sock.c revision 51e4e7faba786d33e5e33f8776c5027a1c8d6fb7
1/*
2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
3 *		operating system.  INET is implemented using the  BSD Socket
4 *		interface as the means of communication with the user level.
5 *
6 *		Generic socket support routines. Memory allocators, socket lock/release
7 *		handler for protocols to use and generic option handler.
8 *
9 *
10 * Authors:	Ross Biro
11 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 *		Florian La Roche, <flla@stud.uni-sb.de>
13 *		Alan Cox, <A.Cox@swansea.ac.uk>
14 *
15 * Fixes:
16 *		Alan Cox	: 	Numerous verify_area() problems
17 *		Alan Cox	:	Connecting on a connecting socket
18 *					now returns an error for tcp.
19 *		Alan Cox	:	sock->protocol is set correctly.
20 *					and is not sometimes left as 0.
21 *		Alan Cox	:	connect handles icmp errors on a
22 *					connect properly. Unfortunately there
23 *					is a restart syscall nasty there. I
24 *					can't match BSD without hacking the C
25 *					library. Ideas urgently sought!
26 *		Alan Cox	:	Disallow bind() to addresses that are
27 *					not ours - especially broadcast ones!!
28 *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
29 *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
30 *					instead they leave that for the DESTROY timer.
31 *		Alan Cox	:	Clean up error flag in accept
32 *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
33 *					was buggy. Put a remove_sock() in the handler
34 *					for memory when we hit 0. Also altered the timer
35 *					code. The ACK stuff can wait and needs major
36 *					TCP layer surgery.
37 *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
38 *					and fixed timer/inet_bh race.
39 *		Alan Cox	:	Added zapped flag for TCP
40 *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
41 *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
43 *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
46 *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
47 *	Pauline Middelink	:	identd support
48 *		Alan Cox	:	Fixed connect() taking signals I think.
49 *		Alan Cox	:	SO_LINGER supported
50 *		Alan Cox	:	Error reporting fixes
51 *		Anonymous	:	inet_create tidied up (sk->reuse setting)
52 *		Alan Cox	:	inet sockets don't set sk->type!
53 *		Alan Cox	:	Split socket option code
54 *		Alan Cox	:	Callbacks
55 *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
56 *		Alex		:	Removed restriction on inet fioctl
57 *		Alan Cox	:	Splitting INET from NET core
58 *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
59 *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
60 *		Alan Cox	:	Split IP from generic code
61 *		Alan Cox	:	New kfree_skbmem()
62 *		Alan Cox	:	Make SO_DEBUG superuser only.
63 *		Alan Cox	:	Allow anyone to clear SO_DEBUG
64 *					(compatibility fix)
65 *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
66 *		Alan Cox	:	Allocator for a socket is settable.
67 *		Alan Cox	:	SO_ERROR includes soft errors.
68 *		Alan Cox	:	Allow NULL arguments on some SO_ opts
69 *		Alan Cox	: 	Generic socket allocation to make hooks
70 *					easier (suggested by Craig Metz).
71 *		Michael Pall	:	SO_ERROR returns positive errno again
72 *              Steve Whitehouse:       Added default destructor to free
73 *                                      protocol private data.
74 *              Steve Whitehouse:       Added various other default routines
75 *                                      common to several socket families.
76 *              Chris Evans     :       Call suser() check last on F_SETOWN
77 *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
79 *		Andi Kleen	:	Fix write_space callback
80 *		Chris Evans	:	Security fixes - signedness again
81 *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
82 *
83 * To Fix:
84 *
85 *
86 *		This program is free software; you can redistribute it and/or
87 *		modify it under the terms of the GNU General Public License
88 *		as published by the Free Software Foundation; either version
89 *		2 of the License, or (at your option) any later version.
90 */
91
92#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
93
94#include <linux/capability.h>
95#include <linux/errno.h>
96#include <linux/types.h>
97#include <linux/socket.h>
98#include <linux/in.h>
99#include <linux/kernel.h>
100#include <linux/module.h>
101#include <linux/proc_fs.h>
102#include <linux/seq_file.h>
103#include <linux/sched.h>
104#include <linux/timer.h>
105#include <linux/string.h>
106#include <linux/sockios.h>
107#include <linux/net.h>
108#include <linux/mm.h>
109#include <linux/slab.h>
110#include <linux/interrupt.h>
111#include <linux/poll.h>
112#include <linux/tcp.h>
113#include <linux/init.h>
114#include <linux/highmem.h>
115#include <linux/user_namespace.h>
116#include <linux/static_key.h>
117#include <linux/memcontrol.h>
118#include <linux/prefetch.h>
119
120#include <asm/uaccess.h>
121
122#include <linux/netdevice.h>
123#include <net/protocol.h>
124#include <linux/skbuff.h>
125#include <net/net_namespace.h>
126#include <net/request_sock.h>
127#include <net/sock.h>
128#include <linux/net_tstamp.h>
129#include <net/xfrm.h>
130#include <linux/ipsec.h>
131#include <net/cls_cgroup.h>
132#include <net/netprio_cgroup.h>
133
134#include <linux/filter.h>
135
136#include <trace/events/sock.h>
137
138#ifdef CONFIG_INET
139#include <net/tcp.h>
140#endif
141
142static DEFINE_MUTEX(proto_list_mutex);
143static LIST_HEAD(proto_list);
144
145#ifdef CONFIG_MEMCG_KMEM
146int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
147{
148	struct proto *proto;
149	int ret = 0;
150
151	mutex_lock(&proto_list_mutex);
152	list_for_each_entry(proto, &proto_list, node) {
153		if (proto->init_cgroup) {
154			ret = proto->init_cgroup(memcg, ss);
155			if (ret)
156				goto out;
157		}
158	}
159
160	mutex_unlock(&proto_list_mutex);
161	return ret;
162out:
163	list_for_each_entry_continue_reverse(proto, &proto_list, node)
164		if (proto->destroy_cgroup)
165			proto->destroy_cgroup(memcg);
166	mutex_unlock(&proto_list_mutex);
167	return ret;
168}
169
170void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
171{
172	struct proto *proto;
173
174	mutex_lock(&proto_list_mutex);
175	list_for_each_entry_reverse(proto, &proto_list, node)
176		if (proto->destroy_cgroup)
177			proto->destroy_cgroup(memcg);
178	mutex_unlock(&proto_list_mutex);
179}
180#endif
181
182/*
183 * Each address family might have different locking rules, so we have
184 * one slock key per address family:
185 */
186static struct lock_class_key af_family_keys[AF_MAX];
187static struct lock_class_key af_family_slock_keys[AF_MAX];
188
189struct static_key memcg_socket_limit_enabled;
190EXPORT_SYMBOL(memcg_socket_limit_enabled);
191
192/*
193 * Make lock validator output more readable. (we pre-construct these
194 * strings build-time, so that runtime initialization of socket
195 * locks is fast):
196 */
197static const char *const af_family_key_strings[AF_MAX+1] = {
198  "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX"     , "sk_lock-AF_INET"     ,
199  "sk_lock-AF_AX25"  , "sk_lock-AF_IPX"      , "sk_lock-AF_APPLETALK",
200  "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE"   , "sk_lock-AF_ATMPVC"   ,
201  "sk_lock-AF_X25"   , "sk_lock-AF_INET6"    , "sk_lock-AF_ROSE"     ,
202  "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI"  , "sk_lock-AF_SECURITY" ,
203  "sk_lock-AF_KEY"   , "sk_lock-AF_NETLINK"  , "sk_lock-AF_PACKET"   ,
204  "sk_lock-AF_ASH"   , "sk_lock-AF_ECONET"   , "sk_lock-AF_ATMSVC"   ,
205  "sk_lock-AF_RDS"   , "sk_lock-AF_SNA"      , "sk_lock-AF_IRDA"     ,
206  "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE"  , "sk_lock-AF_LLC"      ,
207  "sk_lock-27"       , "sk_lock-28"          , "sk_lock-AF_CAN"      ,
208  "sk_lock-AF_TIPC"  , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV"        ,
209  "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN"     , "sk_lock-AF_PHONET"   ,
210  "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG"      ,
211  "sk_lock-AF_NFC"   , "sk_lock-AF_MAX"
212};
213static const char *const af_family_slock_key_strings[AF_MAX+1] = {
214  "slock-AF_UNSPEC", "slock-AF_UNIX"     , "slock-AF_INET"     ,
215  "slock-AF_AX25"  , "slock-AF_IPX"      , "slock-AF_APPLETALK",
216  "slock-AF_NETROM", "slock-AF_BRIDGE"   , "slock-AF_ATMPVC"   ,
217  "slock-AF_X25"   , "slock-AF_INET6"    , "slock-AF_ROSE"     ,
218  "slock-AF_DECnet", "slock-AF_NETBEUI"  , "slock-AF_SECURITY" ,
219  "slock-AF_KEY"   , "slock-AF_NETLINK"  , "slock-AF_PACKET"   ,
220  "slock-AF_ASH"   , "slock-AF_ECONET"   , "slock-AF_ATMSVC"   ,
221  "slock-AF_RDS"   , "slock-AF_SNA"      , "slock-AF_IRDA"     ,
222  "slock-AF_PPPOX" , "slock-AF_WANPIPE"  , "slock-AF_LLC"      ,
223  "slock-27"       , "slock-28"          , "slock-AF_CAN"      ,
224  "slock-AF_TIPC"  , "slock-AF_BLUETOOTH", "slock-AF_IUCV"     ,
225  "slock-AF_RXRPC" , "slock-AF_ISDN"     , "slock-AF_PHONET"   ,
226  "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG"      ,
227  "slock-AF_NFC"   , "slock-AF_MAX"
228};
229static const char *const af_family_clock_key_strings[AF_MAX+1] = {
230  "clock-AF_UNSPEC", "clock-AF_UNIX"     , "clock-AF_INET"     ,
231  "clock-AF_AX25"  , "clock-AF_IPX"      , "clock-AF_APPLETALK",
232  "clock-AF_NETROM", "clock-AF_BRIDGE"   , "clock-AF_ATMPVC"   ,
233  "clock-AF_X25"   , "clock-AF_INET6"    , "clock-AF_ROSE"     ,
234  "clock-AF_DECnet", "clock-AF_NETBEUI"  , "clock-AF_SECURITY" ,
235  "clock-AF_KEY"   , "clock-AF_NETLINK"  , "clock-AF_PACKET"   ,
236  "clock-AF_ASH"   , "clock-AF_ECONET"   , "clock-AF_ATMSVC"   ,
237  "clock-AF_RDS"   , "clock-AF_SNA"      , "clock-AF_IRDA"     ,
238  "clock-AF_PPPOX" , "clock-AF_WANPIPE"  , "clock-AF_LLC"      ,
239  "clock-27"       , "clock-28"          , "clock-AF_CAN"      ,
240  "clock-AF_TIPC"  , "clock-AF_BLUETOOTH", "clock-AF_IUCV"     ,
241  "clock-AF_RXRPC" , "clock-AF_ISDN"     , "clock-AF_PHONET"   ,
242  "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG"      ,
243  "clock-AF_NFC"   , "clock-AF_MAX"
244};
245
246/*
247 * sk_callback_lock locking rules are per-address-family,
248 * so split the lock classes by using a per-AF key:
249 */
250static struct lock_class_key af_callback_keys[AF_MAX];
251
252/* Take into consideration the size of the struct sk_buff overhead in the
253 * determination of these values, since that is non-constant across
254 * platforms.  This makes socket queueing behavior and performance
255 * not depend upon such differences.
