sock.c revision 3b885787ea4112eaa80945999ea0901bf742707f
1/*
2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
3 *		operating system.  INET is implemented using the  BSD Socket
4 *		interface as the means of communication with the user level.
5 *
6 *		Generic socket support routines. Memory allocators, socket lock/release
7 *		handler for protocols to use and generic option handler.
8 *
9 *
10 * Authors:	Ross Biro
11 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 *		Florian La Roche, <flla@stud.uni-sb.de>
13 *		Alan Cox, <A.Cox@swansea.ac.uk>
14 *
15 * Fixes:
16 *		Alan Cox	: 	Numerous verify_area() problems
17 *		Alan Cox	:	Connecting on a connecting socket
18 *					now returns an error for tcp.
19 *		Alan Cox	:	sock->protocol is set correctly.
20 *					and is not sometimes left as 0.
21 *		Alan Cox	:	connect handles icmp errors on a
22 *					connect properly. Unfortunately there
23 *					is a restart syscall nasty there. I
24 *					can't match BSD without hacking the C
25 *					library. Ideas urgently sought!
26 *		Alan Cox	:	Disallow bind() to addresses that are
27 *					not ours - especially broadcast ones!!
28 *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
29 *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
30 *					instead they leave that for the DESTROY timer.
31 *		Alan Cox	:	Clean up error flag in accept
32 *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
33 *					was buggy. Put a remove_sock() in the handler
34 *					for memory when we hit 0. Also altered the timer
35 *					code. The ACK stuff can wait and needs major
36 *					TCP layer surgery.
37 *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
38 *					and fixed timer/inet_bh race.
39 *		Alan Cox	:	Added zapped flag for TCP
40 *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
41 *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
43 *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
46 *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
47 *	Pauline Middelink	:	identd support
48 *		Alan Cox	:	Fixed connect() taking signals I think.
49 *		Alan Cox	:	SO_LINGER supported
50 *		Alan Cox	:	Error reporting fixes
51 *		Anonymous	:	inet_create tidied up (sk->reuse setting)
52 *		Alan Cox	:	inet sockets don't set sk->type!
53 *		Alan Cox	:	Split socket option code
54 *		Alan Cox	:	Callbacks
55 *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
56 *		Alex		:	Removed restriction on inet fioctl
57 *		Alan Cox	:	Splitting INET from NET core
58 *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
59 *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
60 *		Alan Cox	:	Split IP from generic code
61 *		Alan Cox	:	New kfree_skbmem()
62 *		Alan Cox	:	Make SO_DEBUG superuser only.
63 *		Alan Cox	:	Allow anyone to clear SO_DEBUG
64 *					(compatibility fix)
65 *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
66 *		Alan Cox	:	Allocator for a socket is settable.
67 *		Alan Cox	:	SO_ERROR includes soft errors.
68 *		Alan Cox	:	Allow NULL arguments on some SO_ opts
69 *		Alan Cox	: 	Generic socket allocation to make hooks
70 *					easier (suggested by Craig Metz).
71 *		Michael Pall	:	SO_ERROR returns positive errno again
72 *              Steve Whitehouse:       Added default destructor to free
73 *                                      protocol private data.
74 *              Steve Whitehouse:       Added various other default routines
75 *                                      common to several socket families.
76 *              Chris Evans     :       Call suser() check last on F_SETOWN
77 *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
79 *		Andi Kleen	:	Fix write_space callback
80 *		Chris Evans	:	Security fixes - signedness again
81 *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
82 *
83 * To Fix:
84 *
85 *
86 *		This program is free software; you can redistribute it and/or
87 *		modify it under the terms of the GNU General Public License
88 *		as published by the Free Software Foundation; either version
89 *		2 of the License, or (at your option) any later version.
90 */
91
92#include <linux/capability.h>
93#include <linux/errno.h>
94#include <linux/types.h>
95#include <linux/socket.h>
96#include <linux/in.h>
97#include <linux/kernel.h>
98#include <linux/module.h>
99#include <linux/proc_fs.h>
100#include <linux/seq_file.h>
101#include <linux/sched.h>
102#include <linux/timer.h>
103#include <linux/string.h>
104#include <linux/sockios.h>
105#include <linux/net.h>
106#include <linux/mm.h>
107#include <linux/slab.h>
108#include <linux/interrupt.h>
109#include <linux/poll.h>
110#include <linux/tcp.h>
111#include <linux/init.h>
112#include <linux/highmem.h>
113
114#include <asm/uaccess.h>
115#include <asm/system.h>
116
117#include <linux/netdevice.h>
118#include <net/protocol.h>
119#include <linux/skbuff.h>
120#include <net/net_namespace.h>
121#include <net/request_sock.h>
122#include <net/sock.h>
123#include <linux/net_tstamp.h>
124#include <net/xfrm.h>
125#include <linux/ipsec.h>
126
127#include <linux/filter.h>
128
129#ifdef CONFIG_INET
130#include <net/tcp.h>
131#endif
132
133/*
134 * Each address family might have different locking rules, so we have
135 * one slock key per address family:
136 */
137static struct lock_class_key af_family_keys[AF_MAX];
138static struct lock_class_key af_family_slock_keys[AF_MAX];
139
140/*
141 * Make lock validator output more readable. (we pre-construct these
142 * strings build-time, so that runtime initialization of socket
143 * locks is fast):
144 */
145static const char *const af_family_key_strings[AF_MAX+1] = {
146  "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX"     , "sk_lock-AF_INET"     ,
147  "sk_lock-AF_AX25"  , "sk_lock-AF_IPX"      , "sk_lock-AF_APPLETALK",
148  "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE"   , "sk_lock-AF_ATMPVC"   ,
149  "sk_lock-AF_X25"   , "sk_lock-AF_INET6"    , "sk_lock-AF_ROSE"     ,
150  "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI"  , "sk_lock-AF_SECURITY" ,
151  "sk_lock-AF_KEY"   , "sk_lock-AF_NETLINK"  , "sk_lock-AF_PACKET"   ,
152  "sk_lock-AF_ASH"   , "sk_lock-AF_ECONET"   , "sk_lock-AF_ATMSVC"   ,
153  "sk_lock-AF_RDS"   , "sk_lock-AF_SNA"      , "sk_lock-AF_IRDA"     ,
154  "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE"  , "sk_lock-AF_LLC"      ,
155  "sk_lock-27"       , "sk_lock-28"          , "sk_lock-AF_CAN"      ,
156  "sk_lock-AF_TIPC"  , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV"        ,
157  "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN"     , "sk_lock-AF_PHONET"   ,
158  "sk_lock-AF_IEEE802154",
159  "sk_lock-AF_MAX"
160};
161static const char *const af_family_slock_key_strings[AF_MAX+1] = {
162  "slock-AF_UNSPEC", "slock-AF_UNIX"     , "slock-AF_INET"     ,
163  "slock-AF_AX25"  , "slock-AF_IPX"      , "slock-AF_APPLETALK",
164  "slock-AF_NETROM", "slock-AF_BRIDGE"   , "slock-AF_ATMPVC"   ,
165  "slock-AF_X25"   , "slock-AF_INET6"    , "slock-AF_ROSE"     ,
166  "slock-AF_DECnet", "slock-AF_NETBEUI"  , "slock-AF_SECURITY" ,
167  "slock-AF_KEY"   , "slock-AF_NETLINK"  , "slock-AF_PACKET"   ,
168  "slock-AF_ASH"   , "slock-AF_ECONET"   , "slock-AF_ATMSVC"   ,
169  "slock-AF_RDS"   , "slock-AF_SNA"      , "slock-AF_IRDA"     ,
170  "slock-AF_PPPOX" , "slock-AF_WANPIPE"  , "slock-AF_LLC"      ,
171  "slock-27"       , "slock-28"          , "slock-AF_CAN"      ,
172  "slock-AF_TIPC"  , "slock-AF_BLUETOOTH", "slock-AF_IUCV"     ,
173  "slock-AF_RXRPC" , "slock-AF_ISDN"     , "slock-AF_PHONET"   ,
174  "slock-AF_IEEE802154",
175  "slock-AF_MAX"
176};
177static const char *const af_family_clock_key_strings[AF_MAX+1] = {
178  "clock-AF_UNSPEC", "clock-AF_UNIX"     , "clock-AF_INET"     ,
179  "clock-AF_AX25"  , "clock-AF_IPX"      , "clock-AF_APPLETALK",
180  "clock-AF_NETROM", "clock-AF_BRIDGE"   , "clock-AF_ATMPVC"   ,
181  "clock-AF_X25"   , "clock-AF_INET6"    , "clock-AF_ROSE"     ,
182  "clock-AF_DECnet", "clock-AF_NETBEUI"  , "clock-AF_SECURITY" ,
183  "clock-AF_KEY"   , "clock-AF_NETLINK"  , "clock-AF_PACKET"   ,
184  "clock-AF_ASH"   , "clock-AF_ECONET"   , "clock-AF_ATMSVC"   ,
185  "clock-AF_RDS"   , "clock-AF_SNA"      , "clock-AF_IRDA"     ,
186  "clock-AF_PPPOX" , "clock-AF_WANPIPE"  , "clock-AF_LLC"      ,
187  "clock-27"       , "clock-28"          , "clock-AF_CAN"      ,
188  "clock-AF_TIPC"  , "clock-AF_BLUETOOTH", "clock-AF_IUCV"     ,
189  "clock-AF_RXRPC" , "clock-AF_ISDN"     , "clock-AF_PHONET"   ,
190  "clock-AF_IEEE802154",
191  "clock-AF_MAX"
192};
193
194/*
195 * sk_callback_lock locking rules are per-address-family,
196 * so split the lock classes by using a per-AF key:
197 */
198static struct lock_class_key af_callback_keys[AF_MAX];
199
200/* Take into consideration the size of the struct sk_buff overhead in the
201 * determination of these values, since that is non-constant across
202 * platforms.  This makes socket queueing behavior and performance
203 * not depend upon such differences.
