sock.c revision 45af1754bc09926b5e062bda24f789d7b320939f
1/*
2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
3 *		operating system.  INET is implemented using the  BSD Socket
4 *		interface as the means of communication with the user level.
5 *
6 *		Generic socket support routines. Memory allocators, socket lock/release
7 *		handler for protocols to use and generic option handler.
8 *
9 *
10 * Version:	$Id: sock.c,v 1.117 2002/02/01 22:01:03 davem Exp $
11 *
12 * Authors:	Ross Biro
13 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
14 *		Florian La Roche, <flla@stud.uni-sb.de>
15 *		Alan Cox, <A.Cox@swansea.ac.uk>
16 *
17 * Fixes:
18 *		Alan Cox	: 	Numerous verify_area() problems
19 *		Alan Cox	:	Connecting on a connecting socket
20 *					now returns an error for tcp.
21 *		Alan Cox	:	sock->protocol is set correctly.
22 *					and is not sometimes left as 0.
23 *		Alan Cox	:	connect handles icmp errors on a
24 *					connect properly. Unfortunately there
25 *					is a restart syscall nasty there. I
26 *					can't match BSD without hacking the C
27 *					library. Ideas urgently sought!
28 *		Alan Cox	:	Disallow bind() to addresses that are
29 *					not ours - especially broadcast ones!!
30 *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
31 *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
32 *					instead they leave that for the DESTROY timer.
33 *		Alan Cox	:	Clean up error flag in accept
34 *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
35 *					was buggy. Put a remove_sock() in the handler
36 *					for memory when we hit 0. Also altered the timer
37 *					code. The ACK stuff can wait and needs major
38 *					TCP layer surgery.
39 *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
40 *					and fixed timer/inet_bh race.
41 *		Alan Cox	:	Added zapped flag for TCP
42 *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
43 *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
44 *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
45 *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
46 *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
47 *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
48 *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
49 *	Pauline Middelink	:	identd support
50 *		Alan Cox	:	Fixed connect() taking signals I think.
51 *		Alan Cox	:	SO_LINGER supported
52 *		Alan Cox	:	Error reporting fixes
53 *		Anonymous	:	inet_create tidied up (sk->reuse setting)
54 *		Alan Cox	:	inet sockets don't set sk->type!
55 *		Alan Cox	:	Split socket option code
56 *		Alan Cox	:	Callbacks
57 *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
58 *		Alex		:	Removed restriction on inet fioctl
59 *		Alan Cox	:	Splitting INET from NET core
60 *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
61 *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
62 *		Alan Cox	:	Split IP from generic code
63 *		Alan Cox	:	New kfree_skbmem()
64 *		Alan Cox	:	Make SO_DEBUG superuser only.
65 *		Alan Cox	:	Allow anyone to clear SO_DEBUG
66 *					(compatibility fix)
67 *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
68 *		Alan Cox	:	Allocator for a socket is settable.
69 *		Alan Cox	:	SO_ERROR includes soft errors.
70 *		Alan Cox	:	Allow NULL arguments on some SO_ opts
71 *		Alan Cox	: 	Generic socket allocation to make hooks
72 *					easier (suggested by Craig Metz).
73 *		Michael Pall	:	SO_ERROR returns positive errno again
74 *              Steve Whitehouse:       Added default destructor to free
75 *                                      protocol private data.
76 *              Steve Whitehouse:       Added various other default routines
77 *                                      common to several socket families.
78 *              Chris Evans     :       Call suser() check last on F_SETOWN
79 *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
80 *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
81 *		Andi Kleen	:	Fix write_space callback
82 *		Chris Evans	:	Security fixes - signedness again
83 *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
84 *
85 * To Fix:
86 *
87 *
88 *		This program is free software; you can redistribute it and/or
89 *		modify it under the terms of the GNU General Public License
90 *		as published by the Free Software Foundation; either version
91 *		2 of the License, or (at your option) any later version.
92 */
93
94#include <linux/capability.h>
95#include <linux/errno.h>
96#include <linux/types.h>
97#include <linux/socket.h>
98#include <linux/in.h>
99#include <linux/kernel.h>
100#include <linux/module.h>
101#include <linux/proc_fs.h>
102#include <linux/seq_file.h>
103#include <linux/sched.h>
104#include <linux/timer.h>
105#include <linux/string.h>
106#include <linux/sockios.h>
107#include <linux/net.h>
108#include <linux/mm.h>
109#include <linux/slab.h>
110#include <linux/interrupt.h>
111#include <linux/poll.h>
112#include <linux/tcp.h>
113#include <linux/init.h>
114#include <linux/highmem.h>
115
116#include <asm/uaccess.h>
117#include <asm/system.h>
118
119#include <linux/netdevice.h>
120#include <net/protocol.h>
121#include <linux/skbuff.h>
122#include <net/net_namespace.h>
123#include <net/request_sock.h>
124#include <net/sock.h>
125#include <net/xfrm.h>
126#include <linux/ipsec.h>
127
128#include <linux/filter.h>
129
130#ifdef CONFIG_INET
131#include <net/tcp.h>
132#endif
133
134/*
135 * Each address family might have different locking rules, so we have
136 * one slock key per address family:
137 */
138static struct lock_class_key af_family_keys[AF_MAX];
139static struct lock_class_key af_family_slock_keys[AF_MAX];
140
141#ifdef CONFIG_DEBUG_LOCK_ALLOC
142/*
143 * Make lock validator output more readable. (we pre-construct these
144 * strings build-time, so that runtime initialization of socket
145 * locks is fast):
146 */
147static const char *af_family_key_strings[AF_MAX+1] = {
148  "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX"     , "sk_lock-AF_INET"     ,
149  "sk_lock-AF_AX25"  , "sk_lock-AF_IPX"      , "sk_lock-AF_APPLETALK",
150  "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE"   , "sk_lock-AF_ATMPVC"   ,
151  "sk_lock-AF_X25"   , "sk_lock-AF_INET6"    , "sk_lock-AF_ROSE"     ,
152  "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI"  , "sk_lock-AF_SECURITY" ,
153  "sk_lock-AF_KEY"   , "sk_lock-AF_NETLINK"  , "sk_lock-AF_PACKET"   ,
154  "sk_lock-AF_ASH"   , "sk_lock-AF_ECONET"   , "sk_lock-AF_ATMSVC"   ,
155  "sk_lock-21"       , "sk_lock-AF_SNA"      , "sk_lock-AF_IRDA"     ,
156  "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE"  , "sk_lock-AF_LLC"      ,
157  "sk_lock-27"       , "sk_lock-28"          , "sk_lock-AF_CAN"      ,
158  "sk_lock-AF_TIPC"  , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV"        ,
159  "sk_lock-AF_RXRPC" , "sk_lock-AF_MAX"
160};
161static const char *af_family_slock_key_strings[AF_MAX+1] = {
162  "slock-AF_UNSPEC", "slock-AF_UNIX"     , "slock-AF_INET"     ,
163  "slock-AF_AX25"  , "slock-AF_IPX"      , "slock-AF_APPLETALK",
164  "slock-AF_NETROM", "slock-AF_BRIDGE"   , "slock-AF_ATMPVC"   ,
165  "slock-AF_X25"   , "slock-AF_INET6"    , "slock-AF_ROSE"     ,
166  "slock-AF_DECnet", "slock-AF_NETBEUI"  , "slock-AF_SECURITY" ,
167  "slock-AF_KEY"   , "slock-AF_NETLINK"  , "slock-AF_PACKET"   ,
168  "slock-AF_ASH"   , "slock-AF_ECONET"   , "slock-AF_ATMSVC"   ,
169  "slock-21"       , "slock-AF_SNA"      , "slock-AF_IRDA"     ,
170  "slock-AF_PPPOX" , "slock-AF_WANPIPE"  , "slock-AF_LLC"      ,
171  "slock-27"       , "slock-28"          , "slock-AF_CAN"      ,
172  "slock-AF_TIPC"  , "slock-AF_BLUETOOTH", "slock-AF_IUCV"     ,
173  "slock-AF_RXRPC" , "slock-AF_MAX"
174};
175static const char *af_family_clock_key_strings[AF_MAX+1] = {
176  "clock-AF_UNSPEC", "clock-AF_UNIX"     , "clock-AF_INET"     ,
177  "clock-AF_AX25"  , "clock-AF_IPX"      , "clock-AF_APPLETALK",
178  "clock-AF_NETROM", "clock-AF_BRIDGE"   , "clock-AF_ATMPVC"   ,
179  "clock-AF_X25"   , "clock-AF_INET6"    , "clock-AF_ROSE"     ,
180  "clock-AF_DECnet", "clock-AF_NETBEUI"  , "clock-AF_SECURITY" ,
181  "clock-AF_KEY"   , "clock-AF_NETLINK"  , "clock-AF_PACKET"   ,
182  "clock-AF_ASH"   , "clock-AF_ECONET"   , "clock-AF_ATMSVC"   ,
183  "clock-21"       , "clock-AF_SNA"      , "clock-AF_IRDA"     ,
184  "clock-AF_PPPOX" , "clock-AF_WANPIPE"  , "clock-AF_LLC"      ,
185  "clock-27"       , "clock-28"          , "clock-29"          ,
186  "clock-AF_TIPC"  , "clock-AF_BLUETOOTH", "clock-AF_IUCV"     ,
187  "clock-AF_RXRPC" , "clock-AF_MAX"
188};
189#endif
190
191/*
192 * sk_callback_lock locking rules are per-address-family,
193 * so split the lock classes by using a per-AF key:
194 */
195static struct lock_class_key af_callback_keys[AF_MAX];
196
197/* Take into consideration the size of the struct sk_buff overhead in the
198 * determination of these values, since that is non-constant across
199 * platforms.  This makes socket queueing behavior and performance
200 * not depend upon such differences.
