sock.c revision 4021db9a0daa42ff72570f7b0375d195e528f73f
1/*
2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
3 *		operating system.  INET is implemented using the  BSD Socket
4 *		interface as the means of communication with the user level.
5 *
6 *		Generic socket support routines. Memory allocators, socket lock/release
7 *		handler for protocols to use and generic option handler.
8 *
9 *
10 * Authors:	Ross Biro
11 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 *		Florian La Roche, <flla@stud.uni-sb.de>
13 *		Alan Cox, <A.Cox@swansea.ac.uk>
14 *
15 * Fixes:
16 *		Alan Cox	: 	Numerous verify_area() problems
17 *		Alan Cox	:	Connecting on a connecting socket
18 *					now returns an error for tcp.
19 *		Alan Cox	:	sock->protocol is set correctly.
20 *					and is not sometimes left as 0.
21 *		Alan Cox	:	connect handles icmp errors on a
22 *					connect properly. Unfortunately there
23 *					is a restart syscall nasty there. I
24 *					can't match BSD without hacking the C
25 *					library. Ideas urgently sought!
26 *		Alan Cox	:	Disallow bind() to addresses that are
27 *					not ours - especially broadcast ones!!
28 *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
29 *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
30 *					instead they leave that for the DESTROY timer.
31 *		Alan Cox	:	Clean up error flag in accept
32 *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
33 *					was buggy. Put a remove_sock() in the handler
34 *					for memory when we hit 0. Also altered the timer
35 *					code. The ACK stuff can wait and needs major
36 *					TCP layer surgery.
37 *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
38 *					and fixed timer/inet_bh race.
39 *		Alan Cox	:	Added zapped flag for TCP
40 *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
41 *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
43 *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
46 *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
47 *	Pauline Middelink	:	identd support
48 *		Alan Cox	:	Fixed connect() taking signals I think.
49 *		Alan Cox	:	SO_LINGER supported
50 *		Alan Cox	:	Error reporting fixes
51 *		Anonymous	:	inet_create tidied up (sk->reuse setting)
52 *		Alan Cox	:	inet sockets don't set sk->type!
53 *		Alan Cox	:	Split socket option code
54 *		Alan Cox	:	Callbacks
55 *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
56 *		Alex		:	Removed restriction on inet fioctl
57 *		Alan Cox	:	Splitting INET from NET core
58 *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
59 *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
60 *		Alan Cox	:	Split IP from generic code
61 *		Alan Cox	:	New kfree_skbmem()
62 *		Alan Cox	:	Make SO_DEBUG superuser only.
63 *		Alan Cox	:	Allow anyone to clear SO_DEBUG
64 *					(compatibility fix)
65 *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
66 *		Alan Cox	:	Allocator for a socket is settable.
67 *		Alan Cox	:	SO_ERROR includes soft errors.
68 *		Alan Cox	:	Allow NULL arguments on some SO_ opts
69 *		Alan Cox	: 	Generic socket allocation to make hooks
70 *					easier (suggested by Craig Metz).
71 *		Michael Pall	:	SO_ERROR returns positive errno again
72 *              Steve Whitehouse:       Added default destructor to free
73 *                                      protocol private data.
74 *              Steve Whitehouse:       Added various other default routines
75 *                                      common to several socket families.
76 *              Chris Evans     :       Call suser() check last on F_SETOWN
77 *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
79 *		Andi Kleen	:	Fix write_space callback
80 *		Chris Evans	:	Security fixes - signedness again
81 *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
82 *
83 * To Fix:
84 *
85 *
86 *		This program is free software; you can redistribute it and/or
87 *		modify it under the terms of the GNU General Public License
88 *		as published by the Free Software Foundation; either version
89 *		2 of the License, or (at your option) any later version.
90 */
91
92#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
93
94#include <linux/capability.h>
95#include <linux/errno.h>
96#include <linux/types.h>
97#include <linux/socket.h>
98#include <linux/in.h>
99#include <linux/kernel.h>
100#include <linux/module.h>
101#include <linux/proc_fs.h>
102#include <linux/seq_file.h>
103#include <linux/sched.h>
104#include <linux/timer.h>
105#include <linux/string.h>
106#include <linux/sockios.h>
107#include <linux/net.h>
108#include <linux/mm.h>
109#include <linux/slab.h>
110#include <linux/interrupt.h>
111#include <linux/poll.h>
112#include <linux/tcp.h>
113#include <linux/init.h>
114#include <linux/highmem.h>
115#include <linux/user_namespace.h>
116#include <linux/static_key.h>
117#include <linux/memcontrol.h>
118#include <linux/prefetch.h>
119
120#include <asm/uaccess.h>
121
122#include <linux/netdevice.h>
123#include <net/protocol.h>
124#include <linux/skbuff.h>
125#include <net/net_namespace.h>
126#include <net/request_sock.h>
127#include <net/sock.h>
128#include <linux/net_tstamp.h>
129#include <net/xfrm.h>
130#include <linux/ipsec.h>
131#include <net/cls_cgroup.h>
132#include <net/netprio_cgroup.h>
133
134#include <linux/filter.h>
135
136#include <trace/events/sock.h>
137
138#ifdef CONFIG_INET
139#include <net/tcp.h>
140#endif
141
142static DEFINE_MUTEX(proto_list_mutex);
143static LIST_HEAD(proto_list);
144
145#ifdef CONFIG_MEMCG_KMEM
146int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
147{
148	struct proto *proto;
149	int ret = 0;
150
151	mutex_lock(&proto_list_mutex);
152	list_for_each_entry(proto, &proto_list, node) {
153		if (proto->init_cgroup) {
154			ret = proto->init_cgroup(memcg, ss);
155			if (ret)
156				goto out;
157		}
158	}
159
160	mutex_unlock(&proto_list_mutex);
161	return ret;
162out:
163	list_for_each_entry_continue_reverse(proto, &proto_list, node)
164		if (proto->destroy_cgroup)
165			proto->destroy_cgroup(memcg);
166	mutex_unlock(&proto_list_mutex);
167	return ret;
168}
169
170void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
171{
172	struct proto *proto;
173
174	mutex_lock(&proto_list_mutex);
175	list_for_each_entry_reverse(proto, &proto_list, node)
176		if (proto->destroy_cgroup)
177			proto->destroy_cgroup(memcg);
178	mutex_unlock(&proto_list_mutex);
179}
180#endif
181
182/*
183 * Each address family might have different locking rules, so we have
184 * one slock key per address family:
185 */
186static struct lock_class_key af_family_keys[AF_MAX];
187static struct lock_class_key af_family_slock_keys[AF_MAX];
188
189#if defined(CONFIG_MEMCG_KMEM)
190struct static_key memcg_socket_limit_enabled;
191EXPORT_SYMBOL(memcg_socket_limit_enabled);
192#endif
193
194/*
195 * Make lock validator output more readable. (we pre-construct these
196 * strings build-time, so that runtime initialization of socket
197 * locks is fast):
198 */
199static const char *const af_family_key_strings[AF_MAX+1] = {
200  "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX"     , "sk_lock-AF_INET"     ,
201  "sk_lock-AF_AX25"  , "sk_lock-AF_IPX"      , "sk_lock-AF_APPLETALK",
202  "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE"   , "sk_lock-AF_ATMPVC"   ,
203  "sk_lock-AF_X25"   , "sk_lock-AF_INET6"    , "sk_lock-AF_ROSE"     ,
204  "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI"  , "sk_lock-AF_SECURITY" ,
205  "sk_lock-AF_KEY"   , "sk_lock-AF_NETLINK"  , "sk_lock-AF_PACKET"   ,
206  "sk_lock-AF_ASH"   , "sk_lock-AF_ECONET"   , "sk_lock-AF_ATMSVC"   ,
207  "sk_lock-AF_RDS"   , "sk_lock-AF_SNA"      , "sk_lock-AF_IRDA"     ,
208  "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE"  , "sk_lock-AF_LLC"      ,
209  "sk_lock-27"       , "sk_lock-28"          , "sk_lock-AF_CAN"      ,
210  "sk_lock-AF_TIPC"  , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV"        ,
211  "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN"     , "sk_lock-AF_PHONET"   ,
212  "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG"      ,
213  "sk_lock-AF_NFC"   , "sk_lock-AF_MAX"
214};
215static const char *const af_family_slock_key_strings[AF_MAX+1] = {
216  "slock-AF_UNSPEC", "slock-AF_UNIX"     , "slock-AF_INET"     ,
217  "slock-AF_AX25"  , "slock-AF_IPX"      , "slock-AF_APPLETALK",
218  "slock-AF_NETROM", "slock-AF_BRIDGE"   , "slock-AF_ATMPVC"   ,
219  "slock-AF_X25"   , "slock-AF_INET6"    , "slock-AF_ROSE"     ,
220  "slock-AF_DECnet", "slock-AF_NETBEUI"  , "slock-AF_SECURITY" ,
221  "slock-AF_KEY"   , "slock-AF_NETLINK"  , "slock-AF_PACKET"   ,
222  "slock-AF_ASH"   , "slock-AF_ECONET"   , "slock-AF_ATMSVC"   ,
223  "slock-AF_RDS"   , "slock-AF_SNA"      , "slock-AF_IRDA"     ,
224  "slock-AF_PPPOX" , "slock-AF_WANPIPE"  , "slock-AF_LLC"      ,
225  "slock-27"       , "slock-28"          , "slock-AF_CAN"      ,
226  "slock-AF_TIPC"  , "slock-AF_BLUETOOTH", "slock-AF_IUCV"     ,
227  "slock-AF_RXRPC" , "slock-AF_ISDN"     , "slock-AF_PHONET"   ,
228  "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG"      ,
229  "slock-AF_NFC"   , "slock-AF_MAX"
230};
231static const char *const af_family_clock_key_strings[AF_MAX+1] = {
232  "clock-AF_UNSPEC", "clock-AF_UNIX"     , "clock-AF_INET"     ,
233  "clock-AF_AX25"  , "clock-AF_IPX"      , "clock-AF_APPLETALK",
234  "clock-AF_NETROM", "clock-AF_BRIDGE"   , "clock-AF_ATMPVC"   ,
235  "clock-AF_X25"   , "clock-AF_INET6"    , "clock-AF_ROSE"     ,
236  "clock-AF_DECnet", "clock-AF_NETBEUI"  , "clock-AF_SECURITY" ,
237  "clock-AF_KEY"   , "clock-AF_NETLINK"  , "clock-AF_PACKET"   ,
238  "clock-AF_ASH"   , "clock-AF_ECONET"   , "clock-AF_ATMSVC"   ,
239  "clock-AF_RDS"   , "clock-AF_SNA"      , "clock-AF_IRDA"     ,
240  "clock-AF_PPPOX" , "clock-AF_WANPIPE"  , "clock-AF_LLC"      ,
241  "clock-27"       , "clock-28"          , "clock-AF_CAN"      ,
242  "clock-AF_TIPC"  , "clock-AF_BLUETOOTH", "clock-AF_IUCV"     ,
243  "clock-AF_RXRPC" , "clock-AF_ISDN"     , "clock-AF_PHONET"   ,
244  "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG"      ,
245  "clock-AF_NFC"   , "clock-AF_MAX"
246};
247
248/*
249 * sk_callback_lock locking rules are per-address-family,
250 * so split the lock classes by using a per-AF key:
251 */
252static struct lock_class_key af_callback_keys[AF_MAX];
253
254/* Take into consideration the size of the struct sk_buff overhead in the
255 * determination of these values, since that is non-constant across
256 * platforms.  This makes socket queueing behavior and performance
257 * not depend upon such differences.