256 */
257#define _SK_MEM_PACKETS		256
258#define _SK_MEM_OVERHEAD	SKB_TRUESIZE(256)
259#define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
260#define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
261
262/* Run time adjustable parameters. */
263__u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
264EXPORT_SYMBOL(sysctl_wmem_max);
265__u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
266EXPORT_SYMBOL(sysctl_rmem_max);
267__u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
268__u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
269
270/* Maximal space eaten by iovec or ancillary data plus some space */
271int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
272EXPORT_SYMBOL(sysctl_optmem_max);
273
274struct static_key memalloc_socks = STATIC_KEY_INIT_FALSE;
275EXPORT_SYMBOL_GPL(memalloc_socks);
276
277/**
278 * sk_set_memalloc - sets %SOCK_MEMALLOC
279 * @sk: socket to set it on
280 *
281 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
282 * It's the responsibility of the admin to adjust min_free_kbytes
283 * to meet the requirements
284 */
285void sk_set_memalloc(struct sock *sk)
286{
287	sock_set_flag(sk, SOCK_MEMALLOC);
288	sk->sk_allocation |= __GFP_MEMALLOC;
289	static_key_slow_inc(&memalloc_socks);
290}
291EXPORT_SYMBOL_GPL(sk_set_memalloc);
292
293void sk_clear_memalloc(struct sock *sk)
294{
295	sock_reset_flag(sk, SOCK_MEMALLOC);
296	sk->sk_allocation &= ~__GFP_MEMALLOC;
297	static_key_slow_dec(&memalloc_socks);
298
299	/*
300	 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
301	 * progress of swapping. However, if SOCK_MEMALLOC is cleared while
302	 * it has rmem allocations there is a risk that the user of the
303	 * socket cannot make forward progress due to exceeding the rmem
304	 * limits. By rights, sk_clear_memalloc() should only be called
305	 * on sockets being torn down but warn and reset the accounting if
306	 * that assumption breaks.
307	 */
308	if (WARN_ON(sk->sk_forward_alloc))
309		sk_mem_reclaim(sk);
310}
311EXPORT_SYMBOL_GPL(sk_clear_memalloc);
312
313int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
314{
315	int ret;
316	unsigned long pflags = current->flags;
317
318	/* these should have been dropped before queueing */
319	BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
320
321	current->flags |= PF_MEMALLOC;
322	ret = sk->sk_backlog_rcv(sk, skb);
323	tsk_restore_flags(current, pflags, PF_MEMALLOC);
324
325	return ret;
326}
327EXPORT_SYMBOL(__sk_backlog_rcv);
328
329#if defined(CONFIG_CGROUPS)
330#if !defined(CONFIG_NET_CLS_CGROUP)
331int net_cls_subsys_id = -1;
332EXPORT_SYMBOL_GPL(net_cls_subsys_id);
333#endif
334#if !defined(CONFIG_NETPRIO_CGROUP)
335int net_prio_subsys_id = -1;
336EXPORT_SYMBOL_GPL(net_prio_subsys_id);
337#endif
338#endif
339
340static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
341{
342	struct timeval tv;
343
344	if (optlen < sizeof(tv))
345		return -EINVAL;
346	if (copy_from_user(&tv, optval, sizeof(tv)))
347		return -EFAULT;
348	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
349		return -EDOM;
350
351	if (tv.tv_sec < 0) {
352		static int warned __read_mostly;
353
354		*timeo_p = 0;
355		if (warned < 10 && net_ratelimit()) {
356			warned++;
357			pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
358				__func__, current->comm, task_pid_nr(current));
359		}
360		return 0;
361	}
362	*timeo_p = MAX_SCHEDULE_TIMEOUT;
363	if (tv.tv_sec == 0 && tv.tv_usec == 0)
364		return 0;
365	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
366		*timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
367	return 0;
368}
369
370static void sock_warn_obsolete_bsdism(const char *name)
371{
372	static int warned;
373	static char warncomm[TASK_COMM_LEN];
374	if (strcmp(warncomm, current->comm) && warned < 5) {
375		strcpy(warncomm,  current->comm);
376		pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
377			warncomm, name);
378		warned++;
379	}
380}
381
382#define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
383
384static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
385{
386	if (sk->sk_flags & flags) {
387		sk->sk_flags &= ~flags;
388		if (!(sk->sk_flags & SK_FLAGS_TIMESTAMP))
389			net_disable_timestamp();
390	}
391}
392
393
394int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
395{
396	int err;
397	int skb_len;
398	unsigned long flags;
399	struct sk_buff_head *list = &sk->sk_receive_queue;
400
401	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
402		atomic_inc(&sk->sk_drops);
403		trace_sock_rcvqueue_full(sk, skb);
404		return -ENOMEM;
405	}
406
407	err = sk_filter(sk, skb);
408	if (err)
409		return err;
410
411	if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
412		atomic_inc(&sk->sk_drops);
413		return -ENOBUFS;
414	}
415
416	skb->dev = NULL;
417	skb_set_owner_r(skb, sk);
418
419	/* Cache the SKB length before we tack it onto the receive
420	 * queue.  Once it is added it no longer belongs to us and
421	 * may be freed by other threads of control pulling packets
422	 * from the queue.
423	 */
424	skb_len = skb->len;
425
426	/* we escape from rcu protected region, make sure we dont leak
427	 * a norefcounted dst
428	 */
429	skb_dst_force(skb);
430
431	spin_lock_irqsave(&list->lock, flags);
432	skb->dropcount = atomic_read(&sk->sk_drops);
433	__skb_queue_tail(list, skb);
434	spin_unlock_irqrestore(&list->lock, flags);
435
436	if (!sock_flag(sk, SOCK_DEAD))
437		sk->sk_data_ready(sk, skb_len);
438	return 0;
439}
440EXPORT_SYMBOL(sock_queue_rcv_skb);
441
442int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
443{
444	int rc = NET_RX_SUCCESS;
445
446	if (sk_filter(sk, skb))
447		goto discard_and_relse;
448
449	skb->dev = NULL;
450
451	if (sk_rcvqueues_full(sk, skb, sk->sk_rcvbuf)) {
452		atomic_inc(&sk->sk_drops);
453		goto discard_and_relse;
454	}
455	if (nested)
456		bh_lock_sock_nested(sk);
457	else
458		bh_lock_sock(sk);
459	if (!sock_owned_by_user(sk)) {
460		/*
461		 * trylock + unlock semantics:
462		 */
463		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
464
465		rc = sk_backlog_rcv(sk, skb);
466
467		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
468	} else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
469		bh_unlock_sock(sk);
470		atomic_inc(&sk->sk_drops);
471		goto discard_and_relse;
472	}
473
474	bh_unlock_sock(sk);
475out:
476	sock_put(sk);
477	return rc;
478discard_and_relse:
479	kfree_skb(skb);
480	goto out;
481}
482EXPORT_SYMBOL(sk_receive_skb);
483
484void sk_reset_txq(struct sock *sk)
485{
486	sk_tx_queue_clear(sk);
487}
488EXPORT_SYMBOL(sk_reset_txq);
489
490struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
491{
492	struct dst_entry *dst = __sk_dst_get(sk);
493
494	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
495		sk_tx_queue_clear(sk);
496		RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
497		dst_release(dst);
498		return NULL;
499	}
500
501	return dst;
502}
503EXPORT_SYMBOL(__sk_dst_check);
504
505struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
506{
507	struct dst_entry *dst = sk_dst_get(sk);
508
509	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
510		sk_dst_reset(sk);
511		dst_release(dst);
512		return NULL;
513	}
514
515	return dst;
516}
517EXPORT_SYMBOL(sk_dst_check);
518
519static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
520{
521	int ret = -ENOPROTOOPT;
522#ifdef CONFIG_NETDEVICES
523	struct net *net = sock_net(sk);
524	char devname[IFNAMSIZ];
525	int index;
526
527	/* Sorry... */
528	ret = -EPERM;
529	if (!capable(CAP_NET_RAW))
530		goto out;
531
532	ret = -EINVAL;
533	if (optlen < 0)
534		goto out;
535
536	/* Bind this socket to a particular device like "eth0",
537	 * as specified in the passed interface name. If the
538	 * name is "" or the option length is zero the socket
539	 * is not bound.
540	 */
541	if (optlen > IFNAMSIZ - 1)
542		optlen = IFNAMSIZ - 1;
543	memset(devname, 0, sizeof(devname));
544
545	ret = -EFAULT;
546	if (copy_from_user(devname, optval, optlen))
547		goto out;
548
549	index = 0;
550	if (devname[0] != '\0') {
551		struct net_device *dev;
552
553		rcu_read_lock();
554		dev = dev_get_by_name_rcu(net, devname);
555		if (dev)
556			index = dev->ifindex;
557		rcu_read_unlock();
558		ret = -ENODEV;
559		if (!dev)
560			goto out;
561	}
562
563	lock_sock(sk);
564	sk->sk_bound_dev_if = index;
565	sk_dst_reset(sk);
566	release_sock(sk);
567
568	ret = 0;
569
570out:
571#endif
572
573	return ret;
574}
575
576static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
577{
578	if (valbool)
579		sock_set_flag(sk, bit);
580	else
581		sock_reset_flag(sk, bit);
582}
583
584/*
585 *	This is meant for all protocols to use and covers goings on
586 *	at the socket level. Everything here is generic.
