sock.c revision 3bdc0eba0b8b47797f4a76e377dd8360f317450f
1/*
2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
3 *		operating system.  INET is implemented using the  BSD Socket
4 *		interface as the means of communication with the user level.
5 *
6 *		Generic socket support routines. Memory allocators, socket lock/release
7 *		handler for protocols to use and generic option handler.
8 *
9 *
10 * Authors:	Ross Biro
11 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 *		Florian La Roche, <flla@stud.uni-sb.de>
13 *		Alan Cox, <A.Cox@swansea.ac.uk>
14 *
15 * Fixes:
16 *		Alan Cox	: 	Numerous verify_area() problems
17 *		Alan Cox	:	Connecting on a connecting socket
18 *					now returns an error for tcp.
19 *		Alan Cox	:	sock->protocol is set correctly.
20 *					and is not sometimes left as 0.
21 *		Alan Cox	:	connect handles icmp errors on a
22 *					connect properly. Unfortunately there
23 *					is a restart syscall nasty there. I
24 *					can't match BSD without hacking the C
25 *					library. Ideas urgently sought!
26 *		Alan Cox	:	Disallow bind() to addresses that are
27 *					not ours - especially broadcast ones!!
28 *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
29 *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
30 *					instead they leave that for the DESTROY timer.
31 *		Alan Cox	:	Clean up error flag in accept
32 *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
33 *					was buggy. Put a remove_sock() in the handler
34 *					for memory when we hit 0. Also altered the timer
35 *					code. The ACK stuff can wait and needs major
36 *					TCP layer surgery.
37 *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
38 *					and fixed timer/inet_bh race.
39 *		Alan Cox	:	Added zapped flag for TCP
40 *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
41 *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
43 *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
46 *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
47 *	Pauline Middelink	:	identd support
48 *		Alan Cox	:	Fixed connect() taking signals I think.
49 *		Alan Cox	:	SO_LINGER supported
50 *		Alan Cox	:	Error reporting fixes
51 *		Anonymous	:	inet_create tidied up (sk->reuse setting)
52 *		Alan Cox	:	inet sockets don't set sk->type!
53 *		Alan Cox	:	Split socket option code
54 *		Alan Cox	:	Callbacks
55 *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
56 *		Alex		:	Removed restriction on inet fioctl
57 *		Alan Cox	:	Splitting INET from NET core
58 *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
59 *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
60 *		Alan Cox	:	Split IP from generic code
61 *		Alan Cox	:	New kfree_skbmem()
62 *		Alan Cox	:	Make SO_DEBUG superuser only.
63 *		Alan Cox	:	Allow anyone to clear SO_DEBUG
64 *					(compatibility fix)
65 *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
66 *		Alan Cox	:	Allocator for a socket is settable.
67 *		Alan Cox	:	SO_ERROR includes soft errors.
68 *		Alan Cox	:	Allow NULL arguments on some SO_ opts
69 *		Alan Cox	: 	Generic socket allocation to make hooks
70 *					easier (suggested by Craig Metz).
71 *		Michael Pall	:	SO_ERROR returns positive errno again
72 *              Steve Whitehouse:       Added default destructor to free
73 *                                      protocol private data.
74 *              Steve Whitehouse:       Added various other default routines
75 *                                      common to several socket families.
76 *              Chris Evans     :       Call suser() check last on F_SETOWN
77 *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
79 *		Andi Kleen	:	Fix write_space callback
80 *		Chris Evans	:	Security fixes - signedness again
81 *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
82 *
83 * To Fix:
84 *
85 *
86 *		This program is free software; you can redistribute it and/or
87 *		modify it under the terms of the GNU General Public License
88 *		as published by the Free Software Foundation; either version
89 *		2 of the License, or (at your option) any later version.
90 */
91
92#include <linux/capability.h>
93#include <linux/errno.h>
94#include <linux/types.h>
95#include <linux/socket.h>
96#include <linux/in.h>
97#include <linux/kernel.h>
98#include <linux/module.h>
99#include <linux/proc_fs.h>
100#include <linux/seq_file.h>
101#include <linux/sched.h>
102#include <linux/timer.h>
103#include <linux/string.h>
104#include <linux/sockios.h>
105#include <linux/net.h>
106#include <linux/mm.h>
107#include <linux/slab.h>
108#include <linux/interrupt.h>
109#include <linux/poll.h>
110#include <linux/tcp.h>
111#include <linux/init.h>
112#include <linux/highmem.h>
113#include <linux/user_namespace.h>
114#include <linux/jump_label.h>
115#include <linux/memcontrol.h>
116
117#include <asm/uaccess.h>
118#include <asm/system.h>
119
120#include <linux/netdevice.h>
121#include <net/protocol.h>
122#include <linux/skbuff.h>
123#include <net/net_namespace.h>
124#include <net/request_sock.h>
125#include <net/sock.h>
126#include <linux/net_tstamp.h>
127#include <net/xfrm.h>
128#include <linux/ipsec.h>
129#include <net/cls_cgroup.h>
130#include <net/netprio_cgroup.h>
131
132#include <linux/filter.h>
133
134#include <trace/events/sock.h>
135
136#ifdef CONFIG_INET
137#include <net/tcp.h>
138#endif
139
140static DEFINE_MUTEX(proto_list_mutex);
141static LIST_HEAD(proto_list);
142
143#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
144int mem_cgroup_sockets_init(struct cgroup *cgrp, struct cgroup_subsys *ss)
145{
146	struct proto *proto;
147	int ret = 0;
148
149	mutex_lock(&proto_list_mutex);
150	list_for_each_entry(proto, &proto_list, node) {
151		if (proto->init_cgroup) {
152			ret = proto->init_cgroup(cgrp, ss);
153			if (ret)
154				goto out;
155		}
156	}
157
158	mutex_unlock(&proto_list_mutex);
159	return ret;
160out:
161	list_for_each_entry_continue_reverse(proto, &proto_list, node)
162		if (proto->destroy_cgroup)
163			proto->destroy_cgroup(cgrp, ss);
164	mutex_unlock(&proto_list_mutex);
165	return ret;
166}
167
168void mem_cgroup_sockets_destroy(struct cgroup *cgrp, struct cgroup_subsys *ss)
169{
170	struct proto *proto;
171
172	mutex_lock(&proto_list_mutex);
173	list_for_each_entry_reverse(proto, &proto_list, node)
174		if (proto->destroy_cgroup)
175			proto->destroy_cgroup(cgrp, ss);
176	mutex_unlock(&proto_list_mutex);
177}
178#endif
179
180/*
181 * Each address family might have different locking rules, so we have
182 * one slock key per address family:
183 */
184static struct lock_class_key af_family_keys[AF_MAX];
185static struct lock_class_key af_family_slock_keys[AF_MAX];
186
187struct jump_label_key memcg_socket_limit_enabled;
188EXPORT_SYMBOL(memcg_socket_limit_enabled);
189
190/*
191 * Make lock validator output more readable. (we pre-construct these
192 * strings build-time, so that runtime initialization of socket
193 * locks is fast):
194 */
195static const char *const af_family_key_strings[AF_MAX+1] = {
196  "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX"     , "sk_lock-AF_INET"     ,
197  "sk_lock-AF_AX25"  , "sk_lock-AF_IPX"      , "sk_lock-AF_APPLETALK",
198  "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE"   , "sk_lock-AF_ATMPVC"   ,
199  "sk_lock-AF_X25"   , "sk_lock-AF_INET6"    , "sk_lock-AF_ROSE"     ,
200  "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI"  , "sk_lock-AF_SECURITY" ,
201  "sk_lock-AF_KEY"   , "sk_lock-AF_NETLINK"  , "sk_lock-AF_PACKET"   ,
202  "sk_lock-AF_ASH"   , "sk_lock-AF_ECONET"   , "sk_lock-AF_ATMSVC"   ,
203  "sk_lock-AF_RDS"   , "sk_lock-AF_SNA"      , "sk_lock-AF_IRDA"     ,
204  "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE"  , "sk_lock-AF_LLC"      ,
205  "sk_lock-27"       , "sk_lock-28"          , "sk_lock-AF_CAN"      ,
206  "sk_lock-AF_TIPC"  , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV"        ,
207  "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN"     , "sk_lock-AF_PHONET"   ,
208  "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG"      ,
209  "sk_lock-AF_NFC"   , "sk_lock-AF_MAX"
210};
211static const char *const af_family_slock_key_strings[AF_MAX+1] = {
212  "slock-AF_UNSPEC", "slock-AF_UNIX"     , "slock-AF_INET"     ,
213  "slock-AF_AX25"  , "slock-AF_IPX"      , "slock-AF_APPLETALK",
214  "slock-AF_NETROM", "slock-AF_BRIDGE"   , "slock-AF_ATMPVC"   ,
215  "slock-AF_X25"   , "slock-AF_INET6"    , "slock-AF_ROSE"     ,
216  "slock-AF_DECnet", "slock-AF_NETBEUI"  , "slock-AF_SECURITY" ,
217  "slock-AF_KEY"   , "slock-AF_NETLINK"  , "slock-AF_PACKET"   ,
218  "slock-AF_ASH"   , "slock-AF_ECONET"   , "slock-AF_ATMSVC"   ,
219  "slock-AF_RDS"   , "slock-AF_SNA"      , "slock-AF_IRDA"     ,
220  "slock-AF_PPPOX" , "slock-AF_WANPIPE"  , "slock-AF_LLC"      ,
221  "slock-27"       , "slock-28"          , "slock-AF_CAN"      ,
222  "slock-AF_TIPC"  , "slock-AF_BLUETOOTH", "slock-AF_IUCV"     ,
223  "slock-AF_RXRPC" , "slock-AF_ISDN"     , "slock-AF_PHONET"   ,
224  "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG"      ,
225  "slock-AF_NFC"   , "slock-AF_MAX"
226};
227static const char *const af_family_clock_key_strings[AF_MAX+1] = {
228  "clock-AF_UNSPEC", "clock-AF_UNIX"     , "clock-AF_INET"     ,
229  "clock-AF_AX25"  , "clock-AF_IPX"      , "clock-AF_APPLETALK",
230  "clock-AF_NETROM", "clock-AF_BRIDGE"   , "clock-AF_ATMPVC"   ,
231  "clock-AF_X25"   , "clock-AF_INET6"    , "clock-AF_ROSE"     ,
232  "clock-AF_DECnet", "clock-AF_NETBEUI"  , "clock-AF_SECURITY" ,
233  "clock-AF_KEY"   , "clock-AF_NETLINK"  , "clock-AF_PACKET"   ,
234  "clock-AF_ASH"   , "clock-AF_ECONET"   , "clock-AF_ATMSVC"   ,
235  "clock-AF_RDS"   , "clock-AF_SNA"      , "clock-AF_IRDA"     ,
236  "clock-AF_PPPOX" , "clock-AF_WANPIPE"  , "clock-AF_LLC"      ,
237  "clock-27"       , "clock-28"          , "clock-AF_CAN"      ,
238  "clock-AF_TIPC"  , "clock-AF_BLUETOOTH", "clock-AF_IUCV"     ,
239  "clock-AF_RXRPC" , "clock-AF_ISDN"     , "clock-AF_PHONET"   ,
240  "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG"      ,
241  "clock-AF_NFC"   , "clock-AF_MAX"
242};
243
244/*
245 * sk_callback_lock locking rules are per-address-family,
246 * so split the lock classes by using a per-AF key:
247 */
248static struct lock_class_key af_callback_keys[AF_MAX];
249
250/* Take into consideration the size of the struct sk_buff overhead in the
251 * determination of these values, since that is non-constant across
252 * platforms.  This makes socket queueing behavior and performance
253 * not depend upon such differences.