258 */
259#define _SK_MEM_PACKETS		256
260#define _SK_MEM_OVERHEAD	SKB_TRUESIZE(256)
261#define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
262#define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
263
264/* Run time adjustable parameters. */
265__u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
266EXPORT_SYMBOL(sysctl_wmem_max);
267__u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
268EXPORT_SYMBOL(sysctl_rmem_max);
269__u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
270__u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
271
272/* Maximal space eaten by iovec or ancillary data plus some space */
273int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
274EXPORT_SYMBOL(sysctl_optmem_max);
275
276struct static_key memalloc_socks = STATIC_KEY_INIT_FALSE;
277EXPORT_SYMBOL_GPL(memalloc_socks);
278
279/**
280 * sk_set_memalloc - sets %SOCK_MEMALLOC
281 * @sk: socket to set it on
282 *
283 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
284 * It's the responsibility of the admin to adjust min_free_kbytes
285 * to meet the requirements
286 */
287void sk_set_memalloc(struct sock *sk)
288{
289	sock_set_flag(sk, SOCK_MEMALLOC);
290	sk->sk_allocation |= __GFP_MEMALLOC;
291	static_key_slow_inc(&memalloc_socks);
292}
293EXPORT_SYMBOL_GPL(sk_set_memalloc);
294
295void sk_clear_memalloc(struct sock *sk)
296{
297	sock_reset_flag(sk, SOCK_MEMALLOC);
298	sk->sk_allocation &= ~__GFP_MEMALLOC;
299	static_key_slow_dec(&memalloc_socks);
300
301	/*
302	 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
303	 * progress of swapping. However, if SOCK_MEMALLOC is cleared while
304	 * it has rmem allocations there is a risk that the user of the
305	 * socket cannot make forward progress due to exceeding the rmem
306	 * limits. By rights, sk_clear_memalloc() should only be called
307	 * on sockets being torn down but warn and reset the accounting if
308	 * that assumption breaks.
309	 */
310	if (WARN_ON(sk->sk_forward_alloc))
311		sk_mem_reclaim(sk);
312}
313EXPORT_SYMBOL_GPL(sk_clear_memalloc);
314
315int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
316{
317	int ret;
318	unsigned long pflags = current->flags;
319
320	/* these should have been dropped before queueing */
321	BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
322
323	current->flags |= PF_MEMALLOC;
324	ret = sk->sk_backlog_rcv(sk, skb);
325	tsk_restore_flags(current, pflags, PF_MEMALLOC);
326
327	return ret;
328}
329EXPORT_SYMBOL(__sk_backlog_rcv);
330
331static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
332{
333	struct timeval tv;
334
335	if (optlen < sizeof(tv))
336		return -EINVAL;
337	if (copy_from_user(&tv, optval, sizeof(tv)))
338		return -EFAULT;
339	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
340		return -EDOM;
341
342	if (tv.tv_sec < 0) {
343		static int warned __read_mostly;
344
345		*timeo_p = 0;
346		if (warned < 10 && net_ratelimit()) {
347			warned++;
348			pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
349				__func__, current->comm, task_pid_nr(current));
350		}
351		return 0;
352	}
353	*timeo_p = MAX_SCHEDULE_TIMEOUT;
354	if (tv.tv_sec == 0 && tv.tv_usec == 0)
355		return 0;
356	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
357		*timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
358	return 0;
359}
360
361static void sock_warn_obsolete_bsdism(const char *name)
362{
363	static int warned;
364	static char warncomm[TASK_COMM_LEN];
365	if (strcmp(warncomm, current->comm) && warned < 5) {
366		strcpy(warncomm,  current->comm);
367		pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
368			warncomm, name);
369		warned++;
370	}
371}
372
373#define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
374
375static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
376{
377	if (sk->sk_flags & flags) {
378		sk->sk_flags &= ~flags;
379		if (!(sk->sk_flags & SK_FLAGS_TIMESTAMP))
380			net_disable_timestamp();
381	}
382}
383
384
385int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
386{
387	int err;
388	int skb_len;
389	unsigned long flags;
390	struct sk_buff_head *list = &sk->sk_receive_queue;
391
392	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
393		atomic_inc(&sk->sk_drops);
394		trace_sock_rcvqueue_full(sk, skb);
395		return -ENOMEM;
396	}
397
398	err = sk_filter(sk, skb);
399	if (err)
400		return err;
401
402	if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
403		atomic_inc(&sk->sk_drops);
404		return -ENOBUFS;
405	}
406
407	skb->dev = NULL;
408	skb_set_owner_r(skb, sk);
409
410	/* Cache the SKB length before we tack it onto the receive
411	 * queue.  Once it is added it no longer belongs to us and
412	 * may be freed by other threads of control pulling packets
413	 * from the queue.
414	 */
415	skb_len = skb->len;
416
417	/* we escape from rcu protected region, make sure we dont leak
418	 * a norefcounted dst
419	 */
420	skb_dst_force(skb);
421
422	spin_lock_irqsave(&list->lock, flags);
423	skb->dropcount = atomic_read(&sk->sk_drops);
424	__skb_queue_tail(list, skb);
425	spin_unlock_irqrestore(&list->lock, flags);
426
427	if (!sock_flag(sk, SOCK_DEAD))
428		sk->sk_data_ready(sk, skb_len);
429	return 0;
430}
431EXPORT_SYMBOL(sock_queue_rcv_skb);
432
433int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
434{
435	int rc = NET_RX_SUCCESS;
436
437	if (sk_filter(sk, skb))
438		goto discard_and_relse;
439
440	skb->dev = NULL;
441
442	if (sk_rcvqueues_full(sk, skb, sk->sk_rcvbuf)) {
443		atomic_inc(&sk->sk_drops);
444		goto discard_and_relse;
445	}
446	if (nested)
447		bh_lock_sock_nested(sk);
448	else
449		bh_lock_sock(sk);
450	if (!sock_owned_by_user(sk)) {
451		/*
452		 * trylock + unlock semantics:
453		 */
454		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
455
456		rc = sk_backlog_rcv(sk, skb);
457
458		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
459	} else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
460		bh_unlock_sock(sk);
461		atomic_inc(&sk->sk_drops);
462		goto discard_and_relse;
463	}
464
465	bh_unlock_sock(sk);
466out:
467	sock_put(sk);
468	return rc;
469discard_and_relse:
470	kfree_skb(skb);
471	goto out;
472}
473EXPORT_SYMBOL(sk_receive_skb);
474
475void sk_reset_txq(struct sock *sk)
476{
477	sk_tx_queue_clear(sk);
478}
479EXPORT_SYMBOL(sk_reset_txq);
480
481struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
482{
483	struct dst_entry *dst = __sk_dst_get(sk);
484
485	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
486		sk_tx_queue_clear(sk);
487		RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
488		dst_release(dst);
489		return NULL;
490	}
491
492	return dst;
493}
494EXPORT_SYMBOL(__sk_dst_check);
495
496struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
497{
498	struct dst_entry *dst = sk_dst_get(sk);
499
500	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
501		sk_dst_reset(sk);
502		dst_release(dst);
503		return NULL;
504	}
505
506	return dst;
507}
508EXPORT_SYMBOL(sk_dst_check);
509
510static int sock_setbindtodevice(struct sock *sk, char __user *optval,
511				int optlen)
512{
513	int ret = -ENOPROTOOPT;
514#ifdef CONFIG_NETDEVICES
515	struct net *net = sock_net(sk);
516	char devname[IFNAMSIZ];
517	int index;
518
519	/* Sorry... */
520	ret = -EPERM;
521	if (!ns_capable(net->user_ns, CAP_NET_RAW))
522		goto out;
523
524	ret = -EINVAL;
525	if (optlen < 0)
526		goto out;
527
528	/* Bind this socket to a particular device like "eth0",
529	 * as specified in the passed interface name. If the
530	 * name is "" or the option length is zero the socket
531	 * is not bound.
532	 */
533	if (optlen > IFNAMSIZ - 1)
534		optlen = IFNAMSIZ - 1;
535	memset(devname, 0, sizeof(devname));
536
537	ret = -EFAULT;
538	if (copy_from_user(devname, optval, optlen))
539		goto out;
540
541	index = 0;
542	if (devname[0] != '\0') {
543		struct net_device *dev;
544
545		rcu_read_lock();
546		dev = dev_get_by_name_rcu(net, devname);
547		if (dev)
548			index = dev->ifindex;
549		rcu_read_unlock();
550		ret = -ENODEV;
551		if (!dev)
552			goto out;
553	}
554
555	lock_sock(sk);
556	sk->sk_bound_dev_if = index;
557	sk_dst_reset(sk);
558	release_sock(sk);
559
560	ret = 0;
561
562out:
563#endif
564
565	return ret;
566}
567
568static int sock_getbindtodevice(struct sock *sk, char __user *optval,
569				int __user *optlen, int len)
570{
571	int ret = -ENOPROTOOPT;
572#ifdef CONFIG_NETDEVICES
573	struct net *net = sock_net(sk);
574	struct net_device *dev;
575	char devname[IFNAMSIZ];
576	unsigned seq;
577
578	if (sk->sk_bound_dev_if == 0) {
579		len = 0;
580		goto zero;
581	}
582
583	ret = -EINVAL;
584	if (len < IFNAMSIZ)
585		goto out;
586
587retry:
588	seq = read_seqcount_begin(&devnet_rename_seq);
589	rcu_read_lock();
590	dev = dev_get_by_index_rcu(net, sk->sk_bound_dev_if);
591	ret = -ENODEV;
592	if (!dev) {
593		rcu_read_unlock();
594		goto out;
595	}
596
597	strcpy(devname, dev->name);
598	rcu_read_unlock();
599	if (read_seqcount_retry(&devnet_rename_seq, seq))
600		goto retry;
601
602	len = strlen(devname) + 1;
603
604	ret = -EFAULT;
605	if (copy_to_user(optval, devname, len))
606		goto out;
607
608zero:
609	ret = -EFAULT;
610	if (put_user(len, optlen))
611		goto out;
612
613	ret = 0;
614
615out:
616#endif
617
618	return ret;
619}
620
621static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
622{
623	if (valbool)
624		sock_set_flag(sk, bit);
625	else
626		sock_reset_flag(sk, bit);
627}
628
629/*
630 *	This is meant for all protocols to use and covers goings on
631 *	at the socket level. Everything here is generic.
