sock.c revision 4a17fd5229c1b6066aa478f6b690f8293ce811a1
1/*
2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
3 *		operating system.  INET is implemented using the  BSD Socket
4 *		interface as the means of communication with the user level.
5 *
6 *		Generic socket support routines. Memory allocators, socket lock/release
7 *		handler for protocols to use and generic option handler.
8 *
9 *
10 * Authors:	Ross Biro
11 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 *		Florian La Roche, <flla@stud.uni-sb.de>
13 *		Alan Cox, <A.Cox@swansea.ac.uk>
14 *
15 * Fixes:
16 *		Alan Cox	: 	Numerous verify_area() problems
17 *		Alan Cox	:	Connecting on a connecting socket
18 *					now returns an error for tcp.
19 *		Alan Cox	:	sock->protocol is set correctly.
20 *					and is not sometimes left as 0.
21 *		Alan Cox	:	connect handles icmp errors on a
22 *					connect properly. Unfortunately there
23 *					is a restart syscall nasty there. I
24 *					can't match BSD without hacking the C
25 *					library. Ideas urgently sought!
26 *		Alan Cox	:	Disallow bind() to addresses that are
27 *					not ours - especially broadcast ones!!
28 *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
29 *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
30 *					instead they leave that for the DESTROY timer.
31 *		Alan Cox	:	Clean up error flag in accept
32 *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
33 *					was buggy. Put a remove_sock() in the handler
34 *					for memory when we hit 0. Also altered the timer
35 *					code. The ACK stuff can wait and needs major
36 *					TCP layer surgery.
37 *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
38 *					and fixed timer/inet_bh race.
39 *		Alan Cox	:	Added zapped flag for TCP
40 *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
41 *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
43 *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
46 *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
47 *	Pauline Middelink	:	identd support
48 *		Alan Cox	:	Fixed connect() taking signals I think.
49 *		Alan Cox	:	SO_LINGER supported
50 *		Alan Cox	:	Error reporting fixes
51 *		Anonymous	:	inet_create tidied up (sk->reuse setting)
52 *		Alan Cox	:	inet sockets don't set sk->type!
53 *		Alan Cox	:	Split socket option code
54 *		Alan Cox	:	Callbacks
55 *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
56 *		Alex		:	Removed restriction on inet fioctl
57 *		Alan Cox	:	Splitting INET from NET core
58 *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
59 *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
60 *		Alan Cox	:	Split IP from generic code
61 *		Alan Cox	:	New kfree_skbmem()
62 *		Alan Cox	:	Make SO_DEBUG superuser only.
63 *		Alan Cox	:	Allow anyone to clear SO_DEBUG
64 *					(compatibility fix)
65 *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
66 *		Alan Cox	:	Allocator for a socket is settable.
67 *		Alan Cox	:	SO_ERROR includes soft errors.
68 *		Alan Cox	:	Allow NULL arguments on some SO_ opts
69 *		Alan Cox	: 	Generic socket allocation to make hooks
70 *					easier (suggested by Craig Metz).
71 *		Michael Pall	:	SO_ERROR returns positive errno again
72 *              Steve Whitehouse:       Added default destructor to free
73 *                                      protocol private data.
74 *              Steve Whitehouse:       Added various other default routines
75 *                                      common to several socket families.
76 *              Chris Evans     :       Call suser() check last on F_SETOWN
77 *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
79 *		Andi Kleen	:	Fix write_space callback
80 *		Chris Evans	:	Security fixes - signedness again
81 *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
82 *
83 * To Fix:
84 *
85 *
86 *		This program is free software; you can redistribute it and/or
87 *		modify it under the terms of the GNU General Public License
88 *		as published by the Free Software Foundation; either version
89 *		2 of the License, or (at your option) any later version.
90 */
91
92#include <linux/capability.h>
93#include <linux/errno.h>
94#include <linux/types.h>
95#include <linux/socket.h>
96#include <linux/in.h>
97#include <linux/kernel.h>
98#include <linux/module.h>
99#include <linux/proc_fs.h>
100#include <linux/seq_file.h>
101#include <linux/sched.h>
102#include <linux/timer.h>
103#include <linux/string.h>
104#include <linux/sockios.h>
105#include <linux/net.h>
106#include <linux/mm.h>
107#include <linux/slab.h>
108#include <linux/interrupt.h>
109#include <linux/poll.h>
110#include <linux/tcp.h>
111#include <linux/init.h>
112#include <linux/highmem.h>
113#include <linux/user_namespace.h>
114#include <linux/static_key.h>
115#include <linux/memcontrol.h>
116
117#include <asm/uaccess.h>
118
119#include <linux/netdevice.h>
120#include <net/protocol.h>
121#include <linux/skbuff.h>
122#include <net/net_namespace.h>
123#include <net/request_sock.h>
124#include <net/sock.h>
125#include <linux/net_tstamp.h>
126#include <net/xfrm.h>
127#include <linux/ipsec.h>
128#include <net/cls_cgroup.h>
129#include <net/netprio_cgroup.h>
130
131#include <linux/filter.h>
132
133#include <trace/events/sock.h>
134
135#ifdef CONFIG_INET
136#include <net/tcp.h>
137#endif
138
139static DEFINE_MUTEX(proto_list_mutex);
140static LIST_HEAD(proto_list);
141
142#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
143int mem_cgroup_sockets_init(struct cgroup *cgrp, struct cgroup_subsys *ss)
144{
145	struct proto *proto;
146	int ret = 0;
147
148	mutex_lock(&proto_list_mutex);
149	list_for_each_entry(proto, &proto_list, node) {
150		if (proto->init_cgroup) {
151			ret = proto->init_cgroup(cgrp, ss);
152			if (ret)
153				goto out;
154		}
155	}
156
157	mutex_unlock(&proto_list_mutex);
158	return ret;
159out:
160	list_for_each_entry_continue_reverse(proto, &proto_list, node)
161		if (proto->destroy_cgroup)
162			proto->destroy_cgroup(cgrp);
163	mutex_unlock(&proto_list_mutex);
164	return ret;
165}
166
167void mem_cgroup_sockets_destroy(struct cgroup *cgrp)
168{
169	struct proto *proto;
170
171	mutex_lock(&proto_list_mutex);
172	list_for_each_entry_reverse(proto, &proto_list, node)
173		if (proto->destroy_cgroup)
174			proto->destroy_cgroup(cgrp);
175	mutex_unlock(&proto_list_mutex);
176}
177#endif
178
179/*
180 * Each address family might have different locking rules, so we have
181 * one slock key per address family:
182 */
183static struct lock_class_key af_family_keys[AF_MAX];
184static struct lock_class_key af_family_slock_keys[AF_MAX];
185
186struct static_key memcg_socket_limit_enabled;
187EXPORT_SYMBOL(memcg_socket_limit_enabled);
188
189/*
190 * Make lock validator output more readable. (we pre-construct these
191 * strings build-time, so that runtime initialization of socket
192 * locks is fast):
193 */
194static const char *const af_family_key_strings[AF_MAX+1] = {
195  "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX"     , "sk_lock-AF_INET"     ,
196  "sk_lock-AF_AX25"  , "sk_lock-AF_IPX"      , "sk_lock-AF_APPLETALK",
197  "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE"   , "sk_lock-AF_ATMPVC"   ,
198  "sk_lock-AF_X25"   , "sk_lock-AF_INET6"    , "sk_lock-AF_ROSE"     ,
199  "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI"  , "sk_lock-AF_SECURITY" ,
200  "sk_lock-AF_KEY"   , "sk_lock-AF_NETLINK"  , "sk_lock-AF_PACKET"   ,
201  "sk_lock-AF_ASH"   , "sk_lock-AF_ECONET"   , "sk_lock-AF_ATMSVC"   ,
202  "sk_lock-AF_RDS"   , "sk_lock-AF_SNA"      , "sk_lock-AF_IRDA"     ,
203  "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE"  , "sk_lock-AF_LLC"      ,
204  "sk_lock-27"       , "sk_lock-28"          , "sk_lock-AF_CAN"      ,
205  "sk_lock-AF_TIPC"  , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV"        ,
206  "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN"     , "sk_lock-AF_PHONET"   ,
207  "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG"      ,
208  "sk_lock-AF_NFC"   , "sk_lock-AF_MAX"
209};
210static const char *const af_family_slock_key_strings[AF_MAX+1] = {
211  "slock-AF_UNSPEC", "slock-AF_UNIX"     , "slock-AF_INET"     ,
212  "slock-AF_AX25"  , "slock-AF_IPX"      , "slock-AF_APPLETALK",
213  "slock-AF_NETROM", "slock-AF_BRIDGE"   , "slock-AF_ATMPVC"   ,
214  "slock-AF_X25"   , "slock-AF_INET6"    , "slock-AF_ROSE"     ,
215  "slock-AF_DECnet", "slock-AF_NETBEUI"  , "slock-AF_SECURITY" ,
216  "slock-AF_KEY"   , "slock-AF_NETLINK"  , "slock-AF_PACKET"   ,
217  "slock-AF_ASH"   , "slock-AF_ECONET"   , "slock-AF_ATMSVC"   ,
218  "slock-AF_RDS"   , "slock-AF_SNA"      , "slock-AF_IRDA"     ,
219  "slock-AF_PPPOX" , "slock-AF_WANPIPE"  , "slock-AF_LLC"      ,
220  "slock-27"       , "slock-28"          , "slock-AF_CAN"      ,
221  "slock-AF_TIPC"  , "slock-AF_BLUETOOTH", "slock-AF_IUCV"     ,
222  "slock-AF_RXRPC" , "slock-AF_ISDN"     , "slock-AF_PHONET"   ,
223  "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG"      ,
224  "slock-AF_NFC"   , "slock-AF_MAX"
225};
226static const char *const af_family_clock_key_strings[AF_MAX+1] = {
227  "clock-AF_UNSPEC", "clock-AF_UNIX"     , "clock-AF_INET"     ,
228  "clock-AF_AX25"  , "clock-AF_IPX"      , "clock-AF_APPLETALK",
229  "clock-AF_NETROM", "clock-AF_BRIDGE"   , "clock-AF_ATMPVC"   ,
230  "clock-AF_X25"   , "clock-AF_INET6"    , "clock-AF_ROSE"     ,
231  "clock-AF_DECnet", "clock-AF_NETBEUI"  , "clock-AF_SECURITY" ,
232  "clock-AF_KEY"   , "clock-AF_NETLINK"  , "clock-AF_PACKET"   ,
233  "clock-AF_ASH"   , "clock-AF_ECONET"   , "clock-AF_ATMSVC"   ,
234  "clock-AF_RDS"   , "clock-AF_SNA"      , "clock-AF_IRDA"     ,
235  "clock-AF_PPPOX" , "clock-AF_WANPIPE"  , "clock-AF_LLC"      ,
236  "clock-27"       , "clock-28"          , "clock-AF_CAN"      ,
237  "clock-AF_TIPC"  , "clock-AF_BLUETOOTH", "clock-AF_IUCV"     ,
238  "clock-AF_RXRPC" , "clock-AF_ISDN"     , "clock-AF_PHONET"   ,
239  "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG"      ,
240  "clock-AF_NFC"   , "clock-AF_MAX"
241};
242
243/*
244 * sk_callback_lock locking rules are per-address-family,
245 * so split the lock classes by using a per-AF key:
246 */
247static struct lock_class_key af_callback_keys[AF_MAX];
248
249/* Take into consideration the size of the struct sk_buff overhead in the
250 * determination of these values, since that is non-constant across
251 * platforms.  This makes socket queueing behavior and performance
252 * not depend upon such differences.
