sock.c revision 7d4c04fc170087119727119074e72445f2bb192b
1/*
2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
3 *		operating system.  INET is implemented using the  BSD Socket
4 *		interface as the means of communication with the user level.
5 *
6 *		Generic socket support routines. Memory allocators, socket lock/release
7 *		handler for protocols to use and generic option handler.
8 *
9 *
10 * Authors:	Ross Biro
11 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 *		Florian La Roche, <flla@stud.uni-sb.de>
13 *		Alan Cox, <A.Cox@swansea.ac.uk>
14 *
15 * Fixes:
16 *		Alan Cox	: 	Numerous verify_area() problems
17 *		Alan Cox	:	Connecting on a connecting socket
18 *					now returns an error for tcp.
19 *		Alan Cox	:	sock->protocol is set correctly.
20 *					and is not sometimes left as 0.
21 *		Alan Cox	:	connect handles icmp errors on a
22 *					connect properly. Unfortunately there
23 *					is a restart syscall nasty there. I
24 *					can't match BSD without hacking the C
25 *					library. Ideas urgently sought!
26 *		Alan Cox	:	Disallow bind() to addresses that are
27 *					not ours - especially broadcast ones!!
28 *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
29 *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
30 *					instead they leave that for the DESTROY timer.
31 *		Alan Cox	:	Clean up error flag in accept
32 *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
33 *					was buggy. Put a remove_sock() in the handler
34 *					for memory when we hit 0. Also altered the timer
35 *					code. The ACK stuff can wait and needs major
36 *					TCP layer surgery.
37 *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
38 *					and fixed timer/inet_bh race.
39 *		Alan Cox	:	Added zapped flag for TCP
40 *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
41 *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
43 *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
46 *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
47 *	Pauline Middelink	:	identd support
48 *		Alan Cox	:	Fixed connect() taking signals I think.
49 *		Alan Cox	:	SO_LINGER supported
50 *		Alan Cox	:	Error reporting fixes
51 *		Anonymous	:	inet_create tidied up (sk->reuse setting)
52 *		Alan Cox	:	inet sockets don't set sk->type!
53 *		Alan Cox	:	Split socket option code
54 *		Alan Cox	:	Callbacks
55 *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
56 *		Alex		:	Removed restriction on inet fioctl
57 *		Alan Cox	:	Splitting INET from NET core
58 *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
59 *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
60 *		Alan Cox	:	Split IP from generic code
61 *		Alan Cox	:	New kfree_skbmem()
62 *		Alan Cox	:	Make SO_DEBUG superuser only.
63 *		Alan Cox	:	Allow anyone to clear SO_DEBUG
64 *					(compatibility fix)
65 *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
66 *		Alan Cox	:	Allocator for a socket is settable.
67 *		Alan Cox	:	SO_ERROR includes soft errors.
68 *		Alan Cox	:	Allow NULL arguments on some SO_ opts
69 *		Alan Cox	: 	Generic socket allocation to make hooks
70 *					easier (suggested by Craig Metz).
71 *		Michael Pall	:	SO_ERROR returns positive errno again
72 *              Steve Whitehouse:       Added default destructor to free
73 *                                      protocol private data.
74 *              Steve Whitehouse:       Added various other default routines
75 *                                      common to several socket families.
76 *              Chris Evans     :       Call suser() check last on F_SETOWN
77 *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
79 *		Andi Kleen	:	Fix write_space callback
80 *		Chris Evans	:	Security fixes - signedness again
81 *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
82 *
83 * To Fix:
84 *
85 *
86 *		This program is free software; you can redistribute it and/or
87 *		modify it under the terms of the GNU General Public License
88 *		as published by the Free Software Foundation; either version
89 *		2 of the License, or (at your option) any later version.