632 */
633
634int sock_setsockopt(struct socket *sock, int level, int optname,
635		    char __user *optval, unsigned int optlen)
636{
637	struct sock *sk = sock->sk;
638	int val;
639	int valbool;
640	struct linger ling;
641	int ret = 0;
642
643	/*
644	 *	Options without arguments
645	 */
646
647	if (optname == SO_BINDTODEVICE)
648		return sock_setbindtodevice(sk, optval, optlen);
649
650	if (optlen < sizeof(int))
651		return -EINVAL;
652
653	if (get_user(val, (int __user *)optval))
654		return -EFAULT;
655
656	valbool = val ? 1 : 0;
657
658	lock_sock(sk);
659
660	switch (optname) {
661	case SO_DEBUG:
662		if (val && !capable(CAP_NET_ADMIN))
663			ret = -EACCES;
664		else
665			sock_valbool_flag(sk, SOCK_DBG, valbool);
666		break;
667	case SO_REUSEADDR:
668		sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
669		break;
670	case SO_REUSEPORT:
671		sk->sk_reuseport = valbool;
672		break;
673	case SO_TYPE:
674	case SO_PROTOCOL:
675	case SO_DOMAIN:
676	case SO_ERROR:
677		ret = -ENOPROTOOPT;
678		break;
679	case SO_DONTROUTE:
680		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
681		break;
682	case SO_BROADCAST:
683		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
684		break;
685	case SO_SNDBUF:
686		/* Don't error on this BSD doesn't and if you think
687		 * about it this is right. Otherwise apps have to
688		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
689		 * are treated in BSD as hints
690		 */
691		val = min_t(u32, val, sysctl_wmem_max);
692set_sndbuf:
693		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
694		sk->sk_sndbuf = max_t(u32, val * 2, SOCK_MIN_SNDBUF);
695		/* Wake up sending tasks if we upped the value. */
696		sk->sk_write_space(sk);
697		break;
698
699	case SO_SNDBUFFORCE:
700		if (!capable(CAP_NET_ADMIN)) {
701			ret = -EPERM;
702			break;
703		}
704		goto set_sndbuf;
705
706	case SO_RCVBUF:
707		/* Don't error on this BSD doesn't and if you think
708		 * about it this is right. Otherwise apps have to
709		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
710		 * are treated in BSD as hints
711		 */
712		val = min_t(u32, val, sysctl_rmem_max);
713set_rcvbuf:
714		sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
715		/*
716		 * We double it on the way in to account for
717		 * "struct sk_buff" etc. overhead.   Applications
718		 * assume that the SO_RCVBUF setting they make will
719		 * allow that much actual data to be received on that
720		 * socket.
721		 *
722		 * Applications are unaware that "struct sk_buff" and
723		 * other overheads allocate from the receive buffer
724		 * during socket buffer allocation.
725		 *
726		 * And after considering the possible alternatives,
727		 * returning the value we actually used in getsockopt
728		 * is the most desirable behavior.
729		 */
730		sk->sk_rcvbuf = max_t(u32, val * 2, SOCK_MIN_RCVBUF);
731		break;
732
733	case SO_RCVBUFFORCE:
734		if (!capable(CAP_NET_ADMIN)) {
735			ret = -EPERM;
736			break;
737		}
738		goto set_rcvbuf;
739
740	case SO_KEEPALIVE:
741#ifdef CONFIG_INET
742		if (sk->sk_protocol == IPPROTO_TCP &&
743		    sk->sk_type == SOCK_STREAM)
744			tcp_set_keepalive(sk, valbool);
745#endif
746		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
747		break;
748
749	case SO_OOBINLINE:
750		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
751		break;
752
753	case SO_NO_CHECK:
754		sk->sk_no_check = valbool;
755		break;
756
757	case SO_PRIORITY:
758		if ((val >= 0 && val <= 6) ||
759		    ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
760			sk->sk_priority = val;
761		else
762			ret = -EPERM;
763		break;
764
765	case SO_LINGER:
766		if (optlen < sizeof(ling)) {
767			ret = -EINVAL;	/* 1003.1g */
768			break;
769		}
770		if (copy_from_user(&ling, optval, sizeof(ling))) {
771			ret = -EFAULT;
772			break;
773		}
774		if (!ling.l_onoff)
775			sock_reset_flag(sk, SOCK_LINGER);
776		else {
777#if (BITS_PER_LONG == 32)
778			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
779				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
780			else
781#endif
782				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
783			sock_set_flag(sk, SOCK_LINGER);
784		}
785		break;
786
787	case SO_BSDCOMPAT:
788		sock_warn_obsolete_bsdism("setsockopt");
789		break;
790
791	case SO_PASSCRED:
792		if (valbool)
793			set_bit(SOCK_PASSCRED, &sock->flags);
794		else
795			clear_bit(SOCK_PASSCRED, &sock->flags);
796		break;
797
798	case SO_TIMESTAMP:
799	case SO_TIMESTAMPNS:
800		if (valbool)  {
801			if (optname == SO_TIMESTAMP)
802				sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
803			else
804				sock_set_flag(sk, SOCK_RCVTSTAMPNS);
805			sock_set_flag(sk, SOCK_RCVTSTAMP);
806			sock_enable_timestamp(sk, SOCK_TIMESTAMP);
807		} else {
808			sock_reset_flag(sk, SOCK_RCVTSTAMP);
809			sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
810		}
811		break;
812
813	case SO_TIMESTAMPING:
814		if (val & ~SOF_TIMESTAMPING_MASK) {
815			ret = -EINVAL;
816			break;
817		}
818		sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE,
819				  val & SOF_TIMESTAMPING_TX_HARDWARE);
820		sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE,
821				  val & SOF_TIMESTAMPING_TX_SOFTWARE);
822		sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE,
823				  val & SOF_TIMESTAMPING_RX_HARDWARE);
824		if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
825			sock_enable_timestamp(sk,
826					      SOCK_TIMESTAMPING_RX_SOFTWARE);
827		else
828			sock_disable_timestamp(sk,
829					       (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
830		sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE,
831				  val & SOF_TIMESTAMPING_SOFTWARE);
832		sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE,
833				  val & SOF_TIMESTAMPING_SYS_HARDWARE);
834		sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE,
835				  val & SOF_TIMESTAMPING_RAW_HARDWARE);
836		break;
837
838	case SO_RCVLOWAT:
839		if (val < 0)
840			val = INT_MAX;
841		sk->sk_rcvlowat = val ? : 1;
842		break;
843
844	case SO_RCVTIMEO:
845		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
846		break;
847
848	case SO_SNDTIMEO:
849		ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
850		break;
851
852	case SO_ATTACH_FILTER:
853		ret = -EINVAL;
854		if (optlen == sizeof(struct sock_fprog)) {
855			struct sock_fprog fprog;
856
857			ret = -EFAULT;
858			if (copy_from_user(&fprog, optval, sizeof(fprog)))
859				break;
860
861			ret = sk_attach_filter(&fprog, sk);
862		}
863		break;
864
865	case SO_DETACH_FILTER:
866		ret = sk_detach_filter(sk);
867		break;
868
869	case SO_LOCK_FILTER:
870		if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
871			ret = -EPERM;
872		else
873			sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
874		break;
875
876	case SO_PASSSEC:
877		if (valbool)
878			set_bit(SOCK_PASSSEC, &sock->flags);
879		else
880			clear_bit(SOCK_PASSSEC, &sock->flags);
881		break;
882	case SO_MARK:
883		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
884			ret = -EPERM;
885		else
886			sk->sk_mark = val;
887		break;
888
889		/* We implement the SO_SNDLOWAT etc to
890		   not be settable (1003.1g 5.3) */
891	case SO_RXQ_OVFL:
892		sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
893		break;
894
895	case SO_WIFI_STATUS:
896		sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
897		break;
898
899	case SO_PEEK_OFF:
900		if (sock->ops->set_peek_off)
901			sock->ops->set_peek_off(sk, val);
902		else
903			ret = -EOPNOTSUPP;
904		break;
905
906	case SO_NOFCS:
907		sock_valbool_flag(sk, SOCK_NOFCS, valbool);
908		break;
909
910	default:
911		ret = -ENOPROTOOPT;
912		break;
913	}
914	release_sock(sk);
915	return ret;
916}
917EXPORT_SYMBOL(sock_setsockopt);
918
919
920void cred_to_ucred(struct pid *pid, const struct cred *cred,
921		   struct ucred *ucred)
922{
923	ucred->pid = pid_vnr(pid);
924	ucred->uid = ucred->gid = -1;
925	if (cred) {
926		struct user_namespace *current_ns = current_user_ns();
927
928		ucred->uid = from_kuid_munged(current_ns, cred->euid);
929		ucred->gid = from_kgid_munged(current_ns, cred->egid);
930	}
931}
932EXPORT_SYMBOL_GPL(cred_to_ucred);
933
934int sock_getsockopt(struct socket *sock, int level, int optname,
935		    char __user *optval, int __user *optlen)
936{
937	struct sock *sk = sock->sk;
938
939	union {
940		int val;
941		struct linger ling;
942		struct timeval tm;
943	} v;
944
945	int lv = sizeof(int);
946	int len;
947
948	if (get_user(len, optlen))
949		return -EFAULT;
950	if (len < 0)
951		return -EINVAL;
952
953	memset(&v, 0, sizeof(v));
954
955	switch (optname) {
956	case SO_DEBUG:
957		v.val = sock_flag(sk, SOCK_DBG);
958		break;
959
960	case SO_DONTROUTE:
961		v.val = sock_flag(sk, SOCK_LOCALROUTE);
962		break;
963
964	case SO_BROADCAST:
965		v.val = sock_flag(sk, SOCK_BROADCAST);
966		break;
967
968	case SO_SNDBUF:
969		v.val = sk->sk_sndbuf;
970		break;
971
972	case SO_RCVBUF:
973		v.val = sk->sk_rcvbuf;
974		break;
975
976	case SO_REUSEADDR:
977		v.val = sk->sk_reuse;
978		break;
979
980	case SO_REUSEPORT:
981		v.val = sk->sk_reuseport;
982		break;
983
984	case SO_KEEPALIVE:
985		v.val = sock_flag(sk, SOCK_KEEPOPEN);
986		break;
987
988	case SO_TYPE:
989		v.val = sk->sk_type;
990		break;
991
992	case SO_PROTOCOL:
993		v.val = sk->sk_protocol;
994		break;
995
996	case SO_DOMAIN:
997		v.val = sk->sk_family;
998		break;
999
1000	case SO_ERROR:
1001		v.val = -sock_error(sk);
1002		if (v.val == 0)
1003			v.val = xchg(&sk->sk_err_soft, 0);
1004		break;
1005
1006	case SO_OOBINLINE:
1007		v.val = sock_flag(sk, SOCK_URGINLINE);
1008		break;
1009
1010	case SO_NO_CHECK:
1011		v.val = sk->sk_no_check;
1012		break;
1013
1014	case SO_PRIORITY:
1015		v.val = sk->sk_priority;
1016		break;
1017
1018	case SO_LINGER:
1019		lv		= sizeof(v.ling);
1020		v.ling.l_onoff	= sock_flag(sk, SOCK_LINGER);
1021		v.ling.l_linger	= sk->sk_lingertime / HZ;
1022		break;
1023
1024	case SO_BSDCOMPAT:
1025		sock_warn_obsolete_bsdism("getsockopt");
1026		break;
1027
1028	case SO_TIMESTAMP:
1029		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1030				!sock_flag(sk, SOCK_RCVTSTAMPNS);
1031		break;
1032
1033	case SO_TIMESTAMPNS:
1034		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
1035		break;