204 */
205#define _SK_MEM_PACKETS		256
206#define _SK_MEM_OVERHEAD	(sizeof(struct sk_buff) + 256)
207#define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
208#define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
209
210/* Run time adjustable parameters. */
211__u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
212__u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
213__u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
214__u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
215
216/* Maximal space eaten by iovec or ancilliary data plus some space */
217int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
218EXPORT_SYMBOL(sysctl_optmem_max);
219
220static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
221{
222	struct timeval tv;
223
224	if (optlen < sizeof(tv))
225		return -EINVAL;
226	if (copy_from_user(&tv, optval, sizeof(tv)))
227		return -EFAULT;
228	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
229		return -EDOM;
230
231	if (tv.tv_sec < 0) {
232		static int warned __read_mostly;
233
234		*timeo_p = 0;
235		if (warned < 10 && net_ratelimit()) {
236			warned++;
237			printk(KERN_INFO "sock_set_timeout: `%s' (pid %d) "
238			       "tries to set negative timeout\n",
239				current->comm, task_pid_nr(current));
240		}
241		return 0;
242	}
243	*timeo_p = MAX_SCHEDULE_TIMEOUT;
244	if (tv.tv_sec == 0 && tv.tv_usec == 0)
245		return 0;
246	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
247		*timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
248	return 0;
249}
250
251static void sock_warn_obsolete_bsdism(const char *name)
252{
253	static int warned;
254	static char warncomm[TASK_COMM_LEN];
255	if (strcmp(warncomm, current->comm) && warned < 5) {
256		strcpy(warncomm,  current->comm);
257		printk(KERN_WARNING "process `%s' is using obsolete "
258		       "%s SO_BSDCOMPAT\n", warncomm, name);
259		warned++;
260	}
261}
262
263static void sock_disable_timestamp(struct sock *sk, int flag)
264{
265	if (sock_flag(sk, flag)) {
266		sock_reset_flag(sk, flag);
267		if (!sock_flag(sk, SOCK_TIMESTAMP) &&
268		    !sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE)) {
269			net_disable_timestamp();
270		}
271	}
272}
273
274
275int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
276{
277	int err = 0;
278	int skb_len;
279	unsigned long flags;
280	struct sk_buff_head *list = &sk->sk_receive_queue;
281
282	/* Cast sk->rcvbuf to unsigned... It's pointless, but reduces
283	   number of warnings when compiling with -W --ANK
284	 */
285	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
286	    (unsigned)sk->sk_rcvbuf) {
287		err = -ENOMEM;
288		goto out;
289	}
290
291	err = sk_filter(sk, skb);
292	if (err)
293		goto out;
294
295	if (!sk_rmem_schedule(sk, skb->truesize)) {
296		err = -ENOBUFS;
297		goto out;
298	}
299
300	skb->dev = NULL;
301	skb_set_owner_r(skb, sk);
302
303	/* Cache the SKB length before we tack it onto the receive
304	 * queue.  Once it is added it no longer belongs to us and
305	 * may be freed by other threads of control pulling packets
306	 * from the queue.
307	 */
308	skb_len = skb->len;
309
310	spin_lock_irqsave(&list->lock, flags);
311	skb->dropcount = atomic_read(&sk->sk_drops);
312	__skb_queue_tail(list, skb);
313	spin_unlock_irqrestore(&list->lock, flags);
314
315	if (!sock_flag(sk, SOCK_DEAD))
316		sk->sk_data_ready(sk, skb_len);
317out:
318	return err;
319}
320EXPORT_SYMBOL(sock_queue_rcv_skb);
321
322int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
323{
324	int rc = NET_RX_SUCCESS;
325
326	if (sk_filter(sk, skb))
327		goto discard_and_relse;
328
329	skb->dev = NULL;
330
331	if (nested)
332		bh_lock_sock_nested(sk);
333	else
334		bh_lock_sock(sk);
335	if (!sock_owned_by_user(sk)) {
336		/*
337		 * trylock + unlock semantics:
338		 */
339		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
340
341		rc = sk_backlog_rcv(sk, skb);
342
343		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
344	} else
345		sk_add_backlog(sk, skb);
346	bh_unlock_sock(sk);
347out:
348	sock_put(sk);
349	return rc;
350discard_and_relse:
351	kfree_skb(skb);
352	goto out;
353}
354EXPORT_SYMBOL(sk_receive_skb);
355
356struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
357{
358	struct dst_entry *dst = sk->sk_dst_cache;
359
360	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
361		sk->sk_dst_cache = NULL;
362		dst_release(dst);
363		return NULL;
364	}
365
366	return dst;
367}
368EXPORT_SYMBOL(__sk_dst_check);
369
370struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
371{
372	struct dst_entry *dst = sk_dst_get(sk);
373
374	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
375		sk_dst_reset(sk);
376		dst_release(dst);
377		return NULL;
378	}
379
380	return dst;
381}
382EXPORT_SYMBOL(sk_dst_check);
383
384static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
385{
386	int ret = -ENOPROTOOPT;
387#ifdef CONFIG_NETDEVICES
388	struct net *net = sock_net(sk);
389	char devname[IFNAMSIZ];
390	int index;
391
392	/* Sorry... */
393	ret = -EPERM;
394	if (!capable(CAP_NET_RAW))
395		goto out;
396
397	ret = -EINVAL;
398	if (optlen < 0)
399		goto out;
400
401	/* Bind this socket to a particular device like "eth0",
402	 * as specified in the passed interface name. If the
403	 * name is "" or the option length is zero the socket
404	 * is not bound.
405	 */
406	if (optlen > IFNAMSIZ - 1)
407		optlen = IFNAMSIZ - 1;
408	memset(devname, 0, sizeof(devname));
409
410	ret = -EFAULT;
411	if (copy_from_user(devname, optval, optlen))
412		goto out;
413
414	if (devname[0] == '\0') {
415		index = 0;
416	} else {
417		struct net_device *dev = dev_get_by_name(net, devname);
418
419		ret = -ENODEV;
420		if (!dev)
421			goto out;
422
423		index = dev->ifindex;
424		dev_put(dev);
425	}
426
427	lock_sock(sk);
428	sk->sk_bound_dev_if = index;
429	sk_dst_reset(sk);
430	release_sock(sk);
431
432	ret = 0;
433
434out:
435#endif
436
437	return ret;
438}
439
440static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
441{
442	if (valbool)
443		sock_set_flag(sk, bit);
444	else
445		sock_reset_flag(sk, bit);
446}
447
448/*
449 *	This is meant for all protocols to use and covers goings on
450 *	at the socket level. Everything here is generic.
451 */
452
453int sock_setsockopt(struct socket *sock, int level, int optname,
454		    char __user *optval, unsigned int optlen)
455{
456	struct sock *sk = sock->sk;
457	int val;
458	int valbool;
459	struct linger ling;
460	int ret = 0;
461
462	/*
463	 *	Options without arguments
464	 */
465
466	if (optname == SO_BINDTODEVICE)
467		return sock_bindtodevice(sk, optval, optlen);
468
469	if (optlen < sizeof(int))
470		return -EINVAL;
471
472	if (get_user(val, (int __user *)optval))
473		return -EFAULT;
474
475	valbool = val ? 1 : 0;
476
477	lock_sock(sk);
478
479	switch (optname) {
480	case SO_DEBUG:
481		if (val && !capable(CAP_NET_ADMIN))
482			ret = -EACCES;
483		else
484			sock_valbool_flag(sk, SOCK_DBG, valbool);
485		break;
486	case SO_REUSEADDR:
487		sk->sk_reuse = valbool;
488		break;
489	case SO_TYPE:
490	case SO_PROTOCOL:
491	case SO_DOMAIN:
492	case SO_ERROR:
493		ret = -ENOPROTOOPT;
494		break;
495	case SO_DONTROUTE:
496		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
497		break;
498	case SO_BROADCAST:
499		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
500		break;
501	case SO_SNDBUF:
502		/* Don't error on this BSD doesn't and if you think
503		   about it this is right. Otherwise apps have to
504		   play 'guess the biggest size' games. RCVBUF/SNDBUF
505		   are treated in BSD as hints */
506
507		if (val > sysctl_wmem_max)
508			val = sysctl_wmem_max;
509set_sndbuf:
510		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
511		if ((val * 2) < SOCK_MIN_SNDBUF)
512			sk->sk_sndbuf = SOCK_MIN_SNDBUF;
513		else
514			sk->sk_sndbuf = val * 2;
515
516		/*
517		 *	Wake up sending tasks if we
518		 *	upped the value.
519		 */
520		sk->sk_write_space(sk);
521		break;
522
523	case SO_SNDBUFFORCE:
524		if (!capable(CAP_NET_ADMIN)) {
525			ret = -EPERM;
526			break;
527		}
528		goto set_sndbuf;
529
530	case SO_RCVBUF:
531		/* Don't error on this BSD doesn't and if you think
532		   about it this is right. Otherwise apps have to
533		   play 'guess the biggest size' games. RCVBUF/SNDBUF
534		   are treated in BSD as hints */
535
536		if (val > sysctl_rmem_max)
537			val = sysctl_rmem_max;
538set_rcvbuf:
539		sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
540		/*
541		 * We double it on the way in to account for
542		 * "struct sk_buff" etc. overhead.   Applications
543		 * assume that the SO_RCVBUF setting they make will
544		 * allow that much actual data to be received on that
545		 * socket.
546		 *
547		 * Applications are unaware that "struct sk_buff" and
548		 * other overheads allocate from the receive buffer
549		 * during socket buffer allocation.
550		 *
551		 * And after considering the possible alternatives,
552		 * returning the value we actually used in getsockopt
553		 * is the most desirable behavior.
