(sk);
1250}
1251EXPORT_SYMBOL(sk_free);
1252
1253/*
1254 * Last sock_put should drop reference to sk->sk_net. It has already
1255 * been dropped in sk_change_net. Taking reference to stopping namespace
1256 * is not an option.
1257 * Take reference to a socket to remove it from hash _alive_ and after that
1258 * destroy it in the context of init_net.
1259 */
1260void sk_release_kernel(struct sock *sk)
1261{
1262	if (sk == NULL || sk->sk_socket == NULL)
1263		return;
1264
1265	sock_hold(sk);
1266	sock_release(sk->sk_socket);
1267	release_net(sock_net(sk));
1268	sock_net_set(sk, get_net(&init_net));
1269	sock_put(sk);
1270}
1271EXPORT_SYMBOL(sk_release_kernel);
1272
1273static void sk_update_clone(const struct sock *sk, struct sock *newsk)
1274{
1275	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1276		sock_update_memcg(newsk);
1277}
1278
1279/**
1280 *	sk_clone_lock - clone a socket, and lock its clone
1281 *	@sk: the socket to clone
1282 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1283 *
1284 *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1285 */
1286struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1287{
1288	struct sock *newsk;
1289
1290	newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1291	if (newsk != NULL) {
1292		struct sk_filter *filter;
1293
1294		sock_copy(newsk, sk);
1295
1296		/* SANITY */
1297		get_net(sock_net(newsk));
1298		sk_node_init(&newsk->sk_node);
1299		sock_lock_init(newsk);
1300		bh_lock_sock(newsk);
1301		newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
1302		newsk->sk_backlog.len = 0;
1303
1304		atomic_set(&newsk->sk_rmem_alloc, 0);
1305		/*
1306		 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1307		 */
1308		atomic_set(&newsk->sk_wmem_alloc, 1);
1309		atomic_set(&newsk->sk_omem_alloc, 0);
1310		skb_queue_head_init(&newsk->sk_receive_queue);
1311		skb_queue_head_init(&newsk->sk_write_queue);
1312#ifdef CONFIG_NET_DMA
1313		skb_queue_head_init(&newsk->sk_async_wait_queue);
1314#endif
1315
1316		spin_lock_init(&newsk->sk_dst_lock);
1317		rwlock_init(&newsk->sk_callback_lock);
1318		lockdep_set_class_and_name(&newsk->sk_callback_lock,
1319				af_callback_keys + newsk->sk_family,
1320				af_family_clock_key_strings[newsk->sk_family]);
1321
1322		newsk->sk_dst_cache	= NULL;
1323		newsk->sk_wmem_queued	= 0;
1324		newsk->sk_forward_alloc = 0;
1325		newsk->sk_send_head	= NULL;
1326		newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1327
1328		sock_reset_flag(newsk, SOCK_DONE);
1329		skb_queue_head_init(&newsk->sk_error_queue);
1330
1331		filter = rcu_dereference_protected(newsk->sk_filter, 1);
1332		if (filter != NULL)
1333			sk_filter_charge(newsk, filter);
1334
1335		if (unlikely(xfrm_sk_clone_policy(newsk))) {
1336			/* It is still raw copy of parent, so invalidate
1337			 * destructor and make plain sk_free() */
1338			newsk->sk_destruct = NULL;
1339			bh_unlock_sock(newsk);
1340			sk_free(newsk);
1341			newsk = NULL;
1342			goto out;
1343		}
1344
1345		newsk->sk_err	   = 0;
1346		newsk->sk_priority = 0;
1347		/*
1348		 * Before updating sk_refcnt, we must commit prior changes to memory
1349		 * (Documentation/RCU/rculist_nulls.txt for details)
1350		 */
1351		smp_wmb();
1352		atomic_set(&newsk->sk_refcnt, 2);
1353
1354		/*
1355		 * Increment the counter in the same struct proto as the master
1356		 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1357		 * is the same as sk->sk_prot->socks, as this field was copied
1358		 * with memcpy).
1359		 *
1360		 * This _changes_ the previous behaviour, where
1361		 * tcp_create_openreq_child always was incrementing the
1362		 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1363		 * to be taken into account in all callers. -acme
1364		 */
1365		sk_refcnt_debug_inc(newsk);
1366		sk_set_socket(newsk, NULL);
1367		newsk->sk_wq = NULL;
1368
1369		sk_update_clone(sk, newsk);
1370
1371		if (newsk->sk_prot->sockets_allocated)
1372			sk_sockets_allocated_inc(newsk);
1373
1374		if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1375			net_enable_timestamp();
1376	}
1377out:
1378	return newsk;
1379}
1380EXPORT_SYMBOL_GPL(sk_clone_lock);
1381
1382void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1383{
1384	__sk_dst_set(sk, dst);
1385	sk->sk_route_caps = dst->dev->features;
1386	if (sk->sk_route_caps & NETIF_F_GSO)
1387		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1388	sk->sk_route_caps &= ~sk->sk_route_nocaps;
1389	if (sk_can_gso(sk)) {
1390		if (dst->header_len) {
1391			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1392		} else {
1393			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1394			sk->sk_gso_max_size = dst->dev->gso_max_size;
1395		}
1396	}
1397}
1398EXPORT_SYMBOL_GPL(sk_setup_caps);
1399
1400void __init sk_init(void)
1401{
1402	if (totalram_pages <= 4096) {
1403		sysctl_wmem_max = 32767;
1404		sysctl_rmem_max = 32767;
1405		sysctl_wmem_default = 32767;
1406		sysctl_rmem_default = 32767;
1407	} else if (totalram_pages >= 131072) {
1408		sysctl_wmem_max = 131071;
1409		sysctl_rmem_max = 131071;
1410	}
1411}
1412
1413/*
1414 *	Simple resource managers for sockets.