254 */
255#define _SK_MEM_PACKETS		256
256#define _SK_MEM_OVERHEAD	SKB_TRUESIZE(256)
257#define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
258#define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
259
260/* Run time adjustable parameters. */
261__u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
262__u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
263__u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
264__u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
265
266/* Maximal space eaten by iovec or ancillary data plus some space */
267int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
268EXPORT_SYMBOL(sysctl_optmem_max);
269
270#if defined(CONFIG_CGROUPS)
271#if !defined(CONFIG_NET_CLS_CGROUP)
272int net_cls_subsys_id = -1;
273EXPORT_SYMBOL_GPL(net_cls_subsys_id);
274#endif
275#if !defined(CONFIG_NETPRIO_CGROUP)
276int net_prio_subsys_id = -1;
277EXPORT_SYMBOL_GPL(net_prio_subsys_id);
278#endif
279#endif
280
281static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
282{
283	struct timeval tv;
284
285	if (optlen < sizeof(tv))
286		return -EINVAL;
287	if (copy_from_user(&tv, optval, sizeof(tv)))
288		return -EFAULT;
289	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
290		return -EDOM;
291
292	if (tv.tv_sec < 0) {
293		static int warned __read_mostly;
294
295		*timeo_p = 0;
296		if (warned < 10 && net_ratelimit()) {
297			warned++;
298			printk(KERN_INFO "sock_set_timeout: `%s' (pid %d) "
299			       "tries to set negative timeout\n",
300				current->comm, task_pid_nr(current));
301		}
302		return 0;
303	}
304	*timeo_p = MAX_SCHEDULE_TIMEOUT;
305	if (tv.tv_sec == 0 && tv.tv_usec == 0)
306		return 0;
307	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
308		*timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
309	return 0;
310}
311
312static void sock_warn_obsolete_bsdism(const char *name)
313{
314	static int warned;
315	static char warncomm[TASK_COMM_LEN];
316	if (strcmp(warncomm, current->comm) && warned < 5) {
317		strcpy(warncomm,  current->comm);
318		printk(KERN_WARNING "process `%s' is using obsolete "
319		       "%s SO_BSDCOMPAT\n", warncomm, name);
320		warned++;
321	}
322}
323
324#define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
325
326static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
327{
328	if (sk->sk_flags & flags) {
329		sk->sk_flags &= ~flags;
330		if (!(sk->sk_flags & SK_FLAGS_TIMESTAMP))
331			net_disable_timestamp();
332	}
333}
334
335
336int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
337{
338	int err;
339	int skb_len;
340	unsigned long flags;
341	struct sk_buff_head *list = &sk->sk_receive_queue;
342
343	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
344		atomic_inc(&sk->sk_drops);
345		trace_sock_rcvqueue_full(sk, skb);
346		return -ENOMEM;
347	}
348
349	err = sk_filter(sk, skb);
350	if (err)
351		return err;
352
353	if (!sk_rmem_schedule(sk, skb->truesize)) {
354		atomic_inc(&sk->sk_drops);
355		return -ENOBUFS;
356	}
357
358	skb->dev = NULL;
359	skb_set_owner_r(skb, sk);
360
361	/* Cache the SKB length before we tack it onto the receive
362	 * queue.  Once it is added it no longer belongs to us and
363	 * may be freed by other threads of control pulling packets
364	 * from the queue.
365	 */
366	skb_len = skb->len;
367
368	/* we escape from rcu protected region, make sure we dont leak
369	 * a norefcounted dst
370	 */
371	skb_dst_force(skb);
372
373	spin_lock_irqsave(&list->lock, flags);
374	skb->dropcount = atomic_read(&sk->sk_drops);
375	__skb_queue_tail(list, skb);
376	spin_unlock_irqrestore(&list->lock, flags);
377
378	if (!sock_flag(sk, SOCK_DEAD))
379		sk->sk_data_ready(sk, skb_len);
380	return 0;
381}
382EXPORT_SYMBOL(sock_queue_rcv_skb);
383
384int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
385{
386	int rc = NET_RX_SUCCESS;
387
388	if (sk_filter(sk, skb))
389		goto discard_and_relse;
390
391	skb->dev = NULL;
392
393	if (sk_rcvqueues_full(sk, skb)) {
394		atomic_inc(&sk->sk_drops);
395		goto discard_and_relse;
396	}
397	if (nested)
398		bh_lock_sock_nested(sk);
399	else
400		bh_lock_sock(sk);
401	if (!sock_owned_by_user(sk)) {
402		/*
403		 * trylock + unlock semantics:
404		 */
405		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
406
407		rc = sk_backlog_rcv(sk, skb);
408
409		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
410	} else if (sk_add_backlog(sk, skb)) {
411		bh_unlock_sock(sk);
412		atomic_inc(&sk->sk_drops);
413		goto discard_and_relse;
414	}
415
416	bh_unlock_sock(sk);
417out:
418	sock_put(sk);
419	return rc;
420discard_and_relse:
421	kfree_skb(skb);
422	goto out;
423}
424EXPORT_SYMBOL(sk_receive_skb);
425
426void sk_reset_txq(struct sock *sk)
427{
428	sk_tx_queue_clear(sk);
429}
430EXPORT_SYMBOL(sk_reset_txq);
431
432struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
433{
434	struct dst_entry *dst = __sk_dst_get(sk);
435
436	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
437		sk_tx_queue_clear(sk);
438		RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
439		dst_release(dst);
440		return NULL;
441	}
442
443	return dst;
444}
445EXPORT_SYMBOL(__sk_dst_check);
446
447struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
448{
449	struct dst_entry *dst = sk_dst_get(sk);
450
451	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
452		sk_dst_reset(sk);
453		dst_release(dst);
454		return NULL;
455	}
456
457	return dst;
458}
459EXPORT_SYMBOL(sk_dst_check);
460
461static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
462{
463	int ret = -ENOPROTOOPT;
464#ifdef CONFIG_NETDEVICES
465	struct net *net = sock_net(sk);
466	char devname[IFNAMSIZ];
467	int index;
468
469	/* Sorry... */
470	ret = -EPERM;
471	if (!capable(CAP_NET_RAW))
472		goto out;
473
474	ret = -EINVAL;
475	if (optlen < 0)
476		goto out;
477
478	/* Bind this socket to a particular device like "eth0",
479	 * as specified in the passed interface name. If the
480	 * name is "" or the option length is zero the socket
481	 * is not bound.
482	 */
483	if (optlen > IFNAMSIZ - 1)
484		optlen = IFNAMSIZ - 1;
485	memset(devname, 0, sizeof(devname));
486
487	ret = -EFAULT;
488	if (copy_from_user(devname, optval, optlen))
489		goto out;
490
491	index = 0;
492	if (devname[0] != '\0') {
493		struct net_device *dev;
494
495		rcu_read_lock();
496		dev = dev_get_by_name_rcu(net, devname);
497		if (dev)
498			index = dev->ifindex;
499		rcu_read_unlock();
500		ret = -ENODEV;
501		if (!dev)
502			goto out;
503	}
504
505	lock_sock(sk);
506	sk->sk_bound_dev_if = index;
507	sk_dst_reset(sk);
508	release_sock(sk);
509
510	ret = 0;
511
512out:
513#endif
514
515	return ret;
516}
517
518static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
519{
520	if (valbool)
521		sock_set_flag(sk, bit);
522	else
523		sock_reset_flag(sk, bit);
524}
525
526/*
527 *	This is meant for all protocols to use and covers goings on
528 *	at the socket level. Everything here is generic.
529 */
530
531int sock_setsockopt(struct socket *sock, int level, int optname,
532		    char __user *optval, unsigned int optlen)
533{
534	struct sock *sk = sock->sk;
535	int val;
536	int valbool;
537	struct linger ling;
538	int ret = 0;
539
540	/*
541	 *	Options without arguments
542	 */
543
544	if (optname == SO_BINDTODEVICE)
545		return sock_bindtodevice(sk, optval, optlen);
546
547	if (optlen < sizeof(int))
548		return -EINVAL;
549
550	if (get_user(val, (int __user *)optval))
551		return -EFAULT;
552
553	valbool = val ? 1 : 0;
554
555	lock_sock(sk);
556
557	switch (optname) {
558	case SO_DEBUG:
559		if (val && !capable(CAP_NET_ADMIN))
560			ret = -EACCES;
561		else
562			sock_valbool_flag(sk, SOCK_DBG, valbool);
563		break;
564	case SO_REUSEADDR:
565		sk->sk_reuse = valbool;
566		break;
567	case SO_TYPE:
568	case SO_PROTOCOL:
569	case SO_DOMAIN:
570	case SO_ERROR:
571		ret = -ENOPROTOOPT;
572		break;
573	case SO_DONTROUTE:
574		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
575		break;
576	case SO_BROADCAST:
577		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
578		break;
579	case SO_SNDBUF:
580		/* Don't error on this BSD doesn't and if you think
581		   about it this is right. Otherwise apps have to
582		   play 'guess the biggest size' games. RCVBUF/SNDBUF
583		   are treated in BSD as hints */
584
585		if (val > sysctl_wmem_max)
586			val = sysctl_wmem_max;
587set_sndbuf:
588		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
589		if ((val * 2) < SOCK_MIN_SNDBUF)
590			sk->sk_sndbuf = SOCK_MIN_SNDBUF;
591		else
592			sk->sk_sndbuf = val * 2;
593
594		/*
595		 *	Wake up sending tasks if we
596		 *	upped the value.
