sock.c revision 60e7663d462af3994f292cb3691ea4f7371a9220
1/*
2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
3 *		operating system.  INET is implemented using the  BSD Socket
4 *		interface as the means of communication with the user level.
5 *
6 *		Generic socket support routines. Memory allocators, socket lock/release
7 *		handler for protocols to use and generic option handler.
8 *
9 *
10 * Version:	$Id: sock.c,v 1.117 2002/02/01 22:01:03 davem Exp $
11 *
12 * Authors:	Ross Biro
13 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
14 *		Florian La Roche, <flla@stud.uni-sb.de>
15 *		Alan Cox, <A.Cox@swansea.ac.uk>
16 *
17 * Fixes:
18 *		Alan Cox	: 	Numerous verify_area() problems
19 *		Alan Cox	:	Connecting on a connecting socket
20 *					now returns an error for tcp.
21 *		Alan Cox	:	sock->protocol is set correctly.
22 *					and is not sometimes left as 0.
23 *		Alan Cox	:	connect handles icmp errors on a
24 *					connect properly. Unfortunately there
25 *					is a restart syscall nasty there. I
26 *					can't match BSD without hacking the C
27 *					library. Ideas urgently sought!
28 *		Alan Cox	:	Disallow bind() to addresses that are
29 *					not ours - especially broadcast ones!!
30 *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
31 *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
32 *					instead they leave that for the DESTROY timer.
33 *		Alan Cox	:	Clean up error flag in accept
34 *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
35 *					was buggy. Put a remove_sock() in the handler
36 *					for memory when we hit 0. Also altered the timer
37 *					code. The ACK stuff can wait and needs major
38 *					TCP layer surgery.
39 *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
40 *					and fixed timer/inet_bh race.
41 *		Alan Cox	:	Added zapped flag for TCP
42 *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
43 *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
44 *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
45 *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
46 *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
47 *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
48 *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
49 *	Pauline Middelink	:	identd support
50 *		Alan Cox	:	Fixed connect() taking signals I think.
51 *		Alan Cox	:	SO_LINGER supported
52 *		Alan Cox	:	Error reporting fixes
53 *		Anonymous	:	inet_create tidied up (sk->reuse setting)
54 *		Alan Cox	:	inet sockets don't set sk->type!
55 *		Alan Cox	:	Split socket option code
56 *		Alan Cox	:	Callbacks
57 *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
58 *		Alex		:	Removed restriction on inet fioctl
59 *		Alan Cox	:	Splitting INET from NET core
60 *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
61 *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
62 *		Alan Cox	:	Split IP from generic code
63 *		Alan Cox	:	New kfree_skbmem()
64 *		Alan Cox	:	Make SO_DEBUG superuser only.
65 *		Alan Cox	:	Allow anyone to clear SO_DEBUG
66 *					(compatibility fix)
67 *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
68 *		Alan Cox	:	Allocator for a socket is settable.
69 *		Alan Cox	:	SO_ERROR includes soft errors.
70 *		Alan Cox	:	Allow NULL arguments on some SO_ opts
71 *		Alan Cox	: 	Generic socket allocation to make hooks
72 *					easier (suggested by Craig Metz).
73 *		Michael Pall	:	SO_ERROR returns positive errno again
74 *              Steve Whitehouse:       Added default destructor to free
75 *                                      protocol private data.
76 *              Steve Whitehouse:       Added various other default routines
77 *                                      common to several socket families.
78 *              Chris Evans     :       Call suser() check last on F_SETOWN
79 *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
80 *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
81 *		Andi Kleen	:	Fix write_space callback
82 *		Chris Evans	:	Security fixes - signedness again
83 *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
84 *
85 * To Fix:
86 *
87 *
88 *		This program is free software; you can redistribute it and/or
89 *		modify it under the terms of the GNU General Public License
90 *		as published by the Free Software Foundation; either version
91 *		2 of the License, or (at your option) any later version.
92 */
93
94#include <linux/capability.h>
95#include <linux/errno.h>
96#include <linux/types.h>
97#include <linux/socket.h>
98#include <linux/in.h>
99#include <linux/kernel.h>
100#include <linux/module.h>
101#include <linux/proc_fs.h>
102#include <linux/seq_file.h>
103#include <linux/sched.h>
104#include <linux/timer.h>
105#include <linux/string.h>
106#include <linux/sockios.h>
107#include <linux/net.h>
108#include <linux/mm.h>
109#include <linux/slab.h>
110#include <linux/interrupt.h>
111#include <linux/poll.h>
112#include <linux/tcp.h>
113#include <linux/init.h>
114#include <linux/highmem.h>
115
116#include <asm/uaccess.h>
117#include <asm/system.h>
118
119#include <linux/netdevice.h>
120#include <net/protocol.h>
121#include <linux/skbuff.h>
122#include <net/net_namespace.h>
123#include <net/request_sock.h>
124#include <net/sock.h>
125#include <net/xfrm.h>
126#include <linux/ipsec.h>
127
128#include <linux/filter.h>
129
130#ifdef CONFIG_INET
131#include <net/tcp.h>
132#endif
133
134/*
135 * Each address family might have different locking rules, so we have
136 * one slock key per address family:
137 */
138static struct lock_class_key af_family_keys[AF_MAX];
139static struct lock_class_key af_family_slock_keys[AF_MAX];
140
141#ifdef CONFIG_DEBUG_LOCK_ALLOC
142/*
143 * Make lock validator output more readable. (we pre-construct these
144 * strings build-time, so that runtime initialization of socket
145 * locks is fast):
146 */
147static const char *af_family_key_strings[AF_MAX+1] = {
148  "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX"     , "sk_lock-AF_INET"     ,
149  "sk_lock-AF_AX25"  , "sk_lock-AF_IPX"      , "sk_lock-AF_APPLETALK",
150  "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE"   , "sk_lock-AF_ATMPVC"   ,
151  "sk_lock-AF_X25"   , "sk_lock-AF_INET6"    , "sk_lock-AF_ROSE"     ,
152  "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI"  , "sk_lock-AF_SECURITY" ,
153  "sk_lock-AF_KEY"   , "sk_lock-AF_NETLINK"  , "sk_lock-AF_PACKET"   ,
154  "sk_lock-AF_ASH"   , "sk_lock-AF_ECONET"   , "sk_lock-AF_ATMSVC"   ,
155  "sk_lock-21"       , "sk_lock-AF_SNA"      , "sk_lock-AF_IRDA"     ,
156  "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE"  , "sk_lock-AF_LLC"      ,
157  "sk_lock-27"       , "sk_lock-28"          , "sk_lock-AF_CAN"      ,
158  "sk_lock-AF_TIPC"  , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV"        ,
159  "sk_lock-AF_RXRPC" , "sk_lock-AF_MAX"
160};
161static const char *af_family_slock_key_strings[AF_MAX+1] = {
162  "slock-AF_UNSPEC", "slock-AF_UNIX"     , "slock-AF_INET"     ,
163  "slock-AF_AX25"  , "slock-AF_IPX"      , "slock-AF_APPLETALK",
164  "slock-AF_NETROM", "slock-AF_BRIDGE"   , "slock-AF_ATMPVC"   ,
165  "slock-AF_X25"   , "slock-AF_INET6"    , "slock-AF_ROSE"     ,
166  "slock-AF_DECnet", "slock-AF_NETBEUI"  , "slock-AF_SECURITY" ,
167  "slock-AF_KEY"   , "slock-AF_NETLINK"  , "slock-AF_PACKET"   ,
168  "slock-AF_ASH"   , "slock-AF_ECONET"   , "slock-AF_ATMSVC"   ,
169  "slock-21"       , "slock-AF_SNA"      , "slock-AF_IRDA"     ,
170  "slock-AF_PPPOX" , "slock-AF_WANPIPE"  , "slock-AF_LLC"      ,
171  "slock-27"       , "slock-28"          , "slock-AF_CAN"      ,
172  "slock-AF_TIPC"  , "slock-AF_BLUETOOTH", "slock-AF_IUCV"     ,
173  "slock-AF_RXRPC" , "slock-AF_MAX"
174};
175static const char *af_family_clock_key_strings[AF_MAX+1] = {
176  "clock-AF_UNSPEC", "clock-AF_UNIX"     , "clock-AF_INET"     ,
177  "clock-AF_AX25"  , "clock-AF_IPX"      , "clock-AF_APPLETALK",
178  "clock-AF_NETROM", "clock-AF_BRIDGE"   , "clock-AF_ATMPVC"   ,
179  "clock-AF_X25"   , "clock-AF_INET6"    , "clock-AF_ROSE"     ,
180  "clock-AF_DECnet", "clock-AF_NETBEUI"  , "clock-AF_SECURITY" ,
181  "clock-AF_KEY"   , "clock-AF_NETLINK"  , "clock-AF_PACKET"   ,
182  "clock-AF_ASH"   , "clock-AF_ECONET"   , "clock-AF_ATMSVC"   ,
183  "clock-21"       , "clock-AF_SNA"      , "clock-AF_IRDA"     ,
184  "clock-AF_PPPOX" , "clock-AF_WANPIPE"  , "clock-AF_LLC"      ,
185  "clock-27"       , "clock-28"          , "clock-29"          ,
186  "clock-AF_TIPC"  , "clock-AF_BLUETOOTH", "clock-AF_IUCV"     ,
187  "clock-AF_RXRPC" , "clock-AF_MAX"
188};
189#endif
190
191/*
192 * sk_callback_lock locking rules are per-address-family,
193 * so split the lock classes by using a per-AF key:
194 */
195static struct lock_class_key af_callback_keys[AF_MAX];
196
197/* Take into consideration the size of the struct sk_buff overhead in the
198 * determination of these values, since that is non-constant across
199 * platforms.  This makes socket queueing behavior and performance
200 * not depend upon such differences.