587 */
588
589int sock_setsockopt(struct socket *sock, int level, int optname,
590		    char __user *optval, unsigned int optlen)
591{
592	struct sock *sk = sock->sk;
593	int val;
594	int valbool;
595	struct linger ling;
596	int ret = 0;
597
598	/*
599	 *	Options without arguments
600	 */
601
602	if (optname == SO_BINDTODEVICE)
603		return sock_bindtodevice(sk, optval, optlen);
604
605	if (optlen < sizeof(int))
606		return -EINVAL;
607
608	if (get_user(val, (int __user *)optval))
609		return -EFAULT;
610
611	valbool = val ? 1 : 0;
612
613	lock_sock(sk);
614
615	switch (optname) {
616	case SO_DEBUG:
617		if (val && !capable(CAP_NET_ADMIN))
618			ret = -EACCES;
619		else
620			sock_valbool_flag(sk, SOCK_DBG, valbool);
621		break;
622	case SO_REUSEADDR:
623		sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
624		break;
625	case SO_TYPE:
626	case SO_PROTOCOL:
627	case SO_DOMAIN:
628	case SO_ERROR:
629		ret = -ENOPROTOOPT;
630		break;
631	case SO_DONTROUTE:
632		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
633		break;
634	case SO_BROADCAST:
635		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
636		break;
637	case SO_SNDBUF:
638		/* Don't error on this BSD doesn't and if you think
639		 * about it this is right. Otherwise apps have to
640		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
641		 * are treated in BSD as hints
642		 */
643		val = min_t(u32, val, sysctl_wmem_max);
644set_sndbuf:
645		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
646		sk->sk_sndbuf = max_t(u32, val * 2, SOCK_MIN_SNDBUF);
647		/* Wake up sending tasks if we upped the value. */
648		sk->sk_write_space(sk);
649		break;
650
651	case SO_SNDBUFFORCE:
652		if (!capable(CAP_NET_ADMIN)) {
653			ret = -EPERM;
654			break;
655		}
656		goto set_sndbuf;
657
658	case SO_RCVBUF:
659		/* Don't error on this BSD doesn't and if you think
660		 * about it this is right. Otherwise apps have to
661		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
662		 * are treated in BSD as hints
663		 */
664		val = min_t(u32, val, sysctl_rmem_max);
665set_rcvbuf:
666		sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
667		/*
668		 * We double it on the way in to account for
669		 * "struct sk_buff" etc. overhead.   Applications
670		 * assume that the SO_RCVBUF setting they make will
671		 * allow that much actual data to be received on that
672		 * socket.
673		 *
674		 * Applications are unaware that "struct sk_buff" and
675		 * other overheads allocate from the receive buffer
676		 * during socket buffer allocation.
677		 *
678		 * And after considering the possible alternatives,
679		 * returning the value we actually used in getsockopt
680		 * is the most desirable behavior.
681		 */
682		sk->sk_rcvbuf = max_t(u32, val * 2, SOCK_MIN_RCVBUF);
683		break;
684
685	case SO_RCVBUFFORCE:
686		if (!capable(CAP_NET_ADMIN)) {
687			ret = -EPERM;
688			break;
689		}
690		goto set_rcvbuf;
691
692	case SO_KEEPALIVE:
693#ifdef CONFIG_INET
694		if (sk->sk_protocol == IPPROTO_TCP)
695			tcp_set_keepalive(sk, valbool);
696#endif
697		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
698		break;
699
700	case SO_OOBINLINE:
701		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
702		break;
703
704	case SO_NO_CHECK:
705		sk->sk_no_check = valbool;
706		break;
707
708	case SO_PRIORITY:
709		if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
710			sk->sk_priority = val;
711		else
712			ret = -EPERM;
713		break;
714
715	case SO_LINGER:
716		if (optlen < sizeof(ling)) {
717			ret = -EINVAL;	/* 1003.1g */
718			break;
719		}
720		if (copy_from_user(&ling, optval, sizeof(ling))) {
721			ret = -EFAULT;
722			break;
723		}
724		if (!ling.l_onoff)
725			sock_reset_flag(sk, SOCK_LINGER);
726		else {
727#if (BITS_PER_LONG == 32)
728			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
729				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
730			else
731#endif
732				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
733			sock_set_flag(sk, SOCK_LINGER);
734		}
735		break;
736
737	case SO_BSDCOMPAT:
738		sock_warn_obsolete_bsdism("setsockopt");
739		break;
740
741	case SO_PASSCRED:
742		if (valbool)
743			set_bit(SOCK_PASSCRED, &sock->flags);
744		else
745			clear_bit(SOCK_PASSCRED, &sock->flags);
746		break;
747
748	case SO_TIMESTAMP:
749	case SO_TIMESTAMPNS:
750		if (valbool)  {
751			if (optname == SO_TIMESTAMP)
752				sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
753			else
754				sock_set_flag(sk, SOCK_RCVTSTAMPNS);
755			sock_set_flag(sk, SOCK_RCVTSTAMP);
756			sock_enable_timestamp(sk, SOCK_TIMESTAMP);
757		} else {
758			sock_reset_flag(sk, SOCK_RCVTSTAMP);
759			sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
760		}
761		break;
762
763	case SO_TIMESTAMPING:
764		if (val & ~SOF_TIMESTAMPING_MASK) {
765			ret = -EINVAL;
766			break;
767		}
768		sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE,
769				  val & SOF_TIMESTAMPING_TX_HARDWARE);
770		sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE,
771				  val & SOF_TIMESTAMPING_TX_SOFTWARE);
772		sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE,
773				  val & SOF_TIMESTAMPING_RX_HARDWARE);
774		if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
775			sock_enable_timestamp(sk,
776					      SOCK_TIMESTAMPING_RX_SOFTWARE);
777		else
778			sock_disable_timestamp(sk,
779					       (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
780		sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE,
781				  val & SOF_TIMESTAMPING_SOFTWARE);
782		sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE,
783				  val & SOF_TIMESTAMPING_SYS_HARDWARE);
784		sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE,
785				  val & SOF_TIMESTAMPING_RAW_HARDWARE);
786		break;
787
788	case SO_RCVLOWAT:
789		if (val < 0)
790			val = INT_MAX;
791		sk->sk_rcvlowat = val ? : 1;
792		break;
793
794	case SO_RCVTIMEO:
795		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
796		break;
797
798	case SO_SNDTIMEO:
799		ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
800		break;
801
802	case SO_ATTACH_FILTER:
803		ret = -EINVAL;
804		if (optlen == sizeof(struct sock_fprog)) {
805			struct sock_fprog fprog;
806
807			ret = -EFAULT;
808			if (copy_from_user(&fprog, optval, sizeof(fprog)))
809				break;
810
811			ret = sk_attach_filter(&fprog, sk);
812		}
813		break;
814
815	case SO_DETACH_FILTER:
816		ret = sk_detach_filter(sk);
817		break;
818
819	case SO_PASSSEC:
820		if (valbool)
821			set_bit(SOCK_PASSSEC, &sock->flags);
822		else
823			clear_bit(SOCK_PASSSEC, &sock->flags);
824		break;
825	case SO_MARK:
826		if (!capable(CAP_NET_ADMIN))
827			ret = -EPERM;
828		else
829			sk->sk_mark = val;
830		break;
831
832		/* We implement the SO_SNDLOWAT etc to
833		   not be settable (1003.1g 5.3) */
834	case SO_RXQ_OVFL:
835		sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
836		break;
837
838	case SO_WIFI_STATUS:
839		sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
840		break;
841
842	case SO_PEEK_OFF:
843		if (sock->ops->set_peek_off)
844			sock->ops->set_peek_off(sk, val);
845		else
846			ret = -EOPNOTSUPP;
847		break;
848
849	case SO_NOFCS:
850		sock_valbool_flag(sk, SOCK_NOFCS, valbool);
851		break;
852
853	default:
854		ret = -ENOPROTOOPT;
855		break;
856	}
857	release_sock(sk);
858	return ret;
859}
860EXPORT_SYMBOL(sock_setsockopt);
861
862
863void cred_to_ucred(struct pid *pid, const struct cred *cred,
864		   struct ucred *ucred)
865{
866	ucred->pid = pid_vnr(pid);
867	ucred->uid = ucred->gid = -1;
868	if (cred) {
869		struct user_namespace *current_ns = current_user_ns();
870
871		ucred->uid = from_kuid(current_ns, cred->euid);
872		ucred->gid = from_kgid(current_ns, cred->egid);
873	}
874}
875EXPORT_SYMBOL_GPL(cred_to_ucred);
876
877int sock_getsockopt(struct socket *sock, int level, int optname,
878		    char __user *optval, int __user *optlen)
879{
880	struct sock *sk = sock->sk;
881
882	union {
883		int val;
884		struct linger ling;
885		struct timeval tm;
886	} v;
887
888	int lv = sizeof(int);
889	int len;
890
891	if (get_user(len, optlen))
892		return -EFAULT;
893	if (len < 0)
894		return -EINVAL;
895
896	memset(&v, 0, sizeof(v));
897
898	switch (optname) {
899	case SO_DEBUG:
900		v.val = sock_flag(sk, SOCK_DBG);
901		break;
902
903	case SO_DONTROUTE:
904		v.val = sock_flag(sk, SOCK_LOCALROUTE);
905		break;
906
907	case SO_BROADCAST:
908		v.val = sock_flag(sk, SOCK_BROADCAST);
909		break;
910
911	case SO_SNDBUF:
912		v.val = sk->sk_sndbuf;
913		break;
914
915	case SO_RCVBUF:
916		v.val = sk->sk_rcvbuf;
917		break;
918
919	case SO_REUSEADDR:
920		v.val = sk->sk_reuse;
921		break;
922
923	case SO_KEEPALIVE:
924		v.val = sock_flag(sk, SOCK_KEEPOPEN);
925		break;
926
927	case SO_TYPE:
928		v.val = sk->sk_type;
929		break;
930
931	case SO_PROTOCOL:
932		v.val = sk->sk_protocol;
933		break;
934
935	case SO_DOMAIN:
936		v.val = sk->sk_family;
937		break;
938
939	case SO_ERROR:
940		v.val = -sock_error(sk);
941		if (v.val == 0)
942			v.val = xchg(&sk->sk_err_soft, 0);
943		break;
944
945	case SO_OOBINLINE:
946		v.val = sock_flag(sk, SOCK_URGINLINE);
947		break;
948
949	case SO_NO_CHECK:
950		v.val = sk->sk_no_check;
951		break;
952
953	case SO_PRIORITY:
954		v.val = sk->sk_priority;
955		break;
956
957	case SO_LINGER:
958		lv		= sizeof(v.ling);
959		v.ling.l_onoff	= sock_flag(sk, SOCK_LINGER);
960		v.ling.l_linger	= sk->sk_lingertime / HZ;
961		break;
962
963	case SO_BSDCOMPAT:
964		sock_warn_obsolete_bsdism("getsockopt");
965		break;
966
967	case SO_TIMESTAMP:
968		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
969				!sock_flag(sk, SOCK_RCVTSTAMPNS);
970		break;
971
972	case SO_TIMESTAMPNS:
973		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
974		break;
975
976	case SO_TIMESTAMPING:
977		v.val = 0;
978		if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
979			v.val |= SOF_TIMESTAMPING_TX_HARDWARE;
980		if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
981			v.val |= SOF_TIMESTAMPING_TX_SOFTWARE;
982		if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE))
983			v.val |= SOF_TIMESTAMPING_RX_HARDWARE;
984		if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE))
985			v.val |= SOF_TIMESTAMPING_RX_SOFTWARE;
986		if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE))
987			v.val |= SOF_TIMESTAMPING_SOFTWARE;
988		if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))
989			v.val |= SOF_TIMESTAMPING_SYS_HARDWARE;
990		if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE))
991			v.val |= SOF_TIMESTAMPING_RAW_HARDWARE;
992		break;
993
994	case SO_RCVTIMEO:
995		lv = sizeof(struct timeval);
996		if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
997			v.tm.tv_sec = 0;
998			v.tm.tv_usec = 0;
999		} else {
1000			v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
1001			v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
1002		}
1003		break;
1004
1005	case SO_SNDTIMEO:
1006		lv = sizeof(struct timeval);
1007		if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
1008			v.tm.tv_sec = 0;
1009			v.tm.tv_usec = 0;
1010		} else {
1011			v.tm.tv_sec = sk->sk_sndtimeo / HZ;
1012			v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
1013		}
1014		break;
1015
1016	case SO_RCVLOWAT:
1017		v.val = sk->sk_rcvlowat;
1018		break;
1019
1020	case SO_SNDLOWAT:
1021		v.val = 1;
1022		break;
1023
1024	case SO_PASSCRED:
1025		v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1026		break;
1027
1028	case SO_PEERCRED:
1029	{
1030		struct ucred peercred;
1031		if (len > sizeof(peercred))
1032			len = sizeof(peercred);
1033		cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1034		if (copy_to_user(optval, &peercred, len))
1035			return -EFAULT;
1036		goto lenout;
1037	}
1038
1039	case SO_PEERNAME:
1040	{
1041		char address[128];
1042
1043		if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
1044			return -ENOTCONN;
1045		if (lv < len)
1046			return -EINVAL;
1047		if (copy_to_user(optval, address, len))
1048			return -EFAULT;
1049		goto lenout;
1050	}
1051
1052	/* Dubious BSD thing... Probably nobody even uses it, but
1053	 * the UNIX standard wants it for whatever reason... -DaveM
1054	 */
1055	case SO_ACCEPTCONN:
1056		v.val = sk->sk_state == TCP_LISTEN;
1057		break;
1058
1059	case SO_PASSSEC:
1060		v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1061		break;
1062
1063	case SO_PEERSEC:
1064		return security_socket_getpeersec_stream(sock, optval, optlen, len);
1065
1066	case SO_MARK:
1067		v.val = sk->sk_mark;
1068		break;
1069
1070	case SO_RXQ_OVFL:
1071		v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1072		break;
1073
1074	case SO_WIFI_STATUS:
1075		v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1076		break;
1077
1078	case SO_PEEK_OFF:
1079		if (!sock->ops->set_peek_off)
1080			return -EOPNOTSUPP;
1081
1082		v.val = sk->sk_peek_off;
1083		break;
1084	case SO_NOFCS:
1085		v.val = sock_flag(sk, SOCK_NOFCS);
1086		break;
1087	default:
1088		return -ENOPROTOOPT;
1089	}
1090
1091	if (len > lv)
1092		len = lv;
1093	if (copy_to_user(optval, &v, len))
1094		return -EFAULT;
1095lenout:
1096	if (put_user(len, optlen))
1097		return -EFAULT;
1098	return 0;
1099}
1100
1101/*
1102 * Initialize an sk_lock.