1415 */
1416
1417
1418/*
1419 * Write buffer destructor automatically called from kfree_skb.
1420 */
1421void sock_wfree(struct sk_buff *skb)
1422{
1423	struct sock *sk = skb->sk;
1424	unsigned int len = skb->truesize;
1425
1426	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1427		/*
1428		 * Keep a reference on sk_wmem_alloc, this will be released
1429		 * after sk_write_space() call
1430		 */
1431		atomic_sub(len - 1, &sk->sk_wmem_alloc);
1432		sk->sk_write_space(sk);
1433		len = 1;
1434	}
1435	/*
1436	 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1437	 * could not do because of in-flight packets
1438	 */
1439	if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1440		__sk_free(sk);
1441}
1442EXPORT_SYMBOL(sock_wfree);
1443
1444/*
1445 * Read buffer destructor automatically called from kfree_skb.
1446 */
1447void sock_rfree(struct sk_buff *skb)
1448{
1449	struct sock *sk = skb->sk;
1450	unsigned int len = skb->truesize;
1451
1452	atomic_sub(len, &sk->sk_rmem_alloc);
1453	sk_mem_uncharge(sk, len);
1454}
1455EXPORT_SYMBOL(sock_rfree);
1456
1457
1458int sock_i_uid(struct sock *sk)
1459{
1460	int uid;
1461
1462	read_lock_bh(&sk->sk_callback_lock);
1463	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1464	read_unlock_bh(&sk->sk_callback_lock);
1465	return uid;
1466}
1467EXPORT_SYMBOL(sock_i_uid);
1468
1469unsigned long sock_i_ino(struct sock *sk)
1470{
1471	unsigned long ino;
1472
1473	read_lock_bh(&sk->sk_callback_lock);
1474	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1475	read_unlock_bh(&sk->sk_callback_lock);
1476	return ino;
1477}
1478EXPORT_SYMBOL(sock_i_ino);
1479
1480/*
1481 * Allocate a skb from the socket's send buffer.
1482 */
1483struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1484			     gfp_t priority)
1485{
1486	if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1487		struct sk_buff *skb = alloc_skb(size, priority);
1488		if (skb) {
1489			skb_set_owner_w(skb, sk);
1490			return skb;
1491		}
1492	}
1493	return NULL;
1494}
1495EXPORT_SYMBOL(sock_wmalloc);
1496
1497/*
1498 * Allocate a skb from the socket's receive buffer.
1499 */
1500struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1501			     gfp_t priority)
1502{
1503	if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1504		struct sk_buff *skb = alloc_skb(size, priority);
1505		if (skb) {
1506			skb_set_owner_r(skb, sk);
1507			return skb;
1508		}
1509	}
1510	return NULL;
1511}
1512
1513/*
1514 * Allocate a memory block from the socket's option memory buffer.
1515 */
1516void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1517{
1518	if ((unsigned)size <= sysctl_optmem_max &&
1519	    atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1520		void *mem;
1521		/* First do the add, to avoid the race if kmalloc
1522		 * might sleep.
1523		 */
1524		atomic_add(size, &sk->sk_omem_alloc);
1525		mem = kmalloc(size, priority);
1526		if (mem)
1527			return mem;
1528		atomic_sub(size, &sk->sk_omem_alloc);
1529	}
1530	return NULL;
1531}
1532EXPORT_SYMBOL(sock_kmalloc);
1533
1534/*
1535 * Free an option memory block.
1536 */
1537void sock_kfree_s(struct sock *sk, void *mem, int size)
1538{
1539	kfree(mem);
1540	atomic_sub(size, &sk->sk_omem_alloc);
1541}
1542EXPORT_SYMBOL(sock_kfree_s);
1543
1544/* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1545   I think, these locks should be removed for datagram sockets.
1546 */
1547static long sock_wait_for_wmem(struct sock *sk, long timeo)
1548{
1549	DEFINE_WAIT(wait);
1550
1551	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1552	for (;;) {
1553		if (!timeo)
1554			break;
1555		if (signal_pending(current))
1556			break;
1557		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1558		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1559		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1560			break;
1561		if (sk->sk_shutdown & SEND_SHUTDOWN)
1562			break;
1563		if (sk->sk_err)
1564			break;
1565		timeo = schedule_timeout(timeo);
1566	}
1567	finish_wait(sk_sleep(sk), &wait);
1568	return timeo;
1569}
1570
1571
1572/*
1573 *	Generic send/receive buffer handlers
1574 */
1575
1576struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1577				     unsigned long data_len, int noblock,
1578				     int *errcode)
1579{
1580	struct sk_buff *skb;
1581	gfp_t gfp_mask;
1582	long timeo;
1583	int err;
1584
1585	gfp_mask = sk->sk_allocation;
1586	if (gfp_mask & __GFP_WAIT)
1587		gfp_mask |= __GFP_REPEAT;
1588
1589	timeo = sock_sndtimeo(sk, noblock);
1590	while (1) {
1591		err = sock_error(sk);
1592		if (err != 0)
1593			goto failure;
1594
1595		err = -EPIPE;
1596		if (sk->sk_shutdown & SEND_SHUTDOWN)
1597			goto failure;
1598
1599		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1600			skb = alloc_skb(header_len, gfp_mask);
1601			if (skb) {
1602				int npages;
1603				int i;
1604
1605				/* No pages, we're done... */
1606				if (!data_len)
1607					break;
1608
1609				npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1610				skb->truesize += data_len;
1611				skb_shinfo(skb)->nr_frags = npages;
1612				for (i = 0; i < npages; i++) {
1613					struct page *page;
1614
1615					page = alloc_pages(sk->sk_allocation, 0);
1616					if (!page) {
1617						err = -ENOBUFS;
1618						skb_shinfo(skb)->nr_frags = i;
1619						kfree_skb(skb);
1620						goto failure;
1621					}
1622
1623					__skb_fill_page_desc(skb, i,
1624							page, 0,
1625							(data_len >= PAGE_SIZE ?