554		 */
555		if ((val * 2) < SOCK_MIN_RCVBUF)
556			sk->sk_rcvbuf = SOCK_MIN_RCVBUF;
557		else
558			sk->sk_rcvbuf = val * 2;
559		break;
560
561	case SO_RCVBUFFORCE:
562		if (!capable(CAP_NET_ADMIN)) {
563			ret = -EPERM;
564			break;
565		}
566		goto set_rcvbuf;
567
568	case SO_KEEPALIVE:
569#ifdef CONFIG_INET
570		if (sk->sk_protocol == IPPROTO_TCP)
571			tcp_set_keepalive(sk, valbool);
572#endif
573		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
574		break;
575
576	case SO_OOBINLINE:
577		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
578		break;
579
580	case SO_NO_CHECK:
581		sk->sk_no_check = valbool;
582		break;
583
584	case SO_PRIORITY:
585		if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
586			sk->sk_priority = val;
587		else
588			ret = -EPERM;
589		break;
590
591	case SO_LINGER:
592		if (optlen < sizeof(ling)) {
593			ret = -EINVAL;	/* 1003.1g */
594			break;
595		}
596		if (copy_from_user(&ling, optval, sizeof(ling))) {
597			ret = -EFAULT;
598			break;
599		}
600		if (!ling.l_onoff)
601			sock_reset_flag(sk, SOCK_LINGER);
602		else {
603#if (BITS_PER_LONG == 32)
604			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
605				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
606			else
607#endif
608				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
609			sock_set_flag(sk, SOCK_LINGER);
610		}
611		break;
612
613	case SO_BSDCOMPAT:
614		sock_warn_obsolete_bsdism("setsockopt");
615		break;
616
617	case SO_PASSCRED:
618		if (valbool)
619			set_bit(SOCK_PASSCRED, &sock->flags);
620		else
621			clear_bit(SOCK_PASSCRED, &sock->flags);
622		break;
623
624	case SO_TIMESTAMP:
625	case SO_TIMESTAMPNS:
626		if (valbool)  {
627			if (optname == SO_TIMESTAMP)
628				sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
629			else
630				sock_set_flag(sk, SOCK_RCVTSTAMPNS);
631			sock_set_flag(sk, SOCK_RCVTSTAMP);
632			sock_enable_timestamp(sk, SOCK_TIMESTAMP);
633		} else {
634			sock_reset_flag(sk, SOCK_RCVTSTAMP);
635			sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
636		}
637		break;
638
639	case SO_TIMESTAMPING:
640		if (val & ~SOF_TIMESTAMPING_MASK) {
641			ret = -EINVAL;
642			break;
643		}
644		sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE,
645				  val & SOF_TIMESTAMPING_TX_HARDWARE);
646		sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE,
647				  val & SOF_TIMESTAMPING_TX_SOFTWARE);
648		sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE,
649				  val & SOF_TIMESTAMPING_RX_HARDWARE);
650		if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
651			sock_enable_timestamp(sk,
652					      SOCK_TIMESTAMPING_RX_SOFTWARE);
653		else
654			sock_disable_timestamp(sk,
655					       SOCK_TIMESTAMPING_RX_SOFTWARE);
656		sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE,
657				  val & SOF_TIMESTAMPING_SOFTWARE);
658		sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE,
659				  val & SOF_TIMESTAMPING_SYS_HARDWARE);
660		sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE,
661				  val & SOF_TIMESTAMPING_RAW_HARDWARE);
662		break;
663
664	case SO_RCVLOWAT:
665		if (val < 0)
666			val = INT_MAX;
667		sk->sk_rcvlowat = val ? : 1;
668		break;
669
670	case SO_RCVTIMEO:
671		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
672		break;
673
674	case SO_SNDTIMEO:
675		ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
676		break;
677
678	case SO_ATTACH_FILTER:
679		ret = -EINVAL;
680		if (optlen == sizeof(struct sock_fprog)) {
681			struct sock_fprog fprog;
682
683			ret = -EFAULT;
684			if (copy_from_user(&fprog, optval, sizeof(fprog)))
685				break;
686
687			ret = sk_attach_filter(&fprog, sk);
688		}
689		break;
690
691	case SO_DETACH_FILTER:
692		ret = sk_detach_filter(sk);
693		break;
694
695	case SO_PASSSEC:
696		if (valbool)
697			set_bit(SOCK_PASSSEC, &sock->flags);
698		else
699			clear_bit(SOCK_PASSSEC, &sock->flags);
700		break;
701	case SO_MARK:
702		if (!capable(CAP_NET_ADMIN))
703			ret = -EPERM;
704		else
705			sk->sk_mark = val;
706		break;
707
708		/* We implement the SO_SNDLOWAT etc to
709		   not be settable (1003.1g 5.3) */
710	case SO_RXQ_OVFL:
711		if (valbool)
712			sock_set_flag(sk, SOCK_RXQ_OVFL);
713		else
714			sock_reset_flag(sk, SOCK_RXQ_OVFL);
715		break;
716	default:
717		ret = -ENOPROTOOPT;
718		break;
719	}
720	release_sock(sk);
721	return ret;
722}
723EXPORT_SYMBOL(sock_setsockopt);
724
725
726int sock_getsockopt(struct socket *sock, int level, int optname,
727		    char __user *optval, int __user *optlen)
728{
729	struct sock *sk = sock->sk;
730
731	union {
732		int val;
733		struct linger ling;
734		struct timeval tm;
735	} v;
736
737	unsigned int lv = sizeof(int);
738	int len;
739
740	if (get_user(len, optlen))
741		return -EFAULT;
742	if (len < 0)
743		return -EINVAL;
744
745	memset(&v, 0, sizeof(v));
746
747	switch (optname) {
748	case SO_DEBUG:
749		v.val = sock_flag(sk, SOCK_DBG);
750		break;
751
752	case SO_DONTROUTE:
753		v.val = sock_flag(sk, SOCK_LOCALROUTE);
754		break;
755
756	case SO_BROADCAST:
757		v.val = !!sock_flag(sk, SOCK_BROADCAST);
758		break;
759
760	case SO_SNDBUF:
761		v.val = sk->sk_sndbuf;
762		break;
763
764	case SO_RCVBUF:
765		v.val = sk->sk_rcvbuf;
766		break;
767
768	case SO_REUSEADDR:
769		v.val = sk->sk_reuse;
770		break;
771
772	case SO_KEEPALIVE:
773		v.val = !!sock_flag(sk, SOCK_KEEPOPEN);
774		break;
775
776	case SO_TYPE:
777		v.val = sk->sk_type;
778		break;
779
780	case SO_PROTOCOL:
781		v.val = sk->sk_protocol;
782		break;
783
784	case SO_DOMAIN:
785		v.val = sk->sk_family;
786		break;
787
788	case SO_ERROR:
789		v.val = -sock_error(sk);
790		if (v.val == 0)
791			v.val = xchg(&sk->sk_err_soft, 0);
792		break;
793
794	case SO_OOBINLINE:
795		v.val = !!sock_flag(sk, SOCK_URGINLINE);
796		break;
797
798	case SO_NO_CHECK:
799		v.val = sk->sk_no_check;
800		break;
801
802	case SO_PRIORITY:
803		v.val = sk->sk_priority;
804		break;
805
806	case SO_LINGER:
807		lv		= sizeof(v.ling);
808		v.ling.l_onoff	= !!sock_flag(sk, SOCK_LINGER);
809		v.ling.l_linger	= sk->sk_lingertime / HZ;
810		break;
811
812	case SO_BSDCOMPAT:
813		sock_warn_obsolete_bsdism("getsockopt");
814		break;
815
816	case SO_TIMESTAMP:
817		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
818				!sock_flag(sk, SOCK_RCVTSTAMPNS);
819		break;
820
821	case SO_TIMESTAMPNS:
822		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
823		break;
824
825	case SO_TIMESTAMPING:
826		v.val = 0;
827		if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
828			v.val |= SOF_TIMESTAMPING_TX_HARDWARE;
829		if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
830			v.val |= SOF_TIMESTAMPING_TX_SOFTWARE;
831		if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE))
832			v.val |= SOF_TIMESTAMPING_RX_HARDWARE;
833		if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE))
834			v.val |= SOF_TIMESTAMPING_RX_SOFTWARE;
835		if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE))
836			v.val |= SOF_TIMESTAMPING_SOFTWARE;
837		if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))
838			v.val |= SOF_TIMESTAMPING_SYS_HARDWARE;
839		if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE))
840			v.val |= SOF_TIMESTAMPING_RAW_HARDWARE;
841		break;
842
843	case SO_RCVTIMEO:
844		lv = sizeof(struct timeval);
845		if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
846			v.tm.tv_sec = 0;
847			v.tm.tv_usec = 0;
848		} else {
849			v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
850			v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
851		}
852		break;
853
854	case SO_SNDTIMEO:
855		lv = sizeof(struct timeval);
856		if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
857			v.tm.tv_sec = 0;
858			v.tm.tv_usec = 0;
859		} else {
860			v.tm.tv_sec = sk->sk_sndtimeo / HZ;
861			v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
862		}
863		break;
864
865	case SO_RCVLOWAT:
866		v.val = sk->sk_rcvlowat;
867		break;
868
869	case SO_SNDLOWAT:
870		v.val = 1;
871		break;
872
873	case SO_PASSCRED:
874		v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0;
875		break;
876
877	case SO_PEERCRED:
878		if (len > sizeof(sk->sk_peercred))
879			len = sizeof(sk->sk_peercred);
880		if (copy_to_user(optval, &sk->sk_peercred, len))
881			return -EFAULT;
882		goto lenout;
883
884	case SO_PEERNAME:
885	{
886		char address[128];
887
888		if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
889			return -ENOTCONN;
890		if (lv < len)
891			return -EINVAL;
892		if (copy_to_user(optval, address, len))
893			return -EFAULT;
894		goto lenout;
895	}
896
897	/* Dubious BSD thing... Probably nobody even uses it, but
898	 * the UNIX standard wants it for whatever reason... -DaveM
899	 */
900	case SO_ACCEPTCONN:
901		v.val = sk->sk_state == TCP_LISTEN;
902		break;
903
904	case SO_PASSSEC:
905		v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0;
906		break;
907
908	case SO_PEERSEC:
909		return security_socket_getpeersec_stream(sock, optval, optlen, len);
910
911	case SO_MARK:
912		v.val = sk->sk_mark;
913		break;
914
915	case SO_RXQ_OVFL:
916		v.val = !!sock_flag(sk, SOCK_RXQ_OVFL);
917		break;
918
919	default:
920		return -ENOPROTOOPT;
921	}
922
923	if (len > lv)
924		len = lv;
925	if (copy_to_user(optval, &v, len))
926		return -EFAULT;
927lenout:
928	if (put_user(len, optlen))
929		return -EFAULT;
930	return 0;
931}
932
933/*
934 * Initialize an sk_lock.