1036
1037	case SO_TIMESTAMPING:
1038		v.val = 0;
1039		if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
1040			v.val |= SOF_TIMESTAMPING_TX_HARDWARE;
1041		if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
1042			v.val |= SOF_TIMESTAMPING_TX_SOFTWARE;
1043		if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE))
1044			v.val |= SOF_TIMESTAMPING_RX_HARDWARE;
1045		if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE))
1046			v.val |= SOF_TIMESTAMPING_RX_SOFTWARE;
1047		if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE))
1048			v.val |= SOF_TIMESTAMPING_SOFTWARE;
1049		if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))
1050			v.val |= SOF_TIMESTAMPING_SYS_HARDWARE;
1051		if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE))
1052			v.val |= SOF_TIMESTAMPING_RAW_HARDWARE;
1053		break;
1054
1055	case SO_RCVTIMEO:
1056		lv = sizeof(struct timeval);
1057		if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
1058			v.tm.tv_sec = 0;
1059			v.tm.tv_usec = 0;
1060		} else {
1061			v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
1062			v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
1063		}
1064		break;
1065
1066	case SO_SNDTIMEO:
1067		lv = sizeof(struct timeval);
1068		if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
1069			v.tm.tv_sec = 0;
1070			v.tm.tv_usec = 0;
1071		} else {
1072			v.tm.tv_sec = sk->sk_sndtimeo / HZ;
1073			v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
1074		}
1075		break;
1076
1077	case SO_RCVLOWAT:
1078		v.val = sk->sk_rcvlowat;
1079		break;
1080
1081	case SO_SNDLOWAT:
1082		v.val = 1;
1083		break;
1084
1085	case SO_PASSCRED:
1086		v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1087		break;
1088
1089	case SO_PEERCRED:
1090	{
1091		struct ucred peercred;
1092		if (len > sizeof(peercred))
1093			len = sizeof(peercred);
1094		cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1095		if (copy_to_user(optval, &peercred, len))
1096			return -EFAULT;
1097		goto lenout;
1098	}
1099
1100	case SO_PEERNAME:
1101	{
1102		char address[128];
1103
1104		if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
1105			return -ENOTCONN;
1106		if (lv < len)
1107			return -EINVAL;
1108		if (copy_to_user(optval, address, len))
1109			return -EFAULT;
1110		goto lenout;
1111	}
1112
1113	/* Dubious BSD thing... Probably nobody even uses it, but
1114	 * the UNIX standard wants it for whatever reason... -DaveM
1115	 */
1116	case SO_ACCEPTCONN:
1117		v.val = sk->sk_state == TCP_LISTEN;
1118		break;
1119
1120	case SO_PASSSEC:
1121		v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1122		break;
1123
1124	case SO_PEERSEC:
1125		return security_socket_getpeersec_stream(sock, optval, optlen, len);
1126
1127	case SO_MARK:
1128		v.val = sk->sk_mark;
1129		break;
1130
1131	case SO_RXQ_OVFL:
1132		v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1133		break;
1134
1135	case SO_WIFI_STATUS:
1136		v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1137		break;
1138
1139	case SO_PEEK_OFF:
1140		if (!sock->ops->set_peek_off)
1141			return -EOPNOTSUPP;
1142
1143		v.val = sk->sk_peek_off;
1144		break;
1145	case SO_NOFCS:
1146		v.val = sock_flag(sk, SOCK_NOFCS);
1147		break;
1148
1149	case SO_BINDTODEVICE:
1150		return sock_getbindtodevice(sk, optval, optlen, len);
1151
1152	case SO_GET_FILTER:
1153		len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1154		if (len < 0)
1155			return len;
1156
1157		goto lenout;
1158
1159	case SO_LOCK_FILTER:
1160		v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1161		break;
1162
1163	default:
1164		return -ENOPROTOOPT;
1165	}
1166
1167	if (len > lv)
1168		len = lv;
1169	if (copy_to_user(optval, &v, len))
1170		return -EFAULT;
1171lenout:
1172	if (put_user(len, optlen))
1173		return -EFAULT;
1174	return 0;
1175}
1176
1177/*
1178 * Initialize an sk_lock.
1179 *
1180 * (We also register the sk_lock with the lock validator.)
1181 */
1182static inline void sock_lock_init(struct sock *sk)
1183{
1184	sock_lock_init_class_and_name(sk,
1185			af_family_slock_key_strings[sk->sk_family],
1186			af_family_slock_keys + sk->sk_family,
1187			af_family_key_strings[sk->sk_family],
1188			af_family_keys + sk->sk_family);
1189}
1190
1191/*
1192 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1193 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1194 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1195 */
1196static void sock_copy(struct sock *nsk, const struct sock *osk)
1197{
1198#ifdef CONFIG_SECURITY_NETWORK
1199	void *sptr = nsk->sk_security;
1200#endif
1201	memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1202
1203	memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1204	       osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1205
1206#ifdef CONFIG_SECURITY_NETWORK
1207	nsk->sk_security = sptr;
1208	security_sk_clone(osk, nsk);
1209#endif
1210}
1211
1212/*
1213 * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
1214 * un-modified. Special care is taken when initializing object to zero.
1215 */
1216static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1217{
1218	if (offsetof(struct sock, sk_node.next) != 0)
1219		memset(sk, 0, offsetof(struct sock, sk_node.next));
1220	memset(&sk->sk_node.pprev, 0,
1221	       size - offsetof(struct sock, sk_node.pprev));
1222}
1223
1224void sk_prot_clear_portaddr_nulls(struct sock *sk, int size)
1225{
1226	unsigned long nulls1, nulls2;
1227
1228	nulls1 = offsetof(struct sock, __sk_common.skc_node.next);
1229	nulls2 = offsetof(struct sock, __sk_common.skc_portaddr_node.next);
1230	if (nulls1 > nulls2)
1231		swap(nulls1, nulls2);
1232
1233	if (nulls1 != 0)
1234		memset((char *)sk, 0, nulls1);
1235	memset((char *)sk + nulls1 + sizeof(void *), 0,
1236	       nulls2 - nulls1 - sizeof(void *));
1237	memset((char *)sk + nulls2 + sizeof(void *), 0,
1238	       size - nulls2 - sizeof(void *));
1239}
1240EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls);
1241
1242static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1243		int family)
1244{
1245	struct sock *sk;
1246	struct kmem_cache *slab;
1247
1248	slab = prot->slab;
1249	if (slab != NULL) {
1250		sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1251		if (!sk)
1252			return sk;
1253		if (priority & __GFP_ZERO) {
1254			if (prot->clear_sk)
1255				prot->clear_sk(sk, prot->obj_size);
1256			else
1257				sk_prot_clear_nulls(sk, prot->obj_size);
1258		}
1259	} else
1260		sk = kmalloc(prot->obj_size, priority);
1261
1262	if (sk != NULL) {
1263		kmemcheck_annotate_bitfield(sk, flags);
1264
1265		if (security_sk_alloc(sk, family, priority))
1266			goto out_free;
1267
1268		if (!try_module_get(prot->owner))
1269			goto out_free_sec;
1270		sk_tx_queue_clear(sk);
1271	}
1272
1273	return sk;
1274
1275out_free_sec:
1276	security_sk_free(sk);
1277out_free:
1278	if (slab != NULL)
1279		kmem_cache_free(slab, sk);
1280	else
1281		kfree(sk);
1282	return NULL;
1283}
1284
1285static void sk_prot_free(struct proto *prot, struct sock *sk)
1286{
1287	struct kmem_cache *slab;
1288	struct module *owner;
1289
1290	owner = prot->owner;
1291	slab = prot->slab;
1292
1293	security_sk_free(sk);
1294	if (slab != NULL)
1295		kmem_cache_free(slab, sk);
1296	else
1297		kfree(sk);
1298	module_put(owner);
1299}
1300
1301#if IS_ENABLED(CONFIG_NET_CLS_CGROUP)
1302void sock_update_classid(struct sock *sk, struct task_struct *task)
1303{
1304	u32 classid;
1305
1306	classid = task_cls_classid(task);
1307	if (classid != sk->sk_classid)
1308		sk->sk_classid = classid;
1309}
1310EXPORT_SYMBOL(sock_update_classid);
1311#endif
1312
1313#if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
1314void sock_update_netprioidx(struct sock *sk, struct task_struct *task)
1315{
1316	if (in_interrupt())
1317		return;
1318
1319	sk->sk_cgrp_prioidx = task_netprioidx(task);
1320}
1321EXPORT_SYMBOL_GPL(sock_update_netprioidx);
1322#endif
1323
1324/**
1325 *	sk_alloc - All socket objects are allocated here
1326 *	@net: the applicable net namespace
1327 *	@family: protocol family
1328 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1329 *	@prot: struct proto associated with this new sock instance
1330 */
1331struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1332		      struct proto *prot)
1333{
1334	struct sock *sk;
1335
1336	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1337	if (sk) {
1338		sk->sk_family = family;
1339		/*
1340		 * See comment in struct sock definition to understand
1341		 * why we need sk_prot_creator -acme
1342		 */
1343		sk->sk_prot = sk->sk_prot_creator = prot;
1344		sock_lock_init(sk);
1345		sock_net_set(sk, get_net(net));
1346		atomic_set(&sk->sk_wmem_alloc, 1);
1347
1348		sock_update_classid(sk, current);
1349		sock_update_netprioidx(sk, current);
1350	}
1351
1352	return sk;
1353}
1354EXPORT_SYMBOL(sk_alloc);
1355
1356static void __sk_free(struct sock *sk)
1357{
1358	struct sk_filter *filter;
1359
1360	if (sk->sk_destruct)
1361		sk->sk_destruct(sk);
1362
1363	filter = rcu_dereference_check(sk->sk_filter,
1364				       atomic_read(&sk->sk_wmem_alloc) == 0);
1365	if (filter) {
1366		sk_filter_uncharge(sk, filter);
1367		RCU_INIT_POINTER(sk->sk_filter, NULL);
1368	}
1369
1370	sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1371
1372	if (atomic_read(&sk->sk_omem_alloc))
1373		pr_debug("%s: optmem leakage (%d bytes) detected\n",
1374			 __func__, atomic_read(&sk->sk_omem_alloc));
1375
1376	if (sk->sk_peer_cred)
1377		put_cred(sk->sk_peer_cred);
1378	put_pid(sk->sk_peer_pid);
1379	put_net(sock_net(sk));
1380	sk_prot_free(sk->sk_prot_creator, sk);
1381}
1382
1383void sk_free(struct sock *sk)
1384{
1385	/*
1386	 * We subtract one from sk_wmem_alloc and can know if
1387	 * some packets are still in some tx queue.
1388	 * If not null, sock_wfree() will call __sk_free(sk) later
1389	 */
1390	if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1391		__sk_free(sk);
1392}
1393EXPORT_SYMBOL(sk_free);
1394
1395/*
1396 * Last sock_put should drop reference to sk->sk_net. It has already
1397 * been dropped in sk_change_net. Taking reference to stopping namespace
1398 * is not an option.
1399 * Take reference to a socket to remove it from hash _alive_ and after that
1400 * destroy it in the context of init_net.