253 */
254#define _SK_MEM_PACKETS		256
255#define _SK_MEM_OVERHEAD	SKB_TRUESIZE(256)
256#define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
257#define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
258
259/* Run time adjustable parameters. */
260__u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
261__u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
262__u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
263__u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
264
265/* Maximal space eaten by iovec or ancillary data plus some space */
266int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
267EXPORT_SYMBOL(sysctl_optmem_max);
268
269#if defined(CONFIG_CGROUPS)
270#if !defined(CONFIG_NET_CLS_CGROUP)
271int net_cls_subsys_id = -1;
272EXPORT_SYMBOL_GPL(net_cls_subsys_id);
273#endif
274#if !defined(CONFIG_NETPRIO_CGROUP)
275int net_prio_subsys_id = -1;
276EXPORT_SYMBOL_GPL(net_prio_subsys_id);
277#endif
278#endif
279
280static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
281{
282	struct timeval tv;
283
284	if (optlen < sizeof(tv))
285		return -EINVAL;
286	if (copy_from_user(&tv, optval, sizeof(tv)))
287		return -EFAULT;
288	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
289		return -EDOM;
290
291	if (tv.tv_sec < 0) {
292		static int warned __read_mostly;
293
294		*timeo_p = 0;
295		if (warned < 10 && net_ratelimit()) {
296			warned++;
297			printk(KERN_INFO "sock_set_timeout: `%s' (pid %d) "
298			       "tries to set negative timeout\n",
299				current->comm, task_pid_nr(current));
300		}
301		return 0;
302	}
303	*timeo_p = MAX_SCHEDULE_TIMEOUT;
304	if (tv.tv_sec == 0 && tv.tv_usec == 0)
305		return 0;
306	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
307		*timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
308	return 0;
309}
310
311static void sock_warn_obsolete_bsdism(const char *name)
312{
313	static int warned;
314	static char warncomm[TASK_COMM_LEN];
315	if (strcmp(warncomm, current->comm) && warned < 5) {
316		strcpy(warncomm,  current->comm);
317		printk(KERN_WARNING "process `%s' is using obsolete "
318		       "%s SO_BSDCOMPAT\n", warncomm, name);
319		warned++;
320	}
321}
322
323#define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
324
325static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
326{
327	if (sk->sk_flags & flags) {
328		sk->sk_flags &= ~flags;
329		if (!(sk->sk_flags & SK_FLAGS_TIMESTAMP))
330			net_disable_timestamp();
331	}
332}
333
334
335int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
336{
337	int err;
338	int skb_len;
339	unsigned long flags;
340	struct sk_buff_head *list = &sk->sk_receive_queue;
341
342	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
343		atomic_inc(&sk->sk_drops);
344		trace_sock_rcvqueue_full(sk, skb);
345		return -ENOMEM;
346	}
347
348	err = sk_filter(sk, skb);
349	if (err)
350		return err;
351
352	if (!sk_rmem_schedule(sk, skb->truesize)) {
353		atomic_inc(&sk->sk_drops);
354		return -ENOBUFS;
355	}
356
357	skb->dev = NULL;
358	skb_set_owner_r(skb, sk);
359
360	/* Cache the SKB length before we tack it onto the receive
361	 * queue.  Once it is added it no longer belongs to us and
362	 * may be freed by other threads of control pulling packets
363	 * from the queue.
364	 */
365	skb_len = skb->len;
366
367	/* we escape from rcu protected region, make sure we dont leak
368	 * a norefcounted dst
369	 */
370	skb_dst_force(skb);
371
372	spin_lock_irqsave(&list->lock, flags);
373	skb->dropcount = atomic_read(&sk->sk_drops);
374	__skb_queue_tail(list, skb);
375	spin_unlock_irqrestore(&list->lock, flags);
376
377	if (!sock_flag(sk, SOCK_DEAD))
378		sk->sk_data_ready(sk, skb_len);
379	return 0;
380}
381EXPORT_SYMBOL(sock_queue_rcv_skb);
382
383int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
384{
385	int rc = NET_RX_SUCCESS;
386
387	if (sk_filter(sk, skb))
388		goto discard_and_relse;
389
390	skb->dev = NULL;
391
392	if (sk_rcvqueues_full(sk, skb)) {
393		atomic_inc(&sk->sk_drops);
394		goto discard_and_relse;
395	}
396	if (nested)
397		bh_lock_sock_nested(sk);
398	else
399		bh_lock_sock(sk);
400	if (!sock_owned_by_user(sk)) {
401		/*
402		 * trylock + unlock semantics:
403		 */
404		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
405
406		rc = sk_backlog_rcv(sk, skb);
407
408		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
409	} else if (sk_add_backlog(sk, skb)) {
410		bh_unlock_sock(sk);
411		atomic_inc(&sk->sk_drops);
412		goto discard_and_relse;
413	}
414
415	bh_unlock_sock(sk);
416out:
417	sock_put(sk);
418	return rc;
419discard_and_relse:
420	kfree_skb(skb);
421	goto out;
422}
423EXPORT_SYMBOL(sk_receive_skb);
424
425void sk_reset_txq(struct sock *sk)
426{
427	sk_tx_queue_clear(sk);
428}
429EXPORT_SYMBOL(sk_reset_txq);
430
431struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
432{
433	struct dst_entry *dst = __sk_dst_get(sk);
434
435	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
436		sk_tx_queue_clear(sk);
437		RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
438		dst_release(dst);
439		return NULL;
440	}
441
442	return dst;
443}
444EXPORT_SYMBOL(__sk_dst_check);
445
446struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
447{
448	struct dst_entry *dst = sk_dst_get(sk);
449
450	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
451		sk_dst_reset(sk);
452		dst_release(dst);
453		return NULL;
454	}
455
456	return dst;
457}
458EXPORT_SYMBOL(sk_dst_check);
459
460static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
461{
462	int ret = -ENOPROTOOPT;
463#ifdef CONFIG_NETDEVICES
464	struct net *net = sock_net(sk);
465	char devname[IFNAMSIZ];
466	int index;
467
468	/* Sorry... */
469	ret = -EPERM;
470	if (!capable(CAP_NET_RAW))
471		goto out;
472
473	ret = -EINVAL;
474	if (optlen < 0)
475		goto out;
476
477	/* Bind this socket to a particular device like "eth0",
478	 * as specified in the passed interface name. If the
479	 * name is "" or the option length is zero the socket
480	 * is not bound.
481	 */
482	if (optlen > IFNAMSIZ - 1)
483		optlen = IFNAMSIZ - 1;
484	memset(devname, 0, sizeof(devname));
485
486	ret = -EFAULT;
487	if (copy_from_user(devname, optval, optlen))
488		goto out;
489
490	index = 0;
491	if (devname[0] != '\0') {
492		struct net_device *dev;
493
494		rcu_read_lock();
495		dev = dev_get_by_name_rcu(net, devname);
496		if (dev)
497			index = dev->ifindex;
498		rcu_read_unlock();
499		ret = -ENODEV;
500		if (!dev)
501			goto out;
502	}
503
504	lock_sock(sk);
505	sk->sk_bound_dev_if = index;
506	sk_dst_reset(sk);
507	release_sock(sk);
508
509	ret = 0;
510
511out:
512#endif
513
514	return ret;
515}
516
517static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
518{
519	if (valbool)
520		sock_set_flag(sk, bit);
521	else
522		sock_reset_flag(sk, bit);
523}
524
525/*
526 *	This is meant for all protocols to use and covers goings on
527 *	at the socket level. Everything here is generic.
528 */
529
530int sock_setsockopt(struct socket *sock, int level, int optname,
531		    char __user *optval, unsigned int optlen)
532{
533	struct sock *sk = sock->sk;
534	int val;
535	int valbool;
536	struct linger ling;
537	int ret = 0;
538
539	/*
540	 *	Options without arguments
541	 */
542
543	if (optname == SO_BINDTODEVICE)
544		return sock_bindtodevice(sk, optval, optlen);
545
546	if (optlen < sizeof(int))
547		return -EINVAL;
548
549	if (get_user(val, (int __user *)optval))
550		return -EFAULT;
551
552	valbool = val ? 1 : 0;
553
554	lock_sock(sk);
555
556	switch (optname) {
557	case SO_DEBUG:
558		if (val && !capable(CAP_NET_ADMIN))
559			ret = -EACCES;
560		else
561			sock_valbool_flag(sk, SOCK_DBG, valbool);
562		break;
563	case SO_REUSEADDR:
564		sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
565		break;
566	case SO_TYPE:
567	case SO_PROTOCOL:
568	case SO_DOMAIN:
569	case SO_ERROR:
570		ret = -ENOPROTOOPT;
571		break;
572	case SO_DONTROUTE:
573		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
574		break;
575	case SO_BROADCAST:
576		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
577		break;
578	case SO_SNDBUF:
579		/* Don't error on this BSD doesn't and if you think
580		   about it this is right. Otherwise apps have to
581		   play 'guess the biggest size' games. RCVBUF/SNDBUF
582		   are treated in BSD as hints */
583
584		if (val > sysctl_wmem_max)
585			val = sysctl_wmem_max;
586set_sndbuf:
587		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
588		if ((val * 2) < SOCK_MIN_SNDBUF)
589			sk->sk_sndbuf = SOCK_MIN_SNDBUF;
590		else
591			sk->sk_sndbuf = val * 2;
592
593		/*
594		 *	Wake up sending tasks if we
595		 *	upped the value.