935 *
936 * (We also register the sk_lock with the lock validator.)
937 */
938static inline void sock_lock_init(struct sock *sk)
939{
940	sock_lock_init_class_and_name(sk,
941			af_family_slock_key_strings[sk->sk_family],
942			af_family_slock_keys + sk->sk_family,
943			af_family_key_strings[sk->sk_family],
944			af_family_keys + sk->sk_family);
945}
946
947/*
948 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
949 * even temporarly, because of RCU lookups. sk_node should also be left as is.
950 */
951static void sock_copy(struct sock *nsk, const struct sock *osk)
952{
953#ifdef CONFIG_SECURITY_NETWORK
954	void *sptr = nsk->sk_security;
955#endif
956	BUILD_BUG_ON(offsetof(struct sock, sk_copy_start) !=
957		     sizeof(osk->sk_node) + sizeof(osk->sk_refcnt));
958	memcpy(&nsk->sk_copy_start, &osk->sk_copy_start,
959	       osk->sk_prot->obj_size - offsetof(struct sock, sk_copy_start));
960#ifdef CONFIG_SECURITY_NETWORK
961	nsk->sk_security = sptr;
962	security_sk_clone(osk, nsk);
963#endif
964}
965
966static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
967		int family)
968{
969	struct sock *sk;
970	struct kmem_cache *slab;
971
972	slab = prot->slab;
973	if (slab != NULL) {
974		sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
975		if (!sk)
976			return sk;
977		if (priority & __GFP_ZERO) {
978			/*
979			 * caches using SLAB_DESTROY_BY_RCU should let
980			 * sk_node.next un-modified. Special care is taken
981			 * when initializing object to zero.
982			 */
983			if (offsetof(struct sock, sk_node.next) != 0)
984				memset(sk, 0, offsetof(struct sock, sk_node.next));
985			memset(&sk->sk_node.pprev, 0,
986			       prot->obj_size - offsetof(struct sock,
987							 sk_node.pprev));
988		}
989	}
990	else
991		sk = kmalloc(prot->obj_size, priority);
992
993	if (sk != NULL) {
994		kmemcheck_annotate_bitfield(sk, flags);
995
996		if (security_sk_alloc(sk, family, priority))
997			goto out_free;
998
999		if (!try_module_get(prot->owner))
1000			goto out_free_sec;
1001	}
1002
1003	return sk;
1004
1005out_free_sec:
1006	security_sk_free(sk);
1007out_free:
1008	if (slab != NULL)
1009		kmem_cache_free(slab, sk);
1010	else
1011		kfree(sk);
1012	return NULL;
1013}
1014
1015static void sk_prot_free(struct proto *prot, struct sock *sk)
1016{
1017	struct kmem_cache *slab;
1018	struct module *owner;
1019
1020	owner = prot->owner;
1021	slab = prot->slab;
1022
1023	security_sk_free(sk);
1024	if (slab != NULL)
1025		kmem_cache_free(slab, sk);
1026	else
1027		kfree(sk);
1028	module_put(owner);
1029}
1030
1031/**
1032 *	sk_alloc - All socket objects are allocated here
1033 *	@net: the applicable net namespace
1034 *	@family: protocol family
1035 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1036 *	@prot: struct proto associated with this new sock instance
1037 */
1038struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1039		      struct proto *prot)
1040{
1041	struct sock *sk;
1042
1043	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1044	if (sk) {
1045		sk->sk_family = family;
1046		/*
1047		 * See comment in struct sock definition to understand
1048		 * why we need sk_prot_creator -acme
1049		 */
1050		sk->sk_prot = sk->sk_prot_creator = prot;
1051		sock_lock_init(sk);
1052		sock_net_set(sk, get_net(net));
1053		atomic_set(&sk->sk_wmem_alloc, 1);
1054	}
1055
1056	return sk;
1057}
1058EXPORT_SYMBOL(sk_alloc);
1059
1060static void __sk_free(struct sock *sk)
1061{
1062	struct sk_filter *filter;
1063
1064	if (sk->sk_destruct)
1065		sk->sk_destruct(sk);
1066
1067	filter = rcu_dereference(sk->sk_filter);
1068	if (filter) {
1069		sk_filter_uncharge(sk, filter);
1070		rcu_assign_pointer(sk->sk_filter, NULL);
1071	}
1072
1073	sock_disable_timestamp(sk, SOCK_TIMESTAMP);
1074	sock_disable_timestamp(sk, SOCK_TIMESTAMPING_RX_SOFTWARE);
1075
1076	if (atomic_read(&sk->sk_omem_alloc))
1077		printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n",
1078		       __func__, atomic_read(&sk->sk_omem_alloc));
1079
1080	put_net(sock_net(sk));
1081	sk_prot_free(sk->sk_prot_creator, sk);
1082}
1083
1084void sk_free(struct sock *sk)
1085{
1086	/*
1087	 * We substract one from sk_wmem_alloc and can know if
1088	 * some packets are still in some tx queue.
1089	 * If not null, sock_wfree() will call __sk_free(sk) later
1090	 */
1091	if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1092		__sk_free(sk);
1093}
1094EXPORT_SYMBOL(sk_free);
1095
1096/*
1097 * Last sock_put should drop referrence to sk->sk_net. It has already
1098 * been dropped in sk_change_net. Taking referrence to stopping namespace
1099 * is not an option.
1100 * Take referrence to a socket to remove it from hash _alive_ and after that
1101 * destroy it in the context of init_net.
1102 */
1103void sk_release_kernel(struct sock *sk)
1104{
1105	if (sk == NULL || sk->sk_socket == NULL)
1106		return;
1107
1108	sock_hold(sk);
1109	sock_release(sk->sk_socket);
1110	release_net(sock_net(sk));
1111	sock_net_set(sk, get_net(&init_net));
1112	sock_put(sk);
1113}
1114EXPORT_SYMBOL(sk_release_kernel);
1115
1116struct sock *sk_clone(const struct sock *sk, const gfp_t priority)
1117{
1118	struct sock *newsk;
1119
1120	newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1121	if (newsk != NULL) {
1122		struct sk_filter *filter;
1123
1124		sock_copy(newsk, sk);
1125
1126		/* SANITY */
1127		get_net(sock_net(newsk));
1128		sk_node_init(&newsk->sk_node);
1129		sock_lock_init(newsk);
1130		bh_lock_sock(newsk);
1131		newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
1132
1133		atomic_set(&newsk->sk_rmem_alloc, 0);
1134		/*
1135		 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1136		 */
1137		atomic_set(&newsk->sk_wmem_alloc, 1);
1138		atomic_set(&newsk->sk_omem_alloc, 0);
1139		skb_queue_head_init(&newsk->sk_receive_queue);
1140		skb_queue_head_init(&newsk->sk_write_queue);
1141#ifdef CONFIG_NET_DMA
1142		skb_queue_head_init(&newsk->sk_async_wait_queue);
1143#endif
1144
1145		rwlock_init(&newsk->sk_dst_lock);
1146		rwlock_init(&newsk->sk_callback_lock);
1147		lockdep_set_class_and_name(&newsk->sk_callback_lock,
1148				af_callback_keys + newsk->sk_family,
1149				af_family_clock_key_strings[newsk->sk_family]);
1150
1151		newsk->sk_dst_cache	= NULL;
1152		newsk->sk_wmem_queued	= 0;
1153		newsk->sk_forward_alloc = 0;
1154		newsk->sk_send_head	= NULL;
1155		newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1156
1157		sock_reset_flag(newsk, SOCK_DONE);
1158		skb_queue_head_init(&newsk->sk_error_queue);
1159
1160		filter = newsk->sk_filter;
1161		if (filter != NULL)
1162			sk_filter_charge(newsk, filter);
1163
1164		if (unlikely(xfrm_sk_clone_policy(newsk))) {
1165			/* It is still raw copy of parent, so invalidate
1166			 * destructor and make plain sk_free() */
1167			newsk->sk_destruct = NULL;
1168			sk_free(newsk);
1169			newsk = NULL;
1170			goto out;
1171		}
1172
1173		newsk->sk_err	   = 0;
1174		newsk->sk_priority = 0;
1175		/*
1176		 * Before updating sk_refcnt, we must commit prior changes to memory
1177		 * (Documentation/RCU/rculist_nulls.txt for details)
1178		 */
1179		smp_wmb();
1180		atomic_set(&newsk->sk_refcnt, 2);
1181
1182		/*
1183		 * Increment the counter in the same struct proto as the master
1184		 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1185		 * is the same as sk->sk_prot->socks, as this field was copied
1186		 * with memcpy).