201 */
202#define _SK_MEM_PACKETS		256
203#define _SK_MEM_OVERHEAD	(sizeof(struct sk_buff) + 256)
204#define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
205#define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
206
207/* Run time adjustable parameters. */
208__u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
209__u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
210__u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
211__u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
212
213/* Maximal space eaten by iovec or ancilliary data plus some space */
214int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
215
216static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
217{
218	struct timeval tv;
219
220	if (optlen < sizeof(tv))
221		return -EINVAL;
222	if (copy_from_user(&tv, optval, sizeof(tv)))
223		return -EFAULT;
224	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
225		return -EDOM;
226
227	if (tv.tv_sec < 0) {
228		static int warned __read_mostly;
229
230		*timeo_p = 0;
231		if (warned < 10 && net_ratelimit())
232			warned++;
233			printk(KERN_INFO "sock_set_timeout: `%s' (pid %d) "
234			       "tries to set negative timeout\n",
235				current->comm, task_pid_nr(current));
236		return 0;
237	}
238	*timeo_p = MAX_SCHEDULE_TIMEOUT;
239	if (tv.tv_sec == 0 && tv.tv_usec == 0)
240		return 0;
241	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
242		*timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
243	return 0;
244}
245
246static void sock_warn_obsolete_bsdism(const char *name)
247{
248	static int warned;
249	static char warncomm[TASK_COMM_LEN];
250	if (strcmp(warncomm, current->comm) && warned < 5) {
251		strcpy(warncomm,  current->comm);
252		printk(KERN_WARNING "process `%s' is using obsolete "
253		       "%s SO_BSDCOMPAT\n", warncomm, name);
254		warned++;
255	}
256}
257
258static void sock_disable_timestamp(struct sock *sk)
259{
260	if (sock_flag(sk, SOCK_TIMESTAMP)) {
261		sock_reset_flag(sk, SOCK_TIMESTAMP);
262		net_disable_timestamp();
263	}
264}
265
266
267int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
268{
269	int err = 0;
270	int skb_len;
271
272	/* Cast skb->rcvbuf to unsigned... It's pointless, but reduces
273	   number of warnings when compiling with -W --ANK
274	 */
275	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
276	    (unsigned)sk->sk_rcvbuf) {
277		err = -ENOMEM;
278		goto out;
279	}
280
281	err = sk_filter(sk, skb);
282	if (err)
283		goto out;
284
285	if (!sk_rmem_schedule(sk, skb->truesize)) {
286		err = -ENOBUFS;
287		goto out;
288	}
289
290	skb->dev = NULL;
291	skb_set_owner_r(skb, sk);
292
293	/* Cache the SKB length before we tack it onto the receive
294	 * queue.  Once it is added it no longer belongs to us and
295	 * may be freed by other threads of control pulling packets
296	 * from the queue.
297	 */
298	skb_len = skb->len;
299
300	skb_queue_tail(&sk->sk_receive_queue, skb);
301
302	if (!sock_flag(sk, SOCK_DEAD))
303		sk->sk_data_ready(sk, skb_len);
304out:
305	return err;
306}
307EXPORT_SYMBOL(sock_queue_rcv_skb);
308
309int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
310{
311	int rc = NET_RX_SUCCESS;
312
313	if (sk_filter(sk, skb))
314		goto discard_and_relse;
315
316	skb->dev = NULL;
317
318	if (nested)
319		bh_lock_sock_nested(sk);
320	else
321		bh_lock_sock(sk);
322	if (!sock_owned_by_user(sk)) {
323		/*
324		 * trylock + unlock semantics:
325		 */
326		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
327
328		rc = sk->sk_backlog_rcv(sk, skb);
329
330		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
331	} else
332		sk_add_backlog(sk, skb);
333	bh_unlock_sock(sk);
334out:
335	sock_put(sk);
336	return rc;
337discard_and_relse:
338	kfree_skb(skb);
339	goto out;
340}
341EXPORT_SYMBOL(sk_receive_skb);
342
343struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
344{
345	struct dst_entry *dst = sk->sk_dst_cache;
346
347	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
348		sk->sk_dst_cache = NULL;
349		dst_release(dst);
350		return NULL;
351	}
352
353	return dst;
354}
355EXPORT_SYMBOL(__sk_dst_check);
356
357struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
358{
359	struct dst_entry *dst = sk_dst_get(sk);
360
361	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
362		sk_dst_reset(sk);
363		dst_release(dst);
364		return NULL;
365	}
366
367	return dst;
368}
369EXPORT_SYMBOL(sk_dst_check);
370
371static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
372{
373	int ret = -ENOPROTOOPT;
374#ifdef CONFIG_NETDEVICES
375	struct net *net = sock_net(sk);
376	char devname[IFNAMSIZ];
377	int index;
378
379	/* Sorry... */
380	ret = -EPERM;
381	if (!capable(CAP_NET_RAW))
382		goto out;
383
384	ret = -EINVAL;
385	if (optlen < 0)
386		goto out;
387
388	/* Bind this socket to a particular device like "eth0",
389	 * as specified in the passed interface name. If the
390	 * name is "" or the option length is zero the socket
391	 * is not bound.
392	 */
393	if (optlen > IFNAMSIZ - 1)
394		optlen = IFNAMSIZ - 1;
395	memset(devname, 0, sizeof(devname));
396
397	ret = -EFAULT;
398	if (copy_from_user(devname, optval, optlen))
399		goto out;
400
401	if (devname[0] == '\0') {
402		index = 0;
403	} else {
404		struct net_device *dev = dev_get_by_name(net, devname);
405
406		ret = -ENODEV;
407		if (!dev)
408			goto out;
409
410		index = dev->ifindex;
411		dev_put(dev);
412	}
413
414	lock_sock(sk);
415	sk->sk_bound_dev_if = index;
416	sk_dst_reset(sk);
417	release_sock(sk);
418
419	ret = 0;
420
421out:
422#endif
423
424	return ret;
425}
426
427static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
428{
429	if (valbool)
430		sock_set_flag(sk, bit);
431	else
432		sock_reset_flag(sk, bit);
433}
434
435/*
436 *	This is meant for all protocols to use and covers goings on
437 *	at the socket level. Everything here is generic.
438 */
439
440int sock_setsockopt(struct socket *sock, int level, int optname,
441		    char __user *optval, int optlen)
442{
443	struct sock *sk=sock->sk;
444	int val;
445	int valbool;
446	struct linger ling;
447	int ret = 0;
448
449	/*
450	 *	Options without arguments
451	 */
452
453#ifdef SO_DONTLINGER		/* Compatibility item... */
454	if (optname == SO_DONTLINGER) {
455		lock_sock(sk);
456		sock_reset_flag(sk, SOCK_LINGER);
457		release_sock(sk);
458		return 0;
459	}
460#endif
461
462	if (optname == SO_BINDTODEVICE)
463		return sock_bindtodevice(sk, optval, optlen);
464
465	if (optlen < sizeof(int))
466		return -EINVAL;
467
468	if (get_user(val, (int __user *)optval))
469		return -EFAULT;
470
471	valbool = val?1:0;
472
473	lock_sock(sk);
474
475	switch(optname) {
476	case SO_DEBUG:
477		if (val && !capable(CAP_NET_ADMIN)) {
478			ret = -EACCES;
479		} else
480			sock_valbool_flag(sk, SOCK_DBG, valbool);
481		break;
482	case SO_REUSEADDR:
483		sk->sk_reuse = valbool;
484		break;
485	case SO_TYPE:
486	case SO_ERROR:
487		ret = -ENOPROTOOPT;
488		break;
489	case SO_DONTROUTE:
490		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
491		break;
492	case SO_BROADCAST:
493		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
494		break;
495	case SO_SNDBUF:
496		/* Don't error on this BSD doesn't and if you think
497		   about it this is right. Otherwise apps have to
498		   play 'guess the biggest size' games. RCVBUF/SNDBUF
499		   are treated in BSD as hints */
500
501		if (val > sysctl_wmem_max)
502			val = sysctl_wmem_max;
503set_sndbuf:
504		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
505		if ((val * 2) < SOCK_MIN_SNDBUF)
506			sk->sk_sndbuf = SOCK_MIN_SNDBUF;
507		else
508			sk->sk_sndbuf = val * 2;
509
510		/*
511		 *	Wake up sending tasks if we
512		 *	upped the value.