1626							 PAGE_SIZE :
1627							 data_len));
1628					data_len -= PAGE_SIZE;
1629				}
1630
1631				/* Full success... */
1632				break;
1633			}
1634			err = -ENOBUFS;
1635			goto failure;
1636		}
1637		set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1638		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1639		err = -EAGAIN;
1640		if (!timeo)
1641			goto failure;
1642		if (signal_pending(current))
1643			goto interrupted;
1644		timeo = sock_wait_for_wmem(sk, timeo);
1645	}
1646
1647	skb_set_owner_w(skb, sk);
1648	return skb;
1649
1650interrupted:
1651	err = sock_intr_errno(timeo);
1652failure:
1653	*errcode = err;
1654	return NULL;
1655}
1656EXPORT_SYMBOL(sock_alloc_send_pskb);
1657
1658struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1659				    int noblock, int *errcode)
1660{
1661	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1662}
1663EXPORT_SYMBOL(sock_alloc_send_skb);
1664
1665static void __lock_sock(struct sock *sk)
1666	__releases(&sk->sk_lock.slock)
1667	__acquires(&sk->sk_lock.slock)
1668{
1669	DEFINE_WAIT(wait);
1670
1671	for (;;) {
1672		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1673					TASK_UNINTERRUPTIBLE);
1674		spin_unlock_bh(&sk->sk_lock.slock);
1675		schedule();
1676		spin_lock_bh(&sk->sk_lock.slock);
1677		if (!sock_owned_by_user(sk))
1678			break;
1679	}
1680	finish_wait(&sk->sk_lock.wq, &wait);
1681}
1682
1683static void __release_sock(struct sock *sk)
1684	__releases(&sk->sk_lock.slock)
1685	__acquires(&sk->sk_lock.slock)
1686{
1687	struct sk_buff *skb = sk->sk_backlog.head;
1688
1689	do {
1690		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1691		bh_unlock_sock(sk);
1692
1693		do {
1694			struct sk_buff *next = skb->next;
1695
1696			WARN_ON_ONCE(skb_dst_is_noref(skb));
1697			skb->next = NULL;
1698			sk_backlog_rcv(sk, skb);
1699
1700			/*
1701			 * We are in process context here with softirqs
1702			 * disabled, use cond_resched_softirq() to preempt.
1703			 * This is safe to do because we've taken the backlog
1704			 * queue private:
1705			 */
1706			cond_resched_softirq();
1707
1708			skb = next;
1709		} while (skb != NULL);
1710
1711		bh_lock_sock(sk);
1712	} while ((skb = sk->sk_backlog.head) != NULL);
1713
1714	/*
1715	 * Doing the zeroing here guarantee we can not loop forever
1716	 * while a wild producer attempts to flood us.
1717	 */
1718	sk->sk_backlog.len = 0;
1719}
1720
1721/**
1722 * sk_wait_data - wait for data to arrive at sk_receive_queue
1723 * @sk:    sock to wait on
1724 * @timeo: for how long
1725 *
1726 * Now socket state including sk->sk_err is changed only under lock,
1727 * hence we may omit checks after joining wait queue.
1728 * We check receive queue before schedule() only as optimization;
1729 * it is very likely that release_sock() added new data.
1730 */
1731int sk_wait_data(struct sock *sk, long *timeo)
1732{
1733	int rc;
1734	DEFINE_WAIT(wait);
1735
1736	prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1737	set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1738	rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1739	clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1740	finish_wait(sk_sleep(sk), &wait);
1741	return rc;
1742}
1743EXPORT_SYMBOL(sk_wait_data);
1744
1745/**
1746 *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1747 *	@sk: socket
1748 *	@size: memory size to allocate
1749 *	@kind: allocation type
1750 *
1751 *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1752 *	rmem allocation. This function assumes that protocols which have
1753 *	memory_pressure use sk_wmem_queued as write buffer accounting.
1754 */
1755int __sk_mem_schedule(struct sock *sk, int size, int kind)
1756{
1757	struct proto *prot = sk->sk_prot;
1758	int amt = sk_mem_pages(size);
1759	long allocated;
1760	int parent_status = UNDER_LIMIT;
1761
1762	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
1763
1764	allocated = sk_memory_allocated_add(sk, amt, &parent_status);
1765
1766	/* Under limit. */
1767	if (parent_status == UNDER_LIMIT &&
1768			allocated <= sk_prot_mem_limits(sk, 0)) {
1769		sk_leave_memory_pressure(sk);
1770		return 1;
1771	}
1772
1773	/* Under pressure. (we or our parents) */
1774	if ((parent_status > SOFT_LIMIT) ||
1775			allocated > sk_prot_mem_limits(sk, 1))
1776		sk_enter_memory_pressure(sk);
1777
1778	/* Over hard limit (we or our parents) */
1779	if ((parent_status == OVER_LIMIT) ||
1780			(allocated > sk_prot_mem_limits(sk, 2)))
1781		goto suppress_allocation;
1782
1783	/* guarantee minimum buffer size under pressure */
1784	if (kind == SK_MEM_RECV) {
1785		if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
1786			return 1;
1787
1788	} else { /* SK_MEM_SEND */
1789		if (sk->sk_type == SOCK_STREAM) {
1790			if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
1791				return 1;
1792		} else if (atomic_read(&sk->sk_wmem_alloc) <
1793			   prot->sysctl_wmem[0])
1794				return 1;
1795	}
1796
1797	if (sk_has_memory_pressure(sk)) {
1798		int alloc;
1799
1800		if (!sk_under_memory_pressure(sk))
1801			return 1;
1802		alloc = sk_sockets_allocated_read_positive(sk);
1803		if (sk_prot_mem_limits(sk, 2) > alloc *
1804		    sk_mem_pages(sk->sk_wmem_queued +
1805				 atomic_read(&sk->sk_rmem_alloc) +
1806				 sk->sk_forward_alloc))
1807			return 1;
1808	}
1809
1810suppress_allocation:
1811
1812	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
1813		sk_stream_moderate_sndbuf(sk);
1814
1815		/* Fail only if socket is _under_ its sndbuf.