201 */
202#define _SK_MEM_PACKETS		256
203#define _SK_MEM_OVERHEAD	(sizeof(struct sk_buff) + 256)
204#define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
205#define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
206
207/* Run time adjustable parameters. */
208__u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
209__u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
210__u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
211__u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
212
213/* Maximal space eaten by iovec or ancilliary data plus some space */
214int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
215
216static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
217{
218	struct timeval tv;
219
220	if (optlen < sizeof(tv))
221		return -EINVAL;
222	if (copy_from_user(&tv, optval, sizeof(tv)))
223		return -EFAULT;
224	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
225		return -EDOM;
226
227	if (tv.tv_sec < 0) {
228		static int warned __read_mostly;
229
230		*timeo_p = 0;
231		if (warned < 10 && net_ratelimit())
232			warned++;
233			printk(KERN_INFO "sock_set_timeout: `%s' (pid %d) "
234			       "tries to set negative timeout\n",
235				current->comm, task_pid_nr(current));
236		return 0;
237	}
238	*timeo_p = MAX_SCHEDULE_TIMEOUT;
239	if (tv.tv_sec == 0 && tv.tv_usec == 0)
240		return 0;
241	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
242		*timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
243	return 0;
244}
245
246static void sock_warn_obsolete_bsdism(const char *name)
247{
248	static int warned;
249	static char warncomm[TASK_COMM_LEN];
250	if (strcmp(warncomm, current->comm) && warned < 5) {
251		strcpy(warncomm,  current->comm);
252		printk(KERN_WARNING "process `%s' is using obsolete "
253		       "%s SO_BSDCOMPAT\n", warncomm, name);
254		warned++;
255	}
256}
257
258static void sock_disable_timestamp(struct sock *sk)
259{
260	if (sock_flag(sk, SOCK_TIMESTAMP)) {
261		sock_reset_flag(sk, SOCK_TIMESTAMP);
262		net_disable_timestamp();
263	}
264}
265
266
267int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
268{
269	int err = 0;
270	int skb_len;
271
272	/* Cast skb->rcvbuf to unsigned... It's pointless, but reduces
273	   number of warnings when compiling with -W --ANK
274	 */
275	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
276	    (unsigned)sk->sk_rcvbuf) {
277		err = -ENOMEM;
278		goto out;
279	}
280
281	err = sk_filter(sk, skb);
282	if (err)
283		goto out;
284
285	if (!sk_rmem_schedule(sk, skb->truesize)) {
286		err = -ENOBUFS;
287		goto out;
288	}
289
290	skb->dev = NULL;
291	skb_set_owner_r(skb, sk);
292
293	/* Cache the SKB length before we tack it onto the receive
294	 * queue.  Once it is added it no longer belongs to us and
295	 * may be freed by other threads of control pulling packets
296	 * from the queue.
297	 */
298	skb_len = skb->len;
299
300	skb_queue_tail(&sk->sk_receive_queue, skb);
301
302	if (!sock_flag(sk, SOCK_DEAD))
303		sk->sk_data_ready(sk, skb_len);
304out:
305	return err;
306}
307EXPORT_SYMBOL(sock_queue_rcv_skb);
308
309int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
310{
311	int rc = NET_RX_SUCCESS;
312
313	if (sk_filter(sk, skb))
314		goto discard_and_relse;
315
316	skb->dev = NULL;
317
318	if (nested)
319		bh_lock_sock_nested(sk);
320	else
321		bh_lock_sock(sk);
322	if (!sock_owned_by_user(sk)) {
323		/*
324		 * trylock + unlock semantics:
325		 */
326		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
327
328		rc = sk->sk_backlog_rcv(sk, skb);
329
330		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
331	} else
332		sk_add_backlog(sk, skb);
333	bh_unlock_sock(sk);
334out:
335	sock_put(sk);
336	return rc;
337discard_and_relse:
338	kfree_skb(skb);
339	goto out;
340}
341EXPORT_SYMBOL(sk_receive_skb);
342
343struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
344{
345	struct dst_entry *dst = sk->sk_dst_cache;
346
347	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
348		sk->sk_dst_cache = NULL;
349		dst_release(dst);
350		return NULL;
351	}
352
353	return dst;
354}
355EXPORT_SYMBOL(__sk_dst_check);
356
357struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
358{
359	struct dst_entry *dst = sk_dst_get(sk);
360
361	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
362		sk_dst_reset(sk);
363		dst_release(dst);
364		return NULL;
365	}
366
367	return dst;
368}
369EXPORT_SYMBOL(sk_dst_check);
370
371static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
372{
373	int ret = -ENOPROTOOPT;
374#ifdef CONFIG_NETDEVICES
375	struct net *net = sk->sk_net;
376	char devname[IFNAMSIZ];
377	int index;
378
379	/* Sorry... */
380	ret = -EPERM;
381	if (!capable(CAP_NET_RAW))
382		goto out;
383
384	ret = -EINVAL;
385	if (optlen < 0)
386		goto out;
387
388	/* Bind this socket to a particular device like "eth0",
389	 * as specified in the passed interface name. If the
390	 * name is "" or the option length is zero the socket
391	 * is not bound.
392	 */
393	if (optlen > IFNAMSIZ - 1)
394		optlen = IFNAMSIZ - 1;
395	memset(devname, 0, sizeof(devname));
396
397	ret = -EFAULT;
398	if (copy_from_user(devname, optval, optlen))
399		goto out;
400
401	if (devname[0] == '\0') {
402		index = 0;
403	} else {
404		struct net_device *dev = dev_get_by_name(net, devname);
405
406		ret = -ENODEV;
407		if (!dev)
408			goto out;
409
410		index = dev->ifindex;
411		dev_put(dev);
412	}
413
414	lock_sock(sk);
415	sk->sk_bound_dev_if = index;
416	sk_dst_reset(sk);
417	release_sock(sk);
418
419	ret = 0;
420
421out:
422#endif
423
424	return ret;
425}
426
427static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
428{
429	if (valbool)
430		sock_set_flag(sk, bit);
431	else
432		sock_reset_flag(sk, bit);
433}
434
435/*
436 *	This is meant for all protocols to use and covers goings on
437 *	at the socket level. Everything here is generic.
438 */
439
440int sock_setsockopt(struct socket *sock, int level, int optname,
441		    char __user *optval, int optlen)
442{
443	struct sock *sk=sock->sk;
444	int val;
445	int valbool;
446	struct linger ling;
447	int ret = 0;
448
449	/*
450	 *	Options without arguments
451	 */
452
453#ifdef SO_DONTLINGER		/* Compatibility item... */
454	if (optname == SO_DONTLINGER) {
455		lock_sock(sk);
456		sock_reset_flag(sk, SOCK_LINGER);
457		release_sock(sk);
458		return 0;
459	}
460#endif
461
462	if (optname == SO_BINDTODEVICE)
463		return sock_bindtodevice(sk, optval, optlen);
464
465	if (optlen < sizeof(int))
466		return -EINVAL;
467
468	if (get_user(val, (int __user *)optval))
469		return -EFAULT;
470
471	valbool = val?1:0;
472
473	lock_sock(sk);
474
475	switch(optname) {
476	case SO_DEBUG:
477		if (val && !capable(CAP_NET_ADMIN)) {
478			ret = -EACCES;
479		} else
480			sock_valbool_flag(sk, SOCK_DBG, valbool);
481		break;
482	case SO_REUSEADDR:
483		sk->sk_reuse = valbool;
484		break;
485	case SO_TYPE:
486	case SO_ERROR:
487		ret = -ENOPROTOOPT;
488		break;
489	case SO_DONTROUTE:
490		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
491		break;
492	case SO_BROADCAST:
493		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
494		break;
495	case SO_SNDBUF:
496		/* Don't error on this BSD doesn't and if you think
497		   about it this is right. Otherwise apps have to
498		   play 'guess the biggest size' games. RCVBUF/SNDBUF
499		   are treated in BSD as hints */
500
501		if (val > sysctl_wmem_max)
502			val = sysctl_wmem_max;
503set_sndbuf:
504		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
505		if ((val * 2) < SOCK_MIN_SNDBUF)
506			sk->sk_sndbuf = SOCK_MIN_SNDBUF;
507		else
508			sk->sk_sndbuf = val * 2;
509
510		/*
511		 *	Wake up sending tasks if we
512		 *	upped the value.