90 */
91
92#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
93
94#include <linux/capability.h>
95#include <linux/errno.h>
96#include <linux/types.h>
97#include <linux/socket.h>
98#include <linux/in.h>
99#include <linux/kernel.h>
100#include <linux/module.h>
101#include <linux/proc_fs.h>
102#include <linux/seq_file.h>
103#include <linux/sched.h>
104#include <linux/timer.h>
105#include <linux/string.h>
106#include <linux/sockios.h>
107#include <linux/net.h>
108#include <linux/mm.h>
109#include <linux/slab.h>
110#include <linux/interrupt.h>
111#include <linux/poll.h>
112#include <linux/tcp.h>
113#include <linux/init.h>
114#include <linux/highmem.h>
115#include <linux/user_namespace.h>
116#include <linux/static_key.h>
117#include <linux/memcontrol.h>
118#include <linux/prefetch.h>
119
120#include <asm/uaccess.h>
121
122#include <linux/netdevice.h>
123#include <net/protocol.h>
124#include <linux/skbuff.h>
125#include <net/net_namespace.h>
126#include <net/request_sock.h>
127#include <net/sock.h>
128#include <linux/net_tstamp.h>
129#include <net/xfrm.h>
130#include <linux/ipsec.h>
131#include <net/cls_cgroup.h>
132#include <net/netprio_cgroup.h>
133
134#include <linux/filter.h>
135
136#include <trace/events/sock.h>
137
138#ifdef CONFIG_INET
139#include <net/tcp.h>
140#endif
141
142static DEFINE_MUTEX(proto_list_mutex);
143static LIST_HEAD(proto_list);
144
145#ifdef CONFIG_MEMCG_KMEM
146int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
147{
148	struct proto *proto;
149	int ret = 0;
150
151	mutex_lock(&proto_list_mutex);
152	list_for_each_entry(proto, &proto_list, node) {
153		if (proto->init_cgroup) {
154			ret = proto->init_cgroup(memcg, ss);
155			if (ret)
156				goto out;
157		}
158	}
159
160	mutex_unlock(&proto_list_mutex);
161	return ret;
162out:
163	list_for_each_entry_continue_reverse(proto, &proto_list, node)
164		if (proto->destroy_cgroup)
165			proto->destroy_cgroup(memcg);
166	mutex_unlock(&proto_list_mutex);
167	return ret;
168}
169
170void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
171{
172	struct proto *proto;
173
174	mutex_lock(&proto_list_mutex);
175	list_for_each_entry_reverse(proto, &proto_list, node)
176		if (proto->destroy_cgroup)
177			proto->destroy_cgroup(memcg);
178	mutex_unlock(&proto_list_mutex);
179}
180#endif
181
182/*
183 * Each address family might have different locking rules, so we have
184 * one slock key per address family:
185 */
186static struct lock_class_key af_family_keys[AF_MAX];
187static struct lock_class_key af_family_slock_keys[AF_MAX];
188
189#if defined(CONFIG_MEMCG_KMEM)
190struct static_key memcg_socket_limit_enabled;
191EXPORT_SYMBOL(memcg_socket_limit_enabled);
192#endif
193
194/*
195 * Make lock validator output more readable. (we pre-construct these
196 * strings build-time, so that runtime initialization of socket
197 * locks is fast):
198 */
199static const char *const af_family_key_strings[AF_MAX+1] = {
200  "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX"     , "sk_lock-AF_INET"     ,
201  "sk_lock-AF_AX25"  , "sk_lock-AF_IPX"      , "sk_lock-AF_APPLETALK",
202  "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE"   , "sk_lock-AF_ATMPVC"   ,
203  "sk_lock-AF_X25"   , "sk_lock-AF_INET6"    , "sk_lock-AF_ROSE"     ,