1187		 *
1188		 * This _changes_ the previous behaviour, where
1189		 * tcp_create_openreq_child always was incrementing the
1190		 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1191		 * to be taken into account in all callers. -acme
1192		 */
1193		sk_refcnt_debug_inc(newsk);
1194		sk_set_socket(newsk, NULL);
1195		newsk->sk_sleep	 = NULL;
1196
1197		if (newsk->sk_prot->sockets_allocated)
1198			percpu_counter_inc(newsk->sk_prot->sockets_allocated);
1199	}
1200out:
1201	return newsk;
1202}
1203EXPORT_SYMBOL_GPL(sk_clone);
1204
1205void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1206{
1207	__sk_dst_set(sk, dst);
1208	sk->sk_route_caps = dst->dev->features;
1209	if (sk->sk_route_caps & NETIF_F_GSO)
1210		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1211	if (sk_can_gso(sk)) {
1212		if (dst->header_len) {
1213			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1214		} else {
1215			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1216			sk->sk_gso_max_size = dst->dev->gso_max_size;
1217		}
1218	}
1219}
1220EXPORT_SYMBOL_GPL(sk_setup_caps);
1221
1222void __init sk_init(void)
1223{
1224	if (totalram_pages <= 4096) {
1225		sysctl_wmem_max = 32767;
1226		sysctl_rmem_max = 32767;
1227		sysctl_wmem_default = 32767;
1228		sysctl_rmem_default = 32767;
1229	} else if (totalram_pages >= 131072) {
1230		sysctl_wmem_max = 131071;
1231		sysctl_rmem_max = 131071;
1232	}
1233}
1234
1235/*
1236 *	Simple resource managers for sockets.
1237 */
1238
1239
1240/*
1241 * Write buffer destructor automatically called from kfree_skb.
1242 */
1243void sock_wfree(struct sk_buff *skb)
1244{
1245	struct sock *sk = skb->sk;
1246	unsigned int len = skb->truesize;
1247
1248	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1249		/*
1250		 * Keep a reference on sk_wmem_alloc, this will be released
1251		 * after sk_write_space() call
1252		 */
1253		atomic_sub(len - 1, &sk->sk_wmem_alloc);
1254		sk->sk_write_space(sk);
1255		len = 1;
1256	}
1257	/*
1258	 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1259	 * could not do because of in-flight packets
1260	 */
1261	if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1262		__sk_free(sk);
1263}
1264EXPORT_SYMBOL(sock_wfree);
1265
1266/*
1267 * Read buffer destructor automatically called from kfree_skb.
1268 */
1269void sock_rfree(struct sk_buff *skb)
1270{
1271	struct sock *sk = skb->sk;
1272
1273	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1274	sk_mem_uncharge(skb->sk, skb->truesize);
1275}
1276EXPORT_SYMBOL(sock_rfree);
1277
1278
1279int sock_i_uid(struct sock *sk)
1280{
1281	int uid;
1282
1283	read_lock(&sk->sk_callback_lock);
1284	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1285	read_unlock(&sk->sk_callback_lock);
1286	return uid;
1287}
1288EXPORT_SYMBOL(sock_i_uid);
1289
1290unsigned long sock_i_ino(struct sock *sk)
1291{
1292	unsigned long ino;
1293
1294	read_lock(&sk->sk_callback_lock);
1295	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1296	read_unlock(&sk->sk_callback_lock);
1297	return ino;
1298}
1299EXPORT_SYMBOL(sock_i_ino);
1300
1301/*
1302 * Allocate a skb from the socket's send buffer.
1303 */
1304struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1305			     gfp_t priority)
1306{
1307	if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1308		struct sk_buff *skb = alloc_skb(size, priority);
1309		if (skb) {
1310			skb_set_owner_w(skb, sk);
1311			return skb;
1312		}
1313	}
1314	return NULL;
1315}
1316EXPORT_SYMBOL(sock_wmalloc);
1317
1318/*
1319 * Allocate a skb from the socket's receive buffer.
1320 */
1321struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1322			     gfp_t priority)
1323{
1324	if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1325		struct sk_buff *skb = alloc_skb(size, priority);
1326		if (skb) {
1327			skb_set_owner_r(skb, sk);
1328			return skb;
1329		}
1330	}
1331	return NULL;
1332}
1333
1334/*
1335 * Allocate a memory block from the socket's option memory buffer.
1336 */
1337void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1338{
1339	if ((unsigned)size <= sysctl_optmem_max &&
1340	    atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1341		void *mem;
1342		/* First do the add, to avoid the race if kmalloc
1343		 * might sleep.
1344		 */
1345		atomic_add(size, &sk->sk_omem_alloc);
1346		mem = kmalloc(size, priority);
1347		if (mem)
1348			return mem;
1349		atomic_sub(size, &sk->sk_omem_alloc);
1350	}
1351	return NULL;
1352}
1353EXPORT_SYMBOL(sock_kmalloc);
1354
1355/*
1356 * Free an option memory block.
1357 */
1358void sock_kfree_s(struct sock *sk, void *mem, int size)
1359{
1360	kfree(mem);
1361	atomic_sub(size, &sk->sk_omem_alloc);
1362}
1363EXPORT_SYMBOL(sock_kfree_s);
1364
1365/* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1366   I think, these locks should be removed for datagram sockets.
1367 */
1368static long sock_wait_for_wmem(struct sock *sk, long timeo)
1369{
1370	DEFINE_WAIT(wait);
1371
1372	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1373	for (;;) {
1374		if (!timeo)
1375			break;
1376		if (signal_pending(current))
1377			break;
1378		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1379		prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1380		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1381			break;
1382		if (sk->sk_shutdown & SEND_SHUTDOWN)
1383			break;
1384		if (sk->sk_err)
1385			break;
1386		timeo = schedule_timeout(timeo);
1387	}
1388	finish_wait(sk->sk_sleep, &wait);
1389	return timeo;
1390}
1391
1392
1393/*
1394 *	Generic send/receive buffer handlers
1395 */
1396
1397struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1398				     unsigned long data_len, int noblock,
1399				     int *errcode)
1400{
1401	struct sk_buff *skb;
1402	gfp_t gfp_mask;
1403	long timeo;
1404	int err;
1405
1406	gfp_mask = sk->sk_allocation;
1407	if (gfp_mask & __GFP_WAIT)
1408		gfp_mask |= __GFP_REPEAT;
1409
1410	timeo = sock_sndtimeo(sk, noblock);
1411	while (1) {
1412		err = sock_error(sk);
1413		if (err != 0)
1414			goto failure;
1415
1416		err = -EPIPE;
1417		if (sk->sk_shutdown & SEND_SHUTDOWN)
1418			goto failure;
1419
1420		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1421			skb = alloc_skb(header_len, gfp_mask);
1422			if (skb) {
1423				int npages;
1424				int i;
1425
1426				/* No pages, we're done... */
1427				if (!data_len)
1428					break;
1429
1430				npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1431				skb->truesize += data_len;
1432				skb_shinfo(skb)->nr_frags = npages;
1433				for (i = 0; i < npages; i++) {
1434					struct page *page;
1435					skb_frag_t *frag;
1436
1437					page = alloc_pages(sk->sk_allocation, 0);
1438					if (!page) {
1439						err = -ENOBUFS;
1440						skb_shinfo(skb)->nr_frags = i;
1441						kfree_skb(skb);
1442						goto failure;
1443					}
1444
1445					frag = &skb_shinfo(skb)->frags[i];
1446					frag->page = page;
1447					frag->page_offset = 0;
1448					frag->size = (data_len >= PAGE_SIZE ?
1449						      PAGE_SIZE :
1450						      data_len);
1451					data_len -= PAGE_SIZE;
1452				}
1453
1454				/* Full success... */
1455				break;
1456			}
1457			err = -ENOBUFS;
1458			goto failure;
1459		}
1460		set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1461		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1462		err = -EAGAIN;
1463		if (!timeo)
1464			goto failure;
1465		if (signal_pending(current))
1466			goto interrupted;
1467		timeo = sock_wait_for_wmem(sk, timeo);
1468	}
1469
1470	skb_set_owner_w(skb, sk);
1471	return skb;
1472
1473interrupted:
1474	err = sock_intr_errno(timeo);
1475failure:
1476	*errcode = err;
1477	return NULL;
1478}
1479EXPORT_SYMBOL(sock_alloc_send_pskb);
1480
1481struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1482				    int noblock, int *errcode)
1483{
1484	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1485}
1486EXPORT_SYMBOL(sock_alloc_send_skb);
1487
1488static void __lock_sock(struct sock *sk)
1489{
1490	DEFINE_WAIT(wait);
1491
1492	for (;;) {
1493		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1494					TASK_UNINTERRUPTIBLE);
1495		spin_unlock_bh(&sk->sk_lock.slock);
1496		schedule();
1497		spin_lock_bh(&sk->sk_lock.slock);
1498		if (!sock_owned_by_user(sk))
1499			break;
1500	}
1501	finish_wait(&sk->sk_lock.wq, &wait);
1502}
1503
1504static void __release_sock(struct sock *sk)
1505{
1506	struct sk_buff *skb = sk->sk_backlog.head;
1507
1508	do {
1509		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1510		bh_unlock_sock(sk);
1511
1512		do {
1513			struct sk_buff *next = skb->next;
1514
1515			skb->next = NULL;
1516			sk_backlog_rcv(sk, skb);
1517
1518			/*
1519			 * We are in process context here with softirqs
1520			 * disabled, use cond_resched_softirq() to preempt.
1521			 * This is safe to do because we've taken the backlog
1522			 * queue private:
1523			 */
1524			cond_resched_softirq();
1525
1526			skb = next;
1527		} while (skb != NULL);
1528
1529		bh_lock_sock(sk);
1530	} while ((skb = sk->sk_backlog.head) != NULL);
1531}
1532
1533/**
1534 * sk_wait_data - wait for data to arrive at sk_receive_queue
1535 * @sk:    sock to wait on
1536 * @timeo: for how long
1537 *
1538 * Now socket state including sk->sk_err is changed only under lock,
1539 * hence we may omit checks after joining wait queue.