513		 */
514		sk->sk_write_space(sk);
515		break;
516
517	case SO_SNDBUFFORCE:
518		if (!capable(CAP_NET_ADMIN)) {
519			ret = -EPERM;
520			break;
521		}
522		goto set_sndbuf;
523
524	case SO_RCVBUF:
525		/* Don't error on this BSD doesn't and if you think
526		   about it this is right. Otherwise apps have to
527		   play 'guess the biggest size' games. RCVBUF/SNDBUF
528		   are treated in BSD as hints */
529
530		if (val > sysctl_rmem_max)
531			val = sysctl_rmem_max;
532set_rcvbuf:
533		sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
534		/*
535		 * We double it on the way in to account for
536		 * "struct sk_buff" etc. overhead.   Applications
537		 * assume that the SO_RCVBUF setting they make will
538		 * allow that much actual data to be received on that
539		 * socket.
540		 *
541		 * Applications are unaware that "struct sk_buff" and
542		 * other overheads allocate from the receive buffer
543		 * during socket buffer allocation.
544		 *
545		 * And after considering the possible alternatives,
546		 * returning the value we actually used in getsockopt
547		 * is the most desirable behavior.
548		 */
549		if ((val * 2) < SOCK_MIN_RCVBUF)
550			sk->sk_rcvbuf = SOCK_MIN_RCVBUF;
551		else
552			sk->sk_rcvbuf = val * 2;
553		break;
554
555	case SO_RCVBUFFORCE:
556		if (!capable(CAP_NET_ADMIN)) {
557			ret = -EPERM;
558			break;
559		}
560		goto set_rcvbuf;
561
562	case SO_KEEPALIVE:
563#ifdef CONFIG_INET
564		if (sk->sk_protocol == IPPROTO_TCP)
565			tcp_set_keepalive(sk, valbool);
566#endif
567		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
568		break;
569
570	case SO_OOBINLINE:
571		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
572		break;
573
574	case SO_NO_CHECK:
575		sk->sk_no_check = valbool;
576		break;
577
578	case SO_PRIORITY:
579		if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
580			sk->sk_priority = val;
581		else
582			ret = -EPERM;
583		break;
584
585	case SO_LINGER:
586		if (optlen < sizeof(ling)) {
587			ret = -EINVAL;	/* 1003.1g */
588			break;
589		}
590		if (copy_from_user(&ling,optval,sizeof(ling))) {
591			ret = -EFAULT;
592			break;
593		}
594		if (!ling.l_onoff)
595			sock_reset_flag(sk, SOCK_LINGER);
596		else {
597#if (BITS_PER_LONG == 32)
598			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
599				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
600			else
601#endif
602				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
603			sock_set_flag(sk, SOCK_LINGER);
604		}
605		break;
606
607	case SO_BSDCOMPAT:
608		sock_warn_obsolete_bsdism("setsockopt");
609		break;
610
611	case SO_PASSCRED:
612		if (valbool)
613			set_bit(SOCK_PASSCRED, &sock->flags);
614		else
615			clear_bit(SOCK_PASSCRED, &sock->flags);
616		break;
617
618	case SO_TIMESTAMP:
619	case SO_TIMESTAMPNS:
620		if (valbool)  {
621			if (optname == SO_TIMESTAMP)
622				sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
623			else
624				sock_set_flag(sk, SOCK_RCVTSTAMPNS);
625			sock_set_flag(sk, SOCK_RCVTSTAMP);
626			sock_enable_timestamp(sk);
627		} else {
628			sock_reset_flag(sk, SOCK_RCVTSTAMP);
629			sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
630		}
631		break;
632
633	case SO_RCVLOWAT:
634		if (val < 0)
635			val = INT_MAX;
636		sk->sk_rcvlowat = val ? : 1;
637		break;
638
639	case SO_RCVTIMEO:
640		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
641		break;
642
643	case SO_SNDTIMEO:
644		ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
645		break;
646
647	case SO_ATTACH_FILTER:
648		ret = -EINVAL;
649		if (optlen == sizeof(struct sock_fprog)) {
650			struct sock_fprog fprog;
651
652			ret = -EFAULT;
653			if (copy_from_user(&fprog, optval, sizeof(fprog)))
654				break;
655
656			ret = sk_attach_filter(&fprog, sk);
657		}
658		break;
659
660	case SO_DETACH_FILTER:
661		ret = sk_detach_filter(sk);
662		break;
663
664	case SO_PASSSEC:
665		if (valbool)
666			set_bit(SOCK_PASSSEC, &sock->flags);
667		else
668			clear_bit(SOCK_PASSSEC, &sock->flags);
669		break;
670	case SO_MARK:
671		if (!capable(CAP_NET_ADMIN))
672			ret = -EPERM;
673		else {
674			sk->sk_mark = val;
675		}
676		break;
677
678		/* We implement the SO_SNDLOWAT etc to
679		   not be settable (1003.1g 5.3) */
680	default:
681		ret = -ENOPROTOOPT;
682		break;
683	}
684	release_sock(sk);
685	return ret;
686}
687
688
689int sock_getsockopt(struct socket *sock, int level, int optname,
690		    char __user *optval, int __user *optlen)
691{
692	struct sock *sk = sock->sk;
693
694	union {
695		int val;
696		struct linger ling;
697		struct timeval tm;
698	} v;
699
700	unsigned int lv = sizeof(int);
701	int len;
702
703	if (get_user(len, optlen))
704		return -EFAULT;
705	if (len < 0)
706		return -EINVAL;
707
708	switch(optname) {
709	case SO_DEBUG:
710		v.val = sock_flag(sk, SOCK_DBG);
711		break;
712
713	case SO_DONTROUTE:
714		v.val = sock_flag(sk, SOCK_LOCALROUTE);
715		break;
716
717	case SO_BROADCAST:
718		v.val = !!sock_flag(sk, SOCK_BROADCAST);
719		break;
720
721	case SO_SNDBUF:
722		v.val = sk->sk_sndbuf;
723		break;
724
725	case SO_RCVBUF:
726		v.val = sk->sk_rcvbuf;
727		break;
728
729	case SO_REUSEADDR:
730		v.val = sk->sk_reuse;
731		break;
732
733	case SO_KEEPALIVE:
734		v.val = !!sock_flag(sk, SOCK_KEEPOPEN);
735		break;
736
737	case SO_TYPE:
738		v.val = sk->sk_type;
739		break;
740
741	case SO_ERROR:
742		v.val = -sock_error(sk);
743		if (v.val==0)
744			v.val = xchg(&sk->sk_err_soft, 0);
745		break;
746
747	case SO_OOBINLINE:
748		v.val = !!sock_flag(sk, SOCK_URGINLINE);
749		break;
750
751	case SO_NO_CHECK:
752		v.val = sk->sk_no_check;
753		break;
754
755	case SO_PRIORITY:
756		v.val = sk->sk_priority;
757		break;
758
759	case SO_LINGER:
760		lv		= sizeof(v.ling);
761		v.ling.l_onoff	= !!sock_flag(sk, SOCK_LINGER);
762		v.ling.l_linger	= sk->sk_lingertime / HZ;
763		break;
764
765	case SO_BSDCOMPAT:
766		sock_warn_obsolete_bsdism("getsockopt");
767		break;
768
769	case SO_TIMESTAMP:
770		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
771				!sock_flag(sk, SOCK_RCVTSTAMPNS);
772		break;
773
774	case SO_TIMESTAMPNS:
775		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
776		break;
777
778	case SO_RCVTIMEO:
779		lv=sizeof(struct timeval);
780		if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
781			v.tm.tv_sec = 0;
782			v.tm.tv_usec = 0;
783		} else {
784			v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
785			v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
786		}
787		break;
788
789	case SO_SNDTIMEO:
790		lv=sizeof(struct timeval);
791		if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
792			v.tm.tv_sec = 0;
793			v.tm.tv_usec = 0;
794		} else {
795			v.tm.tv_sec = sk->sk_sndtimeo / HZ;
796			v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
797		}
798		break;
799
800	case SO_RCVLOWAT:
801		v.val = sk->sk_rcvlowat;
802		break;
803
804	case SO_SNDLOWAT:
805		v.val=1;
806		break;
807
808	case SO_PASSCRED:
809		v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0;
810		break;
811
812	case SO_PEERCRED:
813		if (len > sizeof(sk->sk_peercred))
814			len = sizeof(sk->sk_peercred);
815		if (copy_to_user(optval, &sk->sk_peercred, len))
816			return -EFAULT;
817		goto lenout;
818
819	case SO_PEERNAME:
820	{
821		char address[128];
822
823		if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
824			return -ENOTCONN;
825		if (lv < len)
826			return -EINVAL;
827		if (copy_to_user(optval, address, len))
828			return -EFAULT;
829		goto lenout;
830	}
831
832	/* Dubious BSD thing... Probably nobody even uses it, but
833	 * the UNIX standard wants it for whatever reason... -DaveM
834	 */
835	case SO_ACCEPTCONN:
836		v.val = sk->sk_state == TCP_LISTEN;
837		break;
838
839	case SO_PASSSEC:
840		v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0;
841		break;
842
843	case SO_PEERSEC:
844		return security_socket_getpeersec_stream(sock, optval, optlen, len);
845
846	case SO_MARK:
847		v.val = sk->sk_mark;
848		break;
849
850	default:
851		return -ENOPROTOOPT;
852	}
853
854	if (len > lv)
855		len = lv;
856	if (copy_to_user(optval, &v, len))
857		return -EFAULT;
858lenout:
859	if (put_user(len, optlen))
860		return -EFAULT;
861	return 0;
862}
863
864/*
865 * Initialize an sk_lock.