1103 *
1104 * (We also register the sk_lock with the lock validator.)
1105 */
1106static inline void sock_lock_init(struct sock *sk)
1107{
1108	sock_lock_init_class_and_name(sk,
1109			af_family_slock_key_strings[sk->sk_family],
1110			af_family_slock_keys + sk->sk_family,
1111			af_family_key_strings[sk->sk_family],
1112			af_family_keys + sk->sk_family);
1113}
1114
1115/*
1116 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1117 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1118 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1119 */
1120static void sock_copy(struct sock *nsk, const struct sock *osk)
1121{
1122#ifdef CONFIG_SECURITY_NETWORK
1123	void *sptr = nsk->sk_security;
1124#endif
1125	memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1126
1127	memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1128	       osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1129
1130#ifdef CONFIG_SECURITY_NETWORK
1131	nsk->sk_security = sptr;
1132	security_sk_clone(osk, nsk);
1133#endif
1134}
1135
1136/*
1137 * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
1138 * un-modified. Special care is taken when initializing object to zero.
1139 */
1140static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1141{
1142	if (offsetof(struct sock, sk_node.next) != 0)
1143		memset(sk, 0, offsetof(struct sock, sk_node.next));
1144	memset(&sk->sk_node.pprev, 0,
1145	       size - offsetof(struct sock, sk_node.pprev));
1146}
1147
1148void sk_prot_clear_portaddr_nulls(struct sock *sk, int size)
1149{
1150	unsigned long nulls1, nulls2;
1151
1152	nulls1 = offsetof(struct sock, __sk_common.skc_node.next);
1153	nulls2 = offsetof(struct sock, __sk_common.skc_portaddr_node.next);
1154	if (nulls1 > nulls2)
1155		swap(nulls1, nulls2);
1156
1157	if (nulls1 != 0)
1158		memset((char *)sk, 0, nulls1);
1159	memset((char *)sk + nulls1 + sizeof(void *), 0,
1160	       nulls2 - nulls1 - sizeof(void *));
1161	memset((char *)sk + nulls2 + sizeof(void *), 0,
1162	       size - nulls2 - sizeof(void *));
1163}
1164EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls);
1165
1166static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1167		int family)
1168{
1169	struct sock *sk;
1170	struct kmem_cache *slab;
1171
1172	slab = prot->slab;
1173	if (slab != NULL) {
1174		sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1175		if (!sk)
1176			return sk;
1177		if (priority & __GFP_ZERO) {
1178			if (prot->clear_sk)
1179				prot->clear_sk(sk, prot->obj_size);
1180			else
1181				sk_prot_clear_nulls(sk, prot->obj_size);
1182		}
1183	} else
1184		sk = kmalloc(prot->obj_size, priority);
1185
1186	if (sk != NULL) {
1187		kmemcheck_annotate_bitfield(sk, flags);
1188
1189		if (security_sk_alloc(sk, family, priority))
1190			goto out_free;
1191
1192		if (!try_module_get(prot->owner))
1193			goto out_free_sec;
1194		sk_tx_queue_clear(sk);
1195	}
1196
1197	return sk;
1198
1199out_free_sec:
1200	security_sk_free(sk);
1201out_free:
1202	if (slab != NULL)
1203		kmem_cache_free(slab, sk);
1204	else
1205		kfree(sk);
1206	return NULL;
1207}
1208
1209static void sk_prot_free(struct proto *prot, struct sock *sk)
1210{
1211	struct kmem_cache *slab;
1212	struct module *owner;
1213
1214	owner = prot->owner;
1215	slab = prot->slab;
1216
1217	security_sk_free(sk);
1218	if (slab != NULL)
1219		kmem_cache_free(slab, sk);
1220	else
1221		kfree(sk);
1222	module_put(owner);
1223}
1224
1225#ifdef CONFIG_CGROUPS
1226#if IS_ENABLED(CONFIG_NET_CLS_CGROUP)
1227void sock_update_classid(struct sock *sk)
1228{
1229	u32 classid;
1230
1231	rcu_read_lock();  /* doing current task, which cannot vanish. */
1232	classid = task_cls_classid(current);
1233	rcu_read_unlock();
1234	if (classid && classid != sk->sk_classid)
1235		sk->sk_classid = classid;
1236}
1237EXPORT_SYMBOL(sock_update_classid);
1238#endif
1239
1240#if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
1241void sock_update_netprioidx(struct sock *sk, struct task_struct *task)
1242{
1243	if (in_interrupt())
1244		return;
1245
1246	sk->sk_cgrp_prioidx = task_netprioidx(task);
1247}
1248EXPORT_SYMBOL_GPL(sock_update_netprioidx);
1249#endif
1250#endif
1251
1252/**
1253 *	sk_alloc - All socket objects are allocated here
1254 *	@net: the applicable net namespace
1255 *	@family: protocol family
1256 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1257 *	@prot: struct proto associated with this new sock instance
1258 */
1259struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1260		      struct proto *prot)
1261{
1262	struct sock *sk;
1263
1264	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1265	if (sk) {
1266		sk->sk_family = family;
1267		/*
1268		 * See comment in struct sock definition to understand
1269		 * why we need sk_prot_creator -acme
1270		 */
1271		sk->sk_prot = sk->sk_prot_creator = prot;
1272		sock_lock_init(sk);
1273		sock_net_set(sk, get_net(net));
1274		atomic_set(&sk->sk_wmem_alloc, 1);
1275
1276		sock_update_classid(sk);
1277		sock_update_netprioidx(sk, current);
1278	}
1279
1280	return sk;
1281}
1282EXPORT_SYMBOL(sk_alloc);
1283
1284static void __sk_free(struct sock *sk)
1285{
1286	struct sk_filter *filter;
1287
1288	if (sk->sk_destruct)
1289		sk->sk_destruct(sk);
1290
1291	filter = rcu_dereference_check(sk->sk_filter,
1292				       atomic_read(&sk->sk_wmem_alloc) == 0);
1293	if (filter) {
1294		sk_filter_uncharge(sk, filter);
1295		RCU_INIT_POINTER(sk->sk_filter, NULL);
1296	}
1297
1298	sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1299
1300	if (atomic_read(&sk->sk_omem_alloc))
1301		pr_debug("%s: optmem leakage (%d bytes) detected\n",
1302			 __func__, atomic_read(&sk->sk_omem_alloc));
1303
1304	if (sk->sk_peer_cred)
1305		put_cred(sk->sk_peer_cred);
1306	put_pid(sk->sk_peer_pid);
1307	put_net(sock_net(sk));
1308	sk_prot_free(sk->sk_prot_creator, sk);
1309}
1310
1311void sk_free(struct sock *sk)
1312{
1313	/*
1314	 * We subtract one from sk_wmem_alloc and can know if
1315	 * some packets are still in some tx queue.
1316	 * If not null, sock_wfree() will call __sk_free(sk) later
1317	 */
1318	if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1319		__sk_free(sk);
1320}
1321EXPORT_SYMBOL(sk_free);
1322
1323/*
1324 * Last sock_put should drop reference to sk->sk_net. It has already
1325 * been dropped in sk_change_net. Taking reference to stopping namespace
1326 * is not an option.
1327 * Take reference to a socket to remove it from hash _alive_ and after that
1328 * destroy it in the context of init_net.