1540 * We check receive queue before schedule() only as optimization;
1541 * it is very likely that release_sock() added new data.
1542 */
1543int sk_wait_data(struct sock *sk, long *timeo)
1544{
1545	int rc;
1546	DEFINE_WAIT(wait);
1547
1548	prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1549	set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1550	rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1551	clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1552	finish_wait(sk->sk_sleep, &wait);
1553	return rc;
1554}
1555EXPORT_SYMBOL(sk_wait_data);
1556
1557/**
1558 *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1559 *	@sk: socket
1560 *	@size: memory size to allocate
1561 *	@kind: allocation type
1562 *
1563 *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1564 *	rmem allocation. This function assumes that protocols which have
1565 *	memory_pressure use sk_wmem_queued as write buffer accounting.
1566 */
1567int __sk_mem_schedule(struct sock *sk, int size, int kind)
1568{
1569	struct proto *prot = sk->sk_prot;
1570	int amt = sk_mem_pages(size);
1571	int allocated;
1572
1573	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
1574	allocated = atomic_add_return(amt, prot->memory_allocated);
1575
1576	/* Under limit. */
1577	if (allocated <= prot->sysctl_mem[0]) {
1578		if (prot->memory_pressure && *prot->memory_pressure)
1579			*prot->memory_pressure = 0;
1580		return 1;
1581	}
1582
1583	/* Under pressure. */
1584	if (allocated > prot->sysctl_mem[1])
1585		if (prot->enter_memory_pressure)
1586			prot->enter_memory_pressure(sk);
1587
1588	/* Over hard limit. */
1589	if (allocated > prot->sysctl_mem[2])
1590		goto suppress_allocation;
1591
1592	/* guarantee minimum buffer size under pressure */
1593	if (kind == SK_MEM_RECV) {
1594		if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
1595			return 1;
1596	} else { /* SK_MEM_SEND */
1597		if (sk->sk_type == SOCK_STREAM) {
1598			if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
1599				return 1;
1600		} else if (atomic_read(&sk->sk_wmem_alloc) <
1601			   prot->sysctl_wmem[0])
1602				return 1;
1603	}
1604
1605	if (prot->memory_pressure) {
1606		int alloc;
1607
1608		if (!*prot->memory_pressure)
1609			return 1;
1610		alloc = percpu_counter_read_positive(prot->sockets_allocated);
1611		if (prot->sysctl_mem[2] > alloc *
1612		    sk_mem_pages(sk->sk_wmem_queued +
1613				 atomic_read(&sk->sk_rmem_alloc) +
1614				 sk->sk_forward_alloc))
1615			return 1;
1616	}
1617
1618suppress_allocation:
1619
1620	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
1621		sk_stream_moderate_sndbuf(sk);
1622
1623		/* Fail only if socket is _under_ its sndbuf.
1624		 * In this case we cannot block, so that we have to fail.
1625		 */
1626		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
1627			return 1;
1628	}
1629
1630	/* Alas. Undo changes. */
1631	sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
1632	atomic_sub(amt, prot->memory_allocated);
1633	return 0;
1634}
1635EXPORT_SYMBOL(__sk_mem_schedule);
1636
1637/**
1638 *	__sk_reclaim - reclaim memory_allocated
1639 *	@sk: socket
1640 */
1641void __sk_mem_reclaim(struct sock *sk)
1642{
1643	struct proto *prot = sk->sk_prot;
1644
1645	atomic_sub(sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT,
1646		   prot->memory_allocated);
1647	sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
1648
1649	if (prot->memory_pressure && *prot->memory_pressure &&
1650	    (atomic_read(prot->memory_allocated) < prot->sysctl_mem[0]))
1651		*prot->memory_pressure = 0;
1652}
1653EXPORT_SYMBOL(__sk_mem_reclaim);
1654
1655
1656/*
1657 * Set of default routines for initialising struct proto_ops when
1658 * the protocol does not support a particular function. In certain
1659 * cases where it makes no sense for a protocol to have a "do nothing"
1660 * function, some default processing is provided.
1661 */
1662
1663int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1664{
1665	return -EOPNOTSUPP;
1666}
1667EXPORT_SYMBOL(sock_no_bind);
1668
1669int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1670		    int len, int flags)
1671{
1672	return -EOPNOTSUPP;
1673}
1674EXPORT_SYMBOL(sock_no_connect);
1675
1676int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1677{
1678	return -EOPNOTSUPP;
1679}
1680EXPORT_SYMBOL(sock_no_socketpair);
1681
1682int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1683{
1684	return -EOPNOTSUPP;
1685}
1686EXPORT_SYMBOL(sock_no_accept);
1687
1688int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1689		    int *len, int peer)
1690{
1691	return -EOPNOTSUPP;
1692}
1693EXPORT_SYMBOL(sock_no_getname);
1694
1695unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
1696{
1697	return 0;
1698}
1699EXPORT_SYMBOL(sock_no_poll);
1700
1701int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1702{
1703	return -EOPNOTSUPP;
1704}
1705EXPORT_SYMBOL(sock_no_ioctl);
1706
1707int sock_no_listen(struct socket *sock, int backlog)
1708{
1709	return -EOPNOTSUPP;
1710}
1711EXPORT_SYMBOL(sock_no_listen);
1712
1713int sock_no_shutdown(struct socket *sock, int how)
1714{
1715	return -EOPNOTSUPP;
1716}
1717EXPORT_SYMBOL(sock_no_shutdown);
1718
1719int sock_no_setsockopt(struct socket *sock, int level, int optname,
1720		    char __user *optval, unsigned int optlen)
1721{
1722	return -EOPNOTSUPP;
1723}
1724EXPORT_SYMBOL(sock_no_setsockopt);
1725
1726int sock_no_getsockopt(struct socket *sock, int level, int optname,
1727		    char __user *optval, int __user *optlen)
1728{
1729	return -EOPNOTSUPP;
1730}
1731EXPORT_SYMBOL(sock_no_getsockopt);
1732
1733int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1734		    size_t len)
1735{
1736	return -EOPNOTSUPP;
1737}
1738EXPORT_SYMBOL(sock_no_sendmsg);
1739
1740int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1741		    size_t len, int flags)
1742{
1743	return -EOPNOTSUPP;
1744}
1745EXPORT_SYMBOL(sock_no_recvmsg);
1746
1747int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
1748{
1749	/* Mirror missing mmap method error code */
1750	return -ENODEV;
1751}
1752EXPORT_SYMBOL(sock_no_mmap);
1753
1754ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
1755{
1756	ssize_t res;
1757	struct msghdr msg = {.msg_flags = flags};
1758	struct kvec iov;
1759	char *kaddr = kmap(page);
1760	iov.iov_base = kaddr + offset;
1761	iov.iov_len = size;
1762	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
1763	kunmap(page);
1764	return res;
1765}
1766EXPORT_SYMBOL(sock_no_sendpage);
1767
1768/*
1769 *	Default Socket Callbacks
1770 */
1771
1772static void sock_def_wakeup(struct sock *sk)
1773{
1774	read_lock(&sk->sk_callback_lock);
1775	if (sk_has_sleeper(sk))
1776		wake_up_interruptible_all(sk->sk_sleep);
1777	read_unlock(&sk->sk_callback_lock);
1778}
1779
1780static void sock_def_error_report(struct sock *sk)
1781{
1782	read_lock(&sk->sk_callback_lock);
1783	if (sk_has_sleeper(sk))
1784		wake_up_interruptible_poll(sk->sk_sleep, POLLERR);
1785	sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
1786	read_unlock(&sk->sk_callback_lock);
1787}
1788
1789static void sock_def_readable(struct sock *sk, int len)
1790{
1791	read_lock(&sk->sk_callback_lock);
1792	if (sk_has_sleeper(sk))
1793		wake_up_interruptible_sync_poll(sk->sk_sleep, POLLIN |
1794						POLLRDNORM | POLLRDBAND);
1795	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
1796	read_unlock(&sk->sk_callback_lock);
1797}
1798
1799static void sock_def_write_space(struct sock *sk)
1800{
1801	read_lock(&sk->sk_callback_lock);
1802
1803	/* Do not wake up a writer until he can make "significant"
1804	 * progress.  --DaveM
1805	 */
1806	if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
1807		if (sk_has_sleeper(sk))
1808			wake_up_interruptible_sync_poll(sk->sk_sleep, POLLOUT |
1809						POLLWRNORM | POLLWRBAND);
1810
1811		/* Should agree with poll, otherwise some programs break */
1812		if (sock_writeable(sk))
1813			sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
1814	}
1815
1816	read_unlock(&sk->sk_callback_lock);
1817}
1818
1819static void sock_def_destruct(struct sock *sk)
1820{
1821	kfree(sk->sk_protinfo);
1822}
1823