513		 */
514		sk->sk_write_space(sk);
515		break;
516
517	case SO_SNDBUFFORCE:
518		if (!capable(CAP_NET_ADMIN)) {
519			ret = -EPERM;
520			break;
521		}
522		goto set_sndbuf;
523
524	case SO_RCVBUF:
525		/* Don't error on this BSD doesn't and if you think
526		   about it this is right. Otherwise apps have to
527		   play 'guess the biggest size' games. RCVBUF/SNDBUF
528		   are treated in BSD as hints */
529
530		if (val > sysctl_rmem_max)
531			val = sysctl_rmem_max;
532set_rcvbuf:
533		sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
534		/*
535		 * We double it on the way in to account for
536		 * "struct sk_buff" etc. overhead.   Applications
537		 * assume that the SO_RCVBUF setting they make will
538		 * allow that much actual data to be received on that
539		 * socket.
540		 *
541		 * Applications are unaware that "struct sk_buff" and
542		 * other overheads allocate from the receive buffer
543		 * during socket buffer allocation.
544		 *
545		 * And after considering the possible alternatives,
546		 * returning the value we actually used in getsockopt
547		 * is the most desirable behavior.
548		 */
549		if ((val * 2) < SOCK_MIN_RCVBUF)
550			sk->sk_rcvbuf = SOCK_MIN_RCVBUF;
551		else
552			sk->sk_rcvbuf = val * 2;
553		break;
554
555	case SO_RCVBUFFORCE:
556		if (!capable(CAP_NET_ADMIN)) {
557			ret = -EPERM;
558			break;
559		}
560		goto set_rcvbuf;
561
562	case SO_KEEPALIVE:
563#ifdef CONFIG_INET
564		if (sk->sk_protocol == IPPROTO_TCP)
565			tcp_set_keepalive(sk, valbool);
566#endif
567		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
568		break;
569
570	case SO_OOBINLINE:
571		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
572		break;
573
574	case SO_NO_CHECK:
575		sk->sk_no_check = valbool;
576		break;
577
578	case SO_PRIORITY:
579		if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
580			sk->sk_priority = val;
581		else
582			ret = -EPERM;
583		break;
584
585	case SO_LINGER:
586		if (optlen < sizeof(ling)) {
587			ret = -EINVAL;	/* 1003.1g */
588			break;
589		}
590		if (copy_from_user(&ling,optval,sizeof(ling))) {
591			ret = -EFAULT;
592			break;
593		}
594		if (!ling.l_onoff)
595			sock_reset_flag(sk, SOCK_LINGER);
596		else {
597#if (BITS_PER_LONG == 32)
598			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
599				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
600			else
601#endif
602				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
603			sock_set_flag(sk, SOCK_LINGER);
604		}
605		break;
606
607	case SO_BSDCOMPAT:
608		sock_warn_obsolete_bsdism("setsockopt");
609		break;
610
611	case SO_PASSCRED:
612		if (valbool)
613			set_bit(SOCK_PASSCRED, &sock->flags);
614		else
615			clear_bit(SOCK_PASSCRED, &sock->flags);
616		break;
617
618	case SO_TIMESTAMP:
619	case SO_TIMESTAMPNS:
620		if (valbool)  {
621			if (optname == SO_TIMESTAMP)
622				sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
623			else
624				sock_set_flag(sk, SOCK_RCVTSTAMPNS);
625			sock_set_flag(sk, SOCK_RCVTSTAMP);
626			sock_enable_timestamp(sk);
627		} else {
628			sock_reset_flag(sk, SOCK_RCVTSTAMP);
629			sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
630		}
631		break;
632
633	case SO_RCVLOWAT:
634		if (val < 0)
635			val = INT_MAX;
636		sk->sk_rcvlowat = val ? : 1;
637		break;
638
639	case SO_RCVTIMEO:
640		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
641		break;
642
643	case SO_SNDTIMEO:
644		ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
645		break;
646
647	case SO_ATTACH_FILTER:
648		ret = -EINVAL;
649		if (optlen == sizeof(struct sock_fprog)) {
650			struct sock_fprog fprog;
651
652			ret = -EFAULT;
653			if (copy_from_user(&fprog, optval, sizeof(fprog)))
654				break;
655
656			ret = sk_attach_filter(&fprog, sk);
657		}
658		break;
659
660	case SO_DETACH_FILTER:
661		ret = sk_detach_filter(sk);
662		break;
663
664	case SO_PASSSEC:
665		if (valbool)
666			set_bit(SOCK_PASSSEC, &sock->flags);
667		else
668			clear_bit(SOCK_PASSSEC, &sock->flags);
669		break;
670	case SO_MARK:
671		if (!capable(CAP_NET_ADMIN))
672			ret = -EPERM;
673		else {
674			sk->sk_mark = val;
675		}
676		break;
677
678		/* We implement the SO_SNDLOWAT etc to
679		   not be settable (1003.1g 5.3) */
680	default:
681		ret = -ENOPROTOOPT;
682		break;
683	}
684	release_sock(sk);
685	return ret;
686}
687
688
689int sock_getsockopt(struct socket *sock, int level, int optname,
690		    char __user *optval, int __user *optlen)
691{
692	struct sock *sk = sock->sk;
693
694	union {
695		int val;
696		struct linger ling;
697		struct timeval tm;
698	} v;
699
700	unsigned int lv = sizeof(int);
701	int len;
702
703	if (get_user(len, optlen))
704		return -EFAULT;
705	if (len < 0)
706		return -EINVAL;
707
708	switch(optname) {
709	case SO_DEBUG:
710		v.val = sock_flag(sk, SOCK_DBG);
711		break;
712
713	case SO_DONTROUTE:
714		v.val = sock_flag(sk, SOCK_LOCALROUTE);
715		break;
716
717	case SO_BROADCAST:
718		v.val = !!sock_flag(sk, SOCK_BROADCAST);
719		break;
720
721	case SO_SNDBUF:
722		v.val = sk->sk_sndbuf;
723		break;
724
725	case SO_RCVBUF:
726		v.val = sk->sk_rcvbuf;
727		break;
728
729	case SO_REUSEADDR:
730		v.val = sk->sk_reuse;
731		break;
732
733	case SO_KEEPALIVE:
734		v.val = !!sock_flag(sk, SOCK_KEEPOPEN);
735		break;
736
737	case SO_TYPE:
738		v.val = sk->sk_type;
739		break;
740
741	case SO_ERROR:
742		v.val = -sock_error(sk);
743		if (v.val==0)
744			v.val = xchg(&sk->sk_err_soft, 0);
745		break;
746
747	case SO_OOBINLINE:
748		v.val = !!sock_flag(sk, SOCK_URGINLINE);
749		break;
750
751	case SO_NO_CHECK:
752		v.val = sk->sk_no_check;
753		break;
754
755	case SO_PRIORITY:
756		v.val = sk->sk_priority;
757		break;
758
759	case SO_LINGER:
760		lv		= sizeof(v.ling);
761		v.ling.l_onoff	= !!sock_flag(sk, SOCK_LINGER);
762		v.ling.l_linger	= sk->sk_lingertime / HZ;
763		break;
764
765	case SO_BSDCOMPAT:
766		sock_warn_obsolete_bsdism("getsockopt");
767		break;
768
769	case SO_TIMESTAMP:
770		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
771				!sock_flag(sk, SOCK_RCVTSTAMPNS);
772		break;
773
774	case SO_TIMESTAMPNS:
775		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
776		break;
777
778	case SO_RCVTIMEO:
779		lv=sizeof(struct timeval);
780		if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
781			v.tm.tv_sec = 0;
782			v.tm.tv_usec = 0;
783		} else {
784			v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
785			v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
786		}
787		break;
788
789	case SO_SNDTIMEO:
790		lv=sizeof(struct timeval);
791		if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
792			v.tm.tv_sec = 0;
793			v.tm.tv_usec = 0;
794		} else {
795			v.tm.tv_sec = sk->sk_sndtimeo / HZ;
796			v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
797		}
798		break;
799
800	case SO_RCVLOWAT:
801		v.val = sk->sk_rcvlowat;
802		break;
803
804	case SO_SNDLOWAT:
805		v.val=1;
806		break;
807
808	case SO_PASSCRED:
809		v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0;
810		break;
811
812	case SO_PEERCRED:
813		if (len > sizeof(sk->sk_peercred))
814			len = sizeof(sk->sk_peercred);
815		if (copy_to_user(optval, &sk->sk_peercred, len))
816			return -EFAULT;
817		goto lenout;
818
819	case SO_PEERNAME:
820	{
821		char address[128];
822
823		if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
824			return -ENOTCONN;
825		if (lv < len)
826			return -EINVAL;
827		if (copy_to_user(optval, address, len))
828			return -EFAULT;
829		goto lenout;
830	}
831
832	/* Dubious BSD thing... Probably nobody even uses it, but
833	 * the UNIX standard wants it for whatever reason... -DaveM
834	 */
835	case SO_ACCEPTCONN:
836		v.val = sk->sk_state == TCP_LISTEN;
837		break;
838
839	case SO_PASSSEC:
840		v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0;
841		break;
842
843	case SO_PEERSEC:
844		return security_socket_getpeersec_stream(sock, optval, optlen, len);
845
846	case SO_MARK:
847		v.val = sk->sk_mark;
848		break;
849
850	default:
851		return -ENOPROTOOPT;
852	}
853
854	if (len > lv)
855		len = lv;
856	if (copy_to_user(optval, &v, len))
857		return -EFAULT;
858lenout:
859	if (put_user(len, optlen))
860		return -EFAULT;
861	return 0;
862}
863
864/*
865 * Initialize an sk_lock.