596		 */
597		sk->sk_write_space(sk);
598		break;
599
600	case SO_SNDBUFFORCE:
601		if (!capable(CAP_NET_ADMIN)) {
602			ret = -EPERM;
603			break;
604		}
605		goto set_sndbuf;
606
607	case SO_RCVBUF:
608		/* Don't error on this BSD doesn't and if you think
609		   about it this is right. Otherwise apps have to
610		   play 'guess the biggest size' games. RCVBUF/SNDBUF
611		   are treated in BSD as hints */
612
613		if (val > sysctl_rmem_max)
614			val = sysctl_rmem_max;
615set_rcvbuf:
616		sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
617		/*
618		 * We double it on the way in to account for
619		 * "struct sk_buff" etc. overhead.   Applications
620		 * assume that the SO_RCVBUF setting they make will
621		 * allow that much actual data to be received on that
622		 * socket.
623		 *
624		 * Applications are unaware that "struct sk_buff" and
625		 * other overheads allocate from the receive buffer
626		 * during socket buffer allocation.
627		 *
628		 * And after considering the possible alternatives,
629		 * returning the value we actually used in getsockopt
630		 * is the most desirable behavior.
631		 */
632		if ((val * 2) < SOCK_MIN_RCVBUF)
633			sk->sk_rcvbuf = SOCK_MIN_RCVBUF;
634		else
635			sk->sk_rcvbuf = val * 2;
636		break;
637
638	case SO_RCVBUFFORCE:
639		if (!capable(CAP_NET_ADMIN)) {
640			ret = -EPERM;
641			break;
642		}
643		goto set_rcvbuf;
644
645	case SO_KEEPALIVE:
646#ifdef CONFIG_INET
647		if (sk->sk_protocol == IPPROTO_TCP)
648			tcp_set_keepalive(sk, valbool);
649#endif
650		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
651		break;
652
653	case SO_OOBINLINE:
654		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
655		break;
656
657	case SO_NO_CHECK:
658		sk->sk_no_check = valbool;
659		break;
660
661	case SO_PRIORITY:
662		if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
663			sk->sk_priority = val;
664		else
665			ret = -EPERM;
666		break;
667
668	case SO_LINGER:
669		if (optlen < sizeof(ling)) {
670			ret = -EINVAL;	/* 1003.1g */
671			break;
672		}
673		if (copy_from_user(&ling, optval, sizeof(ling))) {
674			ret = -EFAULT;
675			break;
676		}
677		if (!ling.l_onoff)
678			sock_reset_flag(sk, SOCK_LINGER);
679		else {
680#if (BITS_PER_LONG == 32)
681			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
682				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
683			else
684#endif
685				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
686			sock_set_flag(sk, SOCK_LINGER);
687		}
688		break;
689
690	case SO_BSDCOMPAT:
691		sock_warn_obsolete_bsdism("setsockopt");
692		break;
693
694	case SO_PASSCRED:
695		if (valbool)
696			set_bit(SOCK_PASSCRED, &sock->flags);
697		else
698			clear_bit(SOCK_PASSCRED, &sock->flags);
699		break;
700
701	case SO_TIMESTAMP:
702	case SO_TIMESTAMPNS:
703		if (valbool)  {
704			if (optname == SO_TIMESTAMP)
705				sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
706			else
707				sock_set_flag(sk, SOCK_RCVTSTAMPNS);
708			sock_set_flag(sk, SOCK_RCVTSTAMP);
709			sock_enable_timestamp(sk, SOCK_TIMESTAMP);
710		} else {
711			sock_reset_flag(sk, SOCK_RCVTSTAMP);
712			sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
713		}
714		break;
715
716	case SO_TIMESTAMPING:
717		if (val & ~SOF_TIMESTAMPING_MASK) {
718			ret = -EINVAL;
719			break;
720		}
721		sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE,
722				  val & SOF_TIMESTAMPING_TX_HARDWARE);
723		sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE,
724				  val & SOF_TIMESTAMPING_TX_SOFTWARE);
725		sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE,
726				  val & SOF_TIMESTAMPING_RX_HARDWARE);
727		if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
728			sock_enable_timestamp(sk,
729					      SOCK_TIMESTAMPING_RX_SOFTWARE);
730		else
731			sock_disable_timestamp(sk,
732					       (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
733		sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE,
734				  val & SOF_TIMESTAMPING_SOFTWARE);
735		sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE,
736				  val & SOF_TIMESTAMPING_SYS_HARDWARE);
737		sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE,
738				  val & SOF_TIMESTAMPING_RAW_HARDWARE);
739		break;
740
741	case SO_RCVLOWAT:
742		if (val < 0)
743			val = INT_MAX;
744		sk->sk_rcvlowat = val ? : 1;
745		break;
746
747	case SO_RCVTIMEO:
748		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
749		break;
750
751	case SO_SNDTIMEO:
752		ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
753		break;
754
755	case SO_ATTACH_FILTER:
756		ret = -EINVAL;
757		if (optlen == sizeof(struct sock_fprog)) {
758			struct sock_fprog fprog;
759
760			ret = -EFAULT;
761			if (copy_from_user(&fprog, optval, sizeof(fprog)))
762				break;
763
764			ret = sk_attach_filter(&fprog, sk);
765		}
766		break;
767
768	case SO_DETACH_FILTER:
769		ret = sk_detach_filter(sk);
770		break;
771
772	case SO_PASSSEC:
773		if (valbool)
774			set_bit(SOCK_PASSSEC, &sock->flags);
775		else
776			clear_bit(SOCK_PASSSEC, &sock->flags);
777		break;
778	case SO_MARK:
779		if (!capable(CAP_NET_ADMIN))
780			ret = -EPERM;
781		else
782			sk->sk_mark = val;
783		break;
784
785		/* We implement the SO_SNDLOWAT etc to
786		   not be settable (1003.1g 5.3) */
787	case SO_RXQ_OVFL:
788		sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
789		break;
790
791	case SO_WIFI_STATUS:
792		sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
793		break;
794
795	case SO_PEEK_OFF:
796		if (sock->ops->set_peek_off)
797			sock->ops->set_peek_off(sk, val);
798		else
799			ret = -EOPNOTSUPP;
800		break;
801
802	case SO_NOFCS:
803		sock_valbool_flag(sk, SOCK_NOFCS, valbool);
804		break;
805
806	default:
807		ret = -ENOPROTOOPT;
808		break;
809	}
810	release_sock(sk);
811	return ret;
812}
813EXPORT_SYMBOL(sock_setsockopt);
814
815
816void cred_to_ucred(struct pid *pid, const struct cred *cred,
817		   struct ucred *ucred)
818{
819	ucred->pid = pid_vnr(pid);
820	ucred->uid = ucred->gid = -1;
821	if (cred) {
822		struct user_namespace *current_ns = current_user_ns();
823
824		ucred->uid = user_ns_map_uid(current_ns, cred, cred->euid);
825		ucred->gid = user_ns_map_gid(current_ns, cred, cred->egid);
826	}
827}
828EXPORT_SYMBOL_GPL(cred_to_ucred);
829
830int sock_getsockopt(struct socket *sock, int level, int optname,
831		    char __user *optval, int __user *optlen)
832{
833	struct sock *sk = sock->sk;
834
835	union {
836		int val;
837		struct linger ling;
838		struct timeval tm;
839	} v;
840
841	int lv = sizeof(int);
842	int len;
843
844	if (get_user(len, optlen))
845		return -EFAULT;
846	if (len < 0)
847		return -EINVAL;
848
849	memset(&v, 0, sizeof(v));
850
851	switch (optname) {
852	case SO_DEBUG:
853		v.val = sock_flag(sk, SOCK_DBG);
854		break;
855
856	case SO_DONTROUTE:
857		v.val = sock_flag(sk, SOCK_LOCALROUTE);
858		break;
859
860	case SO_BROADCAST:
861		v.val = !!sock_flag(sk, SOCK_BROADCAST);
862		break;
863
864	case SO_SNDBUF:
865		v.val = sk->sk_sndbuf;
866		break;
867
868	case SO_RCVBUF:
869		v.val = sk->sk_rcvbuf;
870		break;
871
872	case SO_REUSEADDR:
873		v.val = sk->sk_reuse;
874		break;
875
876	case SO_KEEPALIVE:
877		v.val = !!sock_flag(sk, SOCK_KEEPOPEN);
878		break;
879
880	case SO_TYPE:
881		v.val = sk->sk_type;
882		break;
883
884	case SO_PROTOCOL:
885		v.val = sk->sk_protocol;
886		break;
887
888	case SO_DOMAIN:
889		v.val = sk->sk_family;
890		break;
891
892	case SO_ERROR:
893		v.val = -sock_error(sk);
894		if (v.val == 0)
895			v.val = xchg(&sk->sk_err_soft, 0);
896		break;
897
898	case SO_OOBINLINE:
899		v.val = !!sock_flag(sk, SOCK_URGINLINE);
900		break;
901
902	case SO_NO_CHECK:
903		v.val = sk->sk_no_check;
904		break;
905
906	case SO_PRIORITY:
907		v.val = sk->sk_priority;
908		break;
909
910	case SO_LINGER:
911		lv		= sizeof(v.ling);
912		v.ling.l_onoff	= !!sock_flag(sk, SOCK_LINGER);
913		v.ling.l_linger	= sk->sk_lingertime / HZ;
914		break;
915
916	case SO_BSDCOMPAT:
917		sock_warn_obsolete_bsdism("getsockopt");
918		break;
919
920	case SO_TIMESTAMP:
921		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
922				!sock_flag(sk, SOCK_RCVTSTAMPNS);
923		break;
924
925	case SO_TIMESTAMPNS:
926		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
927		break;
928
929	case SO_TIMESTAMPING:
930		v.val = 0;
931		if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
932			v.val |= SOF_TIMESTAMPING_TX_HARDWARE;
933		if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
934			v.val |= SOF_TIMESTAMPING_TX_SOFTWARE;
935		if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE))
936			v.val |= SOF_TIMESTAMPING_RX_HARDWARE;
937		if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE))
938			v.val |= SOF_TIMESTAMPING_RX_SOFTWARE;
939		if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE))
940			v.val |= SOF_TIMESTAMPING_SOFTWARE;
941		if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))
942			v.val |= SOF_TIMESTAMPING_SYS_HARDWARE;
943		if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE))
944			v.val |= SOF_TIMESTAMPING_RAW_HARDWARE;
945		break;
946
947	case SO_RCVTIMEO:
948		lv = sizeof(struct timeval);
949		if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
950			v.tm.tv_sec = 0;
951			v.tm.tv_usec = 0;
952		} else {
953			v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
954			v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
955		}
956		break;
957
958	case SO_SNDTIMEO:
959		lv = sizeof(struct timeval);
960		if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
961			v.tm.tv_sec = 0;
962			v.tm.tv_usec = 0;
963		} else {
964			v.tm.tv_sec = sk->sk_sndtimeo / HZ;
965			v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
966		}
967		break;
968
969	case SO_RCVLOWAT:
970		v.val = sk->sk_rcvlowat;
971		break;
972
973	case SO_SNDLOWAT:
974		v.val = 1;
975		break;
976
977	case SO_PASSCRED:
978		v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0;
979		break;
980
981	case SO_PEERCRED:
982	{
983		struct ucred peercred;
984		if (len > sizeof(peercred))
985			len = sizeof(peercred);
986		cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
987		if (copy_to_user(optval, &peercred, len))
988			return -EFAULT;
989		goto lenout;
990	}
991
992	case SO_PEERNAME:
993	{
994		char address[128];
995
996		if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
997			return -ENOTCONN;
998		if (lv < len)
999			return -EINVAL;
1000		if (copy_to_user(optval, address, len))
1001			return -EFAULT;
1002		goto lenout;
1003	}
1004
1005	/* Dubious BSD thing... Probably nobody even uses it, but
1006	 * the UNIX standard wants it for whatever reason... -DaveM
1007	 */
1008	case SO_ACCEPTCONN:
1009		v.val = sk->sk_state == TCP_LISTEN;
1010		break;
1011
1012	case SO_PASSSEC:
1013		v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0;
1014		break;
1015
1016	case SO_PEERSEC:
1017		return security_socket_getpeersec_stream(sock, optval, optlen, len);
1018
1019	case SO_MARK:
1020		v.val = sk->sk_mark;
1021		break;
1022
1023	case SO_RXQ_OVFL:
1024		v.val = !!sock_flag(sk, SOCK_RXQ_OVFL);
1025		break;
1026
1027	case SO_WIFI_STATUS:
1028		v.val = !!sock_flag(sk, SOCK_WIFI_STATUS);
1029		break;
1030
1031	case SO_PEEK_OFF:
1032		if (!sock->ops->set_peek_off)
1033			return -EOPNOTSUPP;
1034
1035		v.val = sk->sk_peek_off;
1036		break;
1037	case SO_NOFCS:
1038		v.val = !!sock_flag(sk, SOCK_NOFCS);
1039		break;
1040	default:
1041		return -ENOPROTOOPT;
1042	}
1043
1044	if (len > lv)
1045		len = lv;
1046	if (copy_to_user(optval, &v, len))
1047		return -EFAULT;
1048lenout:
1049	if (put_user(len, optlen))
1050		return -EFAULT;
1051	return 0;
1052}
1053
1054/*
1055 * Initialize an sk_lock.