1329 */
1330void sk_release_kernel(struct sock *sk)
1331{
1332	if (sk == NULL || sk->sk_socket == NULL)
1333		return;
1334
1335	sock_hold(sk);
1336	sock_release(sk->sk_socket);
1337	release_net(sock_net(sk));
1338	sock_net_set(sk, get_net(&init_net));
1339	sock_put(sk);
1340}
1341EXPORT_SYMBOL(sk_release_kernel);
1342
1343static void sk_update_clone(const struct sock *sk, struct sock *newsk)
1344{
1345	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1346		sock_update_memcg(newsk);
1347}
1348
1349/**
1350 *	sk_clone_lock - clone a socket, and lock its clone
1351 *	@sk: the socket to clone
1352 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1353 *
1354 *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1355 */
1356struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1357{
1358	struct sock *newsk;
1359
1360	newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1361	if (newsk != NULL) {
1362		struct sk_filter *filter;
1363
1364		sock_copy(newsk, sk);
1365
1366		/* SANITY */
1367		get_net(sock_net(newsk));
1368		sk_node_init(&newsk->sk_node);
1369		sock_lock_init(newsk);
1370		bh_lock_sock(newsk);
1371		newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
1372		newsk->sk_backlog.len = 0;
1373
1374		atomic_set(&newsk->sk_rmem_alloc, 0);
1375		/*
1376		 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1377		 */
1378		atomic_set(&newsk->sk_wmem_alloc, 1);
1379		atomic_set(&newsk->sk_omem_alloc, 0);
1380		skb_queue_head_init(&newsk->sk_receive_queue);
1381		skb_queue_head_init(&newsk->sk_write_queue);
1382#ifdef CONFIG_NET_DMA
1383		skb_queue_head_init(&newsk->sk_async_wait_queue);
1384#endif
1385
1386		spin_lock_init(&newsk->sk_dst_lock);
1387		rwlock_init(&newsk->sk_callback_lock);
1388		lockdep_set_class_and_name(&newsk->sk_callback_lock,
1389				af_callback_keys + newsk->sk_family,
1390				af_family_clock_key_strings[newsk->sk_family]);
1391
1392		newsk->sk_dst_cache	= NULL;
1393		newsk->sk_wmem_queued	= 0;
1394		newsk->sk_forward_alloc = 0;
1395		newsk->sk_send_head	= NULL;
1396		newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1397
1398		sock_reset_flag(newsk, SOCK_DONE);
1399		skb_queue_head_init(&newsk->sk_error_queue);
1400
1401		filter = rcu_dereference_protected(newsk->sk_filter, 1);
1402		if (filter != NULL)
1403			sk_filter_charge(newsk, filter);
1404
1405		if (unlikely(xfrm_sk_clone_policy(newsk))) {
1406			/* It is still raw copy of parent, so invalidate
1407			 * destructor and make plain sk_free() */
1408			newsk->sk_destruct = NULL;
1409			bh_unlock_sock(newsk);
1410			sk_free(newsk);
1411			newsk = NULL;
1412			goto out;
1413		}
1414
1415		newsk->sk_err	   = 0;
1416		newsk->sk_priority = 0;
1417		/*
1418		 * Before updating sk_refcnt, we must commit prior changes to memory
1419		 * (Documentation/RCU/rculist_nulls.txt for details)
1420		 */
1421		smp_wmb();
1422		atomic_set(&newsk->sk_refcnt, 2);
1423
1424		/*
1425		 * Increment the counter in the same struct proto as the master
1426		 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1427		 * is the same as sk->sk_prot->socks, as this field was copied
1428		 * with memcpy).
1429		 *
1430		 * This _changes_ the previous behaviour, where
1431		 * tcp_create_openreq_child always was incrementing the
1432		 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1433		 * to be taken into account in all callers. -acme
1434		 */
1435		sk_refcnt_debug_inc(newsk);
1436		sk_set_socket(newsk, NULL);
1437		newsk->sk_wq = NULL;
1438
1439		sk_update_clone(sk, newsk);
1440
1441		if (newsk->sk_prot->sockets_allocated)
1442			sk_sockets_allocated_inc(newsk);
1443
1444		if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1445			net_enable_timestamp();
1446	}
1447out:
1448	return newsk;
1449}
1450EXPORT_SYMBOL_GPL(sk_clone_lock);
1451
1452void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1453{
1454	__sk_dst_set(sk, dst);
1455	sk->sk_route_caps = dst->dev->features;
1456	if (sk->sk_route_caps & NETIF_F_GSO)
1457		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1458	sk->sk_route_caps &= ~sk->sk_route_nocaps;
1459	if (sk_can_gso(sk)) {
1460		if (dst->header_len) {
1461			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1462		} else {
1463			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1464			sk->sk_gso_max_size = dst->dev->gso_max_size;
1465			sk->sk_gso_max_segs = dst->dev->gso_max_segs;
1466		}
1467	}
1468}
1469EXPORT_SYMBOL_GPL(sk_setup_caps);
1470
1471void __init sk_init(void)
1472{
1473	if (totalram_pages <= 4096) {
1474		sysctl_wmem_max = 32767;
1475		sysctl_rmem_max = 32767;
1476		sysctl_wmem_default = 32767;
1477		sysctl_rmem_default = 32767;
1478	} else if (totalram_pages >= 131072) {
1479		sysctl_wmem_max = 131071;
1480		sysctl_rmem_max = 131071;
1481	}
1482}
1483
1484/*
1485 *	Simple resource managers for sockets.
1486 */
1487
1488
1489/*
1490 * Write buffer destructor automatically called from kfree_skb.
1491 */
1492void sock_wfree(struct sk_buff *skb)
1493{
1494	struct sock *sk = skb->sk;
1495	unsigned int len = skb->truesize;
1496
1497	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1498		/*
1499		 * Keep a reference on sk_wmem_alloc, this will be released
1500		 * after sk_write_space() call
1501		 */
1502		atomic_sub(len - 1, &sk->sk_wmem_alloc);
1503		sk->sk_write_space(sk);
1504		len = 1;
1505	}
1506	/*
1507	 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1508	 * could not do because of in-flight packets
1509	 */
1510	if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1511		__sk_free(sk);
1512}
1513EXPORT_SYMBOL(sock_wfree);
1514
1515/*
1516 * Read buffer destructor automatically called from kfree_skb.
1517 */
1518void sock_rfree(struct sk_buff *skb)
1519{
1520	struct sock *sk = skb->sk;
1521	unsigned int len = skb->truesize;
1522
1523	atomic_sub(len, &sk->sk_rmem_alloc);
1524	sk_mem_uncharge(sk, len);
1525}
1526EXPORT_SYMBOL(sock_rfree);
1527
1528void sock_edemux(struct sk_buff *skb)
1529{
1530	sock_put(skb->sk);
1531}
1532EXPORT_SYMBOL(sock_edemux);
1533
1534int sock_i_uid(struct sock *sk)
1535{
1536	int uid;
1537
1538	read_lock_bh(&sk->sk_callback_lock);
1539	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1540	read_unlock_bh(&sk->sk_callback_lock);
1541	return uid;
1542}
1543EXPORT_SYMBOL(sock_i_uid);
1544
1545unsigned long sock_i_ino(struct sock *sk)
1546{
1547	unsigned long ino;
1548
1549	read_lock_bh(&sk->sk_callback_lock);
1550	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1551	read_unlock_bh(&sk->sk_callback_lock);
1552	return ino;
1553}
1554EXPORT_SYMBOL(sock_i_ino);
1555
1556/*
1557 * Allocate a skb from the socket's send buffer.
1558 */
1559struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1560			     gfp_t priority)
1561{
1562	if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1563		struct sk_buff *skb = alloc_skb(size, priority);
1564		if (skb) {
1565			skb_set_owner_w(skb, sk);
1566			return skb;
1567		}
1568	}
1569	return NULL;
1570}
1571EXPORT_SYMBOL(sock_wmalloc);
1572
1573/*
1574 * Allocate a skb from the socket's receive buffer.
1575 */
1576struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1577			     gfp_t priority)
1578{
1579	if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1580		struct sk_buff *skb = alloc_skb(size, priority);
1581		if (skb) {
1582			skb_set_owner_r(skb, sk);
1583			return skb;
1584		}
1585	}
1586	return NULL;
1587}
1588
1589/*
1590 * Allocate a memory block from the socket's option memory buffer.
1591 */
1592void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1593{
1594	if ((unsigned int)size <= sysctl_optmem_max &&
1595	    atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1596		void *mem;
1597		/* First do the add, to avoid the race if kmalloc
1598		 * might sleep.
1599		 */
1600		atomic_add(size, &sk->sk_omem_alloc);
1601		mem = kmalloc(size, priority);
1602		if (mem)
1603			return mem;
1604		atomic_sub(size, &sk->sk_omem_alloc);
1605	}
1606	return NULL;
1607}
1608EXPORT_SYMBOL(sock_kmalloc);
1609
1610/*
1611 * Free an option memory block.
1612 */
1613void sock_kfree_s(struct sock *sk, void *mem, int size)
1614{
1615	kfree(mem);
1616	atomic_sub(size, &sk->sk_omem_alloc);
1617}
1618EXPORT_SYMBOL(sock_kfree_s);
1619
1620/* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1621   I think, these locks should be removed for datagram sockets.
1622 */
1623static long sock_wait_for_wmem(struct sock *sk, long timeo)
1624{
1625	DEFINE_WAIT(wait);
1626
1627	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1628	for (;;) {
1629		if (!timeo)
1630			break;
1631		if (signal_pending(current))
1632			break;
1633		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1634		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1635		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1636			break;
1637		if (sk->sk_shutdown & SEND_SHUTDOWN)
1638			break;
1639		if (sk->sk_err)
1640			break;
1641		timeo = schedule_timeout(timeo);
1642	}
1643	finish_wait(sk_sleep(sk), &wait);
1644	return timeo;
1645}
1646
1647
1648/*
1649 *	Generic send/receive buffer handlers
1650 */
1651
1652struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1653				     unsigned long data_len, int noblock,
1654				     int *errcode)
1655{
1656	struct sk_buff *skb;
1657	gfp_t gfp_mask;
1658	long timeo;
1659	int err;
1660	int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1661
1662	err = -EMSGSIZE;
1663	if (npages > MAX_SKB_FRAGS)
1664		goto failure;
1665
1666	gfp_mask = sk->sk_allocation;
1667	if (gfp_mask & __GFP_WAIT)
1668		gfp_mask |= __GFP_REPEAT;
1669
1670	timeo = sock_sndtimeo(sk, noblock);
1671	while (1) {
1672		err = sock_error(sk);
1673		if (err != 0)
1674			goto failure;
1675
1676		err = -EPIPE;
1677		if (sk->sk_shutdown & SEND_SHUTDOWN)
1678			goto failure;
1679
1680		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1681			skb = alloc_skb(header_len, gfp_mask);
1682			if (skb) {
1683				int i;
1684
1685				/* No pages, we're done... */
1686				if (!data_len)
1687					break;
1688
1689				skb->truesize += data_len;
1690				skb_shinfo(skb)->nr_frags = npages;
1691				for (i = 0; i < npages; i++) {
1692					struct page *page;
1693
1694					page = alloc_pages(sk->sk_allocation, 0);
1695					if (!page) {
1696						err = -ENOBUFS;
1697						skb_shinfo(skb)->nr_frags = i;
1698						kfree_skb(skb);
1699						goto failure;
1700					}
1701
1702					__skb_fill_page_desc(skb, i,
1703							page, 0,
1704							(data_len >= PAGE_SIZE ?