204  "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI"  , "sk_lock-AF_SECURITY" ,
205  "sk_lock-AF_KEY"   , "sk_lock-AF_NETLINK"  , "sk_lock-AF_PACKET"   ,
206  "sk_lock-AF_ASH"   , "sk_lock-AF_ECONET"   , "sk_lock-AF_ATMSVC"   ,
207  "sk_lock-AF_RDS"   , "sk_lock-AF_SNA"      , "sk_lock-AF_IRDA"     ,
208  "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE"  , "sk_lock-AF_LLC"      ,
209  "sk_lock-27"       , "sk_lock-28"          , "sk_lock-AF_CAN"      ,
210  "sk_lock-AF_TIPC"  , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV"        ,
211  "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN"     , "sk_lock-AF_PHONET"   ,
212  "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG"      ,
213  "sk_lock-AF_NFC"   , "sk_lock-AF_MAX"
214};
215static const char *const af_family_slock_key_strings[AF_MAX+1] = {
216  "slock-AF_UNSPEC", "slock-AF_UNIX"     , "slock-AF_INET"     ,
217  "slock-AF_AX25"  , "slock-AF_IPX"      , "slock-AF_APPLETALK",
218  "slock-AF_NETROM", "slock-AF_BRIDGE"   , "slock-AF_ATMPVC"   ,
219  "slock-AF_X25"   , "slock-AF_INET6"    , "slock-AF_ROSE"     ,
220  "slock-AF_DECnet", "slock-AF_NETBEUI"  , "slock-AF_SECURITY" ,
221  "slock-AF_KEY"   , "slock-AF_NETLINK"  , "slock-AF_PACKET"   ,
222  "slock-AF_ASH"   , "slock-AF_ECONET"   , "slock-AF_ATMSVC"   ,
223  "slock-AF_RDS"   , "slock-AF_SNA"      , "slock-AF_IRDA"     ,
224  "slock-AF_PPPOX" , "slock-AF_WANPIPE"  , "slock-AF_LLC"      ,
225  "slock-27"       , "slock-28"          , "slock-AF_CAN"      ,
226  "slock-AF_TIPC"  , "slock-AF_BLUETOOTH", "slock-AF_IUCV"     ,
227  "slock-AF_RXRPC" , "slock-AF_ISDN"     , "slock-AF_PHONET"   ,
228  "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG"      ,
229  "slock-AF_NFC"   , "slock-AF_MAX"
230};
231static const char *const af_family_clock_key_strings[AF_MAX+1] = {
232  "clock-AF_UNSPEC", "clock-AF_UNIX"     , "clock-AF_INET"     ,
233  "clock-AF_AX25"  , "clock-AF_IPX"      , "clock-AF_APPLETALK",
234  "clock-AF_NETROM", "clock-AF_BRIDGE"   , "clock-AF_ATMPVC"   ,
235  "clock-AF_X25"   , "clock-AF_INET6"    , "clock-AF_ROSE"     ,
236  "clock-AF_DECnet", "clock-AF_NETBEUI"  , "clock-AF_SECURITY" ,
237  "clock-AF_KEY"   , "clock-AF_NETLINK"  , "clock-AF_PACKET"   ,
238  "clock-AF_ASH"   , "clock-AF_ECONET"   , "clock-AF_ATMSVC"   ,
239  "clock-AF_RDS"   , "clock-AF_SNA"      , "clock-AF_IRDA"     ,
240  "clock-AF_PPPOX" , "clock-AF_WANPIPE"  , "clock-AF_LLC"      ,
241  "clock-27"       , "clock-28"          , "clock-AF_CAN"      ,
242  "clock-AF_TIPC"  , "clock-AF_BLUETOOTH", "clock-AF_IUCV"     ,
243  "clock-AF_RXRPC" , "clock-AF_ISDN"     , "clock-AF_PHONET"   ,
244  "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG"      ,
245  "clock-AF_NFC"   , "clock-AF_MAX"
246};
247
248/*
249 * sk_callback_lock locking rules are per-address-family,
250 * so split the lock classes by using a per-AF key:
251 */
252static struct lock_class_key af_callback_keys[AF_MAX];
253
254/* Take into consideration the size of the struct sk_buff overhead in the
255 * determination of these values, since that is non-constant across
256 * platforms.  This makes socket queueing behavior and performance
257 * not depend upon such differences.