1056 *
1057 * (We also register the sk_lock with the lock validator.)
1058 */
1059static inline void sock_lock_init(struct sock *sk)
1060{
1061	sock_lock_init_class_and_name(sk,
1062			af_family_slock_key_strings[sk->sk_family],
1063			af_family_slock_keys + sk->sk_family,
1064			af_family_key_strings[sk->sk_family],
1065			af_family_keys + sk->sk_family);
1066}
1067
1068/*
1069 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1070 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1071 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1072 */
1073static void sock_copy(struct sock *nsk, const struct sock *osk)
1074{
1075#ifdef CONFIG_SECURITY_NETWORK
1076	void *sptr = nsk->sk_security;
1077#endif
1078	memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1079
1080	memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1081	       osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1082
1083#ifdef CONFIG_SECURITY_NETWORK
1084	nsk->sk_security = sptr;
1085	security_sk_clone(osk, nsk);
1086#endif
1087}
1088
1089/*
1090 * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
1091 * un-modified. Special care is taken when initializing object to zero.
1092 */
1093static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1094{
1095	if (offsetof(struct sock, sk_node.next) != 0)
1096		memset(sk, 0, offsetof(struct sock, sk_node.next));
1097	memset(&sk->sk_node.pprev, 0,
1098	       size - offsetof(struct sock, sk_node.pprev));
1099}
1100
1101void sk_prot_clear_portaddr_nulls(struct sock *sk, int size)
1102{
1103	unsigned long nulls1, nulls2;
1104
1105	nulls1 = offsetof(struct sock, __sk_common.skc_node.next);
1106	nulls2 = offsetof(struct sock, __sk_common.skc_portaddr_node.next);
1107	if (nulls1 > nulls2)
1108		swap(nulls1, nulls2);
1109
1110	if (nulls1 != 0)
1111		memset((char *)sk, 0, nulls1);
1112	memset((char *)sk + nulls1 + sizeof(void *), 0,
1113	       nulls2 - nulls1 - sizeof(void *));
1114	memset((char *)sk + nulls2 + sizeof(void *), 0,
1115	       size - nulls2 - sizeof(void *));
1116}
1117EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls);
1118
1119static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1120		int family)
1121{
1122	struct sock *sk;
1123	struct kmem_cache *slab;
1124
1125	slab = prot->slab;
1126	if (slab != NULL) {
1127		sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1128		if (!sk)
1129			return sk;
1130		if (priority & __GFP_ZERO) {
1131			if (prot->clear_sk)
1132				prot->clear_sk(sk, prot->obj_size);
1133			else
1134				sk_prot_clear_nulls(sk, prot->obj_size);
1135		}
1136	} else
1137		sk = kmalloc(prot->obj_size, priority);
1138
1139	if (sk != NULL) {
1140		kmemcheck_annotate_bitfield(sk, flags);
1141
1142		if (security_sk_alloc(sk, family, priority))
1143			goto out_free;
1144
1145		if (!try_module_get(prot->owner))
1146			goto out_free_sec;
1147		sk_tx_queue_clear(sk);
1148	}
1149
1150	return sk;
1151
1152out_free_sec:
1153	security_sk_free(sk);
1154out_free:
1155	if (slab != NULL)
1156		kmem_cache_free(slab, sk);
1157	else
1158		kfree(sk);
1159	return NULL;
1160}
1161
1162static void sk_prot_free(struct proto *prot, struct sock *sk)
1163{
1164	struct kmem_cache *slab;
1165	struct module *owner;
1166
1167	owner = prot->owner;
1168	slab = prot->slab;
1169
1170	security_sk_free(sk);
1171	if (slab != NULL)
1172		kmem_cache_free(slab, sk);
1173	else
1174		kfree(sk);
1175	module_put(owner);
1176}
1177
1178#ifdef CONFIG_CGROUPS
1179void sock_update_classid(struct sock *sk)
1180{
1181	u32 classid;
1182
1183	rcu_read_lock();  /* doing current task, which cannot vanish. */
1184	classid = task_cls_classid(current);
1185	rcu_read_unlock();
1186	if (classid && classid != sk->sk_classid)
1187		sk->sk_classid = classid;
1188}
1189EXPORT_SYMBOL(sock_update_classid);
1190
1191void sock_update_netprioidx(struct sock *sk)
1192{
1193	if (in_interrupt())
1194		return;
1195
1196	sk->sk_cgrp_prioidx = task_netprioidx(current);
1197}
1198EXPORT_SYMBOL_GPL(sock_update_netprioidx);
1199#endif
1200
1201/**
1202 *	sk_alloc - All socket objects are allocated here
1203 *	@net: the applicable net namespace
1204 *	@family: protocol family
1205 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1206 *	@prot: struct proto associated with this new sock instance
1207 */
1208struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1209		      struct proto *prot)
1210{
1211	struct sock *sk;
1212
1213	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1214	if (sk) {
1215		sk->sk_family = family;
1216		/*
1217		 * See comment in struct sock definition to understand
1218		 * why we need sk_prot_creator -acme
1219		 */
1220		sk->sk_prot = sk->sk_prot_creator = prot;
1221		sock_lock_init(sk);
1222		sock_net_set(sk, get_net(net));
1223		atomic_set(&sk->sk_wmem_alloc, 1);
1224
1225		sock_update_classid(sk);
1226		sock_update_netprioidx(sk);
1227	}
1228
1229	return sk;
1230}
1231EXPORT_SYMBOL(sk_alloc);
1232
1233static void __sk_free(struct sock *sk)
1234{
1235	struct sk_filter *filter;
1236
1237	if (sk->sk_destruct)
1238		sk->sk_destruct(sk);
1239
1240	filter = rcu_dereference_check(sk->sk_filter,
1241				       atomic_read(&sk->sk_wmem_alloc) == 0);
1242	if (filter) {
1243		sk_filter_uncharge(sk, filter);
1244		RCU_INIT_POINTER(sk->sk_filter, NULL);
1245	}
1246
1247	sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1248
1249	if (atomic_read(&sk->sk_omem_alloc))
1250		printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n",
1251		       __func__, atomic_read(&sk->sk_omem_alloc));
1252
1253	if (sk->sk_peer_cred)
1254		put_cred(sk->sk_peer_cred);
1255	put_pid(sk->sk_peer_pid);
1256	put_net(sock_net(sk));
1257	sk_prot_free(sk->sk_prot_creator, sk);
1258}
1259
1260void sk_free(struct sock *sk)
1261{
1262	/*
1263	 * We subtract one from sk_wmem_alloc and can know if
1264	 * some packets are still in some tx queue.
1265	 * If not null, sock_wfree() will call __sk_free(sk) later
1266	 */
1267	if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1268		__sk_free(sk);
1269}
1270EXPORT_SYMBOL(sk_free);
1271
1272/*
1273 * Last sock_put should drop reference to sk->sk_net. It has already
1274 * been dropped in sk_change_net. Taking reference to stopping namespace
1275 * is not an option.
1276 * Take reference to a socket to remove it from hash _alive_ and after that
1277 * destroy it in the context of init_net.