1824void sk_send_sigurg(struct sock *sk)
1825{
1826	if (sk->sk_socket && sk->sk_socket->file)
1827		if (send_sigurg(&sk->sk_socket->file->f_owner))
1828			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
1829}
1830EXPORT_SYMBOL(sk_send_sigurg);
1831
1832void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1833		    unsigned long expires)
1834{
1835	if (!mod_timer(timer, expires))
1836		sock_hold(sk);
1837}
1838EXPORT_SYMBOL(sk_reset_timer);
1839
1840void sk_stop_timer(struct sock *sk, struct timer_list* timer)
1841{
1842	if (timer_pending(timer) && del_timer(timer))
1843		__sock_put(sk);
1844}
1845EXPORT_SYMBOL(sk_stop_timer);
1846
1847void sock_init_data(struct socket *sock, struct sock *sk)
1848{
1849	skb_queue_head_init(&sk->sk_receive_queue);
1850	skb_queue_head_init(&sk->sk_write_queue);
1851	skb_queue_head_init(&sk->sk_error_queue);
1852#ifdef CONFIG_NET_DMA
1853	skb_queue_head_init(&sk->sk_async_wait_queue);
1854#endif
1855
1856	sk->sk_send_head	=	NULL;
1857
1858	init_timer(&sk->sk_timer);
1859
1860	sk->sk_allocation	=	GFP_KERNEL;
1861	sk->sk_rcvbuf		=	sysctl_rmem_default;
1862	sk->sk_sndbuf		=	sysctl_wmem_default;
1863	sk->sk_state		=	TCP_CLOSE;
1864	sk_set_socket(sk, sock);
1865
1866	sock_set_flag(sk, SOCK_ZAPPED);
1867
1868	if (sock) {
1869		sk->sk_type	=	sock->type;
1870		sk->sk_sleep	=	&sock->wait;
1871		sock->sk	=	sk;
1872	} else
1873		sk->sk_sleep	=	NULL;
1874
1875	rwlock_init(&sk->sk_dst_lock);
1876	rwlock_init(&sk->sk_callback_lock);
1877	lockdep_set_class_and_name(&sk->sk_callback_lock,
1878			af_callback_keys + sk->sk_family,
1879			af_family_clock_key_strings[sk->sk_family]);
1880
1881	sk->sk_state_change	=	sock_def_wakeup;
1882	sk->sk_data_ready	=	sock_def_readable;
1883	sk->sk_write_space	=	sock_def_write_space;
1884	sk->sk_error_report	=	sock_def_error_report;
1885	sk->sk_destruct		=	sock_def_destruct;
1886
1887	sk->sk_sndmsg_page	=	NULL;
1888	sk->sk_sndmsg_off	=	0;
1889
1890	sk->sk_peercred.pid 	=	0;
1891	sk->sk_peercred.uid	=	-1;
1892	sk->sk_peercred.gid	=	-1;
1893	sk->sk_write_pending	=	0;
1894	sk->sk_rcvlowat		=	1;
1895	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
1896	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
1897
1898	sk->sk_stamp = ktime_set(-1L, 0);
1899
1900	/*
1901	 * Before updating sk_refcnt, we must commit prior changes to memory
1902	 * (Documentation/RCU/rculist_nulls.txt for details)
1903	 */
1904	smp_wmb();
1905	atomic_set(&sk->sk_refcnt, 1);
1906	atomic_set(&sk->sk_drops, 0);
1907}
1908EXPORT_SYMBOL(sock_init_data);
1909
1910void lock_sock_nested(struct sock *sk, int subclass)
1911{
1912	might_sleep();
1913	spin_lock_bh(&sk->sk_lock.slock);
1914	if (sk->sk_lock.owned)
1915		__lock_sock(sk);
1916	sk->sk_lock.owned = 1;
1917	spin_unlock(&sk->sk_lock.slock);
1918	/*
1919	 * The sk_lock has mutex_lock() semantics here:
1920	 */
1921	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
1922	local_bh_enable();
1923}
1924EXPORT_SYMBOL(lock_sock_nested);
1925
1926void release_sock(struct sock *sk)
1927{
1928	/*
1929	 * The sk_lock has mutex_unlock() semantics:
1930	 */
1931	mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1932
1933	spin_lock_bh(&sk->sk_lock.slock);
1934	if (sk->sk_backlog.tail)
1935		__release_sock(sk);
1936	sk->sk_lock.owned = 0;
1937	if (waitqueue_active(&sk->sk_lock.wq))
1938		wake_up(&sk->sk_lock.wq);
1939	spin_unlock_bh(&sk->sk_lock.slock);
1940}
1941EXPORT_SYMBOL(release_sock);
1942
1943int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
1944{
1945	struct timeval tv;
1946	if (!sock_flag(sk, SOCK_TIMESTAMP))
1947		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
1948	tv = ktime_to_timeval(sk->sk_stamp);
1949	if (tv.tv_sec == -1)
1950		return -ENOENT;
1951	if (tv.tv_sec == 0) {
1952		sk->sk_stamp = ktime_get_real();
1953		tv = ktime_to_timeval(sk->sk_stamp);
1954	}
1955	return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
1956}
1957EXPORT_SYMBOL(sock_get_timestamp);
1958
1959int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
1960{
1961	struct timespec ts;
1962	if (!sock_flag(sk, SOCK_TIMESTAMP))
1963		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
1964	ts = ktime_to_timespec(sk->sk_stamp);
1965	if (ts.tv_sec == -1)
1966		return -ENOENT;
1967	if (ts.tv_sec == 0) {
1968		sk->sk_stamp = ktime_get_real();
1969		ts = ktime_to_timespec(sk->sk_stamp);
1970	}
1971	return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
1972}
1973EXPORT_SYMBOL(sock_get_timestampns);
1974
1975void sock_enable_timestamp(struct sock *sk, int flag)
1976{
1977	if (!sock_flag(sk, flag)) {
1978		sock_set_flag(sk, flag);
1979		/*
1980		 * we just set one of the two flags which require net
1981		 * time stamping, but time stamping might have been on
1982		 * already because of the other one
1983		 */
1984		if (!sock_flag(sk,
1985				flag == SOCK_TIMESTAMP ?
1986				SOCK_TIMESTAMPING_RX_SOFTWARE :
1987				SOCK_TIMESTAMP))
1988			net_enable_timestamp();
1989	}
1990}
1991
1992/*
1993 *	Get a socket option on an socket.
1994 *
1995 *	FIX: POSIX 1003.1g is very ambiguous here. It states that
1996 *	asynchronous errors should be reported by getsockopt. We assume
1997 *	this means if you specify SO_ERROR (otherwise whats the point of it).
1998 */
1999int sock_common_getsockopt(struct socket *sock, int level, int optname,
2000			   char __user *optval, int __user *optlen)
2001{
2002	struct sock *sk = sock->sk;
2003
2004	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2005}
2006EXPORT_SYMBOL(sock_common_getsockopt);
2007
2008#ifdef CONFIG_COMPAT
2009int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2010				  char __user *optval, int __user *optlen)
2011{
2012	struct sock *sk = sock->sk;
2013
2014	if (sk->sk_prot->compat_getsockopt != NULL)
2015		return sk->sk_prot->compat_getsockopt(sk, level, optname,
2016						      optval, optlen);
2017	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2018}
2019EXPORT_SYMBOL(compat_sock_common_getsockopt);
2020#endif
2021
2022int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
2023			struct msghdr *msg, size_t size, int flags)
2024{
2025	struct sock *sk = sock->sk;
2026	int addr_len = 0;
2027	int err;
2028
2029	err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
2030				   flags & ~MSG_DONTWAIT, &addr_len);
2031	if (err >= 0)
2032		msg->msg_namelen = addr_len;
2033	return err;
2034}
2035EXPORT_SYMBOL(sock_common_recvmsg);
2036
2037/*
2038 *	Set socket options on an inet socket.
2039 */
2040int sock_common_setsockopt(struct socket *sock, int level, int optname,
2041			   char __user *optval, unsigned int optlen)
2042{
2043	struct sock *sk = sock->sk;
2044
2045	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2046}
2047EXPORT_SYMBOL(sock_common_setsockopt);
2048
2049#ifdef CONFIG_COMPAT
2050int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2051				  char __user *optval, unsigned int optlen)
2052{
2053	struct sock *sk = sock->sk;
2054
2055	if (sk->sk_prot->compat_setsockopt != NULL)
2056		return sk->sk_prot->compat_setsockopt(sk, level, optname,
2057						      optval, optlen);
2058	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2059}
2060EXPORT_SYMBOL(compat_sock_common_setsockopt);
2061#endif
2062
2063void sk_common_release(struct sock *sk)
2064{
2065	if (sk->sk_prot->destroy)
2066		sk->sk_prot->destroy(sk);
2067
2068	/*
2069	 * Observation: when sock_common_release is called, processes have
2070	 * no access to socket. But net still has.
2071	 * Step one, detach it from networking:
2072	 *
2073	 * A. Remove from hash tables.
2074	 */
2075
2076	sk->sk_prot->unhash(sk);
2077
2078	/*
2079	 * In this point socket cannot receive new packets, but it is possible
2080	 * that some packets are in flight because some CPU runs receiver and
2081	 * did hash table lookup before we unhashed socket. They will achieve
2082	 * receive queue and will be purged by socket destructor.
2083	 *
2084	 * Also we still have packets pending on receive queue and probably,
2085	 * our own packets waiting in device queues. sock_destroy will drain
2086	 * receive queue, but transmitted packets will delay socket destruction
2087	 * until the last reference will be released.