258 */
259#define _SK_MEM_PACKETS		256
260#define _SK_MEM_OVERHEAD	SKB_TRUESIZE(256)
261#define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
262#define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
263
264/* Run time adjustable parameters. */
265__u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
266EXPORT_SYMBOL(sysctl_wmem_max);
267__u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
268EXPORT_SYMBOL(sysctl_rmem_max);
269__u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
270__u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
271
272/* Maximal space eaten by iovec or ancillary data plus some space */
273int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
274EXPORT_SYMBOL(sysctl_optmem_max);
275
276struct static_key memalloc_socks = STATIC_KEY_INIT_FALSE;
277EXPORT_SYMBOL_GPL(memalloc_socks);
278
279/**
280 * sk_set_memalloc - sets %SOCK_MEMALLOC
281 * @sk: socket to set it on
282 *
283 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
284 * It's the responsibility of the admin to adjust min_free_kbytes
285 * to meet the requirements
286 */
287void sk_set_memalloc(struct sock *sk)
288{
289	sock_set_flag(sk, SOCK_MEMALLOC);
290	sk->sk_allocation |= __GFP_MEMALLOC;
291	static_key_slow_inc(&memalloc_socks);
292}
293EXPORT_SYMBOL_GPL(sk_set_memalloc);
294
295void sk_clear_memalloc(struct sock *sk)
296{
297	sock_reset_flag(sk, SOCK_MEMALLOC);
298	sk->sk_allocation &= ~__GFP_MEMALLOC;
299	static_key_slow_dec(&memalloc_socks);
300
301	/*
302	 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
303	 * progress of swapping. However, if SOCK_MEMALLOC is cleared while
304	 * it has rmem allocations there is a risk that the user of the
305	 * socket cannot make forward progress due to exceeding the rmem
306	 * limits. By rights, sk_clear_memalloc() should only be called
307	 * on sockets being torn down but warn and reset the accounting if
308	 * that assumption breaks.
309	 */
310	if (WARN_ON(sk->sk_forward_alloc))
311		sk_mem_reclaim(sk);
312}
313EXPORT_SYMBOL_GPL(sk_clear_memalloc);
314
315int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
316{
317	int ret;
318	unsigned long pflags = current->flags;
319
320	/* these should have been dropped before queueing */
321	BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
322
323	current->flags |= PF_MEMALLOC;
324	ret = sk->sk_backlog_rcv(sk, skb);
325	tsk_restore_flags(current, pflags, PF_MEMALLOC);
326
327	return ret;
328}
329EXPORT_SYMBOL(__sk_backlog_rcv);
330
331static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
332{
333	struct timeval tv;
334
335	if (optlen < sizeof(tv))
336		return -EINVAL;
337	if (copy_from_user(&tv, optval, sizeof(tv)))
338		return -EFAULT;
339	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
340		return -EDOM;
341
342	if (tv.tv_sec < 0) {
343		static int warned __read_mostly;
344
345		*timeo_p = 0;
346		if (warned < 10 && net_ratelimit()) {
347			warned++;
348			pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
349				__func__, current->comm, task_pid_nr(current));
350		}
351		return 0;
352	}
353	*timeo_p = MAX_SCHEDULE_TIMEOUT;
354	if (tv.tv_sec == 0 && tv.tv_usec == 0)
355		return 0;
356	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
357		*timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
358	return 0;
359}
360
361static void sock_warn_obsolete_bsdism(const char *name)
362{
363	static int warned;
364	static char warncomm[TASK_COMM_LEN];
365	if (strcmp(warncomm, current->comm) && warned < 5) {
366		strcpy(warncomm,  current->comm);
367		pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
368			warncomm, name);
369		warned++;
370	}
371}
372
373#define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
374
375static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
376{
377	if (sk->sk_flags & flags) {
378		sk->sk_flags &= ~flags;
379		if (!(sk->sk_flags & SK_FLAGS_TIMESTAMP))
380			net_disable_timestamp();
381	}
382}
383
384
385int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
386{
387	int err;
388	int skb_len;
389	unsigned long flags;
390	struct sk_buff_head *list = &sk->sk_receive_queue;
391
392	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
393		atomic_inc(&sk->sk_drops);
394		trace_sock_rcvqueue_full(sk, skb);
395		return -ENOMEM;
396	}
397
398	err = sk_filter(sk, skb);
399	if (err)
400		return err;
401
402	if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
403		atomic_inc(&sk->sk_drops);
404		return -ENOBUFS;
405	}
406
407	skb->dev = NULL;
408	skb_set_owner_r(skb, sk);
409
410	/* Cache the SKB length before we tack it onto the receive
411	 * queue.  Once it is added it no longer belongs to us and
412	 * may be freed by other threads of control pulling packets
413	 * from the queue.