866 *
867 * (We also register the sk_lock with the lock validator.)
868 */
869static inline void sock_lock_init(struct sock *sk)
870{
871	sock_lock_init_class_and_name(sk,
872			af_family_slock_key_strings[sk->sk_family],
873			af_family_slock_keys + sk->sk_family,
874			af_family_key_strings[sk->sk_family],
875			af_family_keys + sk->sk_family);
876}
877
878static void sock_copy(struct sock *nsk, const struct sock *osk)
879{
880#ifdef CONFIG_SECURITY_NETWORK
881	void *sptr = nsk->sk_security;
882#endif
883
884	memcpy(nsk, osk, osk->sk_prot->obj_size);
885#ifdef CONFIG_SECURITY_NETWORK
886	nsk->sk_security = sptr;
887	security_sk_clone(osk, nsk);
888#endif
889}
890
891static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
892		int family)
893{
894	struct sock *sk;
895	struct kmem_cache *slab;
896
897	slab = prot->slab;
898	if (slab != NULL)
899		sk = kmem_cache_alloc(slab, priority);
900	else
901		sk = kmalloc(prot->obj_size, priority);
902
903	if (sk != NULL) {
904		if (security_sk_alloc(sk, family, priority))
905			goto out_free;
906
907		if (!try_module_get(prot->owner))
908			goto out_free_sec;
909	}
910
911	return sk;
912
913out_free_sec:
914	security_sk_free(sk);
915out_free:
916	if (slab != NULL)
917		kmem_cache_free(slab, sk);
918	else
919		kfree(sk);
920	return NULL;
921}
922
923static void sk_prot_free(struct proto *prot, struct sock *sk)
924{
925	struct kmem_cache *slab;
926	struct module *owner;
927
928	owner = prot->owner;
929	slab = prot->slab;
930
931	security_sk_free(sk);
932	if (slab != NULL)
933		kmem_cache_free(slab, sk);
934	else
935		kfree(sk);
936	module_put(owner);
937}
938
939/**
940 *	sk_alloc - All socket objects are allocated here
941 *	@net: the applicable net namespace
942 *	@family: protocol family
943 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
944 *	@prot: struct proto associated with this new sock instance
945 *	@zero_it: if we should zero the newly allocated sock
946 */
947struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
948		      struct proto *prot)
949{
950	struct sock *sk;
951
952	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
953	if (sk) {
954		sk->sk_family = family;
955		/*
956		 * See comment in struct sock definition to understand
957		 * why we need sk_prot_creator -acme
958		 */
959		sk->sk_prot = sk->sk_prot_creator = prot;
960		sock_lock_init(sk);
961		sk->sk_net = get_net(net);
962	}
963
964	return sk;
965}
966
967void sk_free(struct sock *sk)
968{
969	struct sk_filter *filter;
970
971	if (sk->sk_destruct)
972		sk->sk_destruct(sk);
973
974	filter = rcu_dereference(sk->sk_filter);
975	if (filter) {
976		sk_filter_uncharge(sk, filter);
977		rcu_assign_pointer(sk->sk_filter, NULL);
978	}
979
980	sock_disable_timestamp(sk);
981
982	if (atomic_read(&sk->sk_omem_alloc))
983		printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n",
984		       __FUNCTION__, atomic_read(&sk->sk_omem_alloc));
985
986	put_net(sk->sk_net);
987	sk_prot_free(sk->sk_prot_creator, sk);
988}
989
990/*
991 * Last sock_put should drop referrence to sk->sk_net. It has already
992 * been dropped in sk_change_net. Taking referrence to stopping namespace
993 * is not an option.
994 * Take referrence to a socket to remove it from hash _alive_ and after that
995 * destroy it in the context of init_net.
996 */
997void sk_release_kernel(struct sock *sk)
998{
999	if (sk == NULL || sk->sk_socket == NULL)
1000		return;
1001
1002	sock_hold(sk);
1003	sock_release(sk->sk_socket);
1004	sk->sk_net = get_net(&init_net);
1005	sock_put(sk);
1006}
1007EXPORT_SYMBOL(sk_release_kernel);
1008
1009struct sock *sk_clone(const struct sock *sk, const gfp_t priority)
1010{
1011	struct sock *newsk;
1012
1013	newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1014	if (newsk != NULL) {
1015		struct sk_filter *filter;
1016
1017		sock_copy(newsk, sk);
1018
1019		/* SANITY */
1020		get_net(newsk->sk_net);
1021		sk_node_init(&newsk->sk_node);
1022		sock_lock_init(newsk);
1023		bh_lock_sock(newsk);
1024		newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
1025
1026		atomic_set(&newsk->sk_rmem_alloc, 0);
1027		atomic_set(&newsk->sk_wmem_alloc, 0);
1028		atomic_set(&newsk->sk_omem_alloc, 0);
1029		skb_queue_head_init(&newsk->sk_receive_queue);
1030		skb_queue_head_init(&newsk->sk_write_queue);
1031#ifdef CONFIG_NET_DMA
1032		skb_queue_head_init(&newsk->sk_async_wait_queue);
1033#endif
1034
1035		rwlock_init(&newsk->sk_dst_lock);
1036		rwlock_init(&newsk->sk_callback_lock);
1037		lockdep_set_class_and_name(&newsk->sk_callback_lock,
1038				af_callback_keys + newsk->sk_family,
1039				af_family_clock_key_strings[newsk->sk_family]);
1040
1041		newsk->sk_dst_cache	= NULL;
1042		newsk->sk_wmem_queued	= 0;
1043		newsk->sk_forward_alloc = 0;
1044		newsk->sk_send_head	= NULL;
1045		newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1046
1047		sock_reset_flag(newsk, SOCK_DONE);
1048		skb_queue_head_init(&newsk->sk_error_queue);
1049
1050		filter = newsk->sk_filter;
1051		if (filter != NULL)
1052			sk_filter_charge(newsk, filter);
1053
1054		if (unlikely(xfrm_sk_clone_policy(newsk))) {
1055			/* It is still raw copy of parent, so invalidate
1056			 * destructor and make plain sk_free() */
1057			newsk->sk_destruct = NULL;
1058			sk_free(newsk);
1059			newsk = NULL;
1060			goto out;
1061		}
1062
1063		newsk->sk_err	   = 0;
1064		newsk->sk_priority = 0;
1065		atomic_set(&newsk->sk_refcnt, 2);
1066
1067		/*
1068		 * Increment the counter in the same struct proto as the master
1069		 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1070		 * is the same as sk->sk_prot->socks, as this field was copied
1071		 * with memcpy).