1816		 * In this case we cannot block, so that we have to fail.
1817		 */
1818		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
1819			return 1;
1820	}
1821
1822	trace_sock_exceed_buf_limit(sk, prot, allocated);
1823
1824	/* Alas. Undo changes. */
1825	sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
1826
1827	sk_memory_allocated_sub(sk, amt);
1828
1829	return 0;
1830}
1831EXPORT_SYMBOL(__sk_mem_schedule);
1832
1833/**
1834 *	__sk_reclaim - reclaim memory_allocated
1835 *	@sk: socket
1836 */
1837void __sk_mem_reclaim(struct sock *sk)
1838{
1839	sk_memory_allocated_sub(sk,
1840				sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT);
1841	sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
1842
1843	if (sk_under_memory_pressure(sk) &&
1844	    (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
1845		sk_leave_memory_pressure(sk);
1846}
1847EXPORT_SYMBOL(__sk_mem_reclaim);
1848
1849
1850/*
1851 * Set of default routines for initialising struct proto_ops when
1852 * the protocol does not support a particular function. In certain
1853 * cases where it makes no sense for a protocol to have a "do nothing"
1854 * function, some default processing is provided.
1855 */
1856
1857int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1858{
1859	return -EOPNOTSUPP;
1860}
1861EXPORT_SYMBOL(sock_no_bind);
1862
1863int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1864		    int len, int flags)
1865{
1866	return -EOPNOTSUPP;
1867}
1868EXPORT_SYMBOL(sock_no_connect);
1869
1870int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1871{
1872	return -EOPNOTSUPP;
1873}
1874EXPORT_SYMBOL(sock_no_socketpair);
1875
1876int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1877{
1878	return -EOPNOTSUPP;
1879}
1880EXPORT_SYMBOL(sock_no_accept);
1881
1882int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1883		    int *len, int peer)
1884{
1885	return -EOPNOTSUPP;
1886}
1887EXPORT_SYMBOL(sock_no_getname);
1888
1889unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
1890{
1891	return 0;
1892}
1893EXPORT_SYMBOL(sock_no_poll);
1894
1895int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1896{
1897	return -EOPNOTSUPP;
1898}
1899EXPORT_SYMBOL(sock_no_ioctl);
1900
1901int sock_no_listen(struct socket *sock, int backlog)
1902{
1903	return -EOPNOTSUPP;
1904}
1905EXPORT_SYMBOL(sock_no_listen);
1906
1907int sock_no_shutdown(struct socket *sock, int how)
1908{
1909	return -EOPNOTSUPP;
1910}
1911EXPORT_SYMBOL(sock_no_shutdown);
1912
1913int sock_no_setsockopt(struct socket *sock, int level, int optname,
1914		    char __user *optval, unsigned int optlen)
1915{
1916	return -EOPNOTSUPP;
1917}
1918EXPORT_SYMBOL(sock_no_setsockopt);
1919
1920int sock_no_getsockopt(struct socket *sock, int level, int optname,
1921		    char __user *optval, int __user *optlen)
1922{
1923	return -EOPNOTSUPP;
1924}
1925EXPORT_SYMBOL(sock_no_getsockopt);
1926
1927int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1928		    size_t len)
1929{
1930	return -EOPNOTSUPP;
1931}
1932EXPORT_SYMBOL(sock_no_sendmsg);
1933
1934int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1935		    size_t len, int flags)
1936{
1937	return -EOPNOTSUPP;
1938}
1939EXPORT_SYMBOL(sock_no_recvmsg);
1940
1941int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
1942{
1943	/* Mirror missing mmap method error code */
1944	return -ENODEV;
1945}
1946EXPORT_SYMBOL(sock_no_mmap);
1947
1948ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
1949{
1950	ssize_t res;
1951	struct msghdr msg = {.msg_flags = flags};
1952	struct kvec iov;
1953	char *kaddr = kmap(page);
1954	iov.iov_base = kaddr + offset;
1955	iov.iov_len = size;
1956	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
1957	kunmap(page);
1958	return res;
1959}
1960EXPORT_SYMBOL(sock_no_sendpage);
1961
1962/*
1963 *	Default Socket Callbacks
1964 */
1965
1966static void sock_def_wakeup(struct sock *sk)
1967{
1968	struct socket_wq *wq;
1969
1970	rcu_read_lock();
1971	wq = rcu_dereference(sk->sk_wq);
1972	if (wq_has_sleeper(wq))
1973		wake_up_interruptible_all(&wq->wait);
1974	rcu_read_unlock();
1975}
1976
1977static void sock_def_error_report(struct sock *sk)
1978{
1979	struct socket_wq *wq;
1980
1981	rcu_read_lock();
1982	wq = rcu_dereference(sk->sk_wq);
1983	if (wq_has_sleeper(wq))
1984		wake_up_interruptible_poll(&wq->wait, POLLERR);
1985	sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
1986	rcu_read_unlock();
1987}
1988
1989static void sock_def_readable(struct sock *sk, int len)
1990{
1991	struct socket_wq *wq;
1992
1993	rcu_read_lock();
1994	wq = rcu_dereference(sk->sk_wq);
1995	if (wq_has_sleeper(wq))