866 *
867 * (We also register the sk_lock with the lock validator.)
868 */
869static inline void sock_lock_init(struct sock *sk)
870{
871	sock_lock_init_class_and_name(sk,
872			af_family_slock_key_strings[sk->sk_family],
873			af_family_slock_keys + sk->sk_family,
874			af_family_key_strings[sk->sk_family],
875			af_family_keys + sk->sk_family);
876}
877
878static void sock_copy(struct sock *nsk, const struct sock *osk)
879{
880#ifdef CONFIG_SECURITY_NETWORK
881	void *sptr = nsk->sk_security;
882#endif
883
884	memcpy(nsk, osk, osk->sk_prot->obj_size);
885#ifdef CONFIG_SECURITY_NETWORK
886	nsk->sk_security = sptr;
887	security_sk_clone(osk, nsk);
888#endif
889}
890
891static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
892		int family)
893{
894	struct sock *sk;
895	struct kmem_cache *slab;
896
897	slab = prot->slab;
898	if (slab != NULL)
899		sk = kmem_cache_alloc(slab, priority);
900	else
901		sk = kmalloc(prot->obj_size, priority);
902
903	if (sk != NULL) {
904		if (security_sk_alloc(sk, family, priority))
905			goto out_free;
906
907		if (!try_module_get(prot->owner))
908			goto out_free_sec;
909	}
910
911	return sk;
912
913out_free_sec:
914	security_sk_free(sk);
915out_free:
916	if (slab != NULL)
917		kmem_cache_free(slab, sk);
918	else
919		kfree(sk);
920	return NULL;
921}
922
923static void sk_prot_free(struct proto *prot, struct sock *sk)
924{
925	struct kmem_cache *slab;
926	struct module *owner;
927
928	owner = prot->owner;
929	slab = prot->slab;
930
931	security_sk_free(sk);
932	if (slab != NULL)
933		kmem_cache_free(slab, sk);
934	else
935		kfree(sk);
936	module_put(owner);
937}
938
939/**
940 *	sk_alloc - All socket objects are allocated here
941 *	@net: the applicable net namespace
942 *	@family: protocol family
943 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
944 *	@prot: struct proto associated with this new sock instance
945 *	@zero_it: if we should zero the newly allocated sock
946 */
947struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
948		      struct proto *prot)
949{
950	struct sock *sk;
951
952	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
953	if (sk) {
954		sk->sk_family = family;
955		/*
956		 * See comment in struct sock definition to understand
957		 * why we need sk_prot_creator -acme
958		 */
959		sk->sk_prot = sk->sk_prot_creator = prot;
960		sock_lock_init(sk);
961		sock_net_set(sk, get_net(net));
962	}
963
964	return sk;
965}
966
967void sk_free(struct sock *sk)
968{
969	struct sk_filter *filter;
970
971	if (sk->sk_destruct)
972		sk->sk_destruct(sk);
973
974	filter = rcu_dereference(sk->sk_filter);
975	if (filter) {
976		sk_filter_uncharge(sk, filter);
977		rcu_assign_pointer(sk->sk_filter, NULL);
978	}
979
980	sock_disable_timestamp(sk);
981
982	if (atomic_read(&sk->sk_omem_alloc))
983		printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n",
984		       __func__, atomic_read(&sk->sk_omem_alloc));
985
986	put_net(sock_net(sk));
987	sk_prot_free(sk->sk_prot_creator, sk);
988}
989
990/*
991 * Last sock_put should drop referrence to sk->sk_net. It has already
992 * been dropped in sk_change_net. Taking referrence to stopping namespace
993 * is not an option.
994 * Take referrence to a socket to remove it from hash _alive_ and after that
995 * destroy it in the context of init_net.
996 */
997void sk_release_kernel(struct sock *sk)
998{
999	if (sk == NULL || sk->sk_socket == NULL)
1000		return;
1001
1002	sock_hold(sk);
1003	sock_release(sk->sk_socket);
1004	sock_net_set(sk, get_net(&init_net));
1005	sock_put(sk);
1006}
1007EXPORT_SYMBOL(sk_release_kernel);
1008
1009struct sock *sk_clone(const struct sock *sk, const gfp_t priority)
1010{
1011	struct sock *newsk;
1012
1013	newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1014	if (newsk != NULL) {
1015		struct sk_filter *filter;
1016
1017		sock_copy(newsk, sk);
1018
1019		/* SANITY */
1020		get_net(sock_net(newsk));
1021		sk_node_init(&newsk->sk_node);
1022		sock_lock_init(newsk);
1023		bh_lock_sock(newsk);
1024		newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
1025
1026		atomic_set(&newsk->sk_rmem_alloc, 0);
1027		atomic_set(&newsk->sk_wmem_alloc, 0);
1028		atomic_set(&newsk->sk_omem_alloc, 0);
1029		skb_queue_head_init(&newsk->sk_receive_queue);
1030		skb_queue_head_init(&newsk->sk_write_queue);
1031#ifdef CONFIG_NET_DMA
1032		skb_queue_head_init(&newsk->sk_async_wait_queue);
1033#endif
1034
1035		rwlock_init(&newsk->sk_dst_lock);
1036		rwlock_init(&newsk->sk_callback_lock);
1037		lockdep_set_class_and_name(&newsk->sk_callback_lock,
1038				af_callback_keys + newsk->sk_family,
1039				af_family_clock_key_strings[newsk->sk_family]);
1040
1041		newsk->sk_dst_cache	= NULL;
1042		newsk->sk_wmem_queued	= 0;
1043		newsk->sk_forward_alloc = 0;
1044		newsk->sk_send_head	= NULL;
1045		newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1046
1047		sock_reset_flag(newsk, SOCK_DONE);
1048		skb_queue_head_init(&newsk->sk_error_queue);
1049
1050		filter = newsk->sk_filter;
1051		if (filter != NULL)
1052			sk_filter_charge(newsk, filter);
1053
1054		if (unlikely(xfrm_sk_clone_policy(newsk))) {
1055			/* It is still raw copy of parent, so invalidate
1056			 * destructor and make plain sk_free() */
1057			newsk->sk_destruct = NULL;
1058			sk_free(newsk);
1059			newsk = NULL;
1060			goto out;
1061		}
1062
1063		newsk->sk_err	   = 0;
1064		newsk->sk_priority = 0;
1065		atomic_set(&newsk->sk_refcnt, 2);
1066
1067		/*
1068		 * Increment the counter in the same struct proto as the master
1069		 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1070		 * is the same as sk->sk_prot->socks, as this field was copied
1071		 * with memcpy).
1072		 *
1073		 * This _changes_ the previous behaviour, where
1074		 * tcp_create_openreq_child always was incrementing the
1075		 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1076		 * to be taken into account in all callers. -acme
1077		 */
1078		sk_refcnt_debug_inc(newsk);
1079		newsk->sk_socket = NULL;
1080		newsk->sk_sleep	 = NULL;
1081
1082		if (newsk->sk_prot->sockets_allocated)
1083			atomic_inc(newsk->sk_prot->sockets_allocated);
1084	}
1085out:
1086	return newsk;
1087}
1088
1089EXPORT_SYMBOL_GPL(sk_clone);
1090
1091void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1092{
1093	__sk_dst_set(sk, dst);
1094	sk->sk_route_caps = dst->dev->features;
1095	if (sk->sk_route_caps & NETIF_F_GSO)
1096		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1097	if (sk_can_gso(sk)) {
1098		if (dst->header_len) {
1099			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1100		} else {
1101			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1102			sk->sk_gso_max_size = dst->dev->gso_max_size;
1103		}
1104	}
1105}
1106EXPORT_SYMBOL_GPL(sk_setup_caps);
1107
1108void __init sk_init(void)
1109{
1110	if (num_physpages <= 4096) {
1111		sysctl_wmem_max = 32767;
1112		sysctl_rmem_max = 32767;
1113		sysctl_wmem_default = 32767;
1114		sysctl_rmem_default = 32767;
1115	} else if (num_physpages >= 131072) {
1116		sysctl_wmem_max = 131071;
1117		sysctl_rmem_max = 131071;
1118	}
1119}
1120
1121/*
1122 *	Simple resource managers for sockets.