1401 */
1402void sk_release_kernel(struct sock *sk)
1403{
1404	if (sk == NULL || sk->sk_socket == NULL)
1405		return;
1406
1407	sock_hold(sk);
1408	sock_release(sk->sk_socket);
1409	release_net(sock_net(sk));
1410	sock_net_set(sk, get_net(&init_net));
1411	sock_put(sk);
1412}
1413EXPORT_SYMBOL(sk_release_kernel);
1414
1415static void sk_update_clone(const struct sock *sk, struct sock *newsk)
1416{
1417	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1418		sock_update_memcg(newsk);
1419}
1420
1421/**
1422 *	sk_clone_lock - clone a socket, and lock its clone
1423 *	@sk: the socket to clone
1424 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1425 *
1426 *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1427 */
1428struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1429{
1430	struct sock *newsk;
1431
1432	newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1433	if (newsk != NULL) {
1434		struct sk_filter *filter;
1435
1436		sock_copy(newsk, sk);
1437
1438		/* SANITY */
1439		get_net(sock_net(newsk));
1440		sk_node_init(&newsk->sk_node);
1441		sock_lock_init(newsk);
1442		bh_lock_sock(newsk);
1443		newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
1444		newsk->sk_backlog.len = 0;
1445
1446		atomic_set(&newsk->sk_rmem_alloc, 0);
1447		/*
1448		 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1449		 */
1450		atomic_set(&newsk->sk_wmem_alloc, 1);
1451		atomic_set(&newsk->sk_omem_alloc, 0);
1452		skb_queue_head_init(&newsk->sk_receive_queue);
1453		skb_queue_head_init(&newsk->sk_write_queue);
1454#ifdef CONFIG_NET_DMA
1455		skb_queue_head_init(&newsk->sk_async_wait_queue);
1456#endif
1457
1458		spin_lock_init(&newsk->sk_dst_lock);
1459		rwlock_init(&newsk->sk_callback_lock);
1460		lockdep_set_class_and_name(&newsk->sk_callback_lock,
1461				af_callback_keys + newsk->sk_family,
1462				af_family_clock_key_strings[newsk->sk_family]);
1463
1464		newsk->sk_dst_cache	= NULL;
1465		newsk->sk_wmem_queued	= 0;
1466		newsk->sk_forward_alloc = 0;
1467		newsk->sk_send_head	= NULL;
1468		newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1469
1470		sock_reset_flag(newsk, SOCK_DONE);
1471		skb_queue_head_init(&newsk->sk_error_queue);
1472
1473		filter = rcu_dereference_protected(newsk->sk_filter, 1);
1474		if (filter != NULL)
1475			sk_filter_charge(newsk, filter);
1476
1477		if (unlikely(xfrm_sk_clone_policy(newsk))) {
1478			/* It is still raw copy of parent, so invalidate
1479			 * destructor and make plain sk_free() */
1480			newsk->sk_destruct = NULL;
1481			bh_unlock_sock(newsk);
1482			sk_free(newsk);
1483			newsk = NULL;
1484			goto out;
1485		}
1486
1487		newsk->sk_err	   = 0;
1488		newsk->sk_priority = 0;
1489		/*
1490		 * Before updating sk_refcnt, we must commit prior changes to memory
1491		 * (Documentation/RCU/rculist_nulls.txt for details)
1492		 */
1493		smp_wmb();
1494		atomic_set(&newsk->sk_refcnt, 2);
1495
1496		/*
1497		 * Increment the counter in the same struct proto as the master
1498		 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1499		 * is the same as sk->sk_prot->socks, as this field was copied
1500		 * with memcpy).
1501		 *
1502		 * This _changes_ the previous behaviour, where
1503		 * tcp_create_openreq_child always was incrementing the
1504		 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1505		 * to be taken into account in all callers. -acme
1506		 */
1507		sk_refcnt_debug_inc(newsk);
1508		sk_set_socket(newsk, NULL);
1509		newsk->sk_wq = NULL;
1510
1511		sk_update_clone(sk, newsk);
1512
1513		if (newsk->sk_prot->sockets_allocated)
1514			sk_sockets_allocated_inc(newsk);
1515
1516		if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1517			net_enable_timestamp();
1518	}
1519out:
1520	return newsk;
1521}
1522EXPORT_SYMBOL_GPL(sk_clone_lock);
1523
1524void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1525{
1526	__sk_dst_set(sk, dst);
1527	sk->sk_route_caps = dst->dev->features;
1528	if (sk->sk_route_caps & NETIF_F_GSO)
1529		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1530	sk->sk_route_caps &= ~sk->sk_route_nocaps;
1531	if (sk_can_gso(sk)) {
1532		if (dst->header_len) {
1533			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1534		} else {
1535			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1536			sk->sk_gso_max_size = dst->dev->gso_max_size;
1537			sk->sk_gso_max_segs = dst->dev->gso_max_segs;
1538		}
1539	}
1540}
1541EXPORT_SYMBOL_GPL(sk_setup_caps);
1542
1543/*
1544 *	Simple resource managers for sockets.
1545 */
1546
1547
1548/*
1549 * Write buffer destructor automatically called from kfree_skb.
1550 */
1551void sock_wfree(struct sk_buff *skb)
1552{
1553	struct sock *sk = skb->sk;
1554	unsigned int len = skb->truesize;
1555
1556	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1557		/*
1558		 * Keep a reference on sk_wmem_alloc, this will be released
1559		 * after sk_write_space() call
1560		 */
1561		atomic_sub(len - 1, &sk->sk_wmem_alloc);
1562		sk->sk_write_space(sk);
1563		len = 1;
1564	}
1565	/*
1566	 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1567	 * could not do because of in-flight packets
1568	 */
1569	if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1570		__sk_free(sk);
1571}
1572EXPORT_SYMBOL(sock_wfree);
1573
1574/*
1575 * Read buffer destructor automatically called from kfree_skb.
1576 */
1577void sock_rfree(struct sk_buff *skb)
1578{
1579	struct sock *sk = skb->sk;
1580	unsigned int len = skb->truesize;
1581
1582	atomic_sub(len, &sk->sk_rmem_alloc);
1583	sk_mem_uncharge(sk, len);
1584}
1585EXPORT_SYMBOL(sock_rfree);
1586
1587void sock_edemux(struct sk_buff *skb)
1588{
1589	struct sock *sk = skb->sk;
1590
1591#ifdef CONFIG_INET
1592	if (sk->sk_state == TCP_TIME_WAIT)
1593		inet_twsk_put(inet_twsk(sk));
1594	else
1595#endif
1596		sock_put(sk);
1597}
1598EXPORT_SYMBOL(sock_edemux);
1599
1600kuid_t sock_i_uid(struct sock *sk)
1601{
1602	kuid_t uid;
1603
1604	read_lock_bh(&sk->sk_callback_lock);
1605	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
1606	read_unlock_bh(&sk->sk_callback_lock);
1607	return uid;
1608}
1609EXPORT_SYMBOL(sock_i_uid);
1610
1611unsigned long sock_i_ino(struct sock *sk)
1612{
1613	unsigned long ino;
1614
1615	read_lock_bh(&sk->sk_callback_lock);
1616	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1617	read_unlock_bh(&sk->sk_callback_lock);
1618	return ino;
1619}
1620EXPORT_SYMBOL(sock_i_ino);
1621
1622/*
1623 * Allocate a skb from the socket's send buffer.
1624 */
1625struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1626			     gfp_t priority)
1627{
1628	if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1629		struct sk_buff *skb = alloc_skb(size, priority);
1630		if (skb) {
1631			skb_set_owner_w(skb, sk);
1632			return skb;
1633		}
1634	}
1635	return NULL;
1636}
1637EXPORT_SYMBOL(sock_wmalloc);
1638
1639/*
1640 * Allocate a skb from the socket's receive buffer.
1641 */
1642struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1643			     gfp_t priority)
1644{
1645	if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1646		struct sk_buff *skb = alloc_skb(size, priority);
1647		if (skb) {
1648			skb_set_owner_r(skb, sk);
1649			return skb;
1650		}
1651	}
1652	return NULL;
1653}
1654
1655/*
1656 * Allocate a memory block from the socket's option memory buffer.
1657 */
1658void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1659{
1660	if ((unsigned int)size <= sysctl_optmem_max &&
1661	    atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1662		void *mem;
1663		/* First do the add, to avoid the race if kmalloc
1664		 * might sleep.
1665		 */
1666		atomic_add(size, &sk->sk_omem_alloc);
1667		mem = kmalloc(size, priority);
1668		if (mem)
1669			return mem;
1670		atomic_sub(size, &sk->sk_omem_alloc);
1671	}
1672	return NULL;
1673}
1674EXPORT_SYMBOL(sock_kmalloc);
1675
1676/*
1677 * Free an option memory block.
1678 */
1679void sock_kfree_s(struct sock *sk, void *mem, int size)
1680{
1681	kfree(mem);
1682	atomic_sub(size, &sk->sk_omem_alloc);
1683}
1684EXPORT_SYMBOL(sock_kfree_s);
1685
1686/* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1687   I think, these locks should be removed for datagram sockets.
1688 */
1689static long sock_wait_for_wmem(struct sock *sk, long timeo)
1690{
1691	DEFINE_WAIT(wait);
1692
1693	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1694	for (;;) {
1695		if (!timeo)
1696			break;
1697		if (signal_pending(current))
1698			break;
1699		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1700		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1701		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1702			break;
1703		if (sk->sk_shutdown & SEND_SHUTDOWN)
1704			break;
1705		if (sk->sk_err)
1706			break;
1707		timeo = schedule_timeout(timeo);
1708	}
1709	finish_wait(sk_sleep(sk), &wait);
1710	return timeo;
1711}
1712
1713
1714/*
1715 *	Generic send/receive buffer handlers
1716 */
1717
1718struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1719				     unsigned long data_len, int noblock,
1720				     int *errcode)
1721{
1722	struct sk_buff *skb;
1723	gfp_t gfp_mask;
1724	long timeo;
1725	int err;
1726	int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1727
1728	err = -EMSGSIZE;
1729	if (npages > MAX_SKB_FRAGS)
1730		goto failure;
1731
1732	gfp_mask = sk->sk_allocation;
1733	if (gfp_mask & __GFP_WAIT)
1734		gfp_mask |= __GFP_REPEAT;
1735
1736	timeo = sock_sndtimeo(sk, noblock);
1737	while (1) {
1738		err = sock_error(sk);
1739		if (err != 0)
1740			goto failure;
1741
1742		err = -EPIPE;
1743		if (sk->sk_shutdown & SEND_SHUTDOWN)
1744			goto failure;
1745
1746		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1747			skb = alloc_skb(header_len, gfp_mask);
1748			if (skb) {
1749				int i;
1750
1751				/* No pages, we're done... */
1752				if (!data_len)
1753					break;
1754
1755				skb->truesize += data_len;
1756				skb_shinfo(skb)->nr_frags = npages;
1757				for (i = 0; i < npages; i++) {
1758					struct page *page;
1759
1760					page = alloc_pages(sk->sk_allocation, 0);
1761					if (!page) {
1762						err = -ENOBUFS;
1763						skb_shinfo(skb)->nr_frags = i;
1764						kfree_skb(skb);
1765						goto failure;
1766					}
1767
1768					__skb_fill_page_desc(skb, i,
1769							page, 0,
1770							(data_len >= PAGE_SIZE ?