1996		wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
1997						POLLRDNORM | POLLRDBAND);
1998	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
1999	rcu_read_unlock();
2000}
2001
2002static void sock_def_write_space(struct sock *sk)
2003{
2004	struct socket_wq *wq;
2005
2006	rcu_read_lock();
2007
2008	/* Do not wake up a writer until he can make "significant"
2009	 * progress.  --DaveM
2010	 */
2011	if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
2012		wq = rcu_dereference(sk->sk_wq);
2013		if (wq_has_sleeper(wq))
2014			wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
2015						POLLWRNORM | POLLWRBAND);
2016
2017		/* Should agree with poll, otherwise some programs break */
2018		if (sock_writeable(sk))
2019			sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2020	}
2021
2022	rcu_read_unlock();
2023}
2024
2025static void sock_def_destruct(struct sock *sk)
2026{
2027	kfree(sk->sk_protinfo);
2028}
2029
2030void sk_send_sigurg(struct sock *sk)
2031{
2032	if (sk->sk_socket && sk->sk_socket->file)
2033		if (send_sigurg(&sk->sk_socket->file->f_owner))
2034			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2035}
2036EXPORT_SYMBOL(sk_send_sigurg);
2037
2038void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2039		    unsigned long expires)
2040{
2041	if (!mod_timer(timer, expires))
2042		sock_hold(sk);
2043}
2044EXPORT_SYMBOL(sk_reset_timer);
2045
2046void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2047{
2048	if (timer_pending(timer) && del_timer(timer))
2049		__sock_put(sk);
2050}
2051EXPORT_SYMBOL(sk_stop_timer);
2052
2053void sock_init_data(struct socket *sock, struct sock *sk)
2054{
2055	skb_queue_head_init(&sk->sk_receive_queue);
2056	skb_queue_head_init(&sk->sk_write_queue);
2057	skb_queue_head_init(&sk->sk_error_queue);
2058#ifdef CONFIG_NET_DMA
2059	skb_queue_head_init(&sk->sk_async_wait_queue);
2060#endif
2061
2062	sk->sk_send_head	=	NULL;
2063
2064	init_timer(&sk->sk_timer);
2065
2066	sk->sk_allocation	=	GFP_KERNEL;
2067	sk->sk_rcvbuf		=	sysctl_rmem_default;
2068	sk->sk_sndbuf		=	sysctl_wmem_default;
2069	sk->sk_state		=	TCP_CLOSE;
2070	sk_set_socket(sk, sock);
2071
2072	sock_set_flag(sk, SOCK_ZAPPED);
2073
2074	if (sock) {
2075		sk->sk_type	=	sock->type;
2076		sk->sk_wq	=	sock->wq;
2077		sock->sk	=	sk;
2078	} else
2079		sk->sk_wq	=	NULL;
2080
2081	spin_lock_init(&sk->sk_dst_lock);
2082	rwlock_init(&sk->sk_callback_lock);
2083	lockdep_set_class_and_name(&sk->sk_callback_lock,
2084			af_callback_keys + sk->sk_family,
2085			af_family_clock_key_strings[sk->sk_family]);
2086
2087	sk->sk_state_change	=	sock_def_wakeup;
2088	sk->sk_data_ready	=	sock_def_readable;
2089	sk->sk_write_space	=	sock_def_write_space;
2090	sk->sk_error_report	=	sock_def_error_report;
2091	sk->sk_destruct		=	sock_def_destruct;
2092
2093	sk->sk_sndmsg_page	=	NULL;
2094	sk->sk_sndmsg_off	=	0;
2095
2096	sk->sk_peer_pid 	=	NULL;
2097	sk->sk_peer_cred	=	NULL;
2098	sk->sk_write_pending	=	0;
2099	sk->sk_rcvlowat		=	1;
2100	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
2101	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
2102
2103	sk->sk_stamp = ktime_set(-1L, 0);
2104
2105	/*
2106	 * Before updating sk_refcnt, we must commit prior changes to memory
2107	 * (Documentation/RCU/rculist_nulls.txt for details)
2108	 */
2109	smp_wmb();
2110	atomic_set(&sk->sk_refcnt, 1);
2111	atomic_set(&sk->sk_drops, 0);
2112}
2113EXPORT_SYMBOL(sock_init_data);
2114
2115void lock_sock_nested(struct sock *sk, int subclass)
2116{
2117	might_sleep();
2118	spin_lock_bh(&sk->sk_lock.slock);
2119	if (sk->sk_lock.owned)
2120		__lock_sock(sk);
2121	sk->sk_lock.owned = 1;
2122	spin_unlock(&sk->sk_lock.slock);
2123	/*
2124	 * The sk_lock has mutex_lock() semantics here:
2125	 */
2126	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2127	local_bh_enable();
2128}
2129EXPORT_SYMBOL(lock_sock_nested);
2130
2131void release_sock(struct sock *sk)
2132{
2133	/*
2134	 * The sk_lock has mutex_unlock() semantics:
2135	 */
2136	mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
2137
2138	spin_lock_bh(&sk->sk_lock.slock);
2139	if (sk->sk_backlog.tail)
2140		__release_sock(sk);
2141	sk->sk_lock.owned = 0;
2142	if (waitqueue_active(&sk->sk_lock.wq))
2143		wake_up(&sk->sk_lock.wq);
2144	spin_unlock_bh(&sk->sk_lock.slock);
2145}
2146EXPORT_SYMBOL(release_sock);
2147
2148/**
2149 * lock_sock_fast - fast version of lock_sock
2150 * @sk: socket
2151 *
2152 * This version should be used for very small section, where process wont block
2153 * return false if fast path is taken
2154 *   sk_lock.slock locked, owned = 0, BH disabled
2155 * return true if slow path is taken