1072		 *
1073		 * This _changes_ the previous behaviour, where
1074		 * tcp_create_openreq_child always was incrementing the
1075		 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1076		 * to be taken into account in all callers. -acme
1077		 */
1078		sk_refcnt_debug_inc(newsk);
1079		newsk->sk_socket = NULL;
1080		newsk->sk_sleep	 = NULL;
1081
1082		if (newsk->sk_prot->sockets_allocated)
1083			atomic_inc(newsk->sk_prot->sockets_allocated);
1084	}
1085out:
1086	return newsk;
1087}
1088
1089EXPORT_SYMBOL_GPL(sk_clone);
1090
1091void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1092{
1093	__sk_dst_set(sk, dst);
1094	sk->sk_route_caps = dst->dev->features;
1095	if (sk->sk_route_caps & NETIF_F_GSO)
1096		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1097	if (sk_can_gso(sk)) {
1098		if (dst->header_len)
1099			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1100		else
1101			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1102	}
1103}
1104EXPORT_SYMBOL_GPL(sk_setup_caps);
1105
1106void __init sk_init(void)
1107{
1108	if (num_physpages <= 4096) {
1109		sysctl_wmem_max = 32767;
1110		sysctl_rmem_max = 32767;
1111		sysctl_wmem_default = 32767;
1112		sysctl_rmem_default = 32767;
1113	} else if (num_physpages >= 131072) {
1114		sysctl_wmem_max = 131071;
1115		sysctl_rmem_max = 131071;
1116	}
1117}
1118
1119/*
1120 *	Simple resource managers for sockets.
1121 */
1122
1123
1124/*
1125 * Write buffer destructor automatically called from kfree_skb.
1126 */
1127void sock_wfree(struct sk_buff *skb)
1128{
1129	struct sock *sk = skb->sk;
1130
1131	/* In case it might be waiting for more memory. */
1132	atomic_sub(skb->truesize, &sk->sk_wmem_alloc);
1133	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE))
1134		sk->sk_write_space(sk);
1135	sock_put(sk);
1136}
1137
1138/*
1139 * Read buffer destructor automatically called from kfree_skb.
1140 */
1141void sock_rfree(struct sk_buff *skb)
1142{
1143	struct sock *sk = skb->sk;
1144
1145	skb_truesize_check(skb);
1146	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1147	sk_mem_uncharge(skb->sk, skb->truesize);
1148}
1149
1150
1151int sock_i_uid(struct sock *sk)
1152{
1153	int uid;
1154
1155	read_lock(&sk->sk_callback_lock);
1156	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1157	read_unlock(&sk->sk_callback_lock);
1158	return uid;
1159}
1160
1161unsigned long sock_i_ino(struct sock *sk)
1162{
1163	unsigned long ino;
1164
1165	read_lock(&sk->sk_callback_lock);
1166	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1167	read_unlock(&sk->sk_callback_lock);
1168	return ino;
1169}
1170
1171/*
1172 * Allocate a skb from the socket's send buffer.
1173 */
1174struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1175			     gfp_t priority)
1176{
1177	if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1178		struct sk_buff * skb = alloc_skb(size, priority);
1179		if (skb) {
1180			skb_set_owner_w(skb, sk);
1181			return skb;
1182		}
1183	}
1184	return NULL;
1185}
1186
1187/*
1188 * Allocate a skb from the socket's receive buffer.
1189 */
1190struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1191			     gfp_t priority)
1192{
1193	if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1194		struct sk_buff *skb = alloc_skb(size, priority);
1195		if (skb) {
1196			skb_set_owner_r(skb, sk);
1197			return skb;
1198		}
1199	}
1200	return NULL;
1201}
1202
1203/*
1204 * Allocate a memory block from the socket's option memory buffer.
1205 */
1206void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1207{
1208	if ((unsigned)size <= sysctl_optmem_max &&
1209	    atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1210		void *mem;
1211		/* First do the add, to avoid the race if kmalloc
1212		 * might sleep.
1213		 */
1214		atomic_add(size, &sk->sk_omem_alloc);
1215		mem = kmalloc(size, priority);
1216		if (mem)
1217			return mem;
1218		atomic_sub(size, &sk->sk_omem_alloc);
1219	}
1220	return NULL;
1221}
1222
1223/*
1224 * Free an option memory block.
1225 */
1226void sock_kfree_s(struct sock *sk, void *mem, int size)
1227{
1228	kfree(mem);
1229	atomic_sub(size, &sk->sk_omem_alloc);
1230}
1231
1232/* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1233   I think, these locks should be removed for datagram sockets.
1234 */
1235static long sock_wait_for_wmem(struct sock * sk, long timeo)
1236{
1237	DEFINE_WAIT(wait);
1238
1239	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1240	for (;;) {
1241		if (!timeo)
1242			break;
1243		if (signal_pending(current))
1244			break;
1245		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1246		prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1247		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1248			break;
1249		if (sk->sk_shutdown & SEND_SHUTDOWN)
1250			break;
1251		if (sk->sk_err)
1252			break;
1253		timeo = schedule_timeout(timeo);
1254	}
1255	finish_wait(sk->sk_sleep, &wait);
1256	return timeo;
1257}
1258
1259
1260/*
1261 *	Generic send/receive buffer handlers
1262 */
1263
1264static struct sk_buff *sock_alloc_send_pskb(struct sock *sk,
1265					    unsigned long header_len,
1266					    unsigned long data_len,
1267					    int noblock, int *errcode)
1268{
1269	struct sk_buff *skb;
1270	gfp_t gfp_mask;
1271	long timeo;
1272	int err;
1273
1274	gfp_mask = sk->sk_allocation;
1275	if (gfp_mask & __GFP_WAIT)
1276		gfp_mask |= __GFP_REPEAT;
1277
1278	timeo = sock_sndtimeo(sk, noblock);
1279	while (1) {
1280		err = sock_error(sk);
1281		if (err != 0)
1282			goto failure;
1283
1284		err = -EPIPE;
1285		if (sk->sk_shutdown & SEND_SHUTDOWN)
1286			goto failure;
1287
1288		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1289			skb = alloc_skb(header_len, gfp_mask);
1290			if (skb) {
1291				int npages;
1292				int i;
1293
1294				/* No pages, we're done... */
1295				if (!data_len)
1296					break;
1297
1298				npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1299				skb->truesize += data_len;
1300				skb_shinfo(skb)->nr_frags = npages;
1301				for (i = 0; i < npages; i++) {
1302					struct page *page;
1303					skb_frag_t *frag;
1304
1305					page = alloc_pages(sk->sk_allocation, 0);
1306					if (!page) {
1307						err = -ENOBUFS;
1308						skb_shinfo(skb)->nr_frags = i;
1309						kfree_skb(skb);
1310						goto failure;
1311					}
1312
1313					frag = &skb_shinfo(skb)->frags[i];
1314					frag->page = page;
1315					frag->page_offset = 0;
1316					frag->size = (data_len >= PAGE_SIZE ?
1317						      PAGE_SIZE :
1318						      data_len);
1319					data_len -= PAGE_SIZE;
1320				}
1321
1322				/* Full success... */
1323				break;
1324			}
1325			err = -ENOBUFS;
1326			goto failure;
1327		}
1328		set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1329		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1330		err = -EAGAIN;
1331		if (!timeo)
1332			goto failure;
1333		if (signal_pending(current))
1334			goto interrupted;
1335		timeo = sock_wait_for_wmem(sk, timeo);
1336	}
1337
1338	skb_set_owner_w(skb, sk);
1339	return skb;
1340
1341interrupted:
1342	err = sock_intr_errno(timeo);
1343failure:
1344	*errcode = err;
1345	return NULL;
1346}
1347
1348struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1349				    int noblock, int *errcode)
1350{
1351	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1352}
1353
1354static void __lock_sock(struct sock *sk)
1355{
1356	DEFINE_WAIT(wait);
1357
1358	for (;;) {
1359		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1360					TASK_UNINTERRUPTIBLE);
1361		spin_unlock_bh(&sk->sk_lock.slock);
1362		schedule();
1363		spin_lock_bh(&sk->sk_lock.slock);
1364		if (!sock_owned_by_user(sk))
1365			break;
1366	}
1367	finish_wait(&sk->sk_lock.wq, &wait);
1368}
1369
1370static void __release_sock(struct sock *sk)
1371{
1372	struct sk_buff *skb = sk->sk_backlog.head;
1373
1374	do {
1375		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1376		bh_unlock_sock(sk);
1377
1378		do {
1379			struct sk_buff *next = skb->next;
1380
1381			skb->next = NULL;
1382			sk->sk_backlog_rcv(sk, skb);
1383
1384			/*
1385			 * We are in process context here with softirqs
1386			 * disabled, use cond_resched_softirq() to preempt.
1387			 * This is safe to do because we've taken the backlog
1388			 * queue private:
1389			 */
1390			cond_resched_softirq();
1391
1392			skb = next;
1393		} while (skb != NULL);
1394
1395		bh_lock_sock(sk);
1396	} while ((skb = sk->sk_backlog.head) != NULL);
1397}
1398
1399/**
1400 * sk_wait_data - wait for data to arrive at sk_receive_queue
1401 * @sk:    sock to wait on
1402 * @timeo: for how long
1403 *
1404 * Now socket state including sk->sk_err is changed only under lock,
1405 * hence we may omit checks after joining wait queue.
1406 * We check receive queue before schedule() only as optimization;
1407 * it is very likely that release_sock() added new data.