597		 */
598		sk->sk_write_space(sk);
599		break;
600
601	case SO_SNDBUFFORCE:
602		if (!capable(CAP_NET_ADMIN)) {
603			ret = -EPERM;
604			break;
605		}
606		goto set_sndbuf;
607
608	case SO_RCVBUF:
609		/* Don't error on this BSD doesn't and if you think
610		   about it this is right. Otherwise apps have to
611		   play 'guess the biggest size' games. RCVBUF/SNDBUF
612		   are treated in BSD as hints */
613
614		if (val > sysctl_rmem_max)
615			val = sysctl_rmem_max;
616set_rcvbuf:
617		sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
618		/*
619		 * We double it on the way in to account for
620		 * "struct sk_buff" etc. overhead.   Applications
621		 * assume that the SO_RCVBUF setting they make will
622		 * allow that much actual data to be received on that
623		 * socket.
624		 *
625		 * Applications are unaware that "struct sk_buff" and
626		 * other overheads allocate from the receive buffer
627		 * during socket buffer allocation.
628		 *
629		 * And after considering the possible alternatives,
630		 * returning the value we actually used in getsockopt
631		 * is the most desirable behavior.
632		 */
633		if ((val * 2) < SOCK_MIN_RCVBUF)
634			sk->sk_rcvbuf = SOCK_MIN_RCVBUF;
635		else
636			sk->sk_rcvbuf = val * 2;
637		break;
638
639	case SO_RCVBUFFORCE:
640		if (!capable(CAP_NET_ADMIN)) {
641			ret = -EPERM;
642			break;
643		}
644		goto set_rcvbuf;
645
646	case SO_KEEPALIVE:
647#ifdef CONFIG_INET
648		if (sk->sk_protocol == IPPROTO_TCP)
649			tcp_set_keepalive(sk, valbool);
650#endif
651		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
652		break;
653
654	case SO_OOBINLINE:
655		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
656		break;
657
658	case SO_NO_CHECK:
659		sk->sk_no_check = valbool;
660		break;
661
662	case SO_PRIORITY:
663		if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
664			sk->sk_priority = val;
665		else
666			ret = -EPERM;
667		break;
668
669	case SO_LINGER:
670		if (optlen < sizeof(ling)) {
671			ret = -EINVAL;	/* 1003.1g */
672			break;
673		}
674		if (copy_from_user(&ling, optval, sizeof(ling))) {
675			ret = -EFAULT;
676			break;
677		}
678		if (!ling.l_onoff)
679			sock_reset_flag(sk, SOCK_LINGER);
680		else {
681#if (BITS_PER_LONG == 32)
682			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
683				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
684			else
685#endif
686				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
687			sock_set_flag(sk, SOCK_LINGER);
688		}
689		break;
690
691	case SO_BSDCOMPAT:
692		sock_warn_obsolete_bsdism("setsockopt");
693		break;
694
695	case SO_PASSCRED:
696		if (valbool)
697			set_bit(SOCK_PASSCRED, &sock->flags);
698		else
699			clear_bit(SOCK_PASSCRED, &sock->flags);
700		break;
701
702	case SO_TIMESTAMP:
703	case SO_TIMESTAMPNS:
704		if (valbool)  {
705			if (optname == SO_TIMESTAMP)
706				sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
707			else
708				sock_set_flag(sk, SOCK_RCVTSTAMPNS);
709			sock_set_flag(sk, SOCK_RCVTSTAMP);
710			sock_enable_timestamp(sk, SOCK_TIMESTAMP);
711		} else {
712			sock_reset_flag(sk, SOCK_RCVTSTAMP);
713			sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
714		}
715		break;
716
717	case SO_TIMESTAMPING:
718		if (val & ~SOF_TIMESTAMPING_MASK) {
719			ret = -EINVAL;
720			break;
721		}
722		sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE,
723				  val & SOF_TIMESTAMPING_TX_HARDWARE);
724		sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE,
725				  val & SOF_TIMESTAMPING_TX_SOFTWARE);
726		sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE,
727				  val & SOF_TIMESTAMPING_RX_HARDWARE);
728		if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
729			sock_enable_timestamp(sk,
730					      SOCK_TIMESTAMPING_RX_SOFTWARE);
731		else
732			sock_disable_timestamp(sk,
733					       (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
734		sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE,
735				  val & SOF_TIMESTAMPING_SOFTWARE);
736		sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE,
737				  val & SOF_TIMESTAMPING_SYS_HARDWARE);
738		sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE,
739				  val & SOF_TIMESTAMPING_RAW_HARDWARE);
740		break;
741
742	case SO_RCVLOWAT:
743		if (val < 0)
744			val = INT_MAX;
745		sk->sk_rcvlowat = val ? : 1;
746		break;
747
748	case SO_RCVTIMEO:
749		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
750		break;
751
752	case SO_SNDTIMEO:
753		ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
754		break;
755
756	case SO_ATTACH_FILTER:
757		ret = -EINVAL;
758		if (optlen == sizeof(struct sock_fprog)) {
759			struct sock_fprog fprog;
760
761			ret = -EFAULT;
762			if (copy_from_user(&fprog, optval, sizeof(fprog)))
763				break;
764
765			ret = sk_attach_filter(&fprog, sk);
766		}
767		break;
768
769	case SO_DETACH_FILTER:
770		ret = sk_detach_filter(sk);
771		break;
772
773	case SO_PASSSEC:
774		if (valbool)
775			set_bit(SOCK_PASSSEC, &sock->flags);
776		else
777			clear_bit(SOCK_PASSSEC, &sock->flags);
778		break;
779	case SO_MARK:
780		if (!capable(CAP_NET_ADMIN))
781			ret = -EPERM;
782		else
783			sk->sk_mark = val;
784		break;
785
786		/* We implement the SO_SNDLOWAT etc to
787		   not be settable (1003.1g 5.3) */
788	case SO_RXQ_OVFL:
789		sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
790		break;
791
792	case SO_WIFI_STATUS:
793		sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
794		break;
795
796	case SO_PEEK_OFF:
797		if (sock->ops->set_peek_off)
798			sock->ops->set_peek_off(sk, val);
799		else
800			ret = -EOPNOTSUPP;
801		break;
802
803	case SO_NOFCS:
804		sock_valbool_flag(sk, SOCK_NOFCS, valbool);
805		break;
806
807	default:
808		ret = -ENOPROTOOPT;
809		break;
810	}
811	release_sock(sk);
812	return ret;
813}
814EXPORT_SYMBOL(sock_setsockopt);
815
816
817void cred_to_ucred(struct pid *pid, const struct cred *cred,
818		   struct ucred *ucred)
819{
820	ucred->pid = pid_vnr(pid);
821	ucred->uid = ucred->gid = -1;
822	if (cred) {
823		struct user_namespace *current_ns = current_user_ns();
824
825		ucred->uid = user_ns_map_uid(current_ns, cred, cred->euid);
826		ucred->gid = user_ns_map_gid(current_ns, cred, cred->egid);
827	}
828}
829EXPORT_SYMBOL_GPL(cred_to_ucred);
830
831int sock_getsockopt(struct socket *sock, int level, int optname,
832		    char __user *optval, int __user *optlen)
833{
834	struct sock *sk = sock->sk;
835
836	union {
837		int val;
838		struct linger ling;
839		struct timeval tm;
840	} v;
841
842	int lv = sizeof(int);
843	int len;
844
845	if (get_user(len, optlen))
846		return -EFAULT;
847	if (len < 0)
848		return -EINVAL;
849
850	memset(&v, 0, sizeof(v));
851
852	switch (optname) {
853	case SO_DEBUG:
854		v.val = sock_flag(sk, SOCK_DBG);
855		break;
856
857	case SO_DONTROUTE:
858		v.val = sock_flag(sk, SOCK_LOCALROUTE);
859		break;
860
861	case SO_BROADCAST:
862		v.val = !!sock_flag(sk, SOCK_BROADCAST);
863		break;
864
865	case SO_SNDBUF:
866		v.val = sk->sk_sndbuf;
867		break;
868
869	case SO_RCVBUF:
870		v.val = sk->sk_rcvbuf;
871		break;
872
873	case SO_REUSEADDR:
874		v.val = sk->sk_reuse;
875		break;
876
877	case SO_KEEPALIVE:
878		v.val = !!sock_flag(sk, SOCK_KEEPOPEN);
879		break;
880
881	case SO_TYPE:
882		v.val = sk->sk_type;
883		break;
884
885	case SO_PROTOCOL:
886		v.val = sk->sk_protocol;
887		break;
888
889	case SO_DOMAIN:
890		v.val = sk->sk_family;
891		break;
892
893	case SO_ERROR:
894		v.val = -sock_error(sk);
895		if (v.val == 0)
896			v.val = xchg(&sk->sk_err_soft, 0);
897		break;
898
899	case SO_OOBINLINE:
900		v.val = !!sock_flag(sk, SOCK_URGINLINE);
901		break;
902
903	case SO_NO_CHECK:
904		v.val = sk->sk_no_check;
905		break;
906
907	case SO_PRIORITY:
908		v.val = sk->sk_priority;
909		break;
910
911	case SO_LINGER:
912		lv		= sizeof(v.ling);
913		v.ling.l_onoff	= !!sock_flag(sk, SOCK_LINGER);
914		v.ling.l_linger	= sk->sk_lingertime / HZ;
915		break;
916
917	case SO_BSDCOMPAT:
918		sock_warn_obsolete_bsdism("getsockopt");
919		break;
920
921	case SO_TIMESTAMP:
922		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
923				!sock_flag(sk, SOCK_RCVTSTAMPNS);
924		break;
925
926	case SO_TIMESTAMPNS:
927		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
928		break;
929
930	case SO_TIMESTAMPING:
931		v.val = 0;
932		if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
933			v.val |= SOF_TIMESTAMPING_TX_HARDWARE;
934		if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
935			v.val |= SOF_TIMESTAMPING_TX_SOFTWARE;
936		if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE))
937			v.val |= SOF_TIMESTAMPING_RX_HARDWARE;
938		if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE))
939			v.val |= SOF_TIMESTAMPING_RX_SOFTWARE;
940		if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE))
941			v.val |= SOF_TIMESTAMPING_SOFTWARE;
942		if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))
943			v.val |= SOF_TIMESTAMPING_SYS_HARDWARE;
944		if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE))
945			v.val |= SOF_TIMESTAMPING_RAW_HARDWARE;
946		break;
947
948	case SO_RCVTIMEO:
949		lv = sizeof(struct timeval);
950		if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
951			v.tm.tv_sec = 0;
952			v.tm.tv_usec = 0;
953		} else {
954			v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
955			v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
956		}
957		break;
958
959	case SO_SNDTIMEO:
960		lv = sizeof(struct timeval);
961		if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
962			v.tm.tv_sec = 0;
963			v.tm.tv_usec = 0;
964		} else {
965			v.tm.tv_sec = sk->sk_sndtimeo / HZ;
966			v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
967		}
968		break;
969
970	case SO_RCVLOWAT:
971		v.val = sk->sk_rcvlowat;
972		break;
973
974	case SO_SNDLOWAT:
975		v.val = 1;
976		break;
977
978	case SO_PASSCRED:
979		v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0;
980		break;
981
982	case SO_PEERCRED:
983	{
984		struct ucred peercred;
985		if (len > sizeof(peercred))
986			len = sizeof(peercred);
987		cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
988		if (copy_to_user(optval, &peercred, len))
989			return -EFAULT;
990		goto lenout;
991	}
992
993	case SO_PEERNAME:
994	{
995		char address[128];
996
997		if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
998			return -ENOTCONN;
999		if (lv < len)
1000			return -EINVAL;
1001		if (copy_to_user(optval, address, len))
1002			return -EFAULT;
1003		goto lenout;
1004	}
1005
1006	/* Dubious BSD thing... Probably nobody even uses it, but
1007	 * the UNIX standard wants it for whatever reason... -DaveM
1008	 */
1009	case SO_ACCEPTCONN:
1010		v.val = sk->sk_state == TCP_LISTEN;
1011		break;
1012
1013	case SO_PASSSEC:
1014		v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0;
1015		break;
1016
1017	case SO_PEERSEC:
1018		return security_socket_getpeersec_stream(sock, optval, optlen, len);
1019
1020	case SO_MARK:
1021		v.val = sk->sk_mark;
1022		break;
1023
1024	case SO_RXQ_OVFL:
1025		v.val = !!sock_flag(sk, SOCK_RXQ_OVFL);
1026		break;
1027
1028	case SO_WIFI_STATUS:
1029		v.val = !!sock_flag(sk, SOCK_WIFI_STATUS);
1030		break;
1031
1032	case SO_PEEK_OFF:
1033		if (!sock->ops->set_peek_off)
1034			return -EOPNOTSUPP;
1035
1036		v.val = sk->sk_peek_off;
1037		break;
1038	default:
1039		return -ENOPROTOOPT;
1040	}
1041
1042	if (len > lv)
1043		len = lv;
1044	if (copy_to_user(optval, &v, len))
1045		return -EFAULT;
1046lenout:
1047	if (put_user(len, optlen))
1048		return -EFAULT;
1049	return 0;
1050}
1051
1052/*
1053 * Initialize an sk_lock.