2156 *   sk_lock.slock unlocked, owned = 1, BH enabled
2157 */
2158bool lock_sock_fast(struct sock *sk)
2159{
2160	might_sleep();
2161	spin_lock_bh(&sk->sk_lock.slock);
2162
2163	if (!sk->sk_lock.owned)
2164		/*
2165		 * Note : We must disable BH
2166		 */
2167		return false;
2168
2169	__lock_sock(sk);
2170	sk->sk_lock.owned = 1;
2171	spin_unlock(&sk->sk_lock.slock);
2172	/*
2173	 * The sk_lock has mutex_lock() semantics here:
2174	 */
2175	mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2176	local_bh_enable();
2177	return true;
2178}
2179EXPORT_SYMBOL(lock_sock_fast);
2180
2181int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2182{
2183	struct timeval tv;
2184	if (!sock_flag(sk, SOCK_TIMESTAMP))
2185		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2186	tv = ktime_to_timeval(sk->sk_stamp);
2187	if (tv.tv_sec == -1)
2188		return -ENOENT;
2189	if (tv.tv_sec == 0) {
2190		sk->sk_stamp = ktime_get_real();
2191		tv = ktime_to_timeval(sk->sk_stamp);
2192	}
2193	return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2194}
2195EXPORT_SYMBOL(sock_get_timestamp);
2196
2197int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2198{
2199	struct timespec ts;
2200	if (!sock_flag(sk, SOCK_TIMESTAMP))
2201		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2202	ts = ktime_to_timespec(sk->sk_stamp);
2203	if (ts.tv_sec == -1)
2204		return -ENOENT;
2205	if (ts.tv_sec == 0) {
2206		sk->sk_stamp = ktime_get_real();
2207		ts = ktime_to_timespec(sk->sk_stamp);
2208	}
2209	return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2210}
2211EXPORT_SYMBOL(sock_get_timestampns);
2212
2213void sock_enable_timestamp(struct sock *sk, int flag)
2214{
2215	if (!sock_flag(sk, flag)) {
2216		unsigned long previous_flags = sk->sk_flags;
2217
2218		sock_set_flag(sk, flag);
2219		/*
2220		 * we just set one of the two flags which require net
2221		 * time stamping, but time stamping might have been on
2222		 * already because of the other one
2223		 */
2224		if (!(previous_flags & SK_FLAGS_TIMESTAMP))
2225			net_enable_timestamp();
2226	}
2227}
2228
2229/*
2230 *	Get a socket option on an socket.
2231 *
2232 *	FIX: POSIX 1003.1g is very ambiguous here. It states that
2233 *	asynchronous errors should be reported by getsockopt. We assume
2234 *	this means if you specify SO_ERROR (otherwise whats the point of it).
2235 */
2236int sock_common_getsockopt(struct socket *sock, int level, int optname,
2237			   char __user *optval, int __user *optlen)
2238{
2239	struct sock *sk = sock->sk;
2240
2241	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2242}
2243EXPORT_SYMBOL(sock_common_getsockopt);
2244
2245#ifdef CONFIG_COMPAT
2246int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2247				  char __user *optval, int __user *optlen)
2248{
2249	struct sock *sk = sock->sk;
2250
2251	if (sk->sk_prot->compat_getsockopt != NULL)
2252		return sk->sk_prot->compat_getsockopt(sk, level, optname,
2253						      optval, optlen);
2254	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2255}
2256EXPORT_SYMBOL(compat_sock_common_getsockopt);
2257#endif
2258
2259int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
2260			struct msghdr *msg, size_t size, int flags)
2261{
2262	struct sock *sk = sock->sk;
2263	int addr_len = 0;
2264	int err;
2265
2266	err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
2267				   flags & ~MSG_DONTWAIT, &addr_len);
2268	if (err >= 0)
2269		msg->msg_namelen = addr_len;
2270	return err;
2271}
2272EXPORT_SYMBOL(sock_common_recvmsg);
2273
2274/*
2275 *	Set socket options on an inet socket.
2276 */
2277int sock_common_setsockopt(struct socket *sock, int level, int optname,
2278			   char __user *optval, unsigned int optlen)
2279{
2280	struct sock *sk = sock->sk;
2281
2282	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2283}
2284EXPORT_SYMBOL(sock_common_setsockopt);
2285
2286#ifdef CONFIG_COMPAT
2287int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2288				  char __user *optval, unsigned int optlen)
2289{
2290	struct sock *sk = sock->sk;
2291
2292	if (sk->sk_prot->compat_setsockopt != NULL)
2293		return sk->sk_prot->compat_setsockopt(sk, level, optname,
2294						      optval, optlen);
2295	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2296}
2297EXPORT_SYMBOL(compat_sock_common_setsockopt);
2298#endif
2299
2300void sk_common_release(struct sock *sk)
2301{
2302	if (sk->sk_prot->destroy)
2303		sk->sk_prot->destroy(sk);
2304
2305	/*
2306	 * Observation: when sock_common_release is called, processes have
2307	 * no access to socket. But net still has.
2308	 * Step one, detach it from networking:
2309	 *
2310	 * A. Remove from hash tables.