1771							 PAGE_SIZE :
1772							 data_len));
1773					data_len -= PAGE_SIZE;
1774				}
1775
1776				/* Full success... */
1777				break;
1778			}
1779			err = -ENOBUFS;
1780			goto failure;
1781		}
1782		set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1783		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1784		err = -EAGAIN;
1785		if (!timeo)
1786			goto failure;
1787		if (signal_pending(current))
1788			goto interrupted;
1789		timeo = sock_wait_for_wmem(sk, timeo);
1790	}
1791
1792	skb_set_owner_w(skb, sk);
1793	return skb;
1794
1795interrupted:
1796	err = sock_intr_errno(timeo);
1797failure:
1798	*errcode = err;
1799	return NULL;
1800}
1801EXPORT_SYMBOL(sock_alloc_send_pskb);
1802
1803struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1804				    int noblock, int *errcode)
1805{
1806	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1807}
1808EXPORT_SYMBOL(sock_alloc_send_skb);
1809
1810/* On 32bit arches, an skb frag is limited to 2^15 */
1811#define SKB_FRAG_PAGE_ORDER	get_order(32768)
1812
1813bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
1814{
1815	int order;
1816
1817	if (pfrag->page) {
1818		if (atomic_read(&pfrag->page->_count) == 1) {
1819			pfrag->offset = 0;
1820			return true;
1821		}
1822		if (pfrag->offset < pfrag->size)
1823			return true;
1824		put_page(pfrag->page);
1825	}
1826
1827	/* We restrict high order allocations to users that can afford to wait */
1828	order = (sk->sk_allocation & __GFP_WAIT) ? SKB_FRAG_PAGE_ORDER : 0;
1829
1830	do {
1831		gfp_t gfp = sk->sk_allocation;
1832
1833		if (order)
1834			gfp |= __GFP_COMP | __GFP_NOWARN;
1835		pfrag->page = alloc_pages(gfp, order);
1836		if (likely(pfrag->page)) {
1837			pfrag->offset = 0;
1838			pfrag->size = PAGE_SIZE << order;
1839			return true;
1840		}
1841	} while (--order >= 0);
1842
1843	sk_enter_memory_pressure(sk);
1844	sk_stream_moderate_sndbuf(sk);
1845	return false;
1846}
1847EXPORT_SYMBOL(sk_page_frag_refill);
1848
1849static void __lock_sock(struct sock *sk)
1850	__releases(&sk->sk_lock.slock)
1851	__acquires(&sk->sk_lock.slock)
1852{
1853	DEFINE_WAIT(wait);
1854
1855	for (;;) {
1856		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1857					TASK_UNINTERRUPTIBLE);
1858		spin_unlock_bh(&sk->sk_lock.slock);
1859		schedule();
1860		spin_lock_bh(&sk->sk_lock.slock);
1861		if (!sock_owned_by_user(sk))
1862			break;
1863	}
1864	finish_wait(&sk->sk_lock.wq, &wait);
1865}
1866
1867static void __release_sock(struct sock *sk)
1868	__releases(&sk->sk_lock.slock)
1869	__acquires(&sk->sk_lock.slock)
1870{
1871	struct sk_buff *skb = sk->sk_backlog.head;
1872
1873	do {
1874		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1875		bh_unlock_sock(sk);
1876
1877		do {
1878			struct sk_buff *next = skb->next;
1879
1880			prefetch(next);
1881			WARN_ON_ONCE(skb_dst_is_noref(skb));
1882			skb->next = NULL;
1883			sk_backlog_rcv(sk, skb);
1884
1885			/*
1886			 * We are in process context here with softirqs
1887			 * disabled, use cond_resched_softirq() to preempt.
1888			 * This is safe to do because we've taken the backlog
1889			 * queue private:
1890			 */
1891			cond_resched_softirq();
1892
1893			skb = next;
1894		} while (skb != NULL);
1895
1896		bh_lock_sock(sk);
1897	} while ((skb = sk->sk_backlog.head) != NULL);
1898
1899	/*
1900	 * Doing the zeroing here guarantee we can not loop forever
1901	 * while a wild producer attempts to flood us.
1902	 */
1903	sk->sk_backlog.len = 0;
1904}
1905
1906/**
1907 * sk_wait_data - wait for data to arrive at sk_receive_queue
1908 * @sk:    sock to wait on
1909 * @timeo: for how long
1910 *
1911 * Now socket state including sk->sk_err is changed only under lock,
1912 * hence we may omit checks after joining wait queue.
1913 * We check receive queue before schedule() only as optimization;
1914 * it is very likely that release_sock() added new data.
1915 */
1916int sk_wait_data(struct sock *sk, long *timeo)
1917{
1918	int rc;
1919	DEFINE_WAIT(wait);
1920
1921	prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1922	set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1923	rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1924	clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1925	finish_wait(sk_sleep(sk), &wait);
1926	return rc;
1927}
1928EXPORT_SYMBOL(sk_wait_data);
1929
1930/**
1931 *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1932 *	@sk: socket
1933 *	@size: memory size to allocate
1934 *	@kind: allocation type
1935 *
1936 *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1937 *	rmem allocation. This function assumes that protocols which have
1938 *	memory_pressure use sk_wmem_queued as write buffer accounting.
1939 */
1940int __sk_mem_schedule(struct sock *sk, int size, int kind)
1941{
1942	struct proto *prot = sk->sk_prot;
1943	int amt = sk_mem_pages(size);
1944	long allocated;
1945	int parent_status = UNDER_LIMIT;
1946
1947	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
1948
1949	allocated = sk_memory_allocated_add(sk, amt, &parent_status);
1950
1951	/* Under limit. */
1952	if (parent_status == UNDER_LIMIT &&
1953			allocated <= sk_prot_mem_limits(sk, 0)) {
1954		sk_leave_memory_pressure(sk);
1955		return 1;
1956	}
1957
1958	/* Under pressure. (we or our parents) */
1959	if ((parent_status > SOFT_LIMIT) ||
1960			allocated > sk_prot_mem_limits(sk, 1))
1961		sk_enter_memory_pressure(sk);
1962
1963	/* Over hard limit (we or our parents) */
1964	if ((parent_status == OVER_LIMIT) ||
1965			(allocated > sk_prot_mem_limits(sk, 2)))
1966		goto suppress_allocation;
1967
1968	/* guarantee minimum buffer size under pressure */
1969	if (kind == SK_MEM_RECV) {
1970		if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
1971			return 1;
1972
1973	} else { /* SK_MEM_SEND */
1974		if (sk->sk_type == SOCK_STREAM) {
1975			if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
1976				return 1;
1977		} else if (atomic_read(&sk->sk_wmem_alloc) <
1978			   prot->sysctl_wmem[0])
1979				return 1;
1980	}
1981
1982	if (sk_has_memory_pressure(sk)) {
1983		int alloc;
1984
1985		if (!sk_under_memory_pressure(sk))
1986			return 1;
1987		alloc = sk_sockets_allocated_read_positive(sk);
1988		if (sk_prot_mem_limits(sk, 2) > alloc *
1989		    sk_mem_pages(sk->sk_wmem_queued +
1990				 atomic_read(&sk->sk_rmem_alloc) +
1991				 sk->sk_forward_alloc))
1992			return 1;
1993	}
1994
1995suppress_allocation:
1996
1997	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
1998		sk_stream_moderate_sndbuf(sk);
1999
2000		/* Fail only if socket is _under_ its sndbuf.
2001		 * In this case we cannot block, so that we have to fail.
2002		 */
2003		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
2004			return 1;
2005	}
2006
2007	trace_sock_exceed_buf_limit(sk, prot, allocated);
2008
2009	/* Alas. Undo changes. */
2010	sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
2011
2012	sk_memory_allocated_sub(sk, amt);
2013
2014	return 0;
2015}
2016EXPORT_SYMBOL(__sk_mem_schedule);
2017
2018/**
2019 *	__sk_reclaim - reclaim memory_allocated
2020 *	@sk: socket
2021 */
2022void __sk_mem_reclaim(struct sock *sk)
2023{
2024	sk_memory_allocated_sub(sk,
2025				sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT);
2026	sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
2027
2028	if (sk_under_memory_pressure(sk) &&
2029	    (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2030		sk_leave_memory_pressure(sk);
2031}
2032EXPORT_SYMBOL(__sk_mem_reclaim);
2033
2034
2035/*
2036 * Set of default routines for initialising struct proto_ops when
2037 * the protocol does not support a particular function. In certain
2038 * cases where it makes no sense for a protocol to have a "do nothing"
2039 * function, some default processing is provided.
2040 */
2041
2042int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2043{
2044	return -EOPNOTSUPP;
2045}
2046EXPORT_SYMBOL(sock_no_bind);
2047
2048int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2049		    int len, int flags)
2050{
2051	return -EOPNOTSUPP;
2052}
2053EXPORT_SYMBOL(sock_no_connect);
2054
2055int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2056{
2057	return -EOPNOTSUPP;
2058}
2059EXPORT_SYMBOL(sock_no_socketpair);
2060
2061int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
2062{
2063	return -EOPNOTSUPP;
2064}
2065EXPORT_SYMBOL(sock_no_accept);
2066
2067int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2068		    int *len, int peer)
2069{
2070	return -EOPNOTSUPP;
2071}
2072EXPORT_SYMBOL(sock_no_getname);
2073
2074unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
2075{
2076	return 0;
2077}
2078EXPORT_SYMBOL(sock_no_poll);
2079
2080int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2081{
2082	return -EOPNOTSUPP;
2083}
2084EXPORT_SYMBOL(sock_no_ioctl);
2085
2086int sock_no_listen(struct socket *sock, int backlog)
2087{
2088	return -EOPNOTSUPP;
2089}
2090EXPORT_SYMBOL(sock_no_listen);
2091
2092int sock_no_shutdown(struct socket *sock, int how)
2093{
2094	return -EOPNOTSUPP;
2095}
2096EXPORT_SYMBOL(sock_no_shutdown);
2097
2098int sock_no_setsockopt(struct socket *sock, int level, int optname,
2099		    char __user *optval, unsigned int optlen)
2100{
2101	return -EOPNOTSUPP;
2102}
2103EXPORT_SYMBOL(sock_no_setsockopt);
2104
2105int sock_no_getsockopt(struct socket *sock, int level, int optname,
2106		    char __user *optval, int __user *optlen)
2107{
2108	return -EOPNOTSUPP;
2109}
2110EXPORT_SYMBOL(sock_no_getsockopt);
2111
2112int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
2113		    size_t len)
2114{
2115	return -EOPNOTSUPP;
2116}
2117EXPORT_SYMBOL(sock_no_sendmsg);
2118
2119int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
2120		    size_t len, int flags)
2121{
2122	return -EOPNOTSUPP;
2123}
2124EXPORT_SYMBOL(sock_no_recvmsg);
2125
2126int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2127{
2128	/* Mirror missing mmap method error code */
2129	return -ENODEV;
2130}
2131EXPORT_SYMBOL(sock_no_mmap);
2132
2133ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2134{
2135	ssize_t res;
2136	struct msghdr msg = {.msg_flags = flags};
2137	struct kvec iov;
2138	char *kaddr = kmap(page);
2139	iov.iov_base = kaddr + offset;
2140	iov.iov_len = size;
2141	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2142	kunmap(page);