1705							 PAGE_SIZE :
1706							 data_len));
1707					data_len -= PAGE_SIZE;
1708				}
1709
1710				/* Full success... */
1711				break;
1712			}
1713			err = -ENOBUFS;
1714			goto failure;
1715		}
1716		set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1717		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1718		err = -EAGAIN;
1719		if (!timeo)
1720			goto failure;
1721		if (signal_pending(current))
1722			goto interrupted;
1723		timeo = sock_wait_for_wmem(sk, timeo);
1724	}
1725
1726	skb_set_owner_w(skb, sk);
1727	return skb;
1728
1729interrupted:
1730	err = sock_intr_errno(timeo);
1731failure:
1732	*errcode = err;
1733	return NULL;
1734}
1735EXPORT_SYMBOL(sock_alloc_send_pskb);
1736
1737struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1738				    int noblock, int *errcode)
1739{
1740	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1741}
1742EXPORT_SYMBOL(sock_alloc_send_skb);
1743
1744static void __lock_sock(struct sock *sk)
1745	__releases(&sk->sk_lock.slock)
1746	__acquires(&sk->sk_lock.slock)
1747{
1748	DEFINE_WAIT(wait);
1749
1750	for (;;) {
1751		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1752					TASK_UNINTERRUPTIBLE);
1753		spin_unlock_bh(&sk->sk_lock.slock);
1754		schedule();
1755		spin_lock_bh(&sk->sk_lock.slock);
1756		if (!sock_owned_by_user(sk))
1757			break;
1758	}
1759	finish_wait(&sk->sk_lock.wq, &wait);
1760}
1761
1762static void __release_sock(struct sock *sk)
1763	__releases(&sk->sk_lock.slock)
1764	__acquires(&sk->sk_lock.slock)
1765{
1766	struct sk_buff *skb = sk->sk_backlog.head;
1767
1768	do {
1769		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1770		bh_unlock_sock(sk);
1771
1772		do {
1773			struct sk_buff *next = skb->next;
1774
1775			prefetch(next);
1776			WARN_ON_ONCE(skb_dst_is_noref(skb));
1777			skb->next = NULL;
1778			sk_backlog_rcv(sk, skb);
1779
1780			/*
1781			 * We are in process context here with softirqs
1782			 * disabled, use cond_resched_softirq() to preempt.
1783			 * This is safe to do because we've taken the backlog
1784			 * queue private:
1785			 */
1786			cond_resched_softirq();
1787
1788			skb = next;
1789		} while (skb != NULL);
1790
1791		bh_lock_sock(sk);
1792	} while ((skb = sk->sk_backlog.head) != NULL);
1793
1794	/*
1795	 * Doing the zeroing here guarantee we can not loop forever
1796	 * while a wild producer attempts to flood us.
1797	 */
1798	sk->sk_backlog.len = 0;
1799}
1800
1801/**
1802 * sk_wait_data - wait for data to arrive at sk_receive_queue
1803 * @sk:    sock to wait on
1804 * @timeo: for how long
1805 *
1806 * Now socket state including sk->sk_err is changed only under lock,
1807 * hence we may omit checks after joining wait queue.
1808 * We check receive queue before schedule() only as optimization;
1809 * it is very likely that release_sock() added new data.
1810 */
1811int sk_wait_data(struct sock *sk, long *timeo)
1812{
1813	int rc;
1814	DEFINE_WAIT(wait);
1815
1816	prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1817	set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1818	rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1819	clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1820	finish_wait(sk_sleep(sk), &wait);
1821	return rc;
1822}
1823EXPORT_SYMBOL(sk_wait_data);
1824
1825/**
1826 *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1827 *	@sk: socket
1828 *	@size: memory size to allocate
1829 *	@kind: allocation type
1830 *
1831 *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1832 *	rmem allocation. This function assumes that protocols which have
1833 *	memory_pressure use sk_wmem_queued as write buffer accounting.
1834 */
1835int __sk_mem_schedule(struct sock *sk, int size, int kind)
1836{
1837	struct proto *prot = sk->sk_prot;
1838	int amt = sk_mem_pages(size);
1839	long allocated;
1840	int parent_status = UNDER_LIMIT;
1841
1842	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
1843
1844	allocated = sk_memory_allocated_add(sk, amt, &parent_status);
1845
1846	/* Under limit. */
1847	if (parent_status == UNDER_LIMIT &&
1848			allocated <= sk_prot_mem_limits(sk, 0)) {
1849		sk_leave_memory_pressure(sk);
1850		return 1;
1851	}
1852
1853	/* Under pressure. (we or our parents) */
1854	if ((parent_status > SOFT_LIMIT) ||
1855			allocated > sk_prot_mem_limits(sk, 1))
1856		sk_enter_memory_pressure(sk);
1857
1858	/* Over hard limit (we or our parents) */
1859	if ((parent_status == OVER_LIMIT) ||
1860			(allocated > sk_prot_mem_limits(sk, 2)))
1861		goto suppress_allocation;
1862
1863	/* guarantee minimum buffer size under pressure */
1864	if (kind == SK_MEM_RECV) {
1865		if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
1866			return 1;
1867
1868	} else { /* SK_MEM_SEND */
1869		if (sk->sk_type == SOCK_STREAM) {
1870			if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
1871				return 1;
1872		} else if (atomic_read(&sk->sk_wmem_alloc) <
1873			   prot->sysctl_wmem[0])
1874				return 1;
1875	}
1876
1877	if (sk_has_memory_pressure(sk)) {
1878		int alloc;
1879
1880		if (!sk_under_memory_pressure(sk))
1881			return 1;
1882		alloc = sk_sockets_allocated_read_positive(sk);
1883		if (sk_prot_mem_limits(sk, 2) > alloc *
1884		    sk_mem_pages(sk->sk_wmem_queued +
1885				 atomic_read(&sk->sk_rmem_alloc) +
1886				 sk->sk_forward_alloc))
1887			return 1;
1888	}
1889
1890suppress_allocation:
1891
1892	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
1893		sk_stream_moderate_sndbuf(sk);
1894
1895		/* Fail only if socket is _under_ its sndbuf.
1896		 * In this case we cannot block, so that we have to fail.
1897		 */
1898		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
1899			return 1;
1900	}
1901
1902	trace_sock_exceed_buf_limit(sk, prot, allocated);
1903
1904	/* Alas. Undo changes. */
1905	sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
1906
1907	sk_memory_allocated_sub(sk, amt);
1908
1909	return 0;
1910}
1911EXPORT_SYMBOL(__sk_mem_schedule);
1912
1913/**
1914 *	__sk_reclaim - reclaim memory_allocated
1915 *	@sk: socket
1916 */
1917void __sk_mem_reclaim(struct sock *sk)
1918{
1919	sk_memory_allocated_sub(sk,
1920				sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT);
1921	sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
1922
1923	if (sk_under_memory_pressure(sk) &&
1924	    (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
1925		sk_leave_memory_pressure(sk);
1926}
1927EXPORT_SYMBOL(__sk_mem_reclaim);
1928
1929
1930/*
1931 * Set of default routines for initialising struct proto_ops when
1932 * the protocol does not support a particular function. In certain
1933 * cases where it makes no sense for a protocol to have a "do nothing"
1934 * function, some default processing is provided.
1935 */
1936
1937int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1938{
1939	return -EOPNOTSUPP;
1940}
1941EXPORT_SYMBOL(sock_no_bind);
1942
1943int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1944		    int len, int flags)
1945{
1946	return -EOPNOTSUPP;
1947}
1948EXPORT_SYMBOL(sock_no_connect);
1949
1950int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1951{
1952	return -EOPNOTSUPP;
1953}
1954EXPORT_SYMBOL(sock_no_socketpair);
1955
1956int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1957{
1958	return -EOPNOTSUPP;
1959}
1960EXPORT_SYMBOL(sock_no_accept);
1961
1962int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1963		    int *len, int peer)
1964{
1965	return -EOPNOTSUPP;
1966}
1967EXPORT_SYMBOL(sock_no_getname);
1968
1969unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
1970{
1971	return 0;
1972}
1973EXPORT_SYMBOL(sock_no_poll);
1974
1975int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1976{
1977	return -EOPNOTSUPP;
1978}
1979EXPORT_SYMBOL(sock_no_ioctl);
1980
1981int sock_no_listen(struct socket *sock, int backlog)
1982{
1983	return -EOPNOTSUPP;
1984}
1985EXPORT_SYMBOL(sock_no_listen);
1986
1987int sock_no_shutdown(struct socket *sock, int how)
1988{
1989	return -EOPNOTSUPP;
1990}
1991EXPORT_SYMBOL(sock_no_shutdown);
1992
1993int sock_no_setsockopt(struct socket *sock, int level, int optname,
1994		    char __user *optval, unsigned int optlen)
1995{
1996	return -EOPNOTSUPP;
1997}
1998EXPORT_SYMBOL(sock_no_setsockopt);
1999
2000int sock_no_getsockopt(struct socket *sock, int level, int optname,
2001		    char __user *optval, int __user *optlen)
2002{
2003	return -EOPNOTSUPP;
2004}
2005EXPORT_SYMBOL(sock_no_getsockopt);
2006
2007int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
2008		    size_t len)
2009{
2010	return -EOPNOTSUPP;
2011}
2012EXPORT_SYMBOL(sock_no_sendmsg);
2013
2014int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
2015		    size_t len, int flags)
2016{
2017	return -EOPNOTSUPP;
2018}
2019EXPORT_SYMBOL(sock_no_recvmsg);
2020
2021int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2022{
2023	/* Mirror missing mmap method error code */
2024	return -ENODEV;
2025}
2026EXPORT_SYMBOL(sock_no_mmap);
2027
2028ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2029{
2030	ssize_t res;
2031	struct msghdr msg = {.msg_flags = flags};
2032	struct kvec iov;
2033	char *kaddr = kmap(page);
2034	iov.iov_base = kaddr + offset;
2035	iov.iov_len = size;
2036	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2037	kunmap(page);
2038	return res;
2039}
2040EXPORT_SYMBOL(sock_no_sendpage);
2041
2042/*
2043 *	Default Socket Callbacks
2044 */
2045
2046static void sock_def_wakeup(struct sock *sk)
2047{
2048	struct socket_wq *wq;
2049
2050	rcu_read_lock();
2051	wq = rcu_dereference(sk->sk_wq);
2052	if (wq_has_sleeper(wq))
2053		wake_up_interruptible_all(&wq->wait);
2054	rcu_read_unlock();
2055}
2056
2057static void sock_def_error_report(struct sock *sk)
2058{
2059	struct socket_wq *wq;
2060
2061	rcu_read_lock();
2062	wq = rcu_dereference(sk->sk_wq);
2063	if (wq_has_sleeper(wq))
2064		wake_up_interruptible_poll(&wq->wait, POLLERR);
2065	sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2066	rcu_read_unlock();
2067}
2068