1123 */
1124
1125
1126/*
1127 * Write buffer destructor automatically called from kfree_skb.
1128 */
1129void sock_wfree(struct sk_buff *skb)
1130{
1131	struct sock *sk = skb->sk;
1132
1133	/* In case it might be waiting for more memory. */
1134	atomic_sub(skb->truesize, &sk->sk_wmem_alloc);
1135	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE))
1136		sk->sk_write_space(sk);
1137	sock_put(sk);
1138}
1139
1140/*
1141 * Read buffer destructor automatically called from kfree_skb.
1142 */
1143void sock_rfree(struct sk_buff *skb)
1144{
1145	struct sock *sk = skb->sk;
1146
1147	skb_truesize_check(skb);
1148	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1149	sk_mem_uncharge(skb->sk, skb->truesize);
1150}
1151
1152
1153int sock_i_uid(struct sock *sk)
1154{
1155	int uid;
1156
1157	read_lock(&sk->sk_callback_lock);
1158	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1159	read_unlock(&sk->sk_callback_lock);
1160	return uid;
1161}
1162
1163unsigned long sock_i_ino(struct sock *sk)
1164{
1165	unsigned long ino;
1166
1167	read_lock(&sk->sk_callback_lock);
1168	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1169	read_unlock(&sk->sk_callback_lock);
1170	return ino;
1171}
1172
1173/*
1174 * Allocate a skb from the socket's send buffer.
1175 */
1176struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1177			     gfp_t priority)
1178{
1179	if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1180		struct sk_buff * skb = alloc_skb(size, priority);
1181		if (skb) {
1182			skb_set_owner_w(skb, sk);
1183			return skb;
1184		}
1185	}
1186	return NULL;
1187}
1188
1189/*
1190 * Allocate a skb from the socket's receive buffer.
1191 */
1192struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1193			     gfp_t priority)
1194{
1195	if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1196		struct sk_buff *skb = alloc_skb(size, priority);
1197		if (skb) {
1198			skb_set_owner_r(skb, sk);
1199			return skb;
1200		}
1201	}
1202	return NULL;
1203}
1204
1205/*
1206 * Allocate a memory block from the socket's option memory buffer.
1207 */
1208void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1209{
1210	if ((unsigned)size <= sysctl_optmem_max &&
1211	    atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1212		void *mem;
1213		/* First do the add, to avoid the race if kmalloc
1214		 * might sleep.
1215		 */
1216		atomic_add(size, &sk->sk_omem_alloc);
1217		mem = kmalloc(size, priority);
1218		if (mem)
1219			return mem;
1220		atomic_sub(size, &sk->sk_omem_alloc);
1221	}
1222	return NULL;
1223}
1224
1225/*
1226 * Free an option memory block.
1227 */
1228void sock_kfree_s(struct sock *sk, void *mem, int size)
1229{
1230	kfree(mem);
1231	atomic_sub(size, &sk->sk_omem_alloc);
1232}
1233
1234/* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1235   I think, these locks should be removed for datagram sockets.
1236 */
1237static long sock_wait_for_wmem(struct sock * sk, long timeo)
1238{
1239	DEFINE_WAIT(wait);
1240
1241	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1242	for (;;) {
1243		if (!timeo)
1244			break;
1245		if (signal_pending(current))
1246			break;
1247		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1248		prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1249		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1250			break;
1251		if (sk->sk_shutdown & SEND_SHUTDOWN)
1252			break;
1253		if (sk->sk_err)
1254			break;
1255		timeo = schedule_timeout(timeo);
1256	}
1257	finish_wait(sk->sk_sleep, &wait);
1258	return timeo;
1259}
1260
1261
1262/*
1263 *	Generic send/receive buffer handlers
1264 */
1265
1266static struct sk_buff *sock_alloc_send_pskb(struct sock *sk,
1267					    unsigned long header_len,
1268					    unsigned long data_len,
1269					    int noblock, int *errcode)
1270{
1271	struct sk_buff *skb;
1272	gfp_t gfp_mask;
1273	long timeo;
1274	int err;
1275
1276	gfp_mask = sk->sk_allocation;
1277	if (gfp_mask & __GFP_WAIT)
1278		gfp_mask |= __GFP_REPEAT;
1279
1280	timeo = sock_sndtimeo(sk, noblock);
1281	while (1) {
1282		err = sock_error(sk);
1283		if (err != 0)
1284			goto failure;
1285
1286		err = -EPIPE;
1287		if (sk->sk_shutdown & SEND_SHUTDOWN)
1288			goto failure;
1289
1290		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1291			skb = alloc_skb(header_len, gfp_mask);
1292			if (skb) {
1293				int npages;
1294				int i;
1295
1296				/* No pages, we're done... */
1297				if (!data_len)
1298					break;
1299
1300				npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1301				skb->truesize += data_len;
1302				skb_shinfo(skb)->nr_frags = npages;
1303				for (i = 0; i < npages; i++) {
1304					struct page *page;
1305					skb_frag_t *frag;
1306
1307					page = alloc_pages(sk->sk_allocation, 0);
1308					if (!page) {
1309						err = -ENOBUFS;
1310						skb_shinfo(skb)->nr_frags = i;
1311						kfree_skb(skb);
1312						goto failure;
1313					}
1314
1315					frag = &skb_shinfo(skb)->frags[i];
1316					frag->page = page;
1317					frag->page_offset = 0;
1318					frag->size = (data_len >= PAGE_SIZE ?
1319						      PAGE_SIZE :
1320						      data_len);
1321					data_len -= PAGE_SIZE;
1322				}
1323
1324				/* Full success... */
1325				break;
1326			}
1327			err = -ENOBUFS;
1328			goto failure;
1329		}
1330		set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1331		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1332		err = -EAGAIN;
1333		if (!timeo)
1334			goto failure;
1335		if (signal_pending(current))
1336			goto interrupted;
1337		timeo = sock_wait_for_wmem(sk, timeo);
1338	}
1339
1340	skb_set_owner_w(skb, sk);
1341	return skb;
1342
1343interrupted:
1344	err = sock_intr_errno(timeo);
1345failure:
1346	*errcode = err;
1347	return NULL;
1348}
1349
1350struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1351				    int noblock, int *errcode)
1352{
1353	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1354}
1355
1356static void __lock_sock(struct sock *sk)
1357{
1358	DEFINE_WAIT(wait);
1359
1360	for (;;) {
1361		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1362					TASK_UNINTERRUPTIBLE);
1363		spin_unlock_bh(&sk->sk_lock.slock);
1364		schedule();
1365		spin_lock_bh(&sk->sk_lock.slock);
1366		if (!sock_owned_by_user(sk))
1367			break;
1368	}
1369	finish_wait(&sk->sk_lock.wq, &wait);
1370}
1371
1372static void __release_sock(struct sock *sk)
1373{
1374	struct sk_buff *skb = sk->sk_backlog.head;
1375
1376	do {
1377		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1378		bh_unlock_sock(sk);
1379
1380		do {
1381			struct sk_buff *next = skb->next;
1382
1383			skb->next = NULL;
1384			sk->sk_backlog_rcv(sk, skb);
1385
1386			/*
1387			 * We are in process context here with softirqs
1388			 * disabled, use cond_resched_softirq() to preempt.
1389			 * This is safe to do because we've taken the backlog
1390			 * queue private:
1391			 */
1392			cond_resched_softirq();
1393
1394			skb = next;
1395		} while (skb != NULL);
1396
1397		bh_lock_sock(sk);
1398	} while ((skb = sk->sk_backlog.head) != NULL);
1399}
1400
1401/**
1402 * sk_wait_data - wait for data to arrive at sk_receive_queue
1403 * @sk:    sock to wait on
1404 * @timeo: for how long
1405 *
1406 * Now socket state including sk->sk_err is changed only under lock,
1407 * hence we may omit checks after joining wait queue.
1408 * We check receive queue before schedule() only as optimization;
1409 * it is very likely that release_sock() added new data.
1410 */
1411int sk_wait_data(struct sock *sk, long *timeo)
1412{
1413	int rc;
1414	DEFINE_WAIT(wait);
1415
1416	prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1417	set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1418	rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1419	clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1420	finish_wait(sk->sk_sleep, &wait);
1421	return rc;
1422}
1423
1424EXPORT_SYMBOL(sk_wait_data);
1425
1426/**
1427 *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1428 *	@sk: socket
1429 *	@size: memory size to allocate
1430 *	@kind: allocation type
1431 *
1432 *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1433 *	rmem allocation. This function assumes that protocols which have
1434 *	memory_pressure use sk_wmem_queued as write buffer accounting.