414	 */
415	skb_len = skb->len;
416
417	/* we escape from rcu protected region, make sure we dont leak
418	 * a norefcounted dst
419	 */
420	skb_dst_force(skb);
421
422	spin_lock_irqsave(&list->lock, flags);
423	skb->dropcount = atomic_read(&sk->sk_drops);
424	__skb_queue_tail(list, skb);
425	spin_unlock_irqrestore(&list->lock, flags);
426
427	if (!sock_flag(sk, SOCK_DEAD))
428		sk->sk_data_ready(sk, skb_len);
429	return 0;
430}
431EXPORT_SYMBOL(sock_queue_rcv_skb);
432
433int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
434{
435	int rc = NET_RX_SUCCESS;
436
437	if (sk_filter(sk, skb))
438		goto discard_and_relse;
439
440	skb->dev = NULL;
441
442	if (sk_rcvqueues_full(sk, skb, sk->sk_rcvbuf)) {
443		atomic_inc(&sk->sk_drops);
444		goto discard_and_relse;
445	}
446	if (nested)
447		bh_lock_sock_nested(sk);
448	else
449		bh_lock_sock(sk);
450	if (!sock_owned_by_user(sk)) {
451		/*
452		 * trylock + unlock semantics:
453		 */
454		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
455
456		rc = sk_backlog_rcv(sk, skb);
457
458		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
459	} else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
460		bh_unlock_sock(sk);
461		atomic_inc(&sk->sk_drops);
462		goto discard_and_relse;
463	}
464
465	bh_unlock_sock(sk);
466out:
467	sock_put(sk);
468	return rc;
469discard_and_relse:
470	kfree_skb(skb);
471	goto out;
472}
473EXPORT_SYMBOL(sk_receive_skb);
474
475void sk_reset_txq(struct sock *sk)
476{
477	sk_tx_queue_clear(sk);
478}
479EXPORT_SYMBOL(sk_reset_txq);
480
481struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
482{
483	struct dst_entry *dst = __sk_dst_get(sk);
484
485	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
486		sk_tx_queue_clear(sk);
487		RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
488		dst_release(dst);
489		return NULL;
490	}
491
492	return dst;
493}
494EXPORT_SYMBOL(__sk_dst_check);
495
496struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
497{
498	struct dst_entry *dst = sk_dst_get(sk);
499
500	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
501		sk_dst_reset(sk);
502		dst_release(dst);
503		return NULL;
504	}
505
506	return dst;
507}
508EXPORT_SYMBOL(sk_dst_check);
509
510static int sock_setbindtodevice(struct sock *sk, char __user *optval,
511				int optlen)
512{
513	int ret = -ENOPROTOOPT;
514#ifdef CONFIG_NETDEVICES
515	struct net *net = sock_net(sk);
516	char devname[IFNAMSIZ];
517	int index;
518
519	/* Sorry... */
520	ret = -EPERM;
521	if (!ns_capable(net->user_ns, CAP_NET_RAW))
522		goto out;
523
524	ret = -EINVAL;
525	if (optlen < 0)
526		goto out;
527
528	/* Bind this socket to a particular device like "eth0",
529	 * as specified in the passed interface name. If the
530	 * name is "" or the option length is zero the socket
531	 * is not bound.