1278 */
1279void sk_release_kernel(struct sock *sk)
1280{
1281	if (sk == NULL || sk->sk_socket == NULL)
1282		return;
1283
1284	sock_hold(sk);
1285	sock_release(sk->sk_socket);
1286	release_net(sock_net(sk));
1287	sock_net_set(sk, get_net(&init_net));
1288	sock_put(sk);
1289}
1290EXPORT_SYMBOL(sk_release_kernel);
1291
1292static void sk_update_clone(const struct sock *sk, struct sock *newsk)
1293{
1294	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1295		sock_update_memcg(newsk);
1296}
1297
1298/**
1299 *	sk_clone_lock - clone a socket, and lock its clone
1300 *	@sk: the socket to clone
1301 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1302 *
1303 *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1304 */
1305struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1306{
1307	struct sock *newsk;
1308
1309	newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1310	if (newsk != NULL) {
1311		struct sk_filter *filter;
1312
1313		sock_copy(newsk, sk);
1314
1315		/* SANITY */
1316		get_net(sock_net(newsk));
1317		sk_node_init(&newsk->sk_node);
1318		sock_lock_init(newsk);
1319		bh_lock_sock(newsk);
1320		newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
1321		newsk->sk_backlog.len = 0;
1322
1323		atomic_set(&newsk->sk_rmem_alloc, 0);
1324		/*
1325		 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1326		 */
1327		atomic_set(&newsk->sk_wmem_alloc, 1);
1328		atomic_set(&newsk->sk_omem_alloc, 0);
1329		skb_queue_head_init(&newsk->sk_receive_queue);
1330		skb_queue_head_init(&newsk->sk_write_queue);
1331#ifdef CONFIG_NET_DMA
1332		skb_queue_head_init(&newsk->sk_async_wait_queue);
1333#endif
1334
1335		spin_lock_init(&newsk->sk_dst_lock);
1336		rwlock_init(&newsk->sk_callback_lock);
1337		lockdep_set_class_and_name(&newsk->sk_callback_lock,
1338				af_callback_keys + newsk->sk_family,
1339				af_family_clock_key_strings[newsk->sk_family]);
1340
1341		newsk->sk_dst_cache	= NULL;
1342		newsk->sk_wmem_queued	= 0;
1343		newsk->sk_forward_alloc = 0;
1344		newsk->sk_send_head	= NULL;
1345		newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1346
1347		sock_reset_flag(newsk, SOCK_DONE);
1348		skb_queue_head_init(&newsk->sk_error_queue);
1349
1350		filter = rcu_dereference_protected(newsk->sk_filter, 1);
1351		if (filter != NULL)
1352			sk_filter_charge(newsk, filter);
1353
1354		if (unlikely(xfrm_sk_clone_policy(newsk))) {
1355			/* It is still raw copy of parent, so invalidate
1356			 * destructor and make plain sk_free() */
1357			newsk->sk_destruct = NULL;
1358			bh_unlock_sock(newsk);
1359			sk_free(newsk);
1360			newsk = NULL;
1361			goto out;
1362		}
1363
1364		newsk->sk_err	   = 0;
1365		newsk->sk_priority = 0;
1366		/*
1367		 * Before updating sk_refcnt, we must commit prior changes to memory
1368		 * (Documentation/RCU/rculist_nulls.txt for details)
1369		 */
1370		smp_wmb();
1371		atomic_set(&newsk->sk_refcnt, 2);
1372
1373		/*
1374		 * Increment the counter in the same struct proto as the master
1375		 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1376		 * is the same as sk->sk_prot->socks, as this field was copied
1377		 * with memcpy).
1378		 *
1379		 * This _changes_ the previous behaviour, where
1380		 * tcp_create_openreq_child always was incrementing the
1381		 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1382		 * to be taken into account in all callers. -acme
1383		 */
1384		sk_refcnt_debug_inc(newsk);
1385		sk_set_socket(newsk, NULL);
1386		newsk->sk_wq = NULL;
1387
1388		sk_update_clone(sk, newsk);
1389
1390		if (newsk->sk_prot->sockets_allocated)
1391			sk_sockets_allocated_inc(newsk);
1392
1393		if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1394			net_enable_timestamp();
1395	}
1396out:
1397	return newsk;
1398}
1399EXPORT_SYMBOL_GPL(sk_clone_lock);
1400
1401void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1402{
1403	__sk_dst_set(sk, dst);
1404	sk->sk_route_caps = dst->dev->features;
1405	if (sk->sk_route_caps & NETIF_F_GSO)
1406		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1407	sk->sk_route_caps &= ~sk->sk_route_nocaps;
1408	if (sk_can_gso(sk)) {
1409		if (dst->header_len) {
1410			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1411		} else {
1412			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1413			sk->sk_gso_max_size = dst->dev->gso_max_size;
1414		}
1415	}
1416}
1417EXPORT_SYMBOL_GPL(sk_setup_caps);
1418
1419void __init sk_init(void)
1420{
1421	if (totalram_pages <= 4096) {
1422		sysctl_wmem_max = 32767;
1423		sysctl_rmem_max = 32767;
1424		sysctl_wmem_default = 32767;
1425		sysctl_rmem_default = 32767;
1426	} else if (totalram_pages >= 131072) {
1427		sysctl_wmem_max = 131071;
1428		sysctl_rmem_max = 131071;
1429	}
1430}
1431
1432/*
1433 *	Simple resource managers for sockets.
1434 */
1435
1436
1437/*
1438 * Write buffer destructor automatically called from kfree_skb.
1439 */
1440void sock_wfree(struct sk_buff *skb)
1441{
1442	struct sock *sk = skb->sk;
1443	unsigned int len = skb->truesize;
1444
1445	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1446		/*
1447		 * Keep a reference on sk_wmem_alloc, this will be released
1448		 * after sk_write_space() call
1449		 */
1450		atomic_sub(len - 1, &sk->sk_wmem_alloc);
1451		sk->sk_write_space(sk);
1452		len = 1;
1453	}
1454	/*
1455	 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1456	 * could not do because of in-flight packets
1457	 */
1458	if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1459		__sk_free(sk);
1460}
1461EXPORT_SYMBOL(sock_wfree);
1462
1463/*
1464 * Read buffer destructor automatically called from kfree_skb.
1465 */
1466void sock_rfree(struct sk_buff *skb)
1467{
1468	struct sock *sk = skb->sk;
1469	unsigned int len = skb->truesize;
1470
1471	atomic_sub(len, &sk->sk_rmem_alloc);
1472	sk_mem_uncharge(sk, len);
1473}
1474EXPORT_SYMBOL(sock_rfree);
1475
1476
1477int sock_i_uid(struct sock *sk)
1478{
1479	int uid;
1480
1481	read_lock_bh(&sk->sk_callback_lock);
1482	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1483	read_unlock_bh(&sk->sk_callback_lock);
1484	return uid;
1485}
1486EXPORT_SYMBOL(sock_i_uid);
1487
1488unsigned long sock_i_ino(struct sock *sk)
1489{
1490	unsigned long ino;
1491
1492	read_lock_bh(&sk->sk_callback_lock);
1493	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1494	read_unlock_bh(&sk->sk_callback_lock);
1495	return ino;
1496}
1497EXPORT_SYMBOL(sock_i_ino);
1498
1499/*
1500 * Allocate a skb from the socket's send buffer.
1501 */
1502struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1503			     gfp_t priority)
1504{
1505	if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1506		struct sk_buff *skb = alloc_skb(size, priority);
1507		if (skb) {
1508			skb_set_owner_w(skb, sk);
1509			return skb;
1510		}
1511	}
1512	return NULL;
1513}
1514EXPORT_SYMBOL(sock_wmalloc);
1515
1516/*
1517 * Allocate a skb from the socket's receive buffer.
1518 */
1519struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1520			     gfp_t priority)
1521{
1522	if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1523		struct sk_buff *skb = alloc_skb(size, priority);
1524		if (skb) {
1525			skb_set_owner_r(skb, sk);
1526			return skb;
1527		}
1528	}
1529	return NULL;
1530}
1531
1532/*
1533 * Allocate a memory block from the socket's option memory buffer.
1534 */
1535void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1536{
1537	if ((unsigned int)size <= sysctl_optmem_max &&
1538	    atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1539		void *mem;
1540		/* First do the add, to avoid the race if kmalloc
1541		 * might sleep.
1542		 */
1543		atomic_add(size, &sk->sk_omem_alloc);
1544		mem = kmalloc(size, priority);
1545		if (mem)
1546			return mem;
1547		atomic_sub(size, &sk->sk_omem_alloc);
1548	}
1549	return NULL;
1550}
1551EXPORT_SYMBOL(sock_kmalloc);
1552
1553/*
1554 * Free an option memory block.
1555 */
1556void sock_kfree_s(struct sock *sk, void *mem, int size)
1557{
1558	kfree(mem);
1559	atomic_sub(size, &sk->sk_omem_alloc);
1560}
1561EXPORT_SYMBOL(sock_kfree_s);
1562
1563/* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1564   I think, these locks should be removed for datagram sockets.
1565 */
1566static long sock_wait_for_wmem(struct sock *sk, long timeo)
1567{
1568	DEFINE_WAIT(wait);
1569
1570	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1571	for (;;) {
1572		if (!timeo)
1573			break;
1574		if (signal_pending(current))
1575			break;
1576		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1577		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1578		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1579			break;
1580		if (sk->sk_shutdown & SEND_SHUTDOWN)
1581			break;
1582		if (sk->sk_err)
1583			break;
1584		timeo = schedule_timeout(timeo);
1585	}
1586	finish_wait(sk_sleep(sk), &wait);
1587	return timeo;
1588}
1589
1590
1591/*
1592 *	Generic send/receive buffer handlers
1593 */
1594
1595struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1596				     unsigned long data_len, int noblock,
1597				     int *errcode)
1598{
1599	struct sk_buff *skb;
1600	gfp_t gfp_mask;
1601	long timeo;
1602	int err;
1603
1604	gfp_mask = sk->sk_allocation;
1605	if (gfp_mask & __GFP_WAIT)
1606		gfp_mask |= __GFP_REPEAT;
1607
1608	timeo = sock_sndtimeo(sk, noblock);
1609	while (1) {
1610		err = sock_error(sk);
1611		if (err != 0)
1612			goto failure;
1613
1614		err = -EPIPE;
1615		if (sk->sk_shutdown & SEND_SHUTDOWN)
1616			goto failure;
1617
1618		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1619			skb = alloc_skb(header_len, gfp_mask);
1620			if (skb) {
1621				int npages;
1622				int i;
1623
1624				/* No pages, we're done... */
1625				if (!data_len)
1626					break;
1627
1628				npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1629				skb->truesize += data_len;
1630				skb_shinfo(skb)->nr_frags = npages;
1631				for (i = 0; i < npages; i++) {
1632					struct page *page;
1633
1634					page = alloc_pages(sk->sk_allocation, 0);
1635					if (!page) {
1636						err = -ENOBUFS;
1637						skb_shinfo(skb)->nr_frags = i;
1638						kfree_skb(skb);
1639						goto failure;
1640					}
1641
1642					__skb_fill_page_desc(skb, i,
1643							page, 0,
1644							(data_len >= PAGE_SIZE ?