2069static void sock_def_readable(struct sock *sk, int len)
2070{
2071	struct socket_wq *wq;
2072
2073	rcu_read_lock();
2074	wq = rcu_dereference(sk->sk_wq);
2075	if (wq_has_sleeper(wq))
2076		wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
2077						POLLRDNORM | POLLRDBAND);
2078	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2079	rcu_read_unlock();
2080}
2081
2082static void sock_def_write_space(struct sock *sk)
2083{
2084	struct socket_wq *wq;
2085
2086	rcu_read_lock();
2087
2088	/* Do not wake up a writer until he can make "significant"
2089	 * progress.  --DaveM
2090	 */
2091	if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
2092		wq = rcu_dereference(sk->sk_wq);
2093		if (wq_has_sleeper(wq))
2094			wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
2095						POLLWRNORM | POLLWRBAND);
2096
2097		/* Should agree with poll, otherwise some programs break */
2098		if (sock_writeable(sk))
2099			sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2100	}
2101
2102	rcu_read_unlock();
2103}
2104
2105static void sock_def_destruct(struct sock *sk)
2106{
2107	kfree(sk->sk_protinfo);
2108}
2109
2110void sk_send_sigurg(struct sock *sk)
2111{
2112	if (sk->sk_socket && sk->sk_socket->file)
2113		if (send_sigurg(&sk->sk_socket->file->f_owner))
2114			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2115}
2116EXPORT_SYMBOL(sk_send_sigurg);
2117
2118void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2119		    unsigned long expires)
2120{
2121	if (!mod_timer(timer, expires))
2122		sock_hold(sk);
2123}
2124EXPORT_SYMBOL(sk_reset_timer);
2125
2126void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2127{
2128	if (timer_pending(timer) && del_timer(timer))
2129		__sock_put(sk);
2130}
2131EXPORT_SYMBOL(sk_stop_timer);
2132
2133void sock_init_data(struct socket *sock, struct sock *sk)
2134{
2135	skb_queue_head_init(&sk->sk_receive_queue);
2136	skb_queue_head_init(&sk->sk_write_queue);
2137	skb_queue_head_init(&sk->sk_error_queue);
2138#ifdef CONFIG_NET_DMA
2139	skb_queue_head_init(&sk->sk_async_wait_queue);
2140#endif
2141
2142	sk->sk_send_head	=	NULL;
2143
2144	init_timer(&sk->sk_timer);
2145
2146	sk->sk_allocation	=	GFP_KERNEL;
2147	sk->sk_rcvbuf		=	sysctl_rmem_default;
2148	sk->sk_sndbuf		=	sysctl_wmem_default;
2149	sk->sk_state		=	TCP_CLOSE;
2150	sk_set_socket(sk, sock);
2151
2152	sock_set_flag(sk, SOCK_ZAPPED);
2153
2154	if (sock) {
2155		sk->sk_type	=	sock->type;
2156		sk->sk_wq	=	sock->wq;
2157		sock->sk	=	sk;
2158	} else
2159		sk->sk_wq	=	NULL;
2160
2161	spin_lock_init(&sk->sk_dst_lock);
2162	rwlock_init(&sk->sk_callback_lock);
2163	lockdep_set_class_and_name(&sk->sk_callback_lock,
2164			af_callback_keys + sk->sk_family,
2165			af_family_clock_key_strings[sk->sk_family]);
2166
2167	sk->sk_state_change	=	sock_def_wakeup;
2168	sk->sk_data_ready	=	sock_def_readable;
2169	sk->sk_write_space	=	sock_def_write_space;
2170	sk->sk_error_report	=	sock_def_error_report;
2171	sk->sk_destruct		=	sock_def_destruct;
2172
2173	sk->sk_sndmsg_page	=	NULL;
2174	sk->sk_sndmsg_off	=	0;
2175	sk->sk_peek_off		=	-1;
2176
2177	sk->sk_peer_pid 	=	NULL;
2178	sk->sk_peer_cred	=	NULL;
2179	sk->sk_write_pending	=	0;
2180	sk->sk_rcvlowat		=	1;
2181	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
2182	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
2183
2184	sk->sk_stamp = ktime_set(-1L, 0);
2185
2186	/*
2187	 * Before updating sk_refcnt, we must commit prior changes to memory
2188	 * (Documentation/RCU/rculist_nulls.txt for details)
2189	 */
2190	smp_wmb();
2191	atomic_set(&sk->sk_refcnt, 1);
2192	atomic_set(&sk->sk_drops, 0);
2193}
2194EXPORT_SYMBOL(sock_init_data);
2195
2196void lock_sock_nested(struct sock *sk, int subclass)
2197{
2198	might_sleep();
2199	spin_lock_bh(&sk->sk_lock.slock);
2200	if (sk->sk_lock.owned)
2201		__lock_sock(sk);
2202	sk->sk_lock.owned = 1;
2203	spin_unlock(&sk->sk_lock.slock);
2204	/*
2205	 * The sk_lock has mutex_lock() semantics here:
2206	 */
2207	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2208	local_bh_enable();
2209}
2210EXPORT_SYMBOL(lock_sock_nested);
2211
2212void release_sock(struct sock *sk)
2213{
2214	/*
2215	 * The sk_lock has mutex_unlock() semantics:
2216	 */
2217	mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
2218
2219	spin_lock_bh(&sk->sk_lock.slock);
2220	if (sk->sk_backlog.tail)
2221		__release_sock(sk);
2222
2223	if (sk->sk_prot->release_cb)
2224		sk->sk_prot->release_cb(sk);
2225
2226	sk->sk_lock.owned = 0;
2227	if (waitqueue_active(&sk->sk_lock.wq))
2228		wake_up(&sk->sk_lock.wq);
2229	spin_unlock_bh(&sk->sk_lock.slock);
2230}
2231EXPORT_SYMBOL(release_sock);
2232
2233/**
2234 * lock_sock_fast - fast version of lock_sock
2235 * @sk: socket
2236 *
2237 * This version should be used for very small section, where process wont block
2238 * return false if fast path is taken
2239 *   sk_lock.slock locked, owned = 0, BH disabled
2240 * return true if slow path is taken
2241 *   sk_lock.slock unlocked, owned = 1, BH enabled
2242 */
2243bool lock_sock_fast(struct sock *sk)
2244{
2245	might_sleep();
2246	spin_lock_bh(&sk->sk_lock.slock);
2247
2248	if (!sk->sk_lock.owned)
2249		/*
2250		 * Note : We must disable BH
2251		 */
2252		return false;
2253
2254	__lock_sock(sk);
2255	sk->sk_lock.owned = 1;
2256	spin_unlock(&sk->sk_lock.slock);
2257	/*
2258	 * The sk_lock has mutex_lock() semantics here:
2259	 */
2260	mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2261	local_bh_enable();
2262	return true;
2263}
2264EXPORT_SYMBOL(lock_sock_fast);
2265
2266int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2267{
2268	struct timeval tv;
2269	if (!sock_flag(sk, SOCK_TIMESTAMP))
2270		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2271	tv = ktime_to_timeval(sk->sk_stamp);
2272	if (tv.tv_sec == -1)
2273		return -ENOENT;
2274	if (tv.tv_sec == 0) {
2275		sk->sk_stamp = ktime_get_real();
2276		tv = ktime_to_timeval(sk->sk_stamp);
2277	}
2278	return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2279}
2280EXPORT_SYMBOL(sock_get_timestamp);
2281
2282int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2283{
2284	struct timespec ts;
2285	if (!sock_flag(sk, SOCK_TIMESTAMP))
2286		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2287	ts = ktime_to_timespec(sk->sk_stamp);
2288	if (ts.tv_sec == -1)
2289		return -ENOENT;
2290	if (ts.tv_sec == 0) {
2291		sk->sk_stamp = ktime_get_real();
2292		ts = ktime_to_timespec(sk->sk_stamp);
2293	}
2294	return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2295}
2296EXPORT_SYMBOL(sock_get_timestampns);
2297
2298void sock_enable_timestamp(struct sock *sk, int flag)
2299{
2300	if (!sock_flag(sk, flag)) {
2301		unsigned long previous_flags = sk->sk_flags;
2302
2303		sock_set_flag(sk, flag);
2304		/*
2305		 * we just set one of the two flags which require net
2306		 * time stamping, but time stamping might have been on
2307		 * already because of the other one
2308		 */
2309		if (!(previous_flags & SK_FLAGS_TIMESTAMP))
2310			net_enable_timestamp();
2311	}
2312}
2313
2314/*
2315 *	Get a socket option on an socket.
2316 *
2317 *	FIX: POSIX 1003.1g is very ambiguous here. It states that
2318 *	asynchronous errors should be reported by getsockopt. We assume
2319 *	this means if you specify SO_ERROR (otherwise whats the point of it).
2320 */
2321int sock_common_getsockopt(struct socket *sock, int level, int optname,
2322			   char __user *optval, int __user *optlen)
2323{
2324	struct sock *sk = sock->sk;
2325
2326	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2327}
2328EXPORT_SYMBOL(sock_common_getsockopt);
2329
2330#ifdef CONFIG_COMPAT
2331int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2332				  char __user *optval, int __user *optlen)
2333{
2334	struct sock *sk = sock->sk;
2335
2336	if (sk->sk_prot->compat_getsockopt != NULL)
2337		return sk->sk_prot->compat_getsockopt(sk, level, optname,
2338						      optval, optlen);
2339	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2340}
2341EXPORT_SYMBOL(compat_sock_common_getsockopt);
2342#endif
2343
2344int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
2345			struct msghdr *msg, size_t size, int flags)
2346{
2347	struct sock *sk = sock->sk;
2348	int addr_len = 0;
2349	int err;
2350
2351	err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
2352				   flags & ~MSG_DONTWAIT, &addr_len);
2353	if (err >= 0)
2354		msg->msg_namelen = addr_len;
2355	return err;
2356}
2357EXPORT_SYMBOL(sock_common_recvmsg);
2358
2359/*
2360 *	Set socket options on an inet socket.
2361 */
2362int sock_common_setsockopt(struct socket *sock, int level, int optname,
2363			   char __user *optval, unsigned int optlen)
2364{
2365	struct sock *sk = sock->sk;
2366
2367	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2368}
2369EXPORT_SYMBOL(sock_common_setsockopt);
2370
2371#ifdef CONFIG_COMPAT
2372int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2373				  char __user *optval, unsigned int optlen)
2374{
2375	struct sock *sk = sock->sk;
2376
2377	if (sk->sk_prot->compat_setsockopt != NULL)
2378		return sk->sk_prot->compat_setsockopt(sk, level, optname,
2379						      optval, optlen);
2380	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2381}
2382EXPORT_SYMBOL(compat_sock_common_setsockopt);
2383#endif
2384
2385void sk_common_release(struct sock *sk)
2386{
2387	if (sk->sk_prot->destroy)
2388		sk->sk_prot->destroy(sk);
2389
2390	/*
2391	 * Observation: when sock_common_release is called, processes have
2392	 * no access to socket. But net still has.
2393	 * Step one, detach it from networking:
2394	 *
2395	 * A. Remove from hash tables.
2396	 */
2397
2398	sk->sk_prot->unhash(sk);
2399
2400	/*
2401	 * In this point socket cannot receive new packets, but it is possible
2402	 * that some packets are in flight because some CPU runs receiver and
2403	 * did hash table lookup before we unhashed socket. They will achieve
2404	 * receive queue and will be purged by socket destructor.