2143	return res;
2144}
2145EXPORT_SYMBOL(sock_no_sendpage);
2146
2147/*
2148 *	Default Socket Callbacks
2149 */
2150
2151static void sock_def_wakeup(struct sock *sk)
2152{
2153	struct socket_wq *wq;
2154
2155	rcu_read_lock();
2156	wq = rcu_dereference(sk->sk_wq);
2157	if (wq_has_sleeper(wq))
2158		wake_up_interruptible_all(&wq->wait);
2159	rcu_read_unlock();
2160}
2161
2162static void sock_def_error_report(struct sock *sk)
2163{
2164	struct socket_wq *wq;
2165
2166	rcu_read_lock();
2167	wq = rcu_dereference(sk->sk_wq);
2168	if (wq_has_sleeper(wq))
2169		wake_up_interruptible_poll(&wq->wait, POLLERR);
2170	sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2171	rcu_read_unlock();
2172}
2173
2174static void sock_def_readable(struct sock *sk, int len)
2175{
2176	struct socket_wq *wq;
2177
2178	rcu_read_lock();
2179	wq = rcu_dereference(sk->sk_wq);
2180	if (wq_has_sleeper(wq))
2181		wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
2182						POLLRDNORM | POLLRDBAND);
2183	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2184	rcu_read_unlock();
2185}
2186
2187static void sock_def_write_space(struct sock *sk)
2188{
2189	struct socket_wq *wq;
2190
2191	rcu_read_lock();
2192
2193	/* Do not wake up a writer until he can make "significant"
2194	 * progress.  --DaveM
2195	 */
2196	if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
2197		wq = rcu_dereference(sk->sk_wq);
2198		if (wq_has_sleeper(wq))
2199			wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
2200						POLLWRNORM | POLLWRBAND);
2201
2202		/* Should agree with poll, otherwise some programs break */
2203		if (sock_writeable(sk))
2204			sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2205	}
2206
2207	rcu_read_unlock();
2208}
2209
2210static void sock_def_destruct(struct sock *sk)
2211{
2212	kfree(sk->sk_protinfo);
2213}
2214
2215void sk_send_sigurg(struct sock *sk)
2216{
2217	if (sk->sk_socket && sk->sk_socket->file)
2218		if (send_sigurg(&sk->sk_socket->file->f_owner))
2219			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2220}
2221EXPORT_SYMBOL(sk_send_sigurg);
2222
2223void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2224		    unsigned long expires)
2225{
2226	if (!mod_timer(timer, expires))
2227		sock_hold(sk);
2228}
2229EXPORT_SYMBOL(sk_reset_timer);
2230
2231void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2232{
2233	if (del_timer(timer))
2234		__sock_put(sk);
2235}
2236EXPORT_SYMBOL(sk_stop_timer);
2237
2238void sock_init_data(struct socket *sock, struct sock *sk)
2239{
2240	skb_queue_head_init(&sk->sk_receive_queue);
2241	skb_queue_head_init(&sk->sk_write_queue);
2242	skb_queue_head_init(&sk->sk_error_queue);
2243#ifdef CONFIG_NET_DMA
2244	skb_queue_head_init(&sk->sk_async_wait_queue);
2245#endif
2246
2247	sk->sk_send_head	=	NULL;
2248
2249	init_timer(&sk->sk_timer);
2250
2251	sk->sk_allocation	=	GFP_KERNEL;
2252	sk->sk_rcvbuf		=	sysctl_rmem_default;
2253	sk->sk_sndbuf		=	sysctl_wmem_default;
2254	sk->sk_state		=	TCP_CLOSE;
2255	sk_set_socket(sk, sock);
2256
2257	sock_set_flag(sk, SOCK_ZAPPED);
2258
2259	if (sock) {
2260		sk->sk_type	=	sock->type;
2261		sk->sk_wq	=	sock->wq;
2262		sock->sk	=	sk;
2263	} else
2264		sk->sk_wq	=	NULL;
2265
2266	spin_lock_init(&sk->sk_dst_lock);
2267	rwlock_init(&sk->sk_callback_lock);
2268	lockdep_set_class_and_name(&sk->sk_callback_lock,
2269			af_callback_keys + sk->sk_family,
2270			af_family_clock_key_strings[sk->sk_family]);
2271
2272	sk->sk_state_change	=	sock_def_wakeup;
2273	sk->sk_data_ready	=	sock_def_readable;
2274	sk->sk_write_space	=	sock_def_write_space;
2275	sk->sk_error_report	=	sock_def_error_report;
2276	sk->sk_destruct		=	sock_def_destruct;
2277
2278	sk->sk_frag.page	=	NULL;
2279	sk->sk_frag.offset	=	0;
2280	sk->sk_peek_off		=	-1;
2281
2282	sk->sk_peer_pid 	=	NULL;
2283	sk->sk_peer_cred	=	NULL;
2284	sk->sk_write_pending	=	0;
2285	sk->sk_rcvlowat		=	1;
2286	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
2287	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
2288
2289	sk->sk_stamp = ktime_set(-1L, 0);
2290
2291	/*
2292	 * Before updating sk_refcnt, we must commit prior changes to memory
2293	 * (Documentation/RCU/rculist_nulls.txt for details)
2294	 */
2295	smp_wmb();
2296	atomic_set(&sk->sk_refcnt, 1);
2297	atomic_set(&sk->sk_drops, 0);
2298}
2299EXPORT_SYMBOL(sock_init_data);
2300
2301void lock_sock_nested(struct sock *sk, int subclass)
2302{
2303	might_sleep();
2304	spin_lock_bh(&sk->sk_lock.slock);
2305	if (sk->sk_lock.owned)
2306		__lock_sock(sk);
2307	sk->sk_lock.owned = 1;
2308	spin_unlock(&sk->sk_lock.slock);
2309	/*
2310	 * The sk_lock has mutex_lock() semantics here:
2311	 */
2312	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2313	local_bh_enable();
2314}
2315EXPORT_SYMBOL(lock_sock_nested);
2316
2317void release_sock(struct sock *sk)
2318{
2319	/*
2320	 * The sk_lock has mutex_unlock() semantics:
2321	 */
2322	mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
2323
2324	spin_lock_bh(&sk->sk_lock.slock);
2325	if (sk->sk_backlog.tail)
2326		__release_sock(sk);
2327
2328	if (sk->sk_prot->release_cb)
2329		sk->sk_prot->release_cb(sk);
2330
2331	sk->sk_lock.owned = 0;
2332	if (waitqueue_active(&sk->sk_lock.wq))
2333		wake_up(&sk->sk_lock.wq);
2334	spin_unlock_bh(&sk->sk_lock.slock);
2335}
2336EXPORT_SYMBOL(release_sock);
2337
2338/**
2339 * lock_sock_fast - fast version of lock_sock
2340 * @sk: socket
2341 *
2342 * This version should be used for very small section, where process wont block
2343 * return false if fast path is taken
2344 *   sk_lock.slock locked, owned = 0, BH disabled
2345 * return true if slow path is taken
2346 *   sk_lock.slock unlocked, owned = 1, BH enabled
2347 */
2348bool lock_sock_fast(struct sock *sk)
2349{
2350	might_sleep();
2351	spin_lock_bh(&sk->sk_lock.slock);
2352
2353	if (!sk->sk_lock.owned)
2354		/*
2355		 * Note : We must disable BH
2356		 */
2357		return false;
2358
2359	__lock_sock(sk);
2360	sk->sk_lock.owned = 1;
2361	spin_unlock(&sk->sk_lock.slock);
2362	/*
2363	 * The sk_lock has mutex_lock() semantics here:
2364	 */
2365	mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2366	local_bh_enable();
2367	return true;
2368}
2369EXPORT_SYMBOL(lock_sock_fast);
2370
2371int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2372{
2373	struct timeval tv;
2374	if (!sock_flag(sk, SOCK_TIMESTAMP))
2375		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2376	tv = ktime_to_timeval(sk->sk_stamp);
2377	if (tv.tv_sec == -1)
2378		return -ENOENT;
2379	if (tv.tv_sec == 0) {
2380		sk->sk_stamp = ktime_get_real();
2381		tv = ktime_to_timeval(sk->sk_stamp);
2382	}
2383	return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2384}
2385EXPORT_SYMBOL(sock_get_timestamp);
2386
2387int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2388{
2389	struct timespec ts;
2390	if (!sock_flag(sk, SOCK_TIMESTAMP))
2391		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2392	ts = ktime_to_timespec(sk->sk_stamp);
2393	if (ts.tv_sec == -1)
2394		return -ENOENT;
2395	if (ts.tv_sec == 0) {
2396		sk->sk_stamp = ktime_get_real();
2397		ts = ktime_to_timespec(sk->sk_stamp);
2398	}
2399	return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2400}
2401EXPORT_SYMBOL(sock_get_timestampns);
2402
2403void sock_enable_timestamp(struct sock *sk, int flag)
2404{
2405	if (!sock_flag(sk, flag)) {
2406		unsigned long previous_flags = sk->sk_flags;
2407
2408		sock_set_flag(sk, flag);
2409		/*
2410		 * we just set one of the two flags which require net
2411		 * time stamping, but time stamping might have been on
2412		 * already because of the other one
2413		 */
2414		if (!(previous_flags & SK_FLAGS_TIMESTAMP))
2415			net_enable_timestamp();
2416	}
2417}
2418
2419/*
2420 *	Get a socket option on an socket.
2421 *
2422 *	FIX: POSIX 1003.1g is very ambiguous here. It states that
2423 *	asynchronous errors should be reported by getsockopt. We assume
2424 *	this means if you specify SO_ERROR (otherwise whats the point of it).
2425 */
2426int sock_common_getsockopt(struct socket *sock, int level, int optname,
2427			   char __user *optval, int __user *optlen)
2428{
2429	struct sock *sk = sock->sk;
2430
2431	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2432}
2433EXPORT_SYMBOL(sock_common_getsockopt);
2434
2435#ifdef CONFIG_COMPAT
2436int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2437				  char __user *optval, int __user *optlen)
2438{
2439	struct sock *sk = sock->sk;
2440
2441	if (sk->sk_prot->compat_getsockopt != NULL)
2442		return sk->sk_prot->compat_getsockopt(sk, level, optname,
2443						      optval, optlen);
2444	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2445}
2446EXPORT_SYMBOL(compat_sock_common_getsockopt);
2447#endif
2448
2449int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
2450			struct msghdr *msg, size_t size, int flags)
2451{
2452	struct sock *sk = sock->sk;
2453	int addr_len = 0;
2454	int err;
2455
2456	err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
2457				   flags & ~MSG_DONTWAIT, &addr_len);
2458	if (err >= 0)
2459		msg->msg_namelen = addr_len;
2460	return err;
2461}
2462EXPORT_SYMBOL(sock_common_recvmsg);
2463
2464/*
2465 *	Set socket options on an inet socket.
2466 */
2467int sock_common_setsockopt(struct socket *sock, int level, int optname,
2468			   char __user *optval, unsigned int optlen)
2469{
2470	struct sock *sk = sock->sk;
2471
2472	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2473}
2474EXPORT_SYMBOL(sock_common_setsockopt);
2475
2476#ifdef CONFIG_COMPAT
2477int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2478				  char __user *optval, unsigned int optlen)
2479{
2480	struct sock *sk = sock->sk;
2481
2482	if (sk->sk_prot->compat_setsockopt != NULL)
2483		return sk->sk_prot->compat_setsockopt(sk, level, optname,
2484						      optval, optlen);
2485	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2486}
2487EXPORT_SYMBOL(compat_sock_common_setsockopt);
2488#endif
2489
2490void sk_common_release(struct sock *sk)
2491{
2492	if (sk->sk_prot->destroy)
2493		sk->sk_prot->destroy(sk);
2494
2495	/*
2496	 * Observation: when sock_common_release is called, processes have
2497	 * no access to socket. But net still has.
2498	 * Step one, detach it from networking:
2499	 *
2500	 * A. Remove from hash tables.