1408 */
1409int sk_wait_data(struct sock *sk, long *timeo)
1410{
1411	int rc;
1412	DEFINE_WAIT(wait);
1413
1414	prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1415	set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1416	rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1417	clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1418	finish_wait(sk->sk_sleep, &wait);
1419	return rc;
1420}
1421
1422EXPORT_SYMBOL(sk_wait_data);
1423
1424/**
1425 *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1426 *	@sk: socket
1427 *	@size: memory size to allocate
1428 *	@kind: allocation type
1429 *
1430 *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1431 *	rmem allocation. This function assumes that protocols which have
1432 *	memory_pressure use sk_wmem_queued as write buffer accounting.
1433 */
1434int __sk_mem_schedule(struct sock *sk, int size, int kind)
1435{
1436	struct proto *prot = sk->sk_prot;
1437	int amt = sk_mem_pages(size);
1438	int allocated;
1439
1440	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
1441	allocated = atomic_add_return(amt, prot->memory_allocated);
1442
1443	/* Under limit. */
1444	if (allocated <= prot->sysctl_mem[0]) {
1445		if (prot->memory_pressure && *prot->memory_pressure)
1446			*prot->memory_pressure = 0;
1447		return 1;
1448	}
1449
1450	/* Under pressure. */
1451	if (allocated > prot->sysctl_mem[1])
1452		if (prot->enter_memory_pressure)
1453			prot->enter_memory_pressure();
1454
1455	/* Over hard limit. */
1456	if (allocated > prot->sysctl_mem[2])
1457		goto suppress_allocation;
1458
1459	/* guarantee minimum buffer size under pressure */
1460	if (kind == SK_MEM_RECV) {
1461		if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
1462			return 1;
1463	} else { /* SK_MEM_SEND */
1464		if (sk->sk_type == SOCK_STREAM) {
1465			if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
1466				return 1;
1467		} else if (atomic_read(&sk->sk_wmem_alloc) <
1468			   prot->sysctl_wmem[0])
1469				return 1;
1470	}
1471
1472	if (prot->memory_pressure) {
1473		if (!*prot->memory_pressure ||
1474		    prot->sysctl_mem[2] > atomic_read(prot->sockets_allocated) *
1475		    sk_mem_pages(sk->sk_wmem_queued +
1476				 atomic_read(&sk->sk_rmem_alloc) +
1477				 sk->sk_forward_alloc))
1478			return 1;
1479	}
1480
1481suppress_allocation:
1482
1483	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
1484		sk_stream_moderate_sndbuf(sk);
1485
1486		/* Fail only if socket is _under_ its sndbuf.
1487		 * In this case we cannot block, so that we have to fail.
1488		 */
1489		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
1490			return 1;
1491	}
1492
1493	/* Alas. Undo changes. */
1494	sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
1495	atomic_sub(amt, prot->memory_allocated);
1496	return 0;
1497}
1498
1499EXPORT_SYMBOL(__sk_mem_schedule);
1500
1501/**
1502 *	__sk_reclaim - reclaim memory_allocated
1503 *	@sk: socket
1504 */
1505void __sk_mem_reclaim(struct sock *sk)
1506{
1507	struct proto *prot = sk->sk_prot;
1508
1509	atomic_sub(sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT,
1510		   prot->memory_allocated);
1511	sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
1512
1513	if (prot->memory_pressure && *prot->memory_pressure &&
1514	    (atomic_read(prot->memory_allocated) < prot->sysctl_mem[0]))
1515		*prot->memory_pressure = 0;
1516}
1517
1518EXPORT_SYMBOL(__sk_mem_reclaim);
1519
1520
1521/*
1522 * Set of default routines for initialising struct proto_ops when
1523 * the protocol does not support a particular function. In certain
1524 * cases where it makes no sense for a protocol to have a "do nothing"
1525 * function, some default processing is provided.
1526 */
1527
1528int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1529{
1530	return -EOPNOTSUPP;
1531}
1532
1533int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1534		    int len, int flags)
1535{
1536	return -EOPNOTSUPP;
1537}
1538
1539int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1540{
1541	return -EOPNOTSUPP;
1542}
1543
1544int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1545{
1546	return -EOPNOTSUPP;
1547}
1548
1549int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1550		    int *len, int peer)
1551{
1552	return -EOPNOTSUPP;
1553}
1554
1555unsigned int sock_no_poll(struct file * file, struct socket *sock, poll_table *pt)
1556{
1557	return 0;
1558}
1559
1560int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1561{
1562	return -EOPNOTSUPP;
1563}
1564
1565int sock_no_listen(struct socket *sock, int backlog)
1566{
1567	return -EOPNOTSUPP;
1568}
1569
1570int sock_no_shutdown(struct socket *sock, int how)
1571{
1572	return -EOPNOTSUPP;
1573}
1574
1575int sock_no_setsockopt(struct socket *sock, int level, int optname,
1576		    char __user *optval, int optlen)
1577{
1578	return -EOPNOTSUPP;
1579}
1580
1581int sock_no_getsockopt(struct socket *sock, int level, int optname,
1582		    char __user *optval, int __user *optlen)
1583{
1584	return -EOPNOTSUPP;
1585}
1586
1587int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1588		    size_t len)
1589{
1590	return -EOPNOTSUPP;
1591}
1592
1593int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1594		    size_t len, int flags)
1595{
1596	return -EOPNOTSUPP;
1597}
1598
1599int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
1600{
1601	/* Mirror missing mmap method error code */
1602	return -ENODEV;
1603}
1604
1605ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
1606{
1607	ssize_t res;
1608	struct msghdr msg = {.msg_flags = flags};
1609	struct kvec iov;
1610	char *kaddr = kmap(page);
1611	iov.iov_base = kaddr + offset;
1612	iov.iov_len = size;
1613	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
1614	kunmap(page);
1615	return res;
1616}
1617
1618/*
1619 *	Default Socket Callbacks
1620 */
1621
1622static void sock_def_wakeup(struct sock *sk)
1623{
1624	read_lock(&sk->sk_callback_lock);
1625	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1626		wake_up_interruptible_all(sk->sk_sleep);
1627	read_unlock(&sk->sk_callback_lock);
1628}
1629
1630static void sock_def_error_report(struct sock *sk)
1631{
1632	read_lock(&sk->sk_callback_lock);
1633	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1634		wake_up_interruptible(sk->sk_sleep);
1635	sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
1636	read_unlock(&sk->sk_callback_lock);
1637}
1638
1639static void sock_def_readable(struct sock *sk, int len)
1640{
1641	read_lock(&sk->sk_callback_lock);
1642	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1643		wake_up_interruptible(sk->sk_sleep);
1644	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
1645	read_unlock(&sk->sk_callback_lock);
1646}
1647
1648static void sock_def_write_space(struct sock *sk)
1649{
1650	read_lock(&sk->sk_callback_lock);
1651
1652	/* Do not wake up a writer until he can make "significant"
1653	 * progress.  --DaveM
1654	 */
1655	if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
1656		if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1657			wake_up_interruptible(sk->sk_sleep);
1658
1659		/* Should agree with poll, otherwise some programs break */
1660		if (sock_writeable(sk))
1661			sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
1662	}
1663
1664	read_unlock(&sk->sk_callback_lock);
1665}
1666
1667static void sock_def_destruct(struct sock *sk)
1668{
1669	kfree(sk->sk_protinfo);
1670}
1671
1672void sk_send_sigurg(struct sock *sk)
1673{
1674	if (sk->sk_socket && sk->sk_socket->file)