1054 *
1055 * (We also register the sk_lock with the lock validator.)
1056 */
1057static inline void sock_lock_init(struct sock *sk)
1058{
1059	sock_lock_init_class_and_name(sk,
1060			af_family_slock_key_strings[sk->sk_family],
1061			af_family_slock_keys + sk->sk_family,
1062			af_family_key_strings[sk->sk_family],
1063			af_family_keys + sk->sk_family);
1064}
1065
1066/*
1067 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1068 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1069 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1070 */
1071static void sock_copy(struct sock *nsk, const struct sock *osk)
1072{
1073#ifdef CONFIG_SECURITY_NETWORK
1074	void *sptr = nsk->sk_security;
1075#endif
1076	memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1077
1078	memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1079	       osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1080
1081#ifdef CONFIG_SECURITY_NETWORK
1082	nsk->sk_security = sptr;
1083	security_sk_clone(osk, nsk);
1084#endif
1085}
1086
1087/*
1088 * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
1089 * un-modified. Special care is taken when initializing object to zero.
1090 */
1091static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1092{
1093	if (offsetof(struct sock, sk_node.next) != 0)
1094		memset(sk, 0, offsetof(struct sock, sk_node.next));
1095	memset(&sk->sk_node.pprev, 0,
1096	       size - offsetof(struct sock, sk_node.pprev));
1097}
1098
1099void sk_prot_clear_portaddr_nulls(struct sock *sk, int size)
1100{
1101	unsigned long nulls1, nulls2;
1102
1103	nulls1 = offsetof(struct sock, __sk_common.skc_node.next);
1104	nulls2 = offsetof(struct sock, __sk_common.skc_portaddr_node.next);
1105	if (nulls1 > nulls2)
1106		swap(nulls1, nulls2);
1107
1108	if (nulls1 != 0)
1109		memset((char *)sk, 0, nulls1);
1110	memset((char *)sk + nulls1 + sizeof(void *), 0,
1111	       nulls2 - nulls1 - sizeof(void *));
1112	memset((char *)sk + nulls2 + sizeof(void *), 0,
1113	       size - nulls2 - sizeof(void *));
1114}
1115EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls);
1116
1117static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1118		int family)
1119{
1120	struct sock *sk;
1121	struct kmem_cache *slab;
1122
1123	slab = prot->slab;
1124	if (slab != NULL) {
1125		sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1126		if (!sk)
1127			return sk;
1128		if (priority & __GFP_ZERO) {
1129			if (prot->clear_sk)
1130				prot->clear_sk(sk, prot->obj_size);
1131			else
1132				sk_prot_clear_nulls(sk, prot->obj_size);
1133		}
1134	} else
1135		sk = kmalloc(prot->obj_size, priority);
1136
1137	if (sk != NULL) {
1138		kmemcheck_annotate_bitfield(sk, flags);
1139
1140		if (security_sk_alloc(sk, family, priority))
1141			goto out_free;
1142
1143		if (!try_module_get(prot->owner))
1144			goto out_free_sec;
1145		sk_tx_queue_clear(sk);
1146	}
1147
1148	return sk;
1149
1150out_free_sec:
1151	security_sk_free(sk);
1152out_free:
1153	if (slab != NULL)
1154		kmem_cache_free(slab, sk);
1155	else
1156		kfree(sk);
1157	return NULL;
1158}
1159
1160static void sk_prot_free(struct proto *prot, struct sock *sk)
1161{
1162	struct kmem_cache *slab;
1163	struct module *owner;
1164
1165	owner = prot->owner;
1166	slab = prot->slab;
1167
1168	security_sk_free(sk);
1169	if (slab != NULL)
1170		kmem_cache_free(slab, sk);
1171	else
1172		kfree(sk);
1173	module_put(owner);
1174}
1175
1176#ifdef CONFIG_CGROUPS
1177void sock_update_classid(struct sock *sk)
1178{
1179	u32 classid;
1180
1181	rcu_read_lock();  /* doing current task, which cannot vanish. */
1182	classid = task_cls_classid(current);
1183	rcu_read_unlock();
1184	if (classid && classid != sk->sk_classid)
1185		sk->sk_classid = classid;
1186}
1187EXPORT_SYMBOL(sock_update_classid);
1188
1189void sock_update_netprioidx(struct sock *sk)
1190{
1191	if (in_interrupt())
1192		return;
1193
1194	sk->sk_cgrp_prioidx = task_netprioidx(current);
1195}
1196EXPORT_SYMBOL_GPL(sock_update_netprioidx);
1197#endif
1198
1199/**
1200 *	sk_alloc - All socket objects are allocated here
1201 *	@net: the applicable net namespace
1202 *	@family: protocol family
1203 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1204 *	@prot: struct proto associated with this new sock instance
1205 */
1206struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1207		      struct proto *prot)
1208{
1209	struct sock *sk;
1210
1211	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1212	if (sk) {
1213		sk->sk_family = family;
1214		/*
1215		 * See comment in struct sock definition to understand
1216		 * why we need sk_prot_creator -acme
1217		 */
1218		sk->sk_prot = sk->sk_prot_creator = prot;
1219		sock_lock_init(sk);
1220		sock_net_set(sk, get_net(net));
1221		atomic_set(&sk->sk_wmem_alloc, 1);
1222
1223		sock_update_classid(sk);
1224		sock_update_netprioidx(sk);
1225	}
1226
1227	return sk;
1228}
1229EXPORT_SYMBOL(sk_alloc);
1230
1231static void __sk_free(struct sock *sk)
1232{
1233	struct sk_filter *filter;
1234
1235	if (sk->sk_destruct)
1236		sk->sk_destruct(sk);
1237
1238	filter = rcu_dereference_check(sk->sk_filter,
1239				       atomic_read(&sk->sk_wmem_alloc) == 0);
1240	if (filter) {
1241		sk_filter_uncharge(sk, filter);
1242		RCU_INIT_POINTER(sk->sk_filter, NULL);
1243	}
1244
1245	sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1246
1247	if (atomic_read(&sk->sk_omem_alloc))
1248		printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n",
1249		       __func__, atomic_read(&sk->sk_omem_alloc));
1250
1251	if (sk->sk_peer_cred)
1252		put_cred(sk->sk_peer_cred);
1253	put_pid(sk->sk_peer_pid);
1254	put_net(sock_net(sk));
1255	sk_prot_free(sk->sk_prot_creator, sk);
1256}
1257
1258void sk_free(struct sock *sk)
1259{
1260	/*
1261	 * We subtract one from sk_wmem_alloc and can know if
1262	 * some packets are still in some tx queue.
1263	 * If not null, sock_wfree() will call __sk_free(sk) later
1264	 */
1265	if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1266		__sk_free(sk);
1267}
1268EXPORT_SYMBOL(sk_free);
1269
1270/*
1271 * Last sock_put should drop reference to sk->sk_net. It has already
1272 * been dropped in sk_change_net. Taking reference to stopping namespace
1273 * is not an option.
1274 * Take reference to a socket to remove it from hash _alive_ and after that
1275 * destroy it in the context of init_net.