2501	 */
2502
2503	sk->sk_prot->unhash(sk);
2504
2505	/*
2506	 * In this point socket cannot receive new packets, but it is possible
2507	 * that some packets are in flight because some CPU runs receiver and
2508	 * did hash table lookup before we unhashed socket. They will achieve
2509	 * receive queue and will be purged by socket destructor.
2510	 *
2511	 * Also we still have packets pending on receive queue and probably,
2512	 * our own packets waiting in device queues. sock_destroy will drain
2513	 * receive queue, but transmitted packets will delay socket destruction
2514	 * until the last reference will be released.
2515	 */
2516
2517	sock_orphan(sk);
2518
2519	xfrm_sk_free_policy(sk);
2520
2521	sk_refcnt_debug_release(sk);
2522
2523	if (sk->sk_frag.page) {
2524		put_page(sk->sk_frag.page);
2525		sk->sk_frag.page = NULL;
2526	}
2527
2528	sock_put(sk);
2529}
2530EXPORT_SYMBOL(sk_common_release);
2531
2532#ifdef CONFIG_PROC_FS
2533#define PROTO_INUSE_NR	64	/* should be enough for the first time */
2534struct prot_inuse {
2535	int val[PROTO_INUSE_NR];
2536};
2537
2538static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2539
2540#ifdef CONFIG_NET_NS
2541void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2542{
2543	__this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
2544}
2545EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2546
2547int sock_prot_inuse_get(struct net *net, struct proto *prot)
2548{
2549	int cpu, idx = prot->inuse_idx;
2550	int res = 0;
2551
2552	for_each_possible_cpu(cpu)
2553		res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2554
2555	return res >= 0 ? res : 0;
2556}
2557EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2558
2559static int __net_init sock_inuse_init_net(struct net *net)
2560{
2561	net->core.inuse = alloc_percpu(struct prot_inuse);
2562	return net->core.inuse ? 0 : -ENOMEM;
2563}
2564
2565static void __net_exit sock_inuse_exit_net(struct net *net)
2566{
2567	free_percpu(net->core.inuse);
2568}
2569
2570static struct pernet_operations net_inuse_ops = {
2571	.init = sock_inuse_init_net,
2572	.exit = sock_inuse_exit_net,
2573};
2574
2575static __init int net_inuse_init(void)
2576{
2577	if (register_pernet_subsys(&net_inuse_ops))
2578		panic("Cannot initialize net inuse counters");
2579
2580	return 0;
2581}
2582
2583core_initcall(net_inuse_init);
2584#else
2585static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2586
2587void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2588{
2589	__this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
2590}
2591EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2592
2593int sock_prot_inuse_get(struct net *net, struct proto *prot)
2594{
2595	int cpu, idx = prot->inuse_idx;
2596	int res = 0;
2597
2598	for_each_possible_cpu(cpu)
2599		res += per_cpu(prot_inuse, cpu).val[idx];
2600
2601	return res >= 0 ? res : 0;
2602}
2603EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2604#endif
2605
2606static void assign_proto_idx(struct proto *prot)
2607{
2608	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2609
2610	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2611		pr_err("PROTO_INUSE_NR exhausted\n");
2612		return;
2613	}
2614
2615	set_bit(prot->inuse_idx, proto_inuse_idx);
2616}
2617
2618static void release_proto_idx(struct proto *prot)
2619{
2620	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2621		clear_bit(prot->inuse_idx, proto_inuse_idx);
2622}
2623#else
2624static inline void assign_proto_idx(struct proto *prot)
2625{
2626}
2627
2628static inline void release_proto_idx(struct proto *prot)
2629{
2630}
2631#endif
2632
2633int proto_register(struct proto *prot, int alloc_slab)
2634{
2635	if (alloc_slab) {
2636		prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2637					SLAB_HWCACHE_ALIGN | prot->slab_flags,
2638					NULL);
2639
2640		if (prot->slab == NULL) {
2641			pr_crit("%s: Can't create sock SLAB cache!\n",
2642				prot->name);
2643			goto out;
2644		}
2645
2646		if (prot->rsk_prot != NULL) {
2647			prot->rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", prot->name);
2648			if (prot->rsk_prot->slab_name == NULL)
2649				goto out_free_sock_slab;
2650
2651			prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
2652								 prot->rsk_prot->obj_size, 0,
2653								 SLAB_HWCACHE_ALIGN, NULL);
2654
2655			if (prot->rsk_prot->slab == NULL) {
2656				pr_crit("%s: Can't create request sock SLAB cache!\n",
2657					prot->name);
2658				goto out_free_request_sock_slab_name;
2659			}
2660		}
2661
2662		if (prot->twsk_prot != NULL) {
2663			prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
2664
2665			if (prot->twsk_prot->twsk_slab_name == NULL)
2666				goto out_free_request_sock_slab;
2667
2668			prot->twsk_prot->twsk_slab =
2669				kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2670						  prot->twsk_prot->twsk_obj_size,
2671						  0,
2672						  SLAB_HWCACHE_ALIGN |
2673							prot->slab_flags,
2674						  NULL);
2675			if (prot->twsk_prot->twsk_slab == NULL)
2676				goto out_free_timewait_sock_slab_name;
2677		}
2678	}
2679
2680	mutex_lock(&proto_list_mutex);
2681	list_add(&prot->node, &proto_list);
2682	assign_proto_idx(prot);
2683	mutex_unlock(&proto_list_mutex);
2684	return 0;
2685
2686out_free_timewait_sock_slab_name:
2687	kfree(prot->twsk_prot->twsk_slab_name);
2688out_free_request_sock_slab:
2689	if (prot->rsk_prot && prot->rsk_prot->slab) {
2690		kmem_cache_destroy(prot->rsk_prot->slab);
2691		prot->rsk_prot->slab = NULL;
2692	}
2693out_free_request_sock_slab_name:
2694	if (prot->rsk_prot)
2695		kfree(prot->rsk_prot->slab_name);
2696out_free_sock_slab:
2697	kmem_cache_destroy(prot->slab);
2698	prot->slab = NULL;
2699out:
2700	return -ENOBUFS;
2701}
2702EXPORT_SYMBOL(proto_register);
2703
2704void proto_unregister(struct proto *prot)
2705{
2706	mutex_lock(&proto_list_mutex);
2707	release_proto_idx(prot);
2708	list_del(&prot->node);
2709	mutex_unlock(&proto_list_mutex);
2710
2711	if (prot->slab != NULL) {
2712		kmem_cache_destroy(prot->slab);
2713		prot->slab = NULL;
2714	}
2715
2716	if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2717		kmem_cache_destroy(prot->rsk_prot->slab);
2718		kfree(prot->rsk_prot->slab_name);
2719		prot->rsk_prot->slab = NULL;
2720	}
2721
2722	if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2723		kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2724		kfree(prot->twsk_prot->twsk_slab_name);
2725		prot->twsk_prot->twsk_slab = NULL;
2726	}
2727}
2728EXPORT_SYMBOL(proto_unregister);
2729
2730#ifdef CONFIG_PROC_FS
2731static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2732	__acquires(proto_list_mutex)
2733{
2734	mutex_lock(&proto_list_mutex);
2735	return seq_list_start_head(&proto_list, *pos);
2736}
2737
2738static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2739{
2740	return seq_list_next(v, &proto_list, pos);
2741}
2742
2743static void proto_seq_stop(struct seq_file *seq, void *v)
2744	__releases(proto_list_mutex)
2745{
2746	mutex_unlock(&proto_list_mutex);
2747}
2748
2749static char proto_method_implemented(const void *method)
2750{
2751	return method == NULL ? 'n' : 'y';
2752}
2753static long sock_prot_memory_allocated(struct proto *proto)
2754{
2755	return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
2756}
2757
2758static char *sock_prot_memory_pressure(struct proto *proto)
2759{
2760	return proto->memory_pressure != NULL ?
2761	proto_memory_pressure(proto) ? "yes" : "no" : "NI";
2762}
2763
2764static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2765{
2766
2767	seq_printf(seq, "%-9s %4u %6d  %6ld   %-3s %6u   %-3s  %-10s "
2768			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2769		   proto->name,
2770		   proto->obj_size,
2771		   sock_prot_inuse_get(seq_file_net(seq), proto),
2772		   sock_prot_memory_allocated(proto),
2773		   sock_prot_memory_pressure(proto),
2774		   proto->max_header,
2775		   proto->slab == NULL ? "no" : "yes",
2776		   module_name(proto->owner),
2777		   proto_method_implemented(proto->close),
2778		   proto_method_implemented(proto->connect),
2779		   proto_method_implemented(proto->disconnect),
2780		   proto_method_implemented(proto->accept),
2781		   proto_method_implemented(proto->ioctl),
2782		   proto_method_implemented(proto->init),
2783		   proto_method_implemented(proto->destroy),
2784		   proto_method_implemented(proto->shutdown),
2785		   proto_method_implemented(proto->setsockopt),
2786		   proto_method_implemented(proto->getsockopt),
2787		   proto_method_implemented(proto->sendmsg),
2788		   proto_method_implemented(proto->recvmsg),
2789		   proto_method_implemented(proto->sendpage),
2790		   proto_method_implemented(proto->bind),
2791		   proto_method_implemented(proto->backlog_rcv),
2792		   proto_method_implemented(proto->hash),
2793		   proto_method_implemented(proto->unhash),
2794		   proto_method_implemented(proto->get_port),
2795		   proto_method_implemented(proto->enter_memory_pressure));
2796}
2797
2798static int proto_seq_show(struct seq_file *seq, void *v)
2799{
2800	if (v == &proto_list)
2801		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2802			   "protocol",
2803			   "size",
2804			   "sockets",
2805			   "memory",
2806			   "press",
2807			   "maxhdr",
2808			   "slab",
2809			   "module",
2810			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2811	else
2812		proto_seq_printf(seq, list_entry(v, struct proto, node));
2813	return 0;
2814}
2815
2816static const struct seq_operations proto_seq_ops = {
2817	.start  = proto_seq_start,
2818	.next   = proto_seq_next,
2819	.stop   = proto_seq_stop,
2820	.show   = proto_seq_show,
2821};
2822
2823static int proto_seq_open(struct inode *inode, struct file *file)
2824{
2825	return seq_open_net(inode, file, &proto_seq_ops,
2826			    sizeof(struct seq_net_private));
2827}
2828
2829static const struct file_operations proto_seq_fops = {
2830	.owner		= THIS_MODULE,
2831	.open		= proto_seq_open,
2832	.read		= seq_read,
2833	.llseek		= seq_lseek,
2834	.release	= seq_release_net,
2835};
2836
2837static __net_init int proto_init_net(struct net *net)
2838{
2839	if (!proc_create("protocols", S_IRUGO, net->proc_net, &proto_seq_fops))
2840		return -ENOMEM;
2841
2842	return 0;
2843}
2844
2845static __net_exit void proto_exit_net(struct net *net)
2846{
2847	remove_proc_entry("protocols", net->proc_net);
2848}
2849
2850
2851static __net_initdata struct pernet_operations proto_net_ops = {
2852	.init = proto_init_net,
2853	.exit = proto_exit_net,
2854};
2855
2856static int __init proto_init(void)
2857{
2858	return register_pernet_subsys(&proto_net_ops);
2859}
2860
2861subsys_initcall(proto_init);
2862
2863#endif /* PROC_FS */
2864