1675		if (send_sigurg(&sk->sk_socket->file->f_owner))
1676			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
1677}
1678
1679void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1680		    unsigned long expires)
1681{
1682	if (!mod_timer(timer, expires))
1683		sock_hold(sk);
1684}
1685
1686EXPORT_SYMBOL(sk_reset_timer);
1687
1688void sk_stop_timer(struct sock *sk, struct timer_list* timer)
1689{
1690	if (timer_pending(timer) && del_timer(timer))
1691		__sock_put(sk);
1692}
1693
1694EXPORT_SYMBOL(sk_stop_timer);
1695
1696void sock_init_data(struct socket *sock, struct sock *sk)
1697{
1698	skb_queue_head_init(&sk->sk_receive_queue);
1699	skb_queue_head_init(&sk->sk_write_queue);
1700	skb_queue_head_init(&sk->sk_error_queue);
1701#ifdef CONFIG_NET_DMA
1702	skb_queue_head_init(&sk->sk_async_wait_queue);
1703#endif
1704
1705	sk->sk_send_head	=	NULL;
1706
1707	init_timer(&sk->sk_timer);
1708
1709	sk->sk_allocation	=	GFP_KERNEL;
1710	sk->sk_rcvbuf		=	sysctl_rmem_default;
1711	sk->sk_sndbuf		=	sysctl_wmem_default;
1712	sk->sk_state		=	TCP_CLOSE;
1713	sk->sk_socket		=	sock;
1714
1715	sock_set_flag(sk, SOCK_ZAPPED);
1716
1717	if (sock) {
1718		sk->sk_type	=	sock->type;
1719		sk->sk_sleep	=	&sock->wait;
1720		sock->sk	=	sk;
1721	} else
1722		sk->sk_sleep	=	NULL;
1723
1724	rwlock_init(&sk->sk_dst_lock);
1725	rwlock_init(&sk->sk_callback_lock);
1726	lockdep_set_class_and_name(&sk->sk_callback_lock,
1727			af_callback_keys + sk->sk_family,
1728			af_family_clock_key_strings[sk->sk_family]);
1729
1730	sk->sk_state_change	=	sock_def_wakeup;
1731	sk->sk_data_ready	=	sock_def_readable;
1732	sk->sk_write_space	=	sock_def_write_space;
1733	sk->sk_error_report	=	sock_def_error_report;
1734	sk->sk_destruct		=	sock_def_destruct;
1735
1736	sk->sk_sndmsg_page	=	NULL;
1737	sk->sk_sndmsg_off	=	0;
1738
1739	sk->sk_peercred.pid 	=	0;
1740	sk->sk_peercred.uid	=	-1;
1741	sk->sk_peercred.gid	=	-1;
1742	sk->sk_write_pending	=	0;
1743	sk->sk_rcvlowat		=	1;
1744	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
1745	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
1746
1747	sk->sk_stamp = ktime_set(-1L, -1L);
1748
1749	atomic_set(&sk->sk_refcnt, 1);
1750	atomic_set(&sk->sk_drops, 0);
1751}
1752
1753void lock_sock_nested(struct sock *sk, int subclass)
1754{
1755	might_sleep();
1756	spin_lock_bh(&sk->sk_lock.slock);
1757	if (sk->sk_lock.owned)
1758		__lock_sock(sk);
1759	sk->sk_lock.owned = 1;
1760	spin_unlock(&sk->sk_lock.slock);
1761	/*
1762	 * The sk_lock has mutex_lock() semantics here:
1763	 */
1764	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
1765	local_bh_enable();
1766}
1767
1768EXPORT_SYMBOL(lock_sock_nested);
1769
1770void release_sock(struct sock *sk)
1771{
1772	/*
1773	 * The sk_lock has mutex_unlock() semantics:
1774	 */
1775	mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1776
1777	spin_lock_bh(&sk->sk_lock.slock);
1778	if (sk->sk_backlog.tail)
1779		__release_sock(sk);
1780	sk->sk_lock.owned = 0;
1781	if (waitqueue_active(&sk->sk_lock.wq))
1782		wake_up(&sk->sk_lock.wq);
1783	spin_unlock_bh(&sk->sk_lock.slock);
1784}
1785EXPORT_SYMBOL(release_sock);
1786
1787int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
1788{
1789	struct timeval tv;
1790	if (!sock_flag(sk, SOCK_TIMESTAMP))
1791		sock_enable_timestamp(sk);
1792	tv = ktime_to_timeval(sk->sk_stamp);
1793	if (tv.tv_sec == -1)
1794		return -ENOENT;
1795	if (tv.tv_sec == 0) {
1796		sk->sk_stamp = ktime_get_real();
1797		tv = ktime_to_timeval(sk->sk_stamp);
1798	}
1799	return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
1800}
1801EXPORT_SYMBOL(sock_get_timestamp);
1802
1803int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
1804{
1805	struct timespec ts;
1806	if (!sock_flag(sk, SOCK_TIMESTAMP))
1807		sock_enable_timestamp(sk);
1808	ts = ktime_to_timespec(sk->sk_stamp);
1809	if (ts.tv_sec == -1)
1810		return -ENOENT;
1811	if (ts.tv_sec == 0) {
1812		sk->sk_stamp = ktime_get_real();
1813		ts = ktime_to_timespec(sk->sk_stamp);
1814	}
1815	return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
1816}
1817EXPORT_SYMBOL(sock_get_timestampns);
1818
1819void sock_enable_timestamp(struct sock *sk)
1820{
1821	if (!sock_flag(sk, SOCK_TIMESTAMP)) {
1822		sock_set_flag(sk, SOCK_TIMESTAMP);
1823		net_enable_timestamp();
1824	}
1825}
1826
1827/*
1828 *	Get a socket option on an socket.
1829 *
1830 *	FIX: POSIX 1003.1g is very ambiguous here. It states that
1831 *	asynchronous errors should be reported by getsockopt. We assume
1832 *	this means if you specify SO_ERROR (otherwise whats the point of it).
1833 */
1834int sock_common_getsockopt(struct socket *sock, int level, int optname,
1835			   char __user *optval, int __user *optlen)
1836{
1837	struct sock *sk = sock->sk;
1838
1839	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1840}
1841
1842EXPORT_SYMBOL(sock_common_getsockopt);
1843
1844#ifdef CONFIG_COMPAT
1845int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
1846				  char __user *optval, int __user *optlen)
1847{
1848	struct sock *sk = sock->sk;
1849
1850	if (sk->sk_prot->compat_getsockopt != NULL)
1851		return sk->sk_prot->compat_getsockopt(sk, level, optname,
1852						      optval, optlen);
1853	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1854}
1855EXPORT_SYMBOL(compat_sock_common_getsockopt);
1856#endif
1857
1858int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1859			struct msghdr *msg, size_t size, int flags)
1860{
1861	struct sock *sk = sock->sk;
1862	int addr_len = 0;
1863	int err;
1864
1865	err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
1866				   flags & ~MSG_DONTWAIT, &addr_len);
1867	if (err >= 0)
1868		msg->msg_namelen = addr_len;
1869	return err;
1870}
1871
1872EXPORT_SYMBOL(sock_common_recvmsg);
1873
1874/*
1875 *	Set socket options on an inet socket.
1876 */
1877int sock_common_setsockopt(struct socket *sock, int level, int optname,
1878			   char __user *optval, int optlen)
1879{
1880	struct sock *sk = sock->sk;
1881
1882	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
1883}
1884
1885EXPORT_SYMBOL(sock_common_setsockopt);
1886
1887#ifdef CONFIG_COMPAT
1888int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
1889				  char __user *optval, int optlen)
1890{
1891	struct sock *sk = sock->sk;
1892
1893	if (sk->sk_prot->compat_setsockopt != NULL)
1894		return sk->sk_prot->compat_setsockopt(sk, level, optname,
1895						      optval, optlen);
1896	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
1897}
1898EXPORT_SYMBOL(compat_sock_common_setsockopt);
1899#endif
1900
1901void sk_common_release(struct sock *sk)
1902{
1903	if (sk->sk_prot->destroy)
1904		sk->sk_prot->destroy(sk);
1905
1906	/*
1907	 * Observation: when sock_common_release is called, processes have
1908	 * no access to socket. But net still has.
1909	 * Step one, detach it from networking:
1910	 *
1911	 * A. Remove from hash tables.
1912	 */
1913
1914	sk->sk_prot->unhash(sk);
1915
1916	/*
1917	 * In this point socket cannot receive new packets, but it is possible
1918	 * that some packets are in flight because some CPU runs receiver and
1919	 * did hash table lookup before we unhashed socket. They will achieve
1920	 * receive queue and will be purged by socket destructor.
1921	 *
1922	 * Also we still have packets pending on receive queue and probably,
1923	 * our own packets waiting in device queues. sock_destroy will drain
1924	 * receive queue, but transmitted packets will delay socket destruction
1925	 * until the last reference will be released.