1276 */
1277void sk_release_kernel(struct sock *sk)
1278{
1279	if (sk == NULL || sk->sk_socket == NULL)
1280		return;
1281
1282	sock_hold(sk);
1283	sock_release(sk->sk_socket);
1284	release_net(sock_net(sk));
1285	sock_net_set(sk, get_net(&init_net));
1286	sock_put(sk);
1287}
1288EXPORT_SYMBOL(sk_release_kernel);
1289
1290static void sk_update_clone(const struct sock *sk, struct sock *newsk)
1291{
1292	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1293		sock_update_memcg(newsk);
1294}
1295
1296/**
1297 *	sk_clone_lock - clone a socket, and lock its clone
1298 *	@sk: the socket to clone
1299 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1300 *
1301 *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1302 */
1303struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1304{
1305	struct sock *newsk;
1306
1307	newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1308	if (newsk != NULL) {
1309		struct sk_filter *filter;
1310
1311		sock_copy(newsk, sk);
1312
1313		/* SANITY */
1314		get_net(sock_net(newsk));
1315		sk_node_init(&newsk->sk_node);
1316		sock_lock_init(newsk);
1317		bh_lock_sock(newsk);
1318		newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
1319		newsk->sk_backlog.len = 0;
1320
1321		atomic_set(&newsk->sk_rmem_alloc, 0);
1322		/*
1323		 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1324		 */
1325		atomic_set(&newsk->sk_wmem_alloc, 1);
1326		atomic_set(&newsk->sk_omem_alloc, 0);
1327		skb_queue_head_init(&newsk->sk_receive_queue);
1328		skb_queue_head_init(&newsk->sk_write_queue);
1329#ifdef CONFIG_NET_DMA
1330		skb_queue_head_init(&newsk->sk_async_wait_queue);
1331#endif
1332
1333		spin_lock_init(&newsk->sk_dst_lock);
1334		rwlock_init(&newsk->sk_callback_lock);
1335		lockdep_set_class_and_name(&newsk->sk_callback_lock,
1336				af_callback_keys + newsk->sk_family,
1337				af_family_clock_key_strings[newsk->sk_family]);
1338
1339		newsk->sk_dst_cache	= NULL;
1340		newsk->sk_wmem_queued	= 0;
1341		newsk->sk_forward_alloc = 0;
1342		newsk->sk_send_head	= NULL;
1343		newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1344
1345		sock_reset_flag(newsk, SOCK_DONE);
1346		skb_queue_head_init(&newsk->sk_error_queue);
1347
1348		filter = rcu_dereference_protected(newsk->sk_filter, 1);
1349		if (filter != NULL)
1350			sk_filter_charge(newsk, filter);
1351
1352		if (unlikely(xfrm_sk_clone_policy(newsk))) {
1353			/* It is still raw copy of parent, so invalidate
1354			 * destructor and make plain sk_free() */
1355			newsk->sk_destruct = NULL;
1356			bh_unlock_sock(newsk);
1357			sk_free(newsk);
1358			newsk = NULL;
1359			goto out;
1360		}
1361
1362		newsk->sk_err	   = 0;
1363		newsk->sk_priority = 0;
1364		/*
1365		 * Before updating sk_refcnt, we must commit prior changes to memory
1366		 * (Documentation/RCU/rculist_nulls.txt for details)
1367		 */
1368		smp_wmb();
1369		atomic_set(&newsk->sk_refcnt, 2);
1370
1371		/*
1372		 * Increment the counter in the same struct proto as the master
1373		 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1374		 * is the same as sk->sk_prot->socks, as this field was copied
1375		 * with memcpy).
1376		 *
1377		 * This _changes_ the previous behaviour, where
1378		 * tcp_create_openreq_child always was incrementing the
1379		 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1380		 * to be taken into account in all callers. -acme
1381		 */
1382		sk_refcnt_debug_inc(newsk);
1383		sk_set_socket(newsk, NULL);
1384		newsk->sk_wq = NULL;
1385
1386		sk_update_clone(sk, newsk);
1387
1388		if (newsk->sk_prot->sockets_allocated)
1389			sk_sockets_allocated_inc(newsk);
1390
1391		if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1392			net_enable_timestamp();
1393	}
1394out:
1395	return newsk;
1396}
1397EXPORT_SYMBOL_GPL(sk_clone_lock);
1398
1399void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1400{
1401	__sk_dst_set(sk, dst);
1402	sk->sk_route_caps = dst->dev->features;
1403	if (sk->sk_route_caps & NETIF_F_GSO)
1404		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1405	sk->sk_route_caps &= ~sk->sk_route_nocaps;
1406	if (sk_can_gso(sk)) {
1407		if (dst->header_len) {
1408			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1409		} else {
1410			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1411			sk->sk_gso_max_size = dst->dev->gso_max_size;
1412		}
1413	}
1414}
1415EXPORT_SYMBOL_GPL(sk_setup_caps);
1416
1417void __init sk_init(void)
1418{
1419	if (totalram_pages <= 4096) {
1420		sysctl_wmem_max = 32767;
1421		sysctl_rmem_max = 32767;
1422		sysctl_wmem_default = 32767;
1423		sysctl_rmem_default = 32767;
1424	} else if (totalram_pages >= 131072) {
1425		sysctl_wmem_max = 131071;
1426		sysctl_rmem_max = 131071;
1427	}
1428}
1429
1430/*
1431 *	Simple resource managers for sockets.
1432 */
1433
1434
1435/*
1436 * Write buffer destructor automatically called from kfree_skb.
1437 */
1438void sock_wfree(struct sk_buff *skb)
1439{
1440	struct sock *sk = skb->sk;
1441	unsigned int len = skb->truesize;
1442
1443	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1444		/*
1445		 * Keep a reference on sk_wmem_alloc, this will be released
1446		 * after sk_write_space() call
1447		 */
1448		atomic_sub(len - 1, &sk->sk_wmem_alloc);
1449		sk->sk_write_space(sk);
1450		len = 1;
1451	}
1452	/*
1453	 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1454	 * could not do because of in-flight packets
1455	 */
1456	if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1457		__sk_free(sk);
1458}
1459EXPORT_SYMBOL(sock_wfree);
1460
1461/*
1462 * Read buffer destructor automatically called from kfree_skb.
1463 */
1464void sock_rfree(struct sk_buff *skb)
1465{
1466	struct sock *sk = skb->sk;
1467	unsigned int len = skb->truesize;
1468
1469	atomic_sub(len, &sk->sk_rmem_alloc);
1470	sk_mem_uncharge(sk, len);
1471}
1472EXPORT_SYMBOL(sock_rfree);
1473
1474
1475int sock_i_uid(struct sock *sk)
1476{
1477	int uid;
1478
1479	read_lock_bh(&sk->sk_callback_lock);
1480	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1481	read_unlock_bh(&sk->sk_callback_lock);
1482	return uid;
1483}
1484EXPORT_SYMBOL(sock_i_uid);
1485
1486unsigned long sock_i_ino(struct sock *sk)
1487{
1488	unsigned long ino;
1489
1490	read_lock_bh(&sk->sk_callback_lock);
1491	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1492	read_unlock_bh(&sk->sk_callback_lock);
1493	return ino;
1494}
1495EXPORT_SYMBOL(sock_i_ino);
1496
1497/*
1498 * Allocate a skb from the socket's send buffer.
1499 */
1500struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1501			     gfp_t priority)
1502{
1503	if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1504		struct sk_buff *skb = alloc_skb(size, priority);
1505		if (skb) {
1506			skb_set_owner_w(skb, sk);
1507			return skb;
1508		}
1509	}
1510	return NULL;
1511}
1512EXPORT_SYMBOL(sock_wmalloc);
1513
1514/*
1515 * Allocate a skb from the socket's receive buffer.
1516 */
1517struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1518			     gfp_t priority)
1519{
1520	if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1521		struct sk_buff *skb = alloc_skb(size, priority);
1522		if (skb) {
1523			skb_set_owner_r(skb, sk);
1524			return skb;
1525		}
1526	}
1527	return NULL;
1528}
1529
1530/*
1531 * Allocate a memory block from the socket's option memory buffer.
1532 */
1533void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1534{
1535	if ((unsigned)size <= sysctl_optmem_max &&
1536	    atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1537		void *mem;
1538		/* First do the add, to avoid the race if kmalloc
1539		 * might sleep.
1540		 */
1541		atomic_add(size, &sk->sk_omem_alloc);
1542		mem = kmalloc(size, priority);
1543		if (mem)
1544			return mem;
1545		atomic_sub(size, &sk->sk_omem_alloc);
1546	}
1547	return NULL;
1548}
1549EXPORT_SYMBOL(sock_kmalloc);
1550
1551/*
1552 * Free an option memory block.
1553 */
1554void sock_kfree_s(struct sock *sk, void *mem, int size)
1555{
1556	kfree(mem);
1557	atomic_sub(size, &sk->sk_omem_alloc);
1558}
1559EXPORT_SYMBOL(sock_kfree_s);
1560
1561/* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1562   I think, these locks should be removed for datagram sockets.
1563 */
1564static long sock_wait_for_wmem(struct sock *sk, long timeo)
1565{
1566	DEFINE_WAIT(wait);
1567
1568	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1569	for (;;) {
1570		if (!timeo)
1571			break;
1572		if (signal_pending(current))
1573			break;
1574		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1575		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1576		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1577			break;
1578		if (sk->sk_shutdown & SEND_SHUTDOWN)
1579			break;
1580		if (sk->sk_err)
1581			break;
1582		timeo = schedule_timeout(timeo);
1583	}
1584	finish_wait(sk_sleep(sk), &wait);
1585	return timeo;
1586}
1587
1588
1589/*
1590 *	Generic send/receive buffer handlers
1591 */
1592
1593struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1594				     unsigned long data_len, int noblock,
1595				     int *errcode)
1596{
1597	struct sk_buff *skb;
1598	gfp_t gfp_mask;
1599	long timeo;
1600	int err;
1601
1602	gfp_mask = sk->sk_allocation;
1603	if (gfp_mask & __GFP_WAIT)
1604		gfp_mask |= __GFP_REPEAT;
1605
1606	timeo = sock_sndtimeo(sk, noblock);
1607	while (1) {
1608		err = sock_error(sk);
1609		if (err != 0)
1610			goto failure;
1611
1612		err = -EPIPE;
1613		if (sk->sk_shutdown & SEND_SHUTDOWN)
1614			goto failure;
1615
1616		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1617			skb = alloc_skb(header_len, gfp_mask);
1618			if (skb) {
1619				int npages;
1620				int i;
1621
1622				/* No pages, we're done... */
1623				if (!data_len)
1624					break;
1625
1626				npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1627				skb->truesize += data_len;
1628				skb_shinfo(skb)->nr_frags = npages;
1629				for (i = 0; i < npages; i++) {
1630					struct page *page;
1631
1632					page = alloc_pages(sk->sk_allocation, 0);
1633					if (!page) {
1634						err = -ENOBUFS;
1635						skb_shinfo(skb)->nr_frags = i;
1636						kfree_skb(skb);
1637						goto failure;
1638					}
1639
1640					__skb_fill_page_desc(skb, i,
1641							page, 0,
1642							(data_len >= PAGE_SIZE ?