2311	 */
2312
2313	sk->sk_prot->unhash(sk);
2314
2315	/*
2316	 * In this point socket cannot receive new packets, but it is possible
2317	 * that some packets are in flight because some CPU runs receiver and
2318	 * did hash table lookup before we unhashed socket. They will achieve
2319	 * receive queue and will be purged by socket destructor.
2320	 *
2321	 * Also we still have packets pending on receive queue and probably,
2322	 * our own packets waiting in device queues. sock_destroy will drain
2323	 * receive queue, but transmitted packets will delay socket destruction
2324	 * until the last reference will be released.
2325	 */
2326
2327	sock_orphan(sk);
2328
2329	xfrm_sk_free_policy(sk);
2330
2331	sk_refcnt_debug_release(sk);
2332	sock_put(sk);
2333}
2334EXPORT_SYMBOL(sk_common_release);
2335
2336#ifdef CONFIG_PROC_FS
2337#define PROTO_INUSE_NR	64	/* should be enough for the first time */
2338struct prot_inuse {
2339	int val[PROTO_INUSE_NR];
2340};
2341
2342static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2343
2344#ifdef CONFIG_NET_NS
2345void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2346{
2347	__this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
2348}
2349EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2350
2351int sock_prot_inuse_get(struct net *net, struct proto *prot)
2352{
2353	int cpu, idx = prot->inuse_idx;
2354	int res = 0;
2355
2356	for_each_possible_cpu(cpu)
2357		res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2358
2359	return res >= 0 ? res : 0;
2360}
2361EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2362
2363static int __net_init sock_inuse_init_net(struct net *net)
2364{
2365	net->core.inuse = alloc_percpu(struct prot_inuse);
2366	return net->core.inuse ? 0 : -ENOMEM;
2367}
2368
2369static void __net_exit sock_inuse_exit_net(struct net *net)
2370{
2371	free_percpu(net->core.inuse);
2372}
2373
2374static struct pernet_operations net_inuse_ops = {
2375	.init = sock_inuse_init_net,
2376	.exit = sock_inuse_exit_net,
2377};
2378
2379static __init int net_inuse_init(void)
2380{
2381	if (register_pernet_subsys(&net_inuse_ops))
2382		panic("Cannot initialize net inuse counters");
2383
2384	return 0;
2385}
2386
2387core_initcall(net_inuse_init);
2388#else
2389static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2390
2391void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2392{
2393	__this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
2394}
2395EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2396
2397int sock_prot_inuse_get(struct net *net, struct proto *prot)
2398{
2399	int cpu, idx = prot->inuse_idx;
2400	int res = 0;
2401
2402	for_each_possible_cpu(cpu)
2403		res += per_cpu(prot_inuse, cpu).val[idx];
2404
2405	return res >= 0 ? res : 0;
2406}
2407EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2408#endif
2409
2410static void assign_proto_idx(struct proto *prot)
2411{
2412	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2413
2414	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2415		printk(KERN_ERR "PROTO_INUSE_NR exhausted\n");
2416		return;
2417	}
2418
2419	set_bit(prot->inuse_idx, proto_inuse_idx);
2420}
2421
2422static void release_proto_idx(struct proto *prot)
2423{
2424	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2425		clear_bit(prot->inuse_idx, proto_inuse_idx);
2426}
2427#else
2428static inline void assign_proto_idx(struct proto *prot)
2429{
2430}
2431
2432static inline void release_proto_idx(struct proto *prot)
2433{
2434}
2435#endif
2436
2437int proto_register(struct proto *prot, int alloc_slab)
2438{
2439	if (alloc_slab) {
2440		prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2441					SLAB_HWCACHE_ALIGN | prot->slab_flags,
2442					NULL);
2443
2444		if (prot->slab == NULL) {
2445			printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n",
2446			       prot->name);
2447			goto out;
2448		}
2449
2450		if (prot->rsk_prot != NULL) {
2451			prot->rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", prot->name);
2452			if (prot->rsk_prot->slab_name == NULL)
2453				goto out_free_sock_slab;
2454
2455			prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
2456								 prot->rsk_prot->obj_size, 0,
2457								 SLAB_HWCACHE_ALIGN, NULL);
2458
2459			if (prot->rsk_prot->slab == NULL) {
2460				printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n",
2461				       prot->name);
2462				goto out_free_request_sock_slab_name;
2463			}
2464		}
2465
2466		if (prot->twsk_prot != NULL) {
2467			prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
2468
2469			if (prot->twsk_prot->twsk_slab_name == NULL)
2470				goto out_free_request_sock_slab;
2471
2472			prot->twsk_prot->twsk_slab =
2473				kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2474						  prot->twsk_prot->twsk_obj_size,
2475						  0,
2476						  SLAB_HWCACHE_ALIGN |
2477							prot->slab_flags,
2478						  NULL);
2479			if (prot->twsk_prot->twsk_slab == NULL)
2480				goto out_free_timewait_sock_slab_name;
2481		}
2482	}
2483
2484	mutex_lock(&proto_list_mutex);
2485	list_add(&prot->node, &proto_list);
2486	assign_proto_idx(prot);
2487	mutex_unlock(&proto_list_mutex);
2488	return 0;
2489
2490out_free_timewait_sock_slab_name:
2491	kfree(prot->twsk_prot->twsk_slab_name);
2492out_free_request_sock_slab:
2493	if (prot->rsk_prot && prot->rsk_prot->slab) {
2494		kmem_cache_destroy(prot->rsk_prot->slab);
2495		prot->rsk_prot->slab = NULL;
2496	}
2497out_free_request_sock_slab_name:
2498	if (prot->rsk_prot)
2499		kfree(prot->rsk_prot->slab_name);
2500out_free_sock_slab:
2501	kmem_cache_destroy(prot->slab);
2502	prot->slab = NULL;
2503out:
2504	return -ENOBUFS;
2505}
2506EXPORT_SYMBOL(proto_register);
2507
2508void proto_unregister(struct proto *prot)
2509{
2510	mutex_lock(&proto_list_mutex);
2511	release_proto_idx(prot);
2512	list_del(&prot->node);
2513	mutex_unlock(&proto_list_mutex);
2514
2515	if (prot->slab != NULL) {
2516		kmem_cache_destroy(prot->slab);
2517		prot->slab = NULL;
2518	}
2519
2520	if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2521		kmem_cache_destroy(prot->rsk_prot->slab);
2522		kfree(prot->rsk_prot->slab_name);
2523		prot->rsk_prot->slab = NULL;
2524	}
2525
2526	if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2527		kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2528		kfree(prot->twsk_prot->twsk_slab_name);
2529		prot->twsk_prot->twsk_slab = NULL;
2530	}
2531}
2532EXPORT_SYMBOL(proto_unregister);
2533
2534#ifdef CONFIG_PROC_FS
2535static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2536	__acquires(proto_list_mutex)
2537{
2538	mutex_lock(&proto_list_mutex);
2539	return seq_list_start_head(&proto_list, *pos);
2540}
2541
2542static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2543{
2544	return seq_list_next(v, &proto_list, pos);
2545}
2546
2547static void proto_seq_stop(struct seq_file *seq, void *v)
2548	__releases(proto_list_mutex)
2549{
2550	mutex_unlock(&proto_list_mutex);
2551}
2552
2553static char proto_method_implemented(const void *method)
2554{
2555	return method == NULL ? 'n' : 'y';
2556}
2557static long sock_prot_memory_allocated(struct proto *proto)
2558{
2559	return proto->memory_allocated != NULL ? proto_memory_allocated(proto): -1L;
2560}
2561
2562static char *sock_prot_memory_pressure(struct proto *proto)
2563{
2564	return proto->memory_pressure != NULL ?
2565	proto_memory_pressure(proto) ? "yes" : "no" : "NI";
2566}
2567
2568static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2569{
2570
2571	seq_printf(seq, "%-9s %4u %6d  %6ld   %-3s %6u   %-3s  %-10s "
2572			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2573		   proto->name,
2574		   proto->obj_size,
2575		   sock_prot_inuse_get(seq_file_net(seq), proto),
2576		   sock_prot_memory_allocated(proto),
2577		   sock_prot_memory_pressure(proto),
2578		   proto->max_header,
2579		   proto->slab == NULL ? "no" : "yes",
2580		   module_name(proto->owner),
2581		   proto_method_implemented(proto->close),
2582		   proto_method_implemented(proto->connect),
2583		   proto_method_implemented(proto->disconnect),
2584		   proto_method_implemented(proto->accept),
2585		   proto_method_implemented(proto->ioctl),
2586		   proto_method_implemented(proto->init),
2587		   proto_method_implemented(proto->destroy),
2588		   proto_method_implemented(proto->shutdown),
2589		   proto_method_implemented(proto->setsockopt),
2590		   proto_method_implemented(proto->getsockopt),
2591		   proto_method_implemented(proto->sendmsg),
2592		   proto_method_implemented(proto->recvmsg),
2593		   proto_method_implemented(proto->sendpage),
2594		   proto_method_implemented(proto->bind),
2595		   proto_method_implemented(proto->backlog_rcv),
2596		   proto_method_implemented(proto->hash),
2597		   proto_method_implemented(proto->unhash),
2598		   proto_method_implemented(proto->get_port),
2599		   proto_method_implemented(proto->enter_memory_pressure));
2600}
2601
2602static int proto_seq_show(struct seq_file *seq, void *v)
2603{
2604	if (v == &proto_list)
2605		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2606			   "protocol",
2607			   "size",
2608			   "sockets",
2609			   "memory",
2610			   "press",
2611			   "maxhdr",
2612			   "slab",
2613			   "module",
2614			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2615	else
2616		proto_seq_printf(seq, list_entry(v, struct proto, node));
2617	return 0;
2618}
2619
2620static const struct seq_operations proto_seq_ops = {
2621	.start  = proto_seq_start,
2622	.next   = proto_seq_next,
2623	.stop   = proto_seq_stop,
2624	.show   = proto_seq_show,
2625};
2626
2627static int proto_seq_open(struct inode *inode, struct file *file)
2628{
2629	return seq_open_net(inode, file, &proto_seq_ops,
2630			    sizeof(struct seq_net_private));
2631}
2632
2633static const struct file_operations proto_seq_fops = {
2634	.owner		= THIS_MODULE,
2635	.open		= proto_seq_open,
2636	.read		= seq_read,
2637	.llseek		= seq_lseek,
2638	.release	= seq_release_net,
2639};
2640
2641static __net_init int proto_init_net(struct net *net)
2642{
2643	if (!proc_net_fops_create(net, "protocols", S_IRUGO, &proto_seq_fops))
2644		return -ENOMEM;
2645
2646	return 0;
2647}
2648
2649static __net_exit void proto_exit_net(struct net *net)
2650{
2651	proc_net_remove(net, "protocols");
2652}
2653
2654
2655static __net_initdata struct pernet_operations proto_net_ops = {
2656	.init = proto_init_net,
2657	.exit = proto_exit_net,
2658};
2659
2660static int __init proto_init(void)
2661{
2662	return register_pernet_subsys(&proto_net_ops);
2663}
2664
2665subsys_initcall(proto_init);
2666
2667#endif /* PROC_FS */
2668