1926	 */
1927
1928	sock_orphan(sk);
1929
1930	xfrm_sk_free_policy(sk);
1931
1932	sk_refcnt_debug_release(sk);
1933	sock_put(sk);
1934}
1935
1936EXPORT_SYMBOL(sk_common_release);
1937
1938static DEFINE_RWLOCK(proto_list_lock);
1939static LIST_HEAD(proto_list);
1940
1941int proto_register(struct proto *prot, int alloc_slab)
1942{
1943	char *request_sock_slab_name = NULL;
1944	char *timewait_sock_slab_name;
1945
1946	if (sock_prot_inuse_init(prot) != 0) {
1947		printk(KERN_CRIT "%s: Can't alloc inuse counters!\n", prot->name);
1948		goto out;
1949	}
1950
1951	if (alloc_slab) {
1952		prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
1953					       SLAB_HWCACHE_ALIGN, NULL);
1954
1955		if (prot->slab == NULL) {
1956			printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n",
1957			       prot->name);
1958			goto out_free_inuse;
1959		}
1960
1961		if (prot->rsk_prot != NULL) {
1962			static const char mask[] = "request_sock_%s";
1963
1964			request_sock_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
1965			if (request_sock_slab_name == NULL)
1966				goto out_free_sock_slab;
1967
1968			sprintf(request_sock_slab_name, mask, prot->name);
1969			prot->rsk_prot->slab = kmem_cache_create(request_sock_slab_name,
1970								 prot->rsk_prot->obj_size, 0,
1971								 SLAB_HWCACHE_ALIGN, NULL);
1972
1973			if (prot->rsk_prot->slab == NULL) {
1974				printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n",
1975				       prot->name);
1976				goto out_free_request_sock_slab_name;
1977			}
1978		}
1979
1980		if (prot->twsk_prot != NULL) {
1981			static const char mask[] = "tw_sock_%s";
1982
1983			timewait_sock_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
1984
1985			if (timewait_sock_slab_name == NULL)
1986				goto out_free_request_sock_slab;
1987
1988			sprintf(timewait_sock_slab_name, mask, prot->name);
1989			prot->twsk_prot->twsk_slab =
1990				kmem_cache_create(timewait_sock_slab_name,
1991						  prot->twsk_prot->twsk_obj_size,
1992						  0, SLAB_HWCACHE_ALIGN,
1993						  NULL);
1994			if (prot->twsk_prot->twsk_slab == NULL)
1995				goto out_free_timewait_sock_slab_name;
1996		}
1997	}
1998
1999	write_lock(&proto_list_lock);
2000	list_add(&prot->node, &proto_list);
2001	write_unlock(&proto_list_lock);
2002	return 0;
2003
2004out_free_timewait_sock_slab_name:
2005	kfree(timewait_sock_slab_name);
2006out_free_request_sock_slab:
2007	if (prot->rsk_prot && prot->rsk_prot->slab) {
2008		kmem_cache_destroy(prot->rsk_prot->slab);
2009		prot->rsk_prot->slab = NULL;
2010	}
2011out_free_request_sock_slab_name:
2012	kfree(request_sock_slab_name);
2013out_free_sock_slab:
2014	kmem_cache_destroy(prot->slab);
2015	prot->slab = NULL;
2016out_free_inuse:
2017	sock_prot_inuse_free(prot);
2018out:
2019	return -ENOBUFS;
2020}
2021
2022EXPORT_SYMBOL(proto_register);
2023
2024void proto_unregister(struct proto *prot)
2025{
2026	write_lock(&proto_list_lock);
2027	list_del(&prot->node);
2028	write_unlock(&proto_list_lock);
2029
2030	sock_prot_inuse_free(prot);
2031
2032	if (prot->slab != NULL) {
2033		kmem_cache_destroy(prot->slab);
2034		prot->slab = NULL;
2035	}
2036
2037	if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2038		const char *name = kmem_cache_name(prot->rsk_prot->slab);
2039
2040		kmem_cache_destroy(prot->rsk_prot->slab);
2041		kfree(name);
2042		prot->rsk_prot->slab = NULL;
2043	}
2044
2045	if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2046		const char *name = kmem_cache_name(prot->twsk_prot->twsk_slab);
2047
2048		kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2049		kfree(name);
2050		prot->twsk_prot->twsk_slab = NULL;
2051	}
2052}
2053
2054EXPORT_SYMBOL(proto_unregister);
2055
2056#ifdef CONFIG_PROC_FS
2057static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2058	__acquires(proto_list_lock)
2059{
2060	read_lock(&proto_list_lock);
2061	return seq_list_start_head(&proto_list, *pos);
2062}
2063
2064static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2065{
2066	return seq_list_next(v, &proto_list, pos);
2067}
2068
2069static void proto_seq_stop(struct seq_file *seq, void *v)
2070	__releases(proto_list_lock)
2071{
2072	read_unlock(&proto_list_lock);
2073}
2074
2075static char proto_method_implemented(const void *method)
2076{
2077	return method == NULL ? 'n' : 'y';
2078}
2079
2080static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2081{
2082	seq_printf(seq, "%-9s %4u %6d  %6d   %-3s %6u   %-3s  %-10s "
2083			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2084		   proto->name,
2085		   proto->obj_size,
2086		   proto->sockets_allocated != NULL ? atomic_read(proto->sockets_allocated) : -1,
2087		   proto->memory_allocated != NULL ? atomic_read(proto->memory_allocated) : -1,
2088		   proto->memory_pressure != NULL ? *proto->memory_pressure ? "yes" : "no" : "NI",
2089		   proto->max_header,
2090		   proto->slab == NULL ? "no" : "yes",
2091		   module_name(proto->owner),
2092		   proto_method_implemented(proto->close),
2093		   proto_method_implemented(proto->connect),
2094		   proto_method_implemented(proto->disconnect),
2095		   proto_method_implemented(proto->accept),
2096		   proto_method_implemented(proto->ioctl),
2097		   proto_method_implemented(proto->init),
2098		   proto_method_implemented(proto->destroy),
2099		   proto_method_implemented(proto->shutdown),
2100		   proto_method_implemented(proto->setsockopt),
2101		   proto_method_implemented(proto->getsockopt),
2102		   proto_method_implemented(proto->sendmsg),
2103		   proto_method_implemented(proto->recvmsg),
2104		   proto_method_implemented(proto->sendpage),
2105		   proto_method_implemented(proto->bind),
2106		   proto_method_implemented(proto->backlog_rcv),
2107		   proto_method_implemented(proto->hash),
2108		   proto_method_implemented(proto->unhash),
2109		   proto_method_implemented(proto->get_port),
2110		   proto_method_implemented(proto->enter_memory_pressure));
2111}
2112
2113static int proto_seq_show(struct seq_file *seq, void *v)
2114{
2115	if (v == &proto_list)
2116		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2117			   "protocol",
2118			   "size",
2119			   "sockets",
2120			   "memory",
2121			   "press",
2122			   "maxhdr",
2123			   "slab",
2124			   "module",
2125			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2126	else
2127		proto_seq_printf(seq, list_entry(v, struct proto, node));
2128	return 0;
2129}
2130
2131static const struct seq_operations proto_seq_ops = {
2132	.start  = proto_seq_start,
2133	.next   = proto_seq_next,
2134	.stop   = proto_seq_stop,
2135	.show   = proto_seq_show,
2136};
2137
2138static int proto_seq_open(struct inode *inode, struct file *file)
2139{
2140	return seq_open(file, &proto_seq_ops);
2141}
2142
2143static const struct file_operations proto_seq_fops = {
2144	.owner		= THIS_MODULE,
2145	.open		= proto_seq_open,
2146	.read		= seq_read,
2147	.llseek		= seq_lseek,
2148	.release	= seq_release,
2149};
2150
2151static int __init proto_init(void)
2152{
2153	/* register /proc/net/protocols */
2154	return proc_net_fops_create(&init_net, "protocols", S_IRUGO, &proto_seq_fops) == NULL ? -ENOBUFS : 0;
2155}
2156
2157subsys_initcall(proto_init);
2158
2159#endif /* PROC_FS */
2160
2161EXPORT_SYMBOL(sk_alloc);
2162EXPORT_SYMBOL(sk_free);
2163EXPORT_SYMBOL(sk_send_sigurg);
2164EXPORT_SYMBOL(sock_alloc_send_skb);
2165EXPORT_SYMBOL(sock_init_data);
2166EXPORT_SYMBOL(sock_kfree_s);
2167EXPORT_SYMBOL(sock_kmalloc);
2168EXPORT_SYMBOL(sock_no_accept);
2169EXPORT_SYMBOL(sock_no_bind);
2170EXPORT_SYMBOL(sock_no_connect);
2171EXPORT_SYMBOL(sock_no_getname);
2172EXPORT_SYMBOL(sock_no_getsockopt);
2173EXPORT_SYMBOL(sock_no_ioctl);
2174EXPORT_SYMBOL(sock_no_listen);
2175EXPORT_SYMBOL(sock_no_mmap);
2176EXPORT_SYMBOL(sock_no_poll);
2177EXPORT_SYMBOL(sock_no_recvmsg);
2178EXPORT_SYMBOL(sock_no_sendmsg);
2179EXPORT_SYMBOL(sock_no_sendpage);
2180EXPORT_SYMBOL(sock_no_setsockopt);
2181EXPORT_SYMBOL(sock_no_shutdown);
2182EXPORT_SYMBOL(sock_no_socketpair);
2183EXPORT_SYMBOL(sock_rfree);
2184EXPORT_SYMBOL(sock_setsockopt);
2185EXPORT_SYMBOL(sock_wfree);
2186EXPORT_SYMBOL(sock_wmalloc);
2187EXPORT_SYMBOL(sock_i_uid);
2188EXPORT_SYMBOL(sock_i_ino);
2189EXPORT_SYMBOL(sysctl_optmem_max);
2190