1643							 PAGE_SIZE :
1644							 data_len));
1645					data_len -= PAGE_SIZE;
1646				}
1647
1648				/* Full success... */
1649				break;
1650			}
1651			err = -ENOBUFS;
1652			goto failure;
1653		}
1654		set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1655		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1656		err = -EAGAIN;
1657		if (!timeo)
1658			goto failure;
1659		if (signal_pending(current))
1660			goto interrupted;
1661		timeo = sock_wait_for_wmem(sk, timeo);
1662	}
1663
1664	skb_set_owner_w(skb, sk);
1665	return skb;
1666
1667interrupted:
1668	err = sock_intr_errno(timeo);
1669failure:
1670	*errcode = err;
1671	return NULL;
1672}
1673EXPORT_SYMBOL(sock_alloc_send_pskb);
1674
1675struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1676				    int noblock, int *errcode)
1677{
1678	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1679}
1680EXPORT_SYMBOL(sock_alloc_send_skb);
1681
1682static void __lock_sock(struct sock *sk)
1683	__releases(&sk->sk_lock.slock)
1684	__acquires(&sk->sk_lock.slock)
1685{
1686	DEFINE_WAIT(wait);
1687
1688	for (;;) {
1689		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1690					TASK_UNINTERRUPTIBLE);
1691		spin_unlock_bh(&sk->sk_lock.slock);
1692		schedule();
1693		spin_lock_bh(&sk->sk_lock.slock);
1694		if (!sock_owned_by_user(sk))
1695			break;
1696	}
1697	finish_wait(&sk->sk_lock.wq, &wait);
1698}
1699
1700static void __release_sock(struct sock *sk)
1701	__releases(&sk->sk_lock.slock)
1702	__acquires(&sk->sk_lock.slock)
1703{
1704	struct sk_buff *skb = sk->sk_backlog.head;
1705
1706	do {
1707		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1708		bh_unlock_sock(sk);
1709
1710		do {
1711			struct sk_buff *next = skb->next;
1712
1713			WARN_ON_ONCE(skb_dst_is_noref(skb));
1714			skb->next = NULL;
1715			sk_backlog_rcv(sk, skb);
1716
1717			/*
1718			 * We are in process context here with softirqs
1719			 * disabled, use cond_resched_softirq() to preempt.
1720			 * This is safe to do because we've taken the backlog
1721			 * queue private:
1722			 */
1723			cond_resched_softirq();
1724
1725			skb = next;
1726		} while (skb != NULL);
1727
1728		bh_lock_sock(sk);
1729	} while ((skb = sk->sk_backlog.head) != NULL);
1730
1731	/*
1732	 * Doing the zeroing here guarantee we can not loop forever
1733	 * while a wild producer attempts to flood us.
1734	 */
1735	sk->sk_backlog.len = 0;
1736}
1737
1738/**
1739 * sk_wait_data - wait for data to arrive at sk_receive_queue
1740 * @sk:    sock to wait on
1741 * @timeo: for how long
1742 *
1743 * Now socket state including sk->sk_err is changed only under lock,
1744 * hence we may omit checks after joining wait queue.
1745 * We check receive queue before schedule() only as optimization;
1746 * it is very likely that release_sock() added new data.
1747 */
1748int sk_wait_data(struct sock *sk, long *timeo)
1749{
1750	int rc;
1751	DEFINE_WAIT(wait);
1752
1753	prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1754	set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1755	rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1756	clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1757	finish_wait(sk_sleep(sk), &wait);
1758	return rc;
1759}
1760EXPORT_SYMBOL(sk_wait_data);
1761
1762/**
1763 *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1764 *	@sk: socket
1765 *	@size: memory size to allocate
1766 *	@kind: allocation type
1767 *
1768 *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1769 *	rmem allocation. This function assumes that protocols which have
1770 *	memory_pressure use sk_wmem_queued as write buffer accounting.
1771 */
1772int __sk_mem_schedule(struct sock *sk, int size, int kind)
1773{
1774	struct proto *prot = sk->sk_prot;
1775	int amt = sk_mem_pages(size);
1776	long allocated;
1777	int parent_status = UNDER_LIMIT;
1778
1779	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
1780
1781	allocated = sk_memory_allocated_add(sk, amt, &parent_status);
1782
1783	/* Under limit. */
1784	if (parent_status == UNDER_LIMIT &&
1785			allocated <= sk_prot_mem_limits(sk, 0)) {
1786		sk_leave_memory_pressure(sk);
1787		return 1;
1788	}
1789
1790	/* Under pressure. (we or our parents) */
1791	if ((parent_status > SOFT_LIMIT) ||
1792			allocated > sk_prot_mem_limits(sk, 1))
1793		sk_enter_memory_pressure(sk);
1794
1795	/* Over hard limit (we or our parents) */
1796	if ((parent_status == OVER_LIMIT) ||
1797			(allocated > sk_prot_mem_limits(sk, 2)))
1798		goto suppress_allocation;
1799
1800	/* guarantee minimum buffer size under pressure */
1801	if (kind == SK_MEM_RECV) {
1802		if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
1803			return 1;
1804
1805	} else { /* SK_MEM_SEND */
1806		if (sk->sk_type == SOCK_STREAM) {
1807			if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
1808				return 1;
1809		} else if (atomic_read(&sk->sk_wmem_alloc) <
1810			   prot->sysctl_wmem[0])
1811				return 1;
1812	}
1813
1814	if (sk_has_memory_pressure(sk)) {
1815		int alloc;
1816
1817		if (!sk_under_memory_pressure(sk))
1818			return 1;
1819		alloc = sk_sockets_allocated_read_positive(sk);
1820		if (sk_prot_mem_limits(sk, 2) > alloc *
1821		    sk_mem_pages(sk->sk_wmem_queued +
1822				 atomic_read(&sk->sk_rmem_alloc) +
1823				 sk->sk_forward_alloc))
1824			return 1;
1825	}
1826
1827suppress_allocation:
1828
1829	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
1830		sk_stream_moderate_sndbuf(sk);
1831
1832		/* Fail only if socket is _under_ its sndbuf.
1833		 * In this case we cannot block, so that we have to fail.
1834		 */
1835		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
1836			return 1;
1837	}
1838
1839	trace_sock_exceed_buf_limit(sk, prot, allocated);
1840
1841	/* Alas. Undo changes. */
1842	sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
1843
1844	sk_memory_allocated_sub(sk, amt);
1845
1846	return 0;
1847}
1848EXPORT_SYMBOL(__sk_mem_schedule);
1849
1850/**
1851 *	__sk_reclaim - reclaim memory_allocated
1852 *	@sk: socket
1853 */
1854void __sk_mem_reclaim(struct sock *sk)
1855{
1856	sk_memory_allocated_sub(sk,
1857				sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT);
1858	sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
1859
1860	if (sk_under_memory_pressure(sk) &&
1861	    (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
1862		sk_leave_memory_pressure(sk);
1863}
1864EXPORT_SYMBOL(__sk_mem_reclaim);
1865
1866
1867/*
1868 * Set of default routines for initialising struct proto_ops when
1869 * the protocol does not support a particular function. In certain
1870 * cases where it makes no sense for a protocol to have a "do nothing"
1871 * function, some default processing is provided.
1872 */
1873
1874int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1875{
1876	return -EOPNOTSUPP;
1877}
1878EXPORT_SYMBOL(sock_no_bind);
1879
1880int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1881		    int len, int flags)
1882{
1883	return -EOPNOTSUPP;
1884}
1885EXPORT_SYMBOL(sock_no_connect);
1886
1887int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1888{
1889	return -EOPNOTSUPP;
1890}
1891EXPORT_SYMBOL(sock_no_socketpair);
1892
1893int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1894{
1895	return -EOPNOTSUPP;
1896}
1897EXPORT_SYMBOL(sock_no_accept);
1898
1899int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1900		    int *len, int peer)
1901{
1902	return -EOPNOTSUPP;
1903}
1904EXPORT_SYMBOL(sock_no_getname);
1905
1906unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
1907{
1908	return 0;
1909}
1910EXPORT_SYMBOL(sock_no_poll);
1911
1912int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1913{
1914	return -EOPNOTSUPP;
1915}
1916EXPORT_SYMBOL(sock_no_ioctl);
1917
1918int sock_no_listen(struct socket *sock, int backlog)
1919{
1920	return -EOPNOTSUPP;
1921}
1922EXPORT_SYMBOL(sock_no_listen);
1923
1924int sock_no_shutdown(struct socket *sock, int how)
1925{
1926	return -EOPNOTSUPP;
1927}
1928EXPORT_SYMBOL(sock_no_shutdown);
1929
1930int sock_no_setsockopt(struct socket *sock, int level, int optname,
1931		    char __user *optval, unsigned int optlen)
1932{
1933	return -EOPNOTSUPP;
1934}
1935EXPORT_SYMBOL(sock_no_setsockopt);
1936
1937int sock_no_getsockopt(struct socket *sock, int level, int optname,
1938		    char __user *optval, int __user *optlen)
1939{
1940	return -EOPNOTSUPP;
1941}
1942EXPORT_SYMBOL(sock_no_getsockopt);
1943
1944int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1945		    size_t len)
1946{
1947	return -EOPNOTSUPP;
1948}
1949EXPORT_SYMBOL(sock_no_sendmsg);
1950
1951int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1952		    size_t len, int flags)
1953{
1954	return -EOPNOTSUPP;
1955}
1956EXPORT_SYMBOL(sock_no_recvmsg);
1957
1958int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
1959{
1960	/* Mirror missing mmap method error code */
1961	return -ENODEV;
1962}
1963EXPORT_SYMBOL(sock_no_mmap);
1964
1965ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
1966{
1967	ssize_t res;
1968	struct msghdr msg = {.msg_flags = flags};
1969	struct kvec iov;
1970	char *kaddr = kmap(page);
1971	iov.iov_base = kaddr + offset;
1972	iov.iov_len = size;
1973	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
1974	kunmap(page);
1975	return res;
1976}
1977EXPORT_SYMBOL(sock_no_sendpage);
1978
1979/*
1980 *	Default Socket Callbacks
1981 */
1982
1983static void sock_def_wakeup(struct sock *sk)
1984{
1985	struct socket_wq *wq;
1986
1987	rcu_read_lock();
1988	wq = rcu_dereference(sk->sk_wq);
1989	if (wq_has_sleeper(wq))
1990		wake_up_interruptible_all(&wq->wait);
1991	rcu_read_unlock();
1992}
1993
1994static void sock_def_error_report(struct sock *sk)
1995{
1996	struct socket_wq *wq;
1997
1998	rcu_read_lock();
1999	wq = rcu_dereference(sk->sk_wq);
2000	if (wq_has_sleeper(wq))
2001		wake_up_interruptible_poll(&wq->wait, POLLERR);
2002	sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2003	rcu_read_unlock();
2004}
2005
2006static void sock_def_readable(struct sock *sk, int len)
2007{
2008	struct socket_wq *wq;
2009
2010	rcu_read_lock();