1435 */
1436int __sk_mem_schedule(struct sock *sk, int size, int kind)
1437{
1438	struct proto *prot = sk->sk_prot;
1439	int amt = sk_mem_pages(size);
1440	int allocated;
1441
1442	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
1443	allocated = atomic_add_return(amt, prot->memory_allocated);
1444
1445	/* Under limit. */
1446	if (allocated <= prot->sysctl_mem[0]) {
1447		if (prot->memory_pressure && *prot->memory_pressure)
1448			*prot->memory_pressure = 0;
1449		return 1;
1450	}
1451
1452	/* Under pressure. */
1453	if (allocated > prot->sysctl_mem[1])
1454		if (prot->enter_memory_pressure)
1455			prot->enter_memory_pressure();
1456
1457	/* Over hard limit. */
1458	if (allocated > prot->sysctl_mem[2])
1459		goto suppress_allocation;
1460
1461	/* guarantee minimum buffer size under pressure */
1462	if (kind == SK_MEM_RECV) {
1463		if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
1464			return 1;
1465	} else { /* SK_MEM_SEND */
1466		if (sk->sk_type == SOCK_STREAM) {
1467			if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
1468				return 1;
1469		} else if (atomic_read(&sk->sk_wmem_alloc) <
1470			   prot->sysctl_wmem[0])
1471				return 1;
1472	}
1473
1474	if (prot->memory_pressure) {
1475		if (!*prot->memory_pressure ||
1476		    prot->sysctl_mem[2] > atomic_read(prot->sockets_allocated) *
1477		    sk_mem_pages(sk->sk_wmem_queued +
1478				 atomic_read(&sk->sk_rmem_alloc) +
1479				 sk->sk_forward_alloc))
1480			return 1;
1481	}
1482
1483suppress_allocation:
1484
1485	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
1486		sk_stream_moderate_sndbuf(sk);
1487
1488		/* Fail only if socket is _under_ its sndbuf.
1489		 * In this case we cannot block, so that we have to fail.
1490		 */
1491		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
1492			return 1;
1493	}
1494
1495	/* Alas. Undo changes. */
1496	sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
1497	atomic_sub(amt, prot->memory_allocated);
1498	return 0;
1499}
1500
1501EXPORT_SYMBOL(__sk_mem_schedule);
1502
1503/**
1504 *	__sk_reclaim - reclaim memory_allocated
1505 *	@sk: socket
1506 */
1507void __sk_mem_reclaim(struct sock *sk)
1508{
1509	struct proto *prot = sk->sk_prot;
1510
1511	atomic_sub(sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT,
1512		   prot->memory_allocated);
1513	sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
1514
1515	if (prot->memory_pressure && *prot->memory_pressure &&
1516	    (atomic_read(prot->memory_allocated) < prot->sysctl_mem[0]))
1517		*prot->memory_pressure = 0;
1518}
1519
1520EXPORT_SYMBOL(__sk_mem_reclaim);
1521
1522
1523/*
1524 * Set of default routines for initialising struct proto_ops when
1525 * the protocol does not support a particular function. In certain
1526 * cases where it makes no sense for a protocol to have a "do nothing"
1527 * function, some default processing is provided.
1528 */
1529
1530int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1531{
1532	return -EOPNOTSUPP;
1533}
1534
1535int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1536		    int len, int flags)
1537{
1538	return -EOPNOTSUPP;
1539}
1540
1541int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1542{
1543	return -EOPNOTSUPP;
1544}
1545
1546int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1547{
1548	return -EOPNOTSUPP;
1549}
1550
1551int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1552		    int *len, int peer)
1553{
1554	return -EOPNOTSUPP;
1555}
1556
1557unsigned int sock_no_poll(struct file * file, struct socket *sock, poll_table *pt)
1558{
1559	return 0;
1560}
1561
1562int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1563{
1564	return -EOPNOTSUPP;
1565}
1566
1567int sock_no_listen(struct socket *sock, int backlog)
1568{
1569	return -EOPNOTSUPP;
1570}
1571
1572int sock_no_shutdown(struct socket *sock, int how)
1573{
1574	return -EOPNOTSUPP;
1575}
1576
1577int sock_no_setsockopt(struct socket *sock, int level, int optname,
1578		    char __user *optval, int optlen)
1579{
1580	return -EOPNOTSUPP;
1581}
1582
1583int sock_no_getsockopt(struct socket *sock, int level, int optname,
1584		    char __user *optval, int __user *optlen)
1585{
1586	return -EOPNOTSUPP;
1587}
1588
1589int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1590		    size_t len)
1591{
1592	return -EOPNOTSUPP;
1593}
1594
1595int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1596		    size_t len, int flags)
1597{
1598	return -EOPNOTSUPP;
1599}
1600
1601int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
1602{
1603	/* Mirror missing mmap method error code */
1604	return -ENODEV;
1605}
1606
1607ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
1608{
1609	ssize_t res;
1610	struct msghdr msg = {.msg_flags = flags};
1611	struct kvec iov;
1612	char *kaddr = kmap(page);
1613	iov.iov_base = kaddr + offset;
1614	iov.iov_len = size;
1615	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
1616	kunmap(page);
1617	return res;
1618}
1619
1620/*
1621 *	Default Socket Callbacks
1622 */
1623
1624static void sock_def_wakeup(struct sock *sk)
1625{
1626	read_lock(&sk->sk_callback_lock);
1627	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1628		wake_up_interruptible_all(sk->sk_sleep);
1629	read_unlock(&sk->sk_callback_lock);
1630}
1631
1632static void sock_def_error_report(struct sock *sk)
1633{
1634	read_lock(&sk->sk_callback_lock);
1635	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1636		wake_up_interruptible(sk->sk_sleep);
1637	sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
1638	read_unlock(&sk->sk_callback_lock);
1639}
1640
1641static void sock_def_readable(struct sock *sk, int len)
1642{
1643	read_lock(&sk->sk_callback_lock);
1644	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1645		wake_up_interruptible(sk->sk_sleep);
1646	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
1647	read_unlock(&sk->sk_callback_lock);
1648}
1649
1650static void sock_def_write_space(struct sock *sk)
1651{
1652	read_lock(&sk->sk_callback_lock);
1653
1654	/* Do not wake up a writer until he can make "significant"
1655	 * progress.  --DaveM
1656	 */
1657	if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
1658		if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1659			wake_up_interruptible(sk->sk_sleep);
1660
1661		/* Should agree with poll, otherwise some programs break */
1662		if (sock_writeable(sk))
1663			sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
1664	}
1665
1666	read_unlock(&sk->sk_callback_lock);
1667}
1668
1669static void sock_def_destruct(struct sock *sk)
1670{
1671	kfree(sk->sk_protinfo);
1672}
1673
1674void sk_send_sigurg(struct sock *sk)
1675{
1676	if (sk->sk_socket && sk->sk_socket->file)
1677		if (send_sigurg(&sk->sk_socket->file->f_owner))
1678			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
1679}
1680
1681void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1682		    unsigned long expires)
1683{
1684	if (!mod_timer(timer, expires))
1685		sock_hold(sk);
1686}
1687
1688EXPORT_SYMBOL(sk_reset_timer);
1689
1690void sk_stop_timer(struct sock *sk, struct timer_list* timer)
1691{