1645							 PAGE_SIZE :
1646							 data_len));
1647					data_len -= PAGE_SIZE;
1648				}
1649
1650				/* Full success... */
1651				break;
1652			}
1653			err = -ENOBUFS;
1654			goto failure;
1655		}
1656		set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1657		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1658		err = -EAGAIN;
1659		if (!timeo)
1660			goto failure;
1661		if (signal_pending(current))
1662			goto interrupted;
1663		timeo = sock_wait_for_wmem(sk, timeo);
1664	}
1665
1666	skb_set_owner_w(skb, sk);
1667	return skb;
1668
1669interrupted:
1670	err = sock_intr_errno(timeo);
1671failure:
1672	*errcode = err;
1673	return NULL;
1674}
1675EXPORT_SYMBOL(sock_alloc_send_pskb);
1676
1677struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1678				    int noblock, int *errcode)
1679{
1680	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1681}
1682EXPORT_SYMBOL(sock_alloc_send_skb);
1683
1684static void __lock_sock(struct sock *sk)
1685	__releases(&sk->sk_lock.slock)
1686	__acquires(&sk->sk_lock.slock)
1687{
1688	DEFINE_WAIT(wait);
1689
1690	for (;;) {
1691		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1692					TASK_UNINTERRUPTIBLE);
1693		spin_unlock_bh(&sk->sk_lock.slock);
1694		schedule();
1695		spin_lock_bh(&sk->sk_lock.slock);
1696		if (!sock_owned_by_user(sk))
1697			break;
1698	}
1699	finish_wait(&sk->sk_lock.wq, &wait);
1700}
1701
1702static void __release_sock(struct sock *sk)
1703	__releases(&sk->sk_lock.slock)
1704	__acquires(&sk->sk_lock.slock)
1705{
1706	struct sk_buff *skb = sk->sk_backlog.head;
1707
1708	do {
1709		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1710		bh_unlock_sock(sk);
1711
1712		do {
1713			struct sk_buff *next = skb->next;
1714
1715			WARN_ON_ONCE(skb_dst_is_noref(skb));
1716			skb->next = NULL;
1717			sk_backlog_rcv(sk, skb);
1718
1719			/*
1720			 * We are in process context here with softirqs
1721			 * disabled, use cond_resched_softirq() to preempt.
1722			 * This is safe to do because we've taken the backlog
1723			 * queue private:
1724			 */
1725			cond_resched_softirq();
1726
1727			skb = next;
1728		} while (skb != NULL);
1729
1730		bh_lock_sock(sk);
1731	} while ((skb = sk->sk_backlog.head) != NULL);
1732
1733	/*
1734	 * Doing the zeroing here guarantee we can not loop forever
1735	 * while a wild producer attempts to flood us.
1736	 */
1737	sk->sk_backlog.len = 0;
1738}
1739
1740/**
1741 * sk_wait_data - wait for data to arrive at sk_receive_queue
1742 * @sk:    sock to wait on
1743 * @timeo: for how long
1744 *
1745 * Now socket state including sk->sk_err is changed only under lock,
1746 * hence we may omit checks after joining wait queue.
1747 * We check receive queue before schedule() only as optimization;
1748 * it is very likely that release_sock() added new data.
1749 */
1750int sk_wait_data(struct sock *sk, long *timeo)
1751{
1752	int rc;
1753	DEFINE_WAIT(wait);
1754
1755	prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1756	set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1757	rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1758	clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1759	finish_wait(sk_sleep(sk), &wait);
1760	return rc;
1761}
1762EXPORT_SYMBOL(sk_wait_data);
1763
1764/**
1765 *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1766 *	@sk: socket
1767 *	@size: memory size to allocate
1768 *	@kind: allocation type
1769 *
1770 *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1771 *	rmem allocation. This function assumes that protocols which have
1772 *	memory_pressure use sk_wmem_queued as write buffer accounting.
1773 */
1774int __sk_mem_schedule(struct sock *sk, int size, int kind)
1775{
1776	struct proto *prot = sk->sk_prot;
1777	int amt = sk_mem_pages(size);
1778	long allocated;
1779	int parent_status = UNDER_LIMIT;
1780
1781	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
1782
1783	allocated = sk_memory_allocated_add(sk, amt, &parent_status);
1784
1785	/* Under limit. */
1786	if (parent_status == UNDER_LIMIT &&
1787			allocated <= sk_prot_mem_limits(sk, 0)) {
1788		sk_leave_memory_pressure(sk);
1789		return 1;
1790	}
1791
1792	/* Under pressure. (we or our parents) */
1793	if ((parent_status > SOFT_LIMIT) ||
1794			allocated > sk_prot_mem_limits(sk, 1))
1795		sk_enter_memory_pressure(sk);
1796
1797	/* Over hard limit (we or our parents) */
1798	if ((parent_status == OVER_LIMIT) ||
1799			(allocated > sk_prot_mem_limits(sk, 2)))
1800		goto suppress_allocation;
1801
1802	/* guarantee minimum buffer size under pressure */
1803	if (kind == SK_MEM_RECV) {
1804		if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
1805			return 1;
1806
1807	} else { /* SK_MEM_SEND */
1808		if (sk->sk_type == SOCK_STREAM) {
1809			if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
1810				return 1;
1811		} else if (atomic_read(&sk->sk_wmem_alloc) <
1812			   prot->sysctl_wmem[0])
1813				return 1;
1814	}
1815
1816	if (sk_has_memory_pressure(sk)) {
1817		int alloc;
1818
1819		if (!sk_under_memory_pressure(sk))
1820			return 1;
1821		alloc = sk_sockets_allocated_read_positive(sk);
1822		if (sk_prot_mem_limits(sk, 2) > alloc *
1823		    sk_mem_pages(sk->sk_wmem_queued +
1824				 atomic_read(&sk->sk_rmem_alloc) +
1825				 sk->sk_forward_alloc))
1826			return 1;
1827	}
1828
1829suppress_allocation:
1830
1831	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
1832		sk_stream_moderate_sndbuf(sk);
1833
1834		/* Fail only if socket is _under_ its sndbuf.
1835		 * In this case we cannot block, so that we have to fail.
1836		 */
1837		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
1838			return 1;
1839	}
1840
1841	trace_sock_exceed_buf_limit(sk, prot, allocated);
1842
1843	/* Alas. Undo changes. */
1844	sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
1845
1846	sk_memory_allocated_sub(sk, amt);
1847
1848	return 0;
1849}
1850EXPORT_SYMBOL(__sk_mem_schedule);
1851
1852/**
1853 *	__sk_reclaim - reclaim memory_allocated
1854 *	@sk: socket
1855 */
1856void __sk_mem_reclaim(struct sock *sk)
1857{
1858	sk_memory_allocated_sub(sk,
1859				sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT);
1860	sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
1861
1862	if (sk_under_memory_pressure(sk) &&
1863	    (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
1864		sk_leave_memory_pressure(sk);
1865}
1866EXPORT_SYMBOL(__sk_mem_reclaim);
1867
1868
1869/*
1870 * Set of default routines for initialising struct proto_ops when
1871 * the protocol does not support a particular function. In certain
1872 * cases where it makes no sense for a protocol to have a "do nothing"
1873 * function, some default processing is provided.
1874 */
1875
1876int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1877{
1878	return -EOPNOTSUPP;
1879}
1880EXPORT_SYMBOL(sock_no_bind);
1881
1882int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1883		    int len, int flags)
1884{
1885	return -EOPNOTSUPP;
1886}
1887EXPORT_SYMBOL(sock_no_connect);
1888
1889int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1890{
1891	return -EOPNOTSUPP;
1892}
1893EXPORT_SYMBOL(sock_no_socketpair);
1894
1895int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1896{
1897	return -EOPNOTSUPP;
1898}
1899EXPORT_SYMBOL(sock_no_accept);
1900
1901int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1902		    int *len, int peer)
1903{
1904	return -EOPNOTSUPP;
1905}
1906EXPORT_SYMBOL(sock_no_getname);
1907
1908unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
1909{
1910	return 0;
1911}
1912EXPORT_SYMBOL(sock_no_poll);
1913
1914int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1915{
1916	return -EOPNOTSUPP;
1917}
1918EXPORT_SYMBOL(sock_no_ioctl);
1919
1920int sock_no_listen(struct socket *sock, int backlog)
1921{
1922	return -EOPNOTSUPP;
1923}
1924EXPORT_SYMBOL(sock_no_listen);
1925
1926int sock_no_shutdown(struct socket *sock, int how)
1927{
1928	return -EOPNOTSUPP;
1929}
1930EXPORT_SYMBOL(sock_no_shutdown);
1931
1932int sock_no_setsockopt(struct socket *sock, int level, int optname,
1933		    char __user *optval, unsigned int optlen)
1934{
1935	return -EOPNOTSUPP;
1936}
1937EXPORT_SYMBOL(sock_no_setsockopt);
1938
1939int sock_no_getsockopt(struct socket *sock, int level, int optname,
1940		    char __user *optval, int __user *optlen)
1941{
1942	return -EOPNOTSUPP;
1943}
1944EXPORT_SYMBOL(sock_no_getsockopt);
1945
1946int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1947		    size_t len)
1948{
1949	return -EOPNOTSUPP;
1950}
1951EXPORT_SYMBOL(sock_no_sendmsg);
1952
1953int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1954		    size_t len, int flags)
1955{
1956	return -EOPNOTSUPP;
1957}
1958EXPORT_SYMBOL(sock_no_recvmsg);
1959
1960int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
1961{
1962	/* Mirror missing mmap method error code */
1963	return -ENODEV;
1964}
1965EXPORT_SYMBOL(sock_no_mmap);
1966
1967ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
1968{
1969	ssize_t res;
1970	struct msghdr msg = {.msg_flags = flags};
1971	struct kvec iov;
1972	char *kaddr = kmap(page);
1973	iov.iov_base = kaddr + offset;
1974	iov.iov_len = size;
1975	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
1976	kunmap(page);
1977	return res;
1978}
1979EXPORT_SYMBOL(sock_no_sendpage);
1980
1981/*
1982 *	Default Socket Callbacks
1983 */
1984
1985static void sock_def_wakeup(struct sock *sk)
1986{
1987	struct socket_wq *wq;
1988
1989	rcu_read_lock();
1990	wq = rcu_dereference(sk->sk_wq);
1991	if (wq_has_sleeper(wq))
1992		wake_up_interruptible_all(&wq->wait);
1993	rcu_read_unlock();
1994}
1995
1996static void sock_def_error_report(struct sock *sk)
1997{
1998	struct socket_wq *wq;
1999
2000	rcu_read_lock();
2001	wq = rcu_dereference(sk->sk_wq);
2002	if (wq_has_sleeper(wq))
2003		wake_up_interruptible_poll(&wq->wait, POLLERR);
2004	sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2005	rcu_read_unlock();
2006}
2007
2008static void sock_def_readable(struct sock *sk, int len)
2009{
2010	struct socket_wq *wq;
2011
2012	rcu_read_lock();