532	 */
533	if (optlen > IFNAMSIZ - 1)
534		optlen = IFNAMSIZ - 1;
535	memset(devname, 0, sizeof(devname));
536
537	ret = -EFAULT;
538	if (copy_from_user(devname, optval, optlen))
539		goto out;
540
541	index = 0;
542	if (devname[0] != '\0') {
543		struct net_device *dev;
544
545		rcu_read_lock();
546		dev = dev_get_by_name_rcu(net, devname);
547		if (dev)
548			index = dev->ifindex;
549		rcu_read_unlock();
550		ret = -ENODEV;
551		if (!dev)
552			goto out;
553	}
554
555	lock_sock(sk);
556	sk->sk_bound_dev_if = index;
557	sk_dst_reset(sk);
558	release_sock(sk);
559
560	ret = 0;
561
562out:
563#endif
564
565	return ret;
566}
567
568static int sock_getbindtodevice(struct sock *sk, char __user *optval,
569				int __user *optlen, int len)
570{
571	int ret = -ENOPROTOOPT;
572#ifdef CONFIG_NETDEVICES
573	struct net *net = sock_net(sk);
574	struct net_device *dev;
575	char devname[IFNAMSIZ];
576	unsigned seq;
577
578	if (sk->sk_bound_dev_if == 0) {
579		len = 0;
580		goto zero;
581	}
582
583	ret = -EINVAL;
584	if (len < IFNAMSIZ)
585		goto out;
586
587retry:
588	seq = read_seqcount_begin(&devnet_rename_seq);
589	rcu_read_lock();
590	dev = dev_get_by_index_rcu(net, sk->sk_bound_dev_if);
591	ret = -ENODEV;
592	if (!dev) {
593		rcu_read_unlock();
594		goto out;
595	}
596
597	strcpy(devname, dev->name);
598	rcu_read_unlock();
599	if (read_seqcount_retry(&devnet_rename_seq, seq))
600		goto retry;
601
602	len = strlen(devname) + 1;
603
604	ret = -EFAULT;
605	if (copy_to_user(optval, devname, len))
606		goto out;
607
608zero:
609	ret = -EFAULT;
610	if (put_user(len, optlen))
611		goto out;
612
613	ret = 0;
614
615out:
616#endif
617
618	return ret;
619}
620
621static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
622{
623	if (valbool)
624		sock_set_flag(sk, bit);
625	else
626		sock_reset_flag(sk, bit);
627}
628
629/*
630 *	This is meant for all protocols to use and covers goings on
631 *	at the socket level. Everything here is generic.
632 */
633
634int sock_setsockopt(struct socket *sock, int level, int optname,
635		    char __user *optval, unsigned int optlen)
636{
637	struct sock *sk = sock->sk;
638	int val;
639	int valbool;
640	struct linger ling;
641	int ret = 0;
642
643	/*
644	 *	Options without arguments
645	 */
646
647	if (optname == SO_BINDTODEVICE)
648		return sock_setbindtodevice(sk, optval, optlen);
649
650	if (optlen < sizeof(int))
651		return -EINVAL;
652
653	if (get_user(val, (int __user *)optval))
654		return -EFAULT;
655
656	valbool = val ? 1 : 0;
657
658	lock_sock(sk);
659
660	switch (optname) {
661	case SO_DEBUG:
662		if (val && !capable(CAP_NET_ADMIN))
663			ret = -EACCES;
664		else
665			sock_valbool_flag(sk, SOCK_DBG, valbool);
666		break;
667	case SO_REUSEADDR:
668		sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
669		break;
670	case SO_REUSEPORT:
671		sk->sk_reuseport = valbool;
672		break;
673	case SO_TYPE:
674	case SO_PROTOCOL:
675	case SO_DOMAIN:
676	case SO_ERROR:
677		ret = -ENOPROTOOPT;
678		break;
679	case SO_DONTROUTE:
680		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
681		break;
682	case SO_BROADCAST:
683		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
684		break;
685	case SO_SNDBUF:
686		/* Don't error on this BSD doesn't and if you think
687		 * about it this is right. Otherwise apps have to
688		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
689		 * are treated in BSD as hints
690		 */
691		val = min_t(u32, val, sysctl_wmem_max);
692set_sndbuf:
693		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
694		sk->sk_sndbuf = max_t(u32, val * 2, SOCK_MIN_SNDBUF);
695		/* Wake up sending tasks if we upped the value. */
696		sk->sk_write_space(sk);
697		break;
698
699	case SO_SNDBUFFORCE:
700		if (!capable(CAP_NET_ADMIN)) {
701			ret = -EPERM;
702			break;
703		}
704		goto set_sndbuf;
705
706	case SO_RCVBUF:
707		/* Don't error on this BSD doesn't and if you think
708		 * about it this is right. Otherwise apps have to
709		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
710		 * are treated in BSD as hints
711		 */
712		val = min_t(u32, val, sysctl_rmem_max);
713set_rcvbuf:
714		sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
715		/*
716		 * We double it on the way in to account for
717		 * "struct sk_buff" etc. overhead.   Applications
718		 * assume that the SO_RCVBUF setting they make will
719		 * allow that much actual data to be received on that
720		 * socket.