2011	wq = rcu_dereference(sk->sk_wq);
2012	if (wq_has_sleeper(wq))
2013		wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
2014						POLLRDNORM | POLLRDBAND);
2015	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2016	rcu_read_unlock();
2017}
2018
2019static void sock_def_write_space(struct sock *sk)
2020{
2021	struct socket_wq *wq;
2022
2023	rcu_read_lock();
2024
2025	/* Do not wake up a writer until he can make "significant"
2026	 * progress.  --DaveM
2027	 */
2028	if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
2029		wq = rcu_dereference(sk->sk_wq);
2030		if (wq_has_sleeper(wq))
2031			wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
2032						POLLWRNORM | POLLWRBAND);
2033
2034		/* Should agree with poll, otherwise some programs break */
2035		if (sock_writeable(sk))
2036			sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2037	}
2038
2039	rcu_read_unlock();
2040}
2041
2042static void sock_def_destruct(struct sock *sk)
2043{
2044	kfree(sk->sk_protinfo);
2045}
2046
2047void sk_send_sigurg(struct sock *sk)
2048{
2049	if (sk->sk_socket && sk->sk_socket->file)
2050		if (send_sigurg(&sk->sk_socket->file->f_owner))
2051			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2052}
2053EXPORT_SYMBOL(sk_send_sigurg);
2054
2055void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2056		    unsigned long expires)
2057{
2058	if (!mod_timer(timer, expires))
2059		sock_hold(sk);
2060}
2061EXPORT_SYMBOL(sk_reset_timer);
2062
2063void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2064{
2065	if (timer_pending(timer) && del_timer(timer))
2066		__sock_put(sk);
2067}
2068EXPORT_SYMBOL(sk_stop_timer);
2069
2070void sock_init_data(struct socket *sock, struct sock *sk)
2071{
2072	skb_queue_head_init(&sk->sk_receive_queue);
2073	skb_queue_head_init(&sk->sk_write_queue);
2074	skb_queue_head_init(&sk->sk_error_queue);
2075#ifdef CONFIG_NET_DMA
2076	skb_queue_head_init(&sk->sk_async_wait_queue);
2077#endif
2078
2079	sk->sk_send_head	=	NULL;
2080
2081	init_timer(&sk->sk_timer);
2082
2083	sk->sk_allocation	=	GFP_KERNEL;
2084	sk->sk_rcvbuf		=	sysctl_rmem_default;
2085	sk->sk_sndbuf		=	sysctl_wmem_default;
2086	sk->sk_state		=	TCP_CLOSE;
2087	sk_set_socket(sk, sock);
2088
2089	sock_set_flag(sk, SOCK_ZAPPED);
2090
2091	if (sock) {
2092		sk->sk_type	=	sock->type;
2093		sk->sk_wq	=	sock->wq;
2094		sock->sk	=	sk;
2095	} else
2096		sk->sk_wq	=	NULL;
2097
2098	spin_lock_init(&sk->sk_dst_lock);
2099	rwlock_init(&sk->sk_callback_lock);
2100	lockdep_set_class_and_name(&sk->sk_callback_lock,
2101			af_callback_keys + sk->sk_family,
2102			af_family_clock_key_strings[sk->sk_family]);
2103
2104	sk->sk_state_change	=	sock_def_wakeup;
2105	sk->sk_data_ready	=	sock_def_readable;
2106	sk->sk_write_space	=	sock_def_write_space;
2107	sk->sk_error_report	=	sock_def_error_report;
2108	sk->sk_destruct		=	sock_def_destruct;
2109
2110	sk->sk_sndmsg_page	=	NULL;
2111	sk->sk_sndmsg_off	=	0;
2112	sk->sk_peek_off		=	-1;
2113
2114	sk->sk_peer_pid 	=	NULL;
2115	sk->sk_peer_cred	=	NULL;
2116	sk->sk_write_pending	=	0;
2117	sk->sk_rcvlowat		=	1;
2118	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
2119	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
2120
2121	sk->sk_stamp = ktime_set(-1L, 0);
2122
2123	/*
2124	 * Before updating sk_refcnt, we must commit prior changes to memory
2125	 * (Documentation/RCU/rculist_nulls.txt for details)
2126	 */
2127	smp_wmb();
2128	atomic_set(&sk->sk_refcnt, 1);
2129	atomic_set(&sk->sk_drops, 0);
2130}
2131EXPORT_SYMBOL(sock_init_data);
2132
2133void lock_sock_nested(struct sock *sk, int subclass)
2134{
2135	might_sleep();
2136	spin_lock_bh(&sk->sk_lock.slock);
2137	if (sk->sk_lock.owned)
2138		__lock_sock(sk);
2139	sk->sk_lock.owned = 1;
2140	spin_unlock(&sk->sk_lock.slock);
2141	/*
2142	 * The sk_lock has mutex_lock() semantics here:
2143	 */
2144	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2145	local_bh_enable();
2146}
2147EXPORT_SYMBOL(lock_sock_nested);
2148
2149void release_sock(struct sock *sk)
2150{
2151	/*
2152	 * The sk_lock has mutex_unlock() semantics:
2153	 */
2154	mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
2155
2156	spin_lock_bh(&sk->sk_lock.slock);
2157	if (sk->sk_backlog.tail)
2158		__release_sock(sk);
2159	sk->sk_lock.owned = 0;
2160	if (waitqueue_active(&sk->sk_lock.wq))
2161		wake_up(&sk->sk_lock.wq);
2162	spin_unlock_bh(&sk->sk_lock.slock);
2163}
2164EXPORT_SYMBOL(release_sock);
2165
2166/**
2167 * lock_sock_fast - fast version of lock_sock
2168 * @sk: socket
2169 *
2170 * This version should be used for very small section, where process wont block
2171 * return false if fast path is taken
2172 *   sk_lock.slock locked, owned = 0, BH disabled
2173 * return true if slow path is taken
2174 *   sk_lock.slock unlocked, owned = 1, BH enabled
2175 */
2176bool lock_sock_fast(struct sock *sk)
2177{
2178	might_sleep();
2179	spin_lock_bh(&sk->sk_lock.slock);
2180
2181	if (!sk->sk_lock.owned)
2182		/*
2183		 * Note : We must disable BH
2184		 */
2185		return false;
2186
2187	__lock_sock(sk);
2188	sk->sk_lock.owned = 1;
2189	spin_unlock(&sk->sk_lock.slock);
2190	/*
2191	 * The sk_lock has mutex_lock() semantics here:
2192	 */
2193	mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2194	local_bh_enable();
2195	return true;
2196}
2197EXPORT_SYMBOL(lock_sock_fast);
2198
2199int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2200{
2201	struct timeval tv;
2202	if (!sock_flag(sk, SOCK_TIMESTAMP))
2203		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2204	tv = ktime_to_timeval(sk->sk_stamp);
2205	if (tv.tv_sec == -1)
2206		return -ENOENT;
2207	if (tv.tv_sec == 0) {
2208		sk->sk_stamp = ktime_get_real();
2209		tv = ktime_to_timeval(sk->sk_stamp);
2210	}
2211	return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2212}
2213EXPORT_SYMBOL(sock_get_timestamp);
2214
2215int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2216{
2217	struct timespec ts;
2218	if (!sock_flag(sk, SOCK_TIMESTAMP))
2219		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2220	ts = ktime_to_timespec(sk->sk_stamp);
2221	if (ts.tv_sec == -1)
2222		return -ENOENT;
2223	if (ts.tv_sec == 0) {
2224		sk->sk_stamp = ktime_get_real();
2225		ts = ktime_to_timespec(sk->sk_stamp);
2226	}
2227	return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2228}
2229EXPORT_SYMBOL(sock_get_timestampns);
2230
2231void sock_enable_timestamp(struct sock *sk, int flag)
2232{
2233	if (!sock_flag(sk, flag)) {
2234		unsigned long previous_flags = sk->sk_flags;
2235
2236		sock_set_flag(sk, flag);
2237		/*
2238		 * we just set one of the two flags which require net
2239		 * time stamping, but time stamping might have been on
2240		 * already because of the other one
2241		 */
2242		if (!(previous_flags & SK_FLAGS_TIMESTAMP))
2243			net_enable_timestamp();
2244	}
2245}
2246
2247/*
2248 *	Get a socket option on an socket.
2249 *
2250 *	FIX: POSIX 1003.1g is very ambiguous here. It states that
2251 *	asynchronous errors should be reported by getsockopt. We assume
2252 *	this means if you specify SO_ERROR (otherwise whats the point of it).
2253 */
2254int sock_common_getsockopt(struct socket *sock, int level, int optname,
2255			   char __user *optval, int __user *optlen)
2256{
2257	struct sock *sk = sock->sk;
2258
2259	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2260}
2261EXPORT_SYMBOL(sock_common_getsockopt);
2262
2263#ifdef CONFIG_COMPAT
2264int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2265				  char __user *optval, int __user *optlen)
2266{
2267	struct sock *sk = sock->sk;
2268
2269	if (sk->sk_prot->compat_getsockopt != NULL)
2270		return sk->sk_prot->compat_getsockopt(sk, level, optname,
2271						      optval, optlen);
2272	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2273}
2274EXPORT_SYMBOL(compat_sock_common_getsockopt);
2275#endif
2276
2277int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
2278			struct msghdr *msg, size_t size, int flags)
2279{
2280	struct sock *sk = sock->sk;
2281	int addr_len = 0;
2282	int err;
2283
2284	err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
2285				   flags & ~MSG_DONTWAIT, &addr_len);
2286	if (err >= 0)
2287		msg->msg_namelen = addr_len;
2288	return err;
2289}
2290EXPORT_SYMBOL(sock_common_recvmsg);
2291
2292/*
2293 *	Set socket options on an inet socket.
2294 */
2295int sock_common_setsockopt(struct socket *sock, int level, int optname,
2296			   char __user *optval, unsigned int optlen)
2297{
2298	struct sock *sk = sock->sk;
2299
2300	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2301}
2302EXPORT_SYMBOL(sock_common_setsockopt);
2303
2304#ifdef CONFIG_COMPAT
2305int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2306				  char __user *optval, unsigned int optlen)
2307{
2308	struct sock *sk = sock->sk;
2309
2310	if (sk->sk_prot->compat_setsockopt != NULL)
2311		return sk->sk_prot->compat_setsockopt(sk, level, optname,
2312						      optval, optlen);
2313	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2314}
2315EXPORT_SYMBOL(compat_sock_common_setsockopt);
2316#endif
2317
2318void sk_common_release(struct sock *sk)
2319{
2320	if (sk->sk_prot->destroy)
2321		sk->sk_prot->destroy(sk);
2322
2323	/*
2324	 * Observation: when sock_common_release is called, processes have
2325	 * no access to socket. But net still has.
2326	 * Step one, detach it from networking:
2327	 *
2328	 * A. Remove from hash tables.
2329	 */
2330
2331	sk->sk_prot->unhash(sk);
2332
2333	/*
2334	 * In this point socket cannot receive new packets, but it is possible
2335	 * that some packets are in flight because some CPU runs receiver and
2336	 * did hash table lookup before we unhashed socket. They will achieve
2337	 * receive queue and will be purged by socket destructor.
2338	 *
2339	 * Also we still have packets pending on receive queue and probably,
2340	 * our own packets waiting in device queues. sock_destroy will drain
2341	 * receive queue, but transmitted packets will delay socket destruction
2342	 * until the last reference will be released.