1692	if (timer_pending(timer) && del_timer(timer))
1693		__sock_put(sk);
1694}
1695
1696EXPORT_SYMBOL(sk_stop_timer);
1697
1698void sock_init_data(struct socket *sock, struct sock *sk)
1699{
1700	skb_queue_head_init(&sk->sk_receive_queue);
1701	skb_queue_head_init(&sk->sk_write_queue);
1702	skb_queue_head_init(&sk->sk_error_queue);
1703#ifdef CONFIG_NET_DMA
1704	skb_queue_head_init(&sk->sk_async_wait_queue);
1705#endif
1706
1707	sk->sk_send_head	=	NULL;
1708
1709	init_timer(&sk->sk_timer);
1710
1711	sk->sk_allocation	=	GFP_KERNEL;
1712	sk->sk_rcvbuf		=	sysctl_rmem_default;
1713	sk->sk_sndbuf		=	sysctl_wmem_default;
1714	sk->sk_state		=	TCP_CLOSE;
1715	sk->sk_socket		=	sock;
1716
1717	sock_set_flag(sk, SOCK_ZAPPED);
1718
1719	if (sock) {
1720		sk->sk_type	=	sock->type;
1721		sk->sk_sleep	=	&sock->wait;
1722		sock->sk	=	sk;
1723	} else
1724		sk->sk_sleep	=	NULL;
1725
1726	rwlock_init(&sk->sk_dst_lock);
1727	rwlock_init(&sk->sk_callback_lock);
1728	lockdep_set_class_and_name(&sk->sk_callback_lock,
1729			af_callback_keys + sk->sk_family,
1730			af_family_clock_key_strings[sk->sk_family]);
1731
1732	sk->sk_state_change	=	sock_def_wakeup;
1733	sk->sk_data_ready	=	sock_def_readable;
1734	sk->sk_write_space	=	sock_def_write_space;
1735	sk->sk_error_report	=	sock_def_error_report;
1736	sk->sk_destruct		=	sock_def_destruct;
1737
1738	sk->sk_sndmsg_page	=	NULL;
1739	sk->sk_sndmsg_off	=	0;
1740
1741	sk->sk_peercred.pid 	=	0;
1742	sk->sk_peercred.uid	=	-1;
1743	sk->sk_peercred.gid	=	-1;
1744	sk->sk_write_pending	=	0;
1745	sk->sk_rcvlowat		=	1;
1746	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
1747	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
1748
1749	sk->sk_stamp = ktime_set(-1L, -1L);
1750
1751	atomic_set(&sk->sk_refcnt, 1);
1752	atomic_set(&sk->sk_drops, 0);
1753}
1754
1755void lock_sock_nested(struct sock *sk, int subclass)
1756{
1757	might_sleep();
1758	spin_lock_bh(&sk->sk_lock.slock);
1759	if (sk->sk_lock.owned)
1760		__lock_sock(sk);
1761	sk->sk_lock.owned = 1;
1762	spin_unlock(&sk->sk_lock.slock);
1763	/*
1764	 * The sk_lock has mutex_lock() semantics here:
1765	 */
1766	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
1767	local_bh_enable();
1768}
1769
1770EXPORT_SYMBOL(lock_sock_nested);
1771
1772void release_sock(struct sock *sk)
1773{
1774	/*
1775	 * The sk_lock has mutex_unlock() semantics:
1776	 */
1777	mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1778
1779	spin_lock_bh(&sk->sk_lock.slock);
1780	if (sk->sk_backlog.tail)
1781		__release_sock(sk);
1782	sk->sk_lock.owned = 0;
1783	if (waitqueue_active(&sk->sk_lock.wq))
1784		wake_up(&sk->sk_lock.wq);
1785	spin_unlock_bh(&sk->sk_lock.slock);
1786}
1787EXPORT_SYMBOL(release_sock);
1788
1789int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
1790{
1791	struct timeval tv;
1792	if (!sock_flag(sk, SOCK_TIMESTAMP))
1793		sock_enable_timestamp(sk);
1794	tv = ktime_to_timeval(sk->sk_stamp);
1795	if (tv.tv_sec == -1)
1796		return -ENOENT;
1797	if (tv.tv_sec == 0) {
1798		sk->sk_stamp = ktime_get_real();
1799		tv = ktime_to_timeval(sk->sk_stamp);
1800	}
1801	return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
1802}
1803EXPORT_SYMBOL(sock_get_timestamp);
1804
1805int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
1806{
1807	struct timespec ts;
1808	if (!sock_flag(sk, SOCK_TIMESTAMP))
1809		sock_enable_timestamp(sk);
1810	ts = ktime_to_timespec(sk->sk_stamp);
1811	if (ts.tv_sec == -1)
1812		return -ENOENT;
1813	if (ts.tv_sec == 0) {
1814		sk->sk_stamp = ktime_get_real();
1815		ts = ktime_to_timespec(sk->sk_stamp);
1816	}
1817	return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
1818}
1819EXPORT_SYMBOL(sock_get_timestampns);
1820
1821void sock_enable_timestamp(struct sock *sk)
1822{
1823	if (!sock_flag(sk, SOCK_TIMESTAMP)) {
1824		sock_set_flag(sk, SOCK_TIMESTAMP);
1825		net_enable_timestamp();
1826	}
1827}
1828
1829/*
1830 *	Get a socket option on an socket.
1831 *
1832 *	FIX: POSIX 1003.1g is very ambiguous here. It states that
1833 *	asynchronous errors should be reported by getsockopt. We assume
1834 *	this means if you specify SO_ERROR (otherwise whats the point of it).
1835 */
1836int sock_common_getsockopt(struct socket *sock, int level, int optname,
1837			   char __user *optval, int __user *optlen)
1838{
1839	struct sock *sk = sock->sk;
1840
1841	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1842}
1843
1844EXPORT_SYMBOL(sock_common_getsockopt);
1845
1846#ifdef CONFIG_COMPAT
1847int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
1848				  char __user *optval, int __user *optlen)
1849{
1850	struct sock *sk = sock->sk;
1851
1852	if (sk->sk_prot->compat_getsockopt != NULL)
1853		return sk->sk_prot->compat_getsockopt(sk, level, optname,
1854						      optval, optlen);
1855	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1856}
1857EXPORT_SYMBOL(compat_sock_common_getsockopt);
1858#endif
1859
1860int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1861			struct msghdr *msg, size_t size, int flags)
1862{
1863	struct sock *sk = sock->sk;
1864	int addr_len = 0;
1865	int err;
1866
1867	err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
1868				   flags & ~MSG_DONTWAIT, &addr_len);
1869	if (err >= 0)
1870		msg->msg_namelen = addr_len;
1871	return err;
1872}
1873
1874EXPORT_SYMBOL(sock_common_recvmsg);
1875
1876/*
1877 *	Set socket options on an inet socket.
1878 */
1879int sock_common_setsockopt(struct socket *sock, int level, int optname,
1880			   char __user *optval, int optlen)
1881{
1882	struct sock *sk = sock->sk;
1883
1884	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
1885}
1886
1887EXPORT_SYMBOL(sock_common_setsockopt);
1888
1889#ifdef CONFIG_COMPAT
1890int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
1891				  char __user *optval, int optlen)
1892{
1893	struct sock *sk = sock->sk;
1894
1895	if (sk->sk_prot->compat_setsockopt != NULL)
1896		return sk->sk_prot->compat_setsockopt(sk, level, optname,
1897						      optval, optlen);
1898	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
1899}
1900EXPORT_SYMBOL(compat_sock_common_setsockopt);
1901#endif
1902
1903void sk_common_release(struct sock *sk)
1904{
1905	if (sk->sk_prot->destroy)
1906		sk->sk_prot->destroy(sk);
1907
1908	/*
1909	 * Observation: when sock_common_release is called, processes have
1910	 * no access to socket. But net still has.
1911	 * Step one, detach it from networking:
1912	 *
1913	 * A. Remove from hash tables.
1914	 */
1915
1916	sk->sk_prot->unhash(sk);
1917
1918	/*
1919	 * In this point socket cannot receive new packets, but it is possible
1920	 * that some packets are in flight because some CPU runs receiver and
1921	 * did hash table lookup before we unhashed socket. They will achieve
1922	 * receive queue and will be purged by socket destructor.
1923	 *
1924	 * Also we still have packets pending on receive queue and probably,
1925	 * our own packets waiting in device queues. sock_destroy will drain
1926	 * receive queue, but transmitted packets will delay socket destruction
1927	 * until the last reference will be released.