2088	 */
2089
2090	sock_orphan(sk);
2091
2092	xfrm_sk_free_policy(sk);
2093
2094	sk_refcnt_debug_release(sk);
2095	sock_put(sk);
2096}
2097EXPORT_SYMBOL(sk_common_release);
2098
2099static DEFINE_RWLOCK(proto_list_lock);
2100static LIST_HEAD(proto_list);
2101
2102#ifdef CONFIG_PROC_FS
2103#define PROTO_INUSE_NR	64	/* should be enough for the first time */
2104struct prot_inuse {
2105	int val[PROTO_INUSE_NR];
2106};
2107
2108static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2109
2110#ifdef CONFIG_NET_NS
2111void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2112{
2113	int cpu = smp_processor_id();
2114	per_cpu_ptr(net->core.inuse, cpu)->val[prot->inuse_idx] += val;
2115}
2116EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2117
2118int sock_prot_inuse_get(struct net *net, struct proto *prot)
2119{
2120	int cpu, idx = prot->inuse_idx;
2121	int res = 0;
2122
2123	for_each_possible_cpu(cpu)
2124		res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2125
2126	return res >= 0 ? res : 0;
2127}
2128EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2129
2130static int sock_inuse_init_net(struct net *net)
2131{
2132	net->core.inuse = alloc_percpu(struct prot_inuse);
2133	return net->core.inuse ? 0 : -ENOMEM;
2134}
2135
2136static void sock_inuse_exit_net(struct net *net)
2137{
2138	free_percpu(net->core.inuse);
2139}
2140
2141static struct pernet_operations net_inuse_ops = {
2142	.init = sock_inuse_init_net,
2143	.exit = sock_inuse_exit_net,
2144};
2145
2146static __init int net_inuse_init(void)
2147{
2148	if (register_pernet_subsys(&net_inuse_ops))
2149		panic("Cannot initialize net inuse counters");
2150
2151	return 0;
2152}
2153
2154core_initcall(net_inuse_init);
2155#else
2156static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2157
2158void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2159{
2160	__get_cpu_var(prot_inuse).val[prot->inuse_idx] += val;
2161}
2162EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2163
2164int sock_prot_inuse_get(struct net *net, struct proto *prot)
2165{
2166	int cpu, idx = prot->inuse_idx;
2167	int res = 0;
2168
2169	for_each_possible_cpu(cpu)
2170		res += per_cpu(prot_inuse, cpu).val[idx];
2171
2172	return res >= 0 ? res : 0;
2173}
2174EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2175#endif
2176
2177static void assign_proto_idx(struct proto *prot)
2178{
2179	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2180
2181	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2182		printk(KERN_ERR "PROTO_INUSE_NR exhausted\n");
2183		return;
2184	}
2185
2186	set_bit(prot->inuse_idx, proto_inuse_idx);
2187}
2188
2189static void release_proto_idx(struct proto *prot)
2190{
2191	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2192		clear_bit(prot->inuse_idx, proto_inuse_idx);
2193}
2194#else
2195static inline void assign_proto_idx(struct proto *prot)
2196{
2197}
2198
2199static inline void release_proto_idx(struct proto *prot)
2200{
2201}
2202#endif
2203
2204int proto_register(struct proto *prot, int alloc_slab)
2205{
2206	if (alloc_slab) {
2207		prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2208					SLAB_HWCACHE_ALIGN | prot->slab_flags,
2209					NULL);
2210
2211		if (prot->slab == NULL) {
2212			printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n",
2213			       prot->name);
2214			goto out;
2215		}
2216
2217		if (prot->rsk_prot != NULL) {
2218			static const char mask[] = "request_sock_%s";
2219
2220			prot->rsk_prot->slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
2221			if (prot->rsk_prot->slab_name == NULL)
2222				goto out_free_sock_slab;
2223
2224			sprintf(prot->rsk_prot->slab_name, mask, prot->name);
2225			prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
2226								 prot->rsk_prot->obj_size, 0,
2227								 SLAB_HWCACHE_ALIGN, NULL);
2228
2229			if (prot->rsk_prot->slab == NULL) {
2230				printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n",
2231				       prot->name);
2232				goto out_free_request_sock_slab_name;
2233			}
2234		}
2235
2236		if (prot->twsk_prot != NULL) {
2237			static const char mask[] = "tw_sock_%s";
2238
2239			prot->twsk_prot->twsk_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
2240
2241			if (prot->twsk_prot->twsk_slab_name == NULL)
2242				goto out_free_request_sock_slab;
2243
2244			sprintf(prot->twsk_prot->twsk_slab_name, mask, prot->name);
2245			prot->twsk_prot->twsk_slab =
2246				kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2247						  prot->twsk_prot->twsk_obj_size,
2248						  0,
2249						  SLAB_HWCACHE_ALIGN |
2250							prot->slab_flags,
2251						  NULL);
2252			if (prot->twsk_prot->twsk_slab == NULL)
2253				goto out_free_timewait_sock_slab_name;
2254		}
2255	}
2256
2257	write_lock(&proto_list_lock);
2258	list_add(&prot->node, &proto_list);
2259	assign_proto_idx(prot);
2260	write_unlock(&proto_list_lock);
2261	return 0;
2262
2263out_free_timewait_sock_slab_name:
2264	kfree(prot->twsk_prot->twsk_slab_name);
2265out_free_request_sock_slab:
2266	if (prot->rsk_prot && prot->rsk_prot->slab) {
2267		kmem_cache_destroy(prot->rsk_prot->slab);
2268		prot->rsk_prot->slab = NULL;
2269	}
2270out_free_request_sock_slab_name:
2271	kfree(prot->rsk_prot->slab_name);
2272out_free_sock_slab:
2273	kmem_cache_destroy(prot->slab);
2274	prot->slab = NULL;
2275out:
2276	return -ENOBUFS;
2277}
2278EXPORT_SYMBOL(proto_register);
2279
2280void proto_unregister(struct proto *prot)
2281{
2282	write_lock(&proto_list_lock);
2283	release_proto_idx(prot);
2284	list_del(&prot->node);
2285	write_unlock(&proto_list_lock);
2286
2287	if (prot->slab != NULL) {
2288		kmem_cache_destroy(prot->slab);
2289		prot->slab = NULL;
2290	}
2291
2292	if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2293		kmem_cache_destroy(prot->rsk_prot->slab);
2294		kfree(prot->rsk_prot->slab_name);
2295		prot->rsk_prot->slab = NULL;
2296	}
2297
2298	if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2299		kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2300		kfree(prot->twsk_prot->twsk_slab_name);
2301		prot->twsk_prot->twsk_slab = NULL;
2302	}
2303}
2304EXPORT_SYMBOL(proto_unregister);
2305
2306#ifdef CONFIG_PROC_FS
2307static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2308	__acquires(proto_list_lock)
2309{
2310	read_lock(&proto_list_lock);
2311	return seq_list_start_head(&proto_list, *pos);
2312}
2313
2314static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2315{
2316	return seq_list_next(v, &proto_list, pos);
2317}
2318
2319static void proto_seq_stop(struct seq_file *seq, void *v)
2320	__releases(proto_list_lock)
2321{
2322	read_unlock(&proto_list_lock);
2323}
2324
2325static char proto_method_implemented(const void *method)
2326{
2327	return method == NULL ? 'n' : 'y';
2328}
2329
2330static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2331{
2332	seq_printf(seq, "%-9s %4u %6d  %6d   %-3s %6u   %-3s  %-10s "
2333			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2334		   proto->name,
2335		   proto->obj_size,
2336		   sock_prot_inuse_get(seq_file_net(seq), proto),
2337		   proto->memory_allocated != NULL ? atomic_read(proto->memory_allocated) : -1,
2338		   proto->memory_pressure != NULL ? *proto->memory_pressure ? "yes" : "no" : "NI",
2339		   proto->max_header,
2340		   proto->slab == NULL ? "no" : "yes",
2341		   module_name(proto->owner),
2342		   proto_method_implemented(proto->close),
2343		   proto_method_implemented(proto->connect),
2344		   proto_method_implemented(proto->disconnect),
2345		   proto_method_implemented(proto->accept),
2346		   proto_method_implemented(proto->ioctl),
2347		   proto_method_implemented(proto->init),
2348		   proto_method_implemented(proto->destroy),
2349		   proto_method_implemented(proto->shutdown),
2350		   proto_method_implemented(proto->setsockopt),
2351		   proto_method_implemented(proto->getsockopt),
2352		   proto_method_implemented(proto->sendmsg),
2353		   proto_method_implemented(proto->recvmsg),
2354		   proto_method_implemented(proto->sendpage),
2355		   proto_method_implemented(proto->bind),
2356		   proto_method_implemented(proto->backlog_rcv),
2357		   proto_method_implemented(proto->hash),
2358		   proto_method_implemented(proto->unhash),
2359		   proto_method_implemented(proto->get_port),
2360		   proto_method_implemented(proto->enter_memory_pressure));
2361}
2362
2363static int proto_seq_show(struct seq_file *seq, void *v)
2364{
2365	if (v == &proto_list)
2366		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2367			   "protocol",
2368			   "size",
2369			   "sockets",
2370			   "memory",
2371			   "press",
2372			   "maxhdr",
2373			   "slab",
2374			   "module",
2375			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2376	else
2377		proto_seq_printf(seq, list_entry(v, struct proto, node));
2378	return 0;
2379}
2380
2381static const struct seq_operations proto_seq_ops = {
2382	.start  = proto_seq_start,
2383	.next   = proto_seq_next,
2384	.stop   = proto_seq_stop,
2385	.show   = proto_seq_show,
2386};
2387
2388static int proto_seq_open(struct inode *inode, struct file *file)
2389{
2390	return seq_open_net(inode, file, &proto_seq_ops,
2391			    sizeof(struct seq_net_private));
2392}
2393
2394static const struct file_operations proto_seq_fops = {
2395	.owner		= THIS_MODULE,
2396	.open		= proto_seq_open,
2397	.read		= seq_read,
2398	.llseek		= seq_lseek,
2399	.release	= seq_release_net,
2400};
2401
2402static __net_init int proto_init_net(struct net *net)
2403{
2404	if (!proc_net_fops_create(net, "protocols", S_IRUGO, &proto_seq_fops))
2405		return -ENOMEM;
2406
2407	return 0;
2408}
2409
2410static __net_exit void proto_exit_net(struct net *net)
2411{
2412	proc_net_remove(net, "protocols");
2413}
2414
2415
2416static __net_initdata struct pernet_operations proto_net_ops = {
2417	.init = proto_init_net,
2418	.exit = proto_exit_net,
2419};
2420
2421static int __init proto_init(void)
2422{
2423	return register_pernet_subsys(&proto_net_ops);
2424}
2425
2426subsys_initcall(proto_init);
2427
2428#endif /* PROC_FS */
2429