2013	wq = rcu_dereference(sk->sk_wq);
2014	if (wq_has_sleeper(wq))
2015		wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
2016						POLLRDNORM | POLLRDBAND);
2017	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2018	rcu_read_unlock();
2019}
2020
2021static void sock_def_write_space(struct sock *sk)
2022{
2023	struct socket_wq *wq;
2024
2025	rcu_read_lock();
2026
2027	/* Do not wake up a writer until he can make "significant"
2028	 * progress.  --DaveM
2029	 */
2030	if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
2031		wq = rcu_dereference(sk->sk_wq);
2032		if (wq_has_sleeper(wq))
2033			wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
2034						POLLWRNORM | POLLWRBAND);
2035
2036		/* Should agree with poll, otherwise some programs break */
2037		if (sock_writeable(sk))
2038			sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2039	}
2040
2041	rcu_read_unlock();
2042}
2043
2044static void sock_def_destruct(struct sock *sk)
2045{
2046	kfree(sk->sk_protinfo);
2047}
2048
2049void sk_send_sigurg(struct sock *sk)
2050{
2051	if (sk->sk_socket && sk->sk_socket->file)
2052		if (send_sigurg(&sk->sk_socket->file->f_owner))
2053			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2054}
2055EXPORT_SYMBOL(sk_send_sigurg);
2056
2057void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2058		    unsigned long expires)
2059{
2060	if (!mod_timer(timer, expires))
2061		sock_hold(sk);
2062}
2063EXPORT_SYMBOL(sk_reset_timer);
2064
2065void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2066{
2067	if (timer_pending(timer) && del_timer(timer))
2068		__sock_put(sk);
2069}
2070EXPORT_SYMBOL(sk_stop_timer);
2071
2072void sock_init_data(struct socket *sock, struct sock *sk)
2073{
2074	skb_queue_head_init(&sk->sk_receive_queue);
2075	skb_queue_head_init(&sk->sk_write_queue);
2076	skb_queue_head_init(&sk->sk_error_queue);
2077#ifdef CONFIG_NET_DMA
2078	skb_queue_head_init(&sk->sk_async_wait_queue);
2079#endif
2080
2081	sk->sk_send_head	=	NULL;
2082
2083	init_timer(&sk->sk_timer);
2084
2085	sk->sk_allocation	=	GFP_KERNEL;
2086	sk->sk_rcvbuf		=	sysctl_rmem_default;
2087	sk->sk_sndbuf		=	sysctl_wmem_default;
2088	sk->sk_state		=	TCP_CLOSE;
2089	sk_set_socket(sk, sock);
2090
2091	sock_set_flag(sk, SOCK_ZAPPED);
2092
2093	if (sock) {
2094		sk->sk_type	=	sock->type;
2095		sk->sk_wq	=	sock->wq;
2096		sock->sk	=	sk;
2097	} else
2098		sk->sk_wq	=	NULL;
2099
2100	spin_lock_init(&sk->sk_dst_lock);
2101	rwlock_init(&sk->sk_callback_lock);
2102	lockdep_set_class_and_name(&sk->sk_callback_lock,
2103			af_callback_keys + sk->sk_family,
2104			af_family_clock_key_strings[sk->sk_family]);
2105
2106	sk->sk_state_change	=	sock_def_wakeup;
2107	sk->sk_data_ready	=	sock_def_readable;
2108	sk->sk_write_space	=	sock_def_write_space;
2109	sk->sk_error_report	=	sock_def_error_report;
2110	sk->sk_destruct		=	sock_def_destruct;
2111
2112	sk->sk_sndmsg_page	=	NULL;
2113	sk->sk_sndmsg_off	=	0;
2114	sk->sk_peek_off		=	-1;
2115
2116	sk->sk_peer_pid 	=	NULL;
2117	sk->sk_peer_cred	=	NULL;
2118	sk->sk_write_pending	=	0;
2119	sk->sk_rcvlowat		=	1;
2120	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
2121	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
2122
2123	sk->sk_stamp = ktime_set(-1L, 0);
2124
2125	/*
2126	 * Before updating sk_refcnt, we must commit prior changes to memory
2127	 * (Documentation/RCU/rculist_nulls.txt for details)
2128	 */
2129	smp_wmb();
2130	atomic_set(&sk->sk_refcnt, 1);
2131	atomic_set(&sk->sk_drops, 0);
2132}
2133EXPORT_SYMBOL(sock_init_data);
2134
2135void lock_sock_nested(struct sock *sk, int subclass)
2136{
2137	might_sleep();
2138	spin_lock_bh(&sk->sk_lock.slock);
2139	if (sk->sk_lock.owned)
2140		__lock_sock(sk);
2141	sk->sk_lock.owned = 1;
2142	spin_unlock(&sk->sk_lock.slock);
2143	/*
2144	 * The sk_lock has mutex_lock() semantics here:
2145	 */
2146	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2147	local_bh_enable();
2148}
2149EXPORT_SYMBOL(lock_sock_nested);
2150
2151void release_sock(struct sock *sk)
2152{
2153	/*
2154	 * The sk_lock has mutex_unlock() semantics:
2155	 */
2156	mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
2157
2158	spin_lock_bh(&sk->sk_lock.slock);
2159	if (sk->sk_backlog.tail)
2160		__release_sock(sk);
2161	sk->sk_lock.owned = 0;
2162	if (waitqueue_active(&sk->sk_lock.wq))
2163		wake_up(&sk->sk_lock.wq);
2164	spin_unlock_bh(&sk->sk_lock.slock);
2165}
2166EXPORT_SYMBOL(release_sock);
2167
2168/**
2169 * lock_sock_fast - fast version of lock_sock
2170 * @sk: socket
2171 *
2172 * This version should be used for very small section, where process wont block
2173 * return false if fast path is taken
2174 *   sk_lock.slock locked, owned = 0, BH disabled
2175 * return true if slow path is taken
2176 *   sk_lock.slock unlocked, owned = 1, BH enabled
2177 */
2178bool lock_sock_fast(struct sock *sk)
2179{
2180	might_sleep();
2181	spin_lock_bh(&sk->sk_lock.slock);
2182
2183	if (!sk->sk_lock.owned)
2184		/*
2185		 * Note : We must disable BH
2186		 */
2187		return false;
2188
2189	__lock_sock(sk);
2190	sk->sk_lock.owned = 1;
2191	spin_unlock(&sk->sk_lock.slock);
2192	/*
2193	 * The sk_lock has mutex_lock() semantics here:
2194	 */
2195	mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2196	local_bh_enable();
2197	return true;
2198}
2199EXPORT_SYMBOL(lock_sock_fast);
2200
2201int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2202{
2203	struct timeval tv;
2204	if (!sock_flag(sk, SOCK_TIMESTAMP))
2205		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2206	tv = ktime_to_timeval(sk->sk_stamp);
2207	if (tv.tv_sec == -1)
2208		return -ENOENT;
2209	if (tv.tv_sec == 0) {
2210		sk->sk_stamp = ktime_get_real();
2211		tv = ktime_to_timeval(sk->sk_stamp);
2212	}
2213	return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2214}
2215EXPORT_SYMBOL(sock_get_timestamp);
2216
2217int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2218{
2219	struct timespec ts;
2220	if (!sock_flag(sk, SOCK_TIMESTAMP))
2221		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2222	ts = ktime_to_timespec(sk->sk_stamp);
2223	if (ts.tv_sec == -1)
2224		return -ENOENT;
2225	if (ts.tv_sec == 0) {
2226		sk->sk_stamp = ktime_get_real();
2227		ts = ktime_to_timespec(sk->sk_stamp);
2228	}
2229	return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2230}
2231EXPORT_SYMBOL(sock_get_timestampns);
2232
2233void sock_enable_timestamp(struct sock *sk, int flag)
2234{
2235	if (!sock_flag(sk, flag)) {
2236		unsigned long previous_flags = sk->sk_flags;
2237
2238		sock_set_flag(sk, flag);
2239		/*
2240		 * we just set one of the two flags which require net
2241		 * time stamping, but time stamping might have been on
2242		 * already because of the other one
2243		 */
2244		if (!(previous_flags & SK_FLAGS_TIMESTAMP))
2245			net_enable_timestamp();
2246	}
2247}
2248
2249/*
2250 *	Get a socket option on an socket.
2251 *
2252 *	FIX: POSIX 1003.1g is very ambiguous here. It states that
2253 *	asynchronous errors should be reported by getsockopt. We assume
2254 *	this means if you specify SO_ERROR (otherwise whats the point of it).
2255 */
2256int sock_common_getsockopt(struct socket *sock, int level, int optname,
2257			   char __user *optval, int __user *optlen)
2258{
2259	struct sock *sk = sock->sk;
2260
2261	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2262}
2263EXPORT_SYMBOL(sock_common_getsockopt);
2264
2265#ifdef CONFIG_COMPAT
2266int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2267				  char __user *optval, int __user *optlen)
2268{
2269	struct sock *sk = sock->sk;
2270
2271	if (sk->sk_prot->compat_getsockopt != NULL)
2272		return sk->sk_prot->compat_getsockopt(sk, level, optname,
2273						      optval, optlen);
2274	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2275}
2276EXPORT_SYMBOL(compat_sock_common_getsockopt);
2277#endif
2278
2279int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
2280			struct msghdr *msg, size_t size, int flags)
2281{
2282	struct sock *sk = sock->sk;
2283	int addr_len = 0;
2284	int err;
2285
2286	err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
2287				   flags & ~MSG_DONTWAIT, &addr_len);
2288	if (err >= 0)
2289		msg->msg_namelen = addr_len;
2290	return err;
2291}
2292EXPORT_SYMBOL(sock_common_recvmsg);
2293
2294/*
2295 *	Set socket options on an inet socket.
2296 */
2297int sock_common_setsockopt(struct socket *sock, int level, int optname,
2298			   char __user *optval, unsigned int optlen)
2299{
2300	struct sock *sk = sock->sk;
2301
2302	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2303}
2304EXPORT_SYMBOL(sock_common_setsockopt);
2305
2306#ifdef CONFIG_COMPAT
2307int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2308				  char __user *optval, unsigned int optlen)
2309{
2310	struct sock *sk = sock->sk;
2311
2312	if (sk->sk_prot->compat_setsockopt != NULL)
2313		return sk->sk_prot->compat_setsockopt(sk, level, optname,
2314						      optval, optlen);
2315	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2316}
2317EXPORT_SYMBOL(compat_sock_common_setsockopt);
2318#endif
2319
2320void sk_common_release(struct sock *sk)
2321{
2322	if (sk->sk_prot->destroy)
2323		sk->sk_prot->destroy(sk);
2324
2325	/*
2326	 * Observation: when sock_common_release is called, processes have
2327	 * no access to socket. But net still has.
2328	 * Step one, detach it from networking:
2329	 *
2330	 * A. Remove from hash tables.
2331	 */
2332
2333	sk->sk_prot->unhash(sk);
2334
2335	/*
2336	 * In this point socket cannot receive new packets, but it is possible
2337	 * that some packets are in flight because some CPU runs receiver and
2338	 * did hash table lookup before we unhashed socket. They will achieve
2339	 * receive queue and will be purged by socket destructor.
2340	 *
2341	 * Also we still have packets pending on receive queue and probably,
2342	 * our own packets waiting in device queues. sock_destroy will drain
2343	 * receive queue, but transmitted packets will delay socket destruction
2344	 * until the last reference will be released.