2405	 *
2406	 * Also we still have packets pending on receive queue and probably,
2407	 * our own packets waiting in device queues. sock_destroy will drain
2408	 * receive queue, but transmitted packets will delay socket destruction
2409	 * until the last reference will be released.
2410	 */
2411
2412	sock_orphan(sk);
2413
2414	xfrm_sk_free_policy(sk);
2415
2416	sk_refcnt_debug_release(sk);
2417	sock_put(sk);
2418}
2419EXPORT_SYMBOL(sk_common_release);
2420
2421#ifdef CONFIG_PROC_FS
2422#define PROTO_INUSE_NR	64	/* should be enough for the first time */
2423struct prot_inuse {
2424	int val[PROTO_INUSE_NR];
2425};
2426
2427static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2428
2429#ifdef CONFIG_NET_NS
2430void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2431{
2432	__this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
2433}
2434EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2435
2436int sock_prot_inuse_get(struct net *net, struct proto *prot)
2437{
2438	int cpu, idx = prot->inuse_idx;
2439	int res = 0;
2440
2441	for_each_possible_cpu(cpu)
2442		res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2443
2444	return res >= 0 ? res : 0;
2445}
2446EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2447
2448static int __net_init sock_inuse_init_net(struct net *net)
2449{
2450	net->core.inuse = alloc_percpu(struct prot_inuse);
2451	return net->core.inuse ? 0 : -ENOMEM;
2452}
2453
2454static void __net_exit sock_inuse_exit_net(struct net *net)
2455{
2456	free_percpu(net->core.inuse);
2457}
2458
2459static struct pernet_operations net_inuse_ops = {
2460	.init = sock_inuse_init_net,
2461	.exit = sock_inuse_exit_net,
2462};
2463
2464static __init int net_inuse_init(void)
2465{
2466	if (register_pernet_subsys(&net_inuse_ops))
2467		panic("Cannot initialize net inuse counters");
2468
2469	return 0;
2470}
2471
2472core_initcall(net_inuse_init);
2473#else
2474static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2475
2476void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2477{
2478	__this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
2479}
2480EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2481
2482int sock_prot_inuse_get(struct net *net, struct proto *prot)
2483{
2484	int cpu, idx = prot->inuse_idx;
2485	int res = 0;
2486
2487	for_each_possible_cpu(cpu)
2488		res += per_cpu(prot_inuse, cpu).val[idx];
2489
2490	return res >= 0 ? res : 0;
2491}
2492EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2493#endif
2494
2495static void assign_proto_idx(struct proto *prot)
2496{
2497	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2498
2499	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2500		pr_err("PROTO_INUSE_NR exhausted\n");
2501		return;
2502	}
2503
2504	set_bit(prot->inuse_idx, proto_inuse_idx);
2505}
2506
2507static void release_proto_idx(struct proto *prot)
2508{
2509	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2510		clear_bit(prot->inuse_idx, proto_inuse_idx);
2511}
2512#else
2513static inline void assign_proto_idx(struct proto *prot)
2514{
2515}
2516
2517static inline void release_proto_idx(struct proto *prot)
2518{
2519}
2520#endif
2521
2522int proto_register(struct proto *prot, int alloc_slab)
2523{
2524	if (alloc_slab) {
2525		prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2526					SLAB_HWCACHE_ALIGN | prot->slab_flags,
2527					NULL);
2528
2529		if (prot->slab == NULL) {
2530			pr_crit("%s: Can't create sock SLAB cache!\n",
2531				prot->name);
2532			goto out;
2533		}
2534
2535		if (prot->rsk_prot != NULL) {
2536			prot->rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", prot->name);
2537			if (prot->rsk_prot->slab_name == NULL)
2538				goto out_free_sock_slab;
2539
2540			prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
2541								 prot->rsk_prot->obj_size, 0,
2542								 SLAB_HWCACHE_ALIGN, NULL);
2543
2544			if (prot->rsk_prot->slab == NULL) {
2545				pr_crit("%s: Can't create request sock SLAB cache!\n",
2546					prot->name);
2547				goto out_free_request_sock_slab_name;
2548			}
2549		}
2550
2551		if (prot->twsk_prot != NULL) {
2552			prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
2553
2554			if (prot->twsk_prot->twsk_slab_name == NULL)
2555				goto out_free_request_sock_slab;
2556
2557			prot->twsk_prot->twsk_slab =
2558				kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2559						  prot->twsk_prot->twsk_obj_size,
2560						  0,
2561						  SLAB_HWCACHE_ALIGN |
2562							prot->slab_flags,
2563						  NULL);
2564			if (prot->twsk_prot->twsk_slab == NULL)
2565				goto out_free_timewait_sock_slab_name;
2566		}
2567	}
2568
2569	mutex_lock(&proto_list_mutex);
2570	list_add(&prot->node, &proto_list);
2571	assign_proto_idx(prot);
2572	mutex_unlock(&proto_list_mutex);
2573	return 0;
2574
2575out_free_timewait_sock_slab_name:
2576	kfree(prot->twsk_prot->twsk_slab_name);
2577out_free_request_sock_slab:
2578	if (prot->rsk_prot && prot->rsk_prot->slab) {
2579		kmem_cache_destroy(prot->rsk_prot->slab);
2580		prot->rsk_prot->slab = NULL;
2581	}
2582out_free_request_sock_slab_name:
2583	if (prot->rsk_prot)
2584		kfree(prot->rsk_prot->slab_name);
2585out_free_sock_slab:
2586	kmem_cache_destroy(prot->slab);
2587	prot->slab = NULL;
2588out:
2589	return -ENOBUFS;
2590}
2591EXPORT_SYMBOL(proto_register);
2592
2593void proto_unregister(struct proto *prot)
2594{
2595	mutex_lock(&proto_list_mutex);
2596	release_proto_idx(prot);
2597	list_del(&prot->node);
2598	mutex_unlock(&proto_list_mutex);
2599
2600	if (prot->slab != NULL) {
2601		kmem_cache_destroy(prot->slab);
2602		prot->slab = NULL;
2603	}
2604
2605	if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2606		kmem_cache_destroy(prot->rsk_prot->slab);
2607		kfree(prot->rsk_prot->slab_name);
2608		prot->rsk_prot->slab = NULL;
2609	}
2610
2611	if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2612		kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2613		kfree(prot->twsk_prot->twsk_slab_name);
2614		prot->twsk_prot->twsk_slab = NULL;
2615	}
2616}
2617EXPORT_SYMBOL(proto_unregister);
2618
2619#ifdef CONFIG_PROC_FS
2620static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2621	__acquires(proto_list_mutex)
2622{
2623	mutex_lock(&proto_list_mutex);
2624	return seq_list_start_head(&proto_list, *pos);
2625}
2626
2627static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2628{
2629	return seq_list_next(v, &proto_list, pos);
2630}
2631
2632static void proto_seq_stop(struct seq_file *seq, void *v)
2633	__releases(proto_list_mutex)
2634{
2635	mutex_unlock(&proto_list_mutex);
2636}
2637
2638static char proto_method_implemented(const void *method)
2639{
2640	return method == NULL ? 'n' : 'y';
2641}
2642static long sock_prot_memory_allocated(struct proto *proto)
2643{
2644	return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
2645}
2646
2647static char *sock_prot_memory_pressure(struct proto *proto)
2648{
2649	return proto->memory_pressure != NULL ?
2650	proto_memory_pressure(proto) ? "yes" : "no" : "NI";
2651}
2652
2653static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2654{
2655
2656	seq_printf(seq, "%-9s %4u %6d  %6ld   %-3s %6u   %-3s  %-10s "
2657			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2658		   proto->name,
2659		   proto->obj_size,
2660		   sock_prot_inuse_get(seq_file_net(seq), proto),
2661		   sock_prot_memory_allocated(proto),
2662		   sock_prot_memory_pressure(proto),
2663		   proto->max_header,
2664		   proto->slab == NULL ? "no" : "yes",
2665		   module_name(proto->owner),
2666		   proto_method_implemented(proto->close),
2667		   proto_method_implemented(proto->connect),
2668		   proto_method_implemented(proto->disconnect),
2669		   proto_method_implemented(proto->accept),
2670		   proto_method_implemented(proto->ioctl),
2671		   proto_method_implemented(proto->init),
2672		   proto_method_implemented(proto->destroy),
2673		   proto_method_implemented(proto->shutdown),
2674		   proto_method_implemented(proto->setsockopt),
2675		   proto_method_implemented(proto->getsockopt),
2676		   proto_method_implemented(proto->sendmsg),
2677		   proto_method_implemented(proto->recvmsg),
2678		   proto_method_implemented(proto->sendpage),
2679		   proto_method_implemented(proto->bind),
2680		   proto_method_implemented(proto->backlog_rcv),
2681		   proto_method_implemented(proto->hash),
2682		   proto_method_implemented(proto->unhash),
2683		   proto_method_implemented(proto->get_port),
2684		   proto_method_implemented(proto->enter_memory_pressure));
2685}
2686
2687static int proto_seq_show(struct seq_file *seq, void *v)
2688{
2689	if (v == &proto_list)
2690		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2691			   "protocol",
2692			   "size",
2693			   "sockets",
2694			   "memory",
2695			   "press",
2696			   "maxhdr",
2697			   "slab",
2698			   "module",
2699			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2700	else
2701		proto_seq_printf(seq, list_entry(v, struct proto, node));
2702	return 0;
2703}
2704
2705static const struct seq_operations proto_seq_ops = {
2706	.start  = proto_seq_start,
2707	.next   = proto_seq_next,
2708	.stop   = proto_seq_stop,
2709	.show   = proto_seq_show,
2710};
2711
2712static int proto_seq_open(struct inode *inode, struct file *file)
2713{
2714	return seq_open_net(inode, file, &proto_seq_ops,
2715			    sizeof(struct seq_net_private));
2716}
2717
2718static const struct file_operations proto_seq_fops = {
2719	.owner		= THIS_MODULE,
2720	.open		= proto_seq_open,
2721	.read		= seq_read,
2722	.llseek		= seq_lseek,
2723	.release	= seq_release_net,
2724};
2725
2726static __net_init int proto_init_net(struct net *net)
2727{
2728	if (!proc_net_fops_create(net, "protocols", S_IRUGO, &proto_seq_fops))
2729		return -ENOMEM;
2730
2731	return 0;
2732}
2733
2734static __net_exit void proto_exit_net(struct net *net)
2735{
2736	proc_net_remove(net, "protocols");
2737}
2738
2739
2740static __net_initdata struct pernet_operations proto_net_ops = {
2741	.init = proto_init_net,
2742	.exit = proto_exit_net,
2743};
2744
2745static int __init proto_init(void)
2746{
2747	return register_pernet_subsys(&proto_net_ops);
2748}
2749
2750subsys_initcall(proto_init);
2751
2752#endif /* PROC_FS */
2753