1928	 */
1929
1930	sock_orphan(sk);
1931
1932	xfrm_sk_free_policy(sk);
1933
1934	sk_refcnt_debug_release(sk);
1935	sock_put(sk);
1936}
1937
1938EXPORT_SYMBOL(sk_common_release);
1939
1940static DEFINE_RWLOCK(proto_list_lock);
1941static LIST_HEAD(proto_list);
1942
1943#ifdef CONFIG_PROC_FS
1944#define PROTO_INUSE_NR	64	/* should be enough for the first time */
1945struct prot_inuse {
1946	int val[PROTO_INUSE_NR];
1947};
1948
1949static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
1950static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
1951
1952void sock_prot_inuse_add(struct proto *prot, int val)
1953{
1954	__get_cpu_var(prot_inuse).val[prot->inuse_idx] += val;
1955}
1956EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
1957
1958int sock_prot_inuse_get(struct proto *prot)
1959{
1960	int cpu, idx = prot->inuse_idx;
1961	int res = 0;
1962
1963	for_each_possible_cpu(cpu)
1964		res += per_cpu(prot_inuse, cpu).val[idx];
1965
1966	return res >= 0 ? res : 0;
1967}
1968EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
1969
1970static void assign_proto_idx(struct proto *prot)
1971{
1972	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
1973
1974	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
1975		printk(KERN_ERR "PROTO_INUSE_NR exhausted\n");
1976		return;
1977	}
1978
1979	set_bit(prot->inuse_idx, proto_inuse_idx);
1980}
1981
1982static void release_proto_idx(struct proto *prot)
1983{
1984	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
1985		clear_bit(prot->inuse_idx, proto_inuse_idx);
1986}
1987#else
1988static inline void assign_proto_idx(struct proto *prot)
1989{
1990}
1991
1992static inline void release_proto_idx(struct proto *prot)
1993{
1994}
1995#endif
1996
1997int proto_register(struct proto *prot, int alloc_slab)
1998{
1999	char *request_sock_slab_name = NULL;
2000	char *timewait_sock_slab_name;
2001
2002	if (alloc_slab) {
2003		prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2004					       SLAB_HWCACHE_ALIGN, NULL);
2005
2006		if (prot->slab == NULL) {
2007			printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n",
2008			       prot->name);
2009			goto out;
2010		}
2011
2012		if (prot->rsk_prot != NULL) {
2013			static const char mask[] = "request_sock_%s";
2014
2015			request_sock_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
2016			if (request_sock_slab_name == NULL)
2017				goto out_free_sock_slab;
2018
2019			sprintf(request_sock_slab_name, mask, prot->name);
2020			prot->rsk_prot->slab = kmem_cache_create(request_sock_slab_name,
2021								 prot->rsk_prot->obj_size, 0,
2022								 SLAB_HWCACHE_ALIGN, NULL);
2023
2024			if (prot->rsk_prot->slab == NULL) {
2025				printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n",
2026				       prot->name);
2027				goto out_free_request_sock_slab_name;
2028			}
2029		}
2030
2031		if (prot->twsk_prot != NULL) {
2032			static const char mask[] = "tw_sock_%s";
2033
2034			timewait_sock_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
2035
2036			if (timewait_sock_slab_name == NULL)
2037				goto out_free_request_sock_slab;
2038
2039			sprintf(timewait_sock_slab_name, mask, prot->name);
2040			prot->twsk_prot->twsk_slab =
2041				kmem_cache_create(timewait_sock_slab_name,
2042						  prot->twsk_prot->twsk_obj_size,
2043						  0, SLAB_HWCACHE_ALIGN,
2044						  NULL);
2045			if (prot->twsk_prot->twsk_slab == NULL)
2046				goto out_free_timewait_sock_slab_name;
2047		}
2048	}
2049
2050	write_lock(&proto_list_lock);
2051	list_add(&prot->node, &proto_list);
2052	assign_proto_idx(prot);
2053	write_unlock(&proto_list_lock);
2054	return 0;
2055
2056out_free_timewait_sock_slab_name:
2057	kfree(timewait_sock_slab_name);
2058out_free_request_sock_slab:
2059	if (prot->rsk_prot && prot->rsk_prot->slab) {
2060		kmem_cache_destroy(prot->rsk_prot->slab);
2061		prot->rsk_prot->slab = NULL;
2062	}
2063out_free_request_sock_slab_name:
2064	kfree(request_sock_slab_name);
2065out_free_sock_slab:
2066	kmem_cache_destroy(prot->slab);
2067	prot->slab = NULL;
2068out:
2069	return -ENOBUFS;
2070}
2071
2072EXPORT_SYMBOL(proto_register);
2073
2074void proto_unregister(struct proto *prot)
2075{
2076	write_lock(&proto_list_lock);
2077	release_proto_idx(prot);
2078	list_del(&prot->node);
2079	write_unlock(&proto_list_lock);
2080
2081	if (prot->slab != NULL) {
2082		kmem_cache_destroy(prot->slab);
2083		prot->slab = NULL;
2084	}
2085
2086	if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2087		const char *name = kmem_cache_name(prot->rsk_prot->slab);
2088
2089		kmem_cache_destroy(prot->rsk_prot->slab);
2090		kfree(name);
2091		prot->rsk_prot->slab = NULL;
2092	}
2093
2094	if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2095		const char *name = kmem_cache_name(prot->twsk_prot->twsk_slab);
2096
2097		kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2098		kfree(name);
2099		prot->twsk_prot->twsk_slab = NULL;
2100	}
2101}
2102
2103EXPORT_SYMBOL(proto_unregister);
2104
2105#ifdef CONFIG_PROC_FS
2106static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2107	__acquires(proto_list_lock)
2108{
2109	read_lock(&proto_list_lock);
2110	return seq_list_start_head(&proto_list, *pos);
2111}
2112
2113static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2114{
2115	return seq_list_next(v, &proto_list, pos);
2116}
2117
2118static void proto_seq_stop(struct seq_file *seq, void *v)
2119	__releases(proto_list_lock)
2120{
2121	read_unlock(&proto_list_lock);
2122}
2123
2124static char proto_method_implemented(const void *method)
2125{
2126	return method == NULL ? 'n' : 'y';
2127}
2128
2129static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2130{
2131	seq_printf(seq, "%-9s %4u %6d  %6d   %-3s %6u   %-3s  %-10s "
2132			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2133		   proto->name,
2134		   proto->obj_size,
2135		   proto->sockets_allocated != NULL ? atomic_read(proto->sockets_allocated) : -1,
2136		   proto->memory_allocated != NULL ? atomic_read(proto->memory_allocated) : -1,
2137		   proto->memory_pressure != NULL ? *proto->memory_pressure ? "yes" : "no" : "NI",
2138		   proto->max_header,
2139		   proto->slab == NULL ? "no" : "yes",
2140		   module_name(proto->owner),
2141		   proto_method_implemented(proto->close),
2142		   proto_method_implemented(proto->connect),
2143		   proto_method_implemented(proto->disconnect),
2144		   proto_method_implemented(proto->accept),
2145		   proto_method_implemented(proto->ioctl),
2146		   proto_method_implemented(proto->init),
2147		   proto_method_implemented(proto->destroy),
2148		   proto_method_implemented(proto->shutdown),
2149		   proto_method_implemented(proto->setsockopt),
2150		   proto_method_implemented(proto->getsockopt),
2151		   proto_method_implemented(proto->sendmsg),
2152		   proto_method_implemented(proto->recvmsg),
2153		   proto_method_implemented(proto->sendpage),
2154		   proto_method_implemented(proto->bind),
2155		   proto_method_implemented(proto->backlog_rcv),
2156		   proto_method_implemented(proto->hash),
2157		   proto_method_implemented(proto->unhash),
2158		   proto_method_implemented(proto->get_port),
2159		   proto_method_implemented(proto->enter_memory_pressure));
2160}
2161
2162static int proto_seq_show(struct seq_file *seq, void *v)
2163{
2164	if (v == &proto_list)
2165		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2166			   "protocol",
2167			   "size",
2168			   "sockets",
2169			   "memory",
2170			   "press",
2171			   "maxhdr",
2172			   "slab",
2173			   "module",
2174			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2175	else
2176		proto_seq_printf(seq, list_entry(v, struct proto, node));
2177	return 0;
2178}
2179
2180static const struct seq_operations proto_seq_ops = {
2181	.start  = proto_seq_start,
2182	.next   = proto_seq_next,
2183	.stop   = proto_seq_stop,
2184	.show   = proto_seq_show,
2185};
2186
2187static int proto_seq_open(struct inode *inode, struct file *file)
2188{
2189	return seq_open(file, &proto_seq_ops);
2190}
2191
2192static const struct file_operations proto_seq_fops = {
2193	.owner		= THIS_MODULE,
2194	.open		= proto_seq_open,
2195	.read		= seq_read,
2196	.llseek		= seq_lseek,
2197	.release	= seq_release,
2198};
2199
2200static int __init proto_init(void)
2201{
2202	/* register /proc/net/protocols */
2203	return proc_net_fops_create(&init_net, "protocols", S_IRUGO, &proto_seq_fops) == NULL ? -ENOBUFS : 0;
2204}
2205
2206subsys_initcall(proto_init);
2207
2208#endif /* PROC_FS */
2209
2210EXPORT_SYMBOL(sk_alloc);
2211EXPORT_SYMBOL(sk_free);
2212EXPORT_SYMBOL(sk_send_sigurg);
2213EXPORT_SYMBOL(sock_alloc_send_skb);
2214EXPORT_SYMBOL(sock_init_data);
2215EXPORT_SYMBOL(sock_kfree_s);
2216EXPORT_SYMBOL(sock_kmalloc);
2217EXPORT_SYMBOL(sock_no_accept);
2218EXPORT_SYMBOL(sock_no_bind);
2219EXPORT_SYMBOL(sock_no_connect);
2220EXPORT_SYMBOL(sock_no_getname);
2221EXPORT_SYMBOL(sock_no_getsockopt);
2222EXPORT_SYMBOL(sock_no_ioctl);
2223EXPORT_SYMBOL(sock_no_listen);
2224EXPORT_SYMBOL(sock_no_mmap);
2225EXPORT_SYMBOL(sock_no_poll);
2226EXPORT_SYMBOL(sock_no_recvmsg);
2227EXPORT_SYMBOL(sock_no_sendmsg);
2228EXPORT_SYMBOL(sock_no_sendpage);
2229EXPORT_SYMBOL(sock_no_setsockopt);
2230EXPORT_SYMBOL(sock_no_shutdown);
2231EXPORT_SYMBOL(sock_no_socketpair);
2232EXPORT_SYMBOL(sock_rfree);
2233EXPORT_SYMBOL(sock_setsockopt);
2234EXPORT_SYMBOL(sock_wfree);
2235EXPORT_SYMBOL(sock_wmalloc);
2236EXPORT_SYMBOL(sock_i_uid);
2237EXPORT_SYMBOL(sock_i_ino);
2238EXPORT_SYMBOL(sysctl_optmem_max);
2239