2345	 */
2346
2347	sock_orphan(sk);
2348
2349	xfrm_sk_free_policy(sk);
2350
2351	sk_refcnt_debug_release(sk);
2352	sock_put(sk);
2353}
2354EXPORT_SYMBOL(sk_common_release);
2355
2356#ifdef CONFIG_PROC_FS
2357#define PROTO_INUSE_NR	64	/* should be enough for the first time */
2358struct prot_inuse {
2359	int val[PROTO_INUSE_NR];
2360};
2361
2362static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2363
2364#ifdef CONFIG_NET_NS
2365void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2366{
2367	__this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
2368}
2369EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2370
2371int sock_prot_inuse_get(struct net *net, struct proto *prot)
2372{
2373	int cpu, idx = prot->inuse_idx;
2374	int res = 0;
2375
2376	for_each_possible_cpu(cpu)
2377		res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2378
2379	return res >= 0 ? res : 0;
2380}
2381EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2382
2383static int __net_init sock_inuse_init_net(struct net *net)
2384{
2385	net->core.inuse = alloc_percpu(struct prot_inuse);
2386	return net->core.inuse ? 0 : -ENOMEM;
2387}
2388
2389static void __net_exit sock_inuse_exit_net(struct net *net)
2390{
2391	free_percpu(net->core.inuse);
2392}
2393
2394static struct pernet_operations net_inuse_ops = {
2395	.init = sock_inuse_init_net,
2396	.exit = sock_inuse_exit_net,
2397};
2398
2399static __init int net_inuse_init(void)
2400{
2401	if (register_pernet_subsys(&net_inuse_ops))
2402		panic("Cannot initialize net inuse counters");
2403
2404	return 0;
2405}
2406
2407core_initcall(net_inuse_init);
2408#else
2409static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2410
2411void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2412{
2413	__this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
2414}
2415EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2416
2417int sock_prot_inuse_get(struct net *net, struct proto *prot)
2418{
2419	int cpu, idx = prot->inuse_idx;
2420	int res = 0;
2421
2422	for_each_possible_cpu(cpu)
2423		res += per_cpu(prot_inuse, cpu).val[idx];
2424
2425	return res >= 0 ? res : 0;
2426}
2427EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2428#endif
2429
2430static void assign_proto_idx(struct proto *prot)
2431{
2432	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2433
2434	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2435		printk(KERN_ERR "PROTO_INUSE_NR exhausted\n");
2436		return;
2437	}
2438
2439	set_bit(prot->inuse_idx, proto_inuse_idx);
2440}
2441
2442static void release_proto_idx(struct proto *prot)
2443{
2444	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2445		clear_bit(prot->inuse_idx, proto_inuse_idx);
2446}
2447#else
2448static inline void assign_proto_idx(struct proto *prot)
2449{
2450}
2451
2452static inline void release_proto_idx(struct proto *prot)
2453{
2454}
2455#endif
2456
2457int proto_register(struct proto *prot, int alloc_slab)
2458{
2459	if (alloc_slab) {
2460		prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2461					SLAB_HWCACHE_ALIGN | prot->slab_flags,
2462					NULL);
2463
2464		if (prot->slab == NULL) {
2465			printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n",
2466			       prot->name);
2467			goto out;
2468		}
2469
2470		if (prot->rsk_prot != NULL) {
2471			prot->rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", prot->name);
2472			if (prot->rsk_prot->slab_name == NULL)
2473				goto out_free_sock_slab;
2474
2475			prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
2476								 prot->rsk_prot->obj_size, 0,
2477								 SLAB_HWCACHE_ALIGN, NULL);
2478
2479			if (prot->rsk_prot->slab == NULL) {
2480				printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n",
2481				       prot->name);
2482				goto out_free_request_sock_slab_name;
2483			}
2484		}
2485
2486		if (prot->twsk_prot != NULL) {
2487			prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
2488
2489			if (prot->twsk_prot->twsk_slab_name == NULL)
2490				goto out_free_request_sock_slab;
2491
2492			prot->twsk_prot->twsk_slab =
2493				kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2494						  prot->twsk_prot->twsk_obj_size,
2495						  0,
2496						  SLAB_HWCACHE_ALIGN |
2497							prot->slab_flags,
2498						  NULL);
2499			if (prot->twsk_prot->twsk_slab == NULL)
2500				goto out_free_timewait_sock_slab_name;
2501		}
2502	}
2503
2504	mutex_lock(&proto_list_mutex);
2505	list_add(&prot->node, &proto_list);
2506	assign_proto_idx(prot);
2507	mutex_unlock(&proto_list_mutex);
2508	return 0;
2509
2510out_free_timewait_sock_slab_name:
2511	kfree(prot->twsk_prot->twsk_slab_name);
2512out_free_request_sock_slab:
2513	if (prot->rsk_prot && prot->rsk_prot->slab) {
2514		kmem_cache_destroy(prot->rsk_prot->slab);
2515		prot->rsk_prot->slab = NULL;
2516	}
2517out_free_request_sock_slab_name:
2518	if (prot->rsk_prot)
2519		kfree(prot->rsk_prot->slab_name);
2520out_free_sock_slab:
2521	kmem_cache_destroy(prot->slab);
2522	prot->slab = NULL;
2523out:
2524	return -ENOBUFS;
2525}
2526EXPORT_SYMBOL(proto_register);
2527
2528void proto_unregister(struct proto *prot)
2529{
2530	mutex_lock(&proto_list_mutex);
2531	release_proto_idx(prot);
2532	list_del(&prot->node);
2533	mutex_unlock(&proto_list_mutex);
2534
2535	if (prot->slab != NULL) {
2536		kmem_cache_destroy(prot->slab);
2537		prot->slab = NULL;
2538	}
2539
2540	if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2541		kmem_cache_destroy(prot->rsk_prot->slab);
2542		kfree(prot->rsk_prot->slab_name);
2543		prot->rsk_prot->slab = NULL;
2544	}
2545
2546	if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2547		kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2548		kfree(prot->twsk_prot->twsk_slab_name);
2549		prot->twsk_prot->twsk_slab = NULL;
2550	}
2551}
2552EXPORT_SYMBOL(proto_unregister);
2553
2554#ifdef CONFIG_PROC_FS
2555static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2556	__acquires(proto_list_mutex)
2557{
2558	mutex_lock(&proto_list_mutex);
2559	return seq_list_start_head(&proto_list, *pos);
2560}
2561
2562static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2563{
2564	return seq_list_next(v, &proto_list, pos);
2565}
2566
2567static void proto_seq_stop(struct seq_file *seq, void *v)
2568	__releases(proto_list_mutex)
2569{
2570	mutex_unlock(&proto_list_mutex);
2571}
2572
2573static char proto_method_implemented(const void *method)
2574{
2575	return method == NULL ? 'n' : 'y';
2576}
2577static long sock_prot_memory_allocated(struct proto *proto)
2578{
2579	return proto->memory_allocated != NULL ? proto_memory_allocated(proto): -1L;
2580}
2581
2582static char *sock_prot_memory_pressure(struct proto *proto)
2583{
2584	return proto->memory_pressure != NULL ?
2585	proto_memory_pressure(proto) ? "yes" : "no" : "NI";
2586}
2587
2588static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2589{
2590
2591	seq_printf(seq, "%-9s %4u %6d  %6ld   %-3s %6u   %-3s  %-10s "
2592			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2593		   proto->name,
2594		   proto->obj_size,
2595		   sock_prot_inuse_get(seq_file_net(seq), proto),
2596		   sock_prot_memory_allocated(proto),
2597		   sock_prot_memory_pressure(proto),
2598		   proto->max_header,
2599		   proto->slab == NULL ? "no" : "yes",
2600		   module_name(proto->owner),
2601		   proto_method_implemented(proto->close),
2602		   proto_method_implemented(proto->connect),
2603		   proto_method_implemented(proto->disconnect),
2604		   proto_method_implemented(proto->accept),
2605		   proto_method_implemented(proto->ioctl),
2606		   proto_method_implemented(proto->init),
2607		   proto_method_implemented(proto->destroy),
2608		   proto_method_implemented(proto->shutdown),
2609		   proto_method_implemented(proto->setsockopt),
2610		   proto_method_implemented(proto->getsockopt),
2611		   proto_method_implemented(proto->sendmsg),
2612		   proto_method_implemented(proto->recvmsg),
2613		   proto_method_implemented(proto->sendpage),
2614		   proto_method_implemented(proto->bind),
2615		   proto_method_implemented(proto->backlog_rcv),
2616		   proto_method_implemented(proto->hash),
2617		   proto_method_implemented(proto->unhash),
2618		   proto_method_implemented(proto->get_port),
2619		   proto_method_implemented(proto->enter_memory_pressure));
2620}
2621
2622static int proto_seq_show(struct seq_file *seq, void *v)
2623{
2624	if (v == &proto_list)
2625		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2626			   "protocol",
2627			   "size",
2628			   "sockets",
2629			   "memory",
2630			   "press",
2631			   "maxhdr",
2632			   "slab",
2633			   "module",
2634			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2635	else
2636		proto_seq_printf(seq, list_entry(v, struct proto, node));
2637	return 0;
2638}
2639
2640static const struct seq_operations proto_seq_ops = {
2641	.start  = proto_seq_start,
2642	.next   = proto_seq_next,
2643	.stop   = proto_seq_stop,
2644	.show   = proto_seq_show,
2645};
2646
2647static int proto_seq_open(struct inode *inode, struct file *file)
2648{
2649	return seq_open_net(inode, file, &proto_seq_ops,
2650			    sizeof(struct seq_net_private));
2651}
2652
2653static const struct file_operations proto_seq_fops = {
2654	.owner		= THIS_MODULE,
2655	.open		= proto_seq_open,
2656	.read		= seq_read,
2657	.llseek		= seq_lseek,
2658	.release	= seq_release_net,
2659};
2660
2661static __net_init int proto_init_net(struct net *net)
2662{
2663	if (!proc_net_fops_create(net, "protocols", S_IRUGO, &proto_seq_fops))
2664		return -ENOMEM;
2665
2666	return 0;
2667}
2668
2669static __net_exit void proto_exit_net(struct net *net)
2670{
2671	proc_net_remove(net, "protocols");
2672}
2673
2674
2675static __net_initdata struct pernet_operations proto_net_ops = {
2676	.init = proto_init_net,
2677	.exit = proto_exit_net,
2678};
2679
2680static int __init proto_init(void)
2681{
2682	return register_pernet_subsys(&proto_net_ops);
2683}
2684
2685subsys_initcall(proto_init);
2686
2687#endif /* PROC_FS */
2688