2343	 */
2344
2345	sock_orphan(sk);
2346
2347	xfrm_sk_free_policy(sk);
2348
2349	sk_refcnt_debug_release(sk);
2350	sock_put(sk);
2351}
2352EXPORT_SYMBOL(sk_common_release);
2353
2354#ifdef CONFIG_PROC_FS
2355#define PROTO_INUSE_NR	64	/* should be enough for the first time */
2356struct prot_inuse {
2357	int val[PROTO_INUSE_NR];
2358};
2359
2360static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2361
2362#ifdef CONFIG_NET_NS
2363void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2364{
2365	__this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
2366}
2367EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2368
2369int sock_prot_inuse_get(struct net *net, struct proto *prot)
2370{
2371	int cpu, idx = prot->inuse_idx;
2372	int res = 0;
2373
2374	for_each_possible_cpu(cpu)
2375		res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2376
2377	return res >= 0 ? res : 0;
2378}
2379EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2380
2381static int __net_init sock_inuse_init_net(struct net *net)
2382{
2383	net->core.inuse = alloc_percpu(struct prot_inuse);
2384	return net->core.inuse ? 0 : -ENOMEM;
2385}
2386
2387static void __net_exit sock_inuse_exit_net(struct net *net)
2388{
2389	free_percpu(net->core.inuse);
2390}
2391
2392static struct pernet_operations net_inuse_ops = {
2393	.init = sock_inuse_init_net,
2394	.exit = sock_inuse_exit_net,
2395};
2396
2397static __init int net_inuse_init(void)
2398{
2399	if (register_pernet_subsys(&net_inuse_ops))
2400		panic("Cannot initialize net inuse counters");
2401
2402	return 0;
2403}
2404
2405core_initcall(net_inuse_init);
2406#else
2407static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2408
2409void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2410{
2411	__this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
2412}
2413EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2414
2415int sock_prot_inuse_get(struct net *net, struct proto *prot)
2416{
2417	int cpu, idx = prot->inuse_idx;
2418	int res = 0;
2419
2420	for_each_possible_cpu(cpu)
2421		res += per_cpu(prot_inuse, cpu).val[idx];
2422
2423	return res >= 0 ? res : 0;
2424}
2425EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2426#endif
2427
2428static void assign_proto_idx(struct proto *prot)
2429{
2430	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2431
2432	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2433		printk(KERN_ERR "PROTO_INUSE_NR exhausted\n");
2434		return;
2435	}
2436
2437	set_bit(prot->inuse_idx, proto_inuse_idx);
2438}
2439
2440static void release_proto_idx(struct proto *prot)
2441{
2442	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2443		clear_bit(prot->inuse_idx, proto_inuse_idx);
2444}
2445#else
2446static inline void assign_proto_idx(struct proto *prot)
2447{
2448}
2449
2450static inline void release_proto_idx(struct proto *prot)
2451{
2452}
2453#endif
2454
2455int proto_register(struct proto *prot, int alloc_slab)
2456{
2457	if (alloc_slab) {
2458		prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2459					SLAB_HWCACHE_ALIGN | prot->slab_flags,
2460					NULL);
2461
2462		if (prot->slab == NULL) {
2463			printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n",
2464			       prot->name);
2465			goto out;
2466		}
2467
2468		if (prot->rsk_prot != NULL) {
2469			prot->rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", prot->name);
2470			if (prot->rsk_prot->slab_name == NULL)
2471				goto out_free_sock_slab;
2472
2473			prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
2474								 prot->rsk_prot->obj_size, 0,
2475								 SLAB_HWCACHE_ALIGN, NULL);
2476
2477			if (prot->rsk_prot->slab == NULL) {
2478				printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n",
2479				       prot->name);
2480				goto out_free_request_sock_slab_name;
2481			}
2482		}
2483
2484		if (prot->twsk_prot != NULL) {
2485			prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
2486
2487			if (prot->twsk_prot->twsk_slab_name == NULL)
2488				goto out_free_request_sock_slab;
2489
2490			prot->twsk_prot->twsk_slab =
2491				kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2492						  prot->twsk_prot->twsk_obj_size,
2493						  0,
2494						  SLAB_HWCACHE_ALIGN |
2495							prot->slab_flags,
2496						  NULL);
2497			if (prot->twsk_prot->twsk_slab == NULL)
2498				goto out_free_timewait_sock_slab_name;
2499		}
2500	}
2501
2502	mutex_lock(&proto_list_mutex);
2503	list_add(&prot->node, &proto_list);
2504	assign_proto_idx(prot);
2505	mutex_unlock(&proto_list_mutex);
2506	return 0;
2507
2508out_free_timewait_sock_slab_name:
2509	kfree(prot->twsk_prot->twsk_slab_name);
2510out_free_request_sock_slab:
2511	if (prot->rsk_prot && prot->rsk_prot->slab) {
2512		kmem_cache_destroy(prot->rsk_prot->slab);
2513		prot->rsk_prot->slab = NULL;
2514	}
2515out_free_request_sock_slab_name:
2516	if (prot->rsk_prot)
2517		kfree(prot->rsk_prot->slab_name);
2518out_free_sock_slab:
2519	kmem_cache_destroy(prot->slab);
2520	prot->slab = NULL;
2521out:
2522	return -ENOBUFS;
2523}
2524EXPORT_SYMBOL(proto_register);
2525
2526void proto_unregister(struct proto *prot)
2527{
2528	mutex_lock(&proto_list_mutex);
2529	release_proto_idx(prot);
2530	list_del(&prot->node);
2531	mutex_unlock(&proto_list_mutex);
2532
2533	if (prot->slab != NULL) {
2534		kmem_cache_destroy(prot->slab);
2535		prot->slab = NULL;
2536	}
2537
2538	if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2539		kmem_cache_destroy(prot->rsk_prot->slab);
2540		kfree(prot->rsk_prot->slab_name);
2541		prot->rsk_prot->slab = NULL;
2542	}
2543
2544	if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2545		kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2546		kfree(prot->twsk_prot->twsk_slab_name);
2547		prot->twsk_prot->twsk_slab = NULL;
2548	}
2549}
2550EXPORT_SYMBOL(proto_unregister);
2551
2552#ifdef CONFIG_PROC_FS
2553static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2554	__acquires(proto_list_mutex)
2555{
2556	mutex_lock(&proto_list_mutex);
2557	return seq_list_start_head(&proto_list, *pos);
2558}
2559
2560static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2561{
2562	return seq_list_next(v, &proto_list, pos);
2563}
2564
2565static void proto_seq_stop(struct seq_file *seq, void *v)
2566	__releases(proto_list_mutex)
2567{
2568	mutex_unlock(&proto_list_mutex);
2569}
2570
2571static char proto_method_implemented(const void *method)
2572{
2573	return method == NULL ? 'n' : 'y';
2574}
2575static long sock_prot_memory_allocated(struct proto *proto)
2576{
2577	return proto->memory_allocated != NULL ? proto_memory_allocated(proto): -1L;
2578}
2579
2580static char *sock_prot_memory_pressure(struct proto *proto)
2581{
2582	return proto->memory_pressure != NULL ?
2583	proto_memory_pressure(proto) ? "yes" : "no" : "NI";
2584}
2585
2586static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2587{
2588
2589	seq_printf(seq, "%-9s %4u %6d  %6ld   %-3s %6u   %-3s  %-10s "
2590			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2591		   proto->name,
2592		   proto->obj_size,
2593		   sock_prot_inuse_get(seq_file_net(seq), proto),
2594		   sock_prot_memory_allocated(proto),
2595		   sock_prot_memory_pressure(proto),
2596		   proto->max_header,
2597		   proto->slab == NULL ? "no" : "yes",
2598		   module_name(proto->owner),
2599		   proto_method_implemented(proto->close),
2600		   proto_method_implemented(proto->connect),
2601		   proto_method_implemented(proto->disconnect),
2602		   proto_method_implemented(proto->accept),
2603		   proto_method_implemented(proto->ioctl),
2604		   proto_method_implemented(proto->init),
2605		   proto_method_implemented(proto->destroy),
2606		   proto_method_implemented(proto->shutdown),
2607		   proto_method_implemented(proto->setsockopt),
2608		   proto_method_implemented(proto->getsockopt),
2609		   proto_method_implemented(proto->sendmsg),
2610		   proto_method_implemented(proto->recvmsg),
2611		   proto_method_implemented(proto->sendpage),
2612		   proto_method_implemented(proto->bind),
2613		   proto_method_implemented(proto->backlog_rcv),
2614		   proto_method_implemented(proto->hash),
2615		   proto_method_implemented(proto->unhash),
2616		   proto_method_implemented(proto->get_port),
2617		   proto_method_implemented(proto->enter_memory_pressure));
2618}
2619
2620static int proto_seq_show(struct seq_file *seq, void *v)
2621{
2622	if (v == &proto_list)
2623		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2624			   "protocol",
2625			   "size",
2626			   "sockets",
2627			   "memory",
2628			   "press",
2629			   "maxhdr",
2630			   "slab",
2631			   "module",
2632			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2633	else
2634		proto_seq_printf(seq, list_entry(v, struct proto, node));
2635	return 0;
2636}
2637
2638static const struct seq_operations proto_seq_ops = {
2639	.start  = proto_seq_start,
2640	.next   = proto_seq_next,
2641	.stop   = proto_seq_stop,
2642	.show   = proto_seq_show,
2643};
2644
2645static int proto_seq_open(struct inode *inode, struct file *file)
2646{
2647	return seq_open_net(inode, file, &proto_seq_ops,
2648			    sizeof(struct seq_net_private));
2649}
2650
2651static const struct file_operations proto_seq_fops = {
2652	.owner		= THIS_MODULE,
2653	.open		= proto_seq_open,
2654	.read		= seq_read,
2655	.llseek		= seq_lseek,
2656	.release	= seq_release_net,
2657};
2658
2659static __net_init int proto_init_net(struct net *net)
2660{
2661	if (!proc_net_fops_create(net, "protocols", S_IRUGO, &proto_seq_fops))
2662		return -ENOMEM;
2663
2664	return 0;
2665}
2666
2667static __net_exit void proto_exit_net(struct net *net)
2668{
2669	proc_net_remove(net, "protocols");
2670}
2671
2672
2673static __net_initdata struct pernet_operations proto_net_ops = {
2674	.init = proto_init_net,
2675	.exit = proto_exit_net,
2676};
2677
2678static int __init proto_init(void)
2679{
2680	return register_pernet_subsys(&proto_net_ops);
2681}
2682
2683subsys_initcall(proto_init);
2684
2685#endif /* PROC_FS */
2686