721		 *
722		 * Applications are unaware that "struct sk_buff" and
723		 * other overheads allocate from the receive buffer
724		 * during socket buffer allocation.
725		 *
726		 * And after considering the possible alternatives,
727		 * returning the value we actually used in getsockopt
728		 * is the most desirable behavior.
729		 */
730		sk->sk_rcvbuf = max_t(u32, val * 2, SOCK_MIN_RCVBUF);
731		break;
732
733	case SO_RCVBUFFORCE:
734		if (!capable(CAP_NET_ADMIN)) {
735			ret = -EPERM;
736			break;
737		}
738		goto set_rcvbuf;
739
740	case SO_KEEPALIVE:
741#ifdef CONFIG_INET
742		if (sk->sk_protocol == IPPROTO_TCP &&
743		    sk->sk_type == SOCK_STREAM)
744			tcp_set_keepalive(sk, valbool);
745#endif
746		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
747		break;
748
749	case SO_OOBINLINE:
750		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
751		break;
752
753	case SO_NO_CHECK:
754		sk->sk_no_check = valbool;
755		break;
756
757	case SO_PRIORITY:
758		if ((val >= 0 && val <= 6) ||
759		    ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
760			sk->sk_priority = val;
761		else
762			ret = -EPERM;
763		break;
764
765	case SO_LINGER:
766		if (optlen < sizeof(ling)) {
767			ret = -EINVAL;	/* 1003.1g */
768			break;
769		}
770		if (copy_from_user(&ling, optval, sizeof(ling))) {
771			ret = -EFAULT;
772			break;
773		}
774		if (!ling.l_onoff)
775			sock_reset_flag(sk, SOCK_LINGER);
776		else {
777#if (BITS_PER_LONG == 32)
778			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
779				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
780			else
781#endif
782				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
783			sock_set_flag(sk, SOCK_LINGER);
784		}
785		break;
786
787	case SO_BSDCOMPAT:
788		sock_warn_obsolete_bsdism("setsockopt");
789		break;
790
791	case SO_PASSCRED:
792		if (valbool)
793			set_bit(SOCK_PASSCRED, &sock->flags);
794		else
795			clear_bit(SOCK_PASSCRED, &sock->flags);
796		break;
797
798	case SO_TIMESTAMP:
799	case SO_TIMESTAMPNS:
800		if (valbool)  {
801			if (optname == SO_TIMESTAMP)
802				sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
803			else
804				sock_set_flag(sk, SOCK_RCVTSTAMPNS);
805			sock_set_flag(sk, SOCK_RCVTSTAMP);
806			sock_enable_timestamp(sk, SOCK_TIMESTAMP);
807		} else {
808			sock_reset_flag(sk, SOCK_RCVTSTAMP);
809			sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
810		}
811		break;
812
813	case SO_TIMESTAMPING:
814		if (val & ~SOF_TIMESTAMPING_MASK) {
815			ret = -EINVAL;
816			break;
817		}
818		sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE,
819				  val & SOF_TIMESTAMPING_TX_HARDWARE);
820		sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE,
821				  val & SOF_TIMESTAMPING_TX_SOFTWARE);
822		sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE,
823				  val & SOF_TIMESTAMPING_RX_HARDWARE);
824		if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
825			sock_enable_timestamp(sk,
826					      SOCK_TIMESTAMPING_RX_SOFTWARE);
827		else
828			sock_disable_timestamp(sk,
829					       (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
830		sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE,
831				  val & SOF_TIMESTAMPING_SOFTWARE);
832		sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE,
833				  val & SOF_TIMESTAMPING_SYS_HARDWARE);
834		sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE,
835				  val & SOF_TIMESTAMPING_RAW_HARDWARE);
836		break;
837
838	case SO_RCVLOWAT:
839		if (val < 0)
840			val = INT_MAX;
841		sk->sk_rcvlowat = val ? : 1;
842		break;
843
844	case SO_RCVTIMEO:
845		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
846		break;
847
848	case SO_SNDTIMEO:
849		ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
850		break;
851
852	case SO_ATTACH_FILTER:
853		ret = -EINVAL;
854		if (optlen == sizeof(struct sock_fprog)) {
855			struct sock_fprog fprog;
856
857			ret = -EFAULT;
858			if (copy_from_user(&fprog, optval, sizeof(fprog)))
859				break;
860
861			ret = sk_attach_filter(&fprog, sk);
862		}
863		break;
864
865	case SO_DETACH_FILTER:
866		ret = sk_detach_filter(sk);
867		break;
868
869	case SO_LOCK_FILTER:
870		if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
871			ret = -EPERM;
872		else
873			sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
874		break;
875
876	case SO_PASSSEC:
877		if (valbool)
878			set_bit(SOCK_PASSSEC, &sock->flags);
879		else
880			clear_bit(SOCK_PASSSEC, &sock->flags);
881		break;
882	case SO_MARK:
883		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
884			ret = -EPERM;
885		else
886			sk->sk_mark = val;
887		break;
888
889		/* We implement the SO_SNDLOWAT etc to
890		   not be settable (1003.1g 5.3) */
891	case SO_RXQ_OVFL:
892		sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
893		break;
894
895	case SO_WIFI_STATUS:
896		sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
897		break;
898
899	case SO_PEEK_OFF:
900		if (sock->ops->set_peek_off)
901			sock->ops->set_peek_off(sk, val);
902		else
903			ret = -EOPNOTSUPP;
904		break;
905
906	case SO_NOFCS:
907		sock_valbool_flag(sk, SOCK_NOFCS, valbool);
908		break;
909
910	case SO_SELECT_ERR_QUEUE:
911		sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
912		break;
913
914	default:
915		ret = -ENOPROTOOPT;
916		break;
917	}
918	release_sock(sk);
919	return ret;
920}
921EXPORT_SYMBOL(sock_setsockopt);
922
923
924void cred_to_ucred(struct pid *pid, const struct cred *cred,
925		   struct ucred *ucred)
926{
927	ucred->pid = pid_vnr(pid);
928	ucred->uid = ucred->gid = -1;
929	if (cred) {
930		struct user_namespace *current_ns = current_user_ns();
931
932		ucred->uid = from_kuid_munged(current_ns, cred->euid);
933		ucred->gid = from_kgid_munged(current_ns, cred->egid);
934	}
935}
936EXPORT_SYMBOL_GPL(cred_to_ucred);
937
938int sock_getsockopt(struct socket *sock, int level, int optname,
939		    char __user *optval, int __user *optlen)
940{
941	struct sock *sk = sock->sk;
942
943	union {
944		int val;
945		struct linger ling;
946		struct timeval tm;
947	} v;
948
949	int lv = sizeof(int);
950	int len;
951
952	if (get_user(len, optlen))
953		return -EFAULT;
954	if (len < 0)
955		return -EINVAL;
956
957	memset(&v, 0, sizeof(v));
958
959	switch (optname) {
960	case SO_DEBUG:
961		v.val = sock_flag(sk, SOCK_DBG);
962		break;
963
964	case SO_DONTROUTE:
965		v.val = sock_flag(sk, SOCK_LOCALROUTE);
966		break;
967
968	case SO_BROADCAST:
969		v.val = sock_flag(sk, SOCK_BROADCAST);
970		break;
971
972	case SO_SNDBUF:
973		v.val = sk->sk_sndbuf;
974		break;
975
976	case SO_RCVBUF:
977		v.val = sk->sk_rcvbuf;
978		break;
979
980	case SO_REUSEADDR:
981		v.val = sk->sk_reuse;
982		break;
983
984	case SO_REUSEPORT:
985		v.val = sk->sk_reuseport;
986		break;
987
988	case SO_KEEPALIVE:
989		v.val = sock_flag(sk, SOCK_KEEPOPEN);
990		break;
991
992	case SO_TYPE:
993		v.val = sk->sk_type;
994		break;
995
996	case SO_PROTOCOL:
997		v.val = sk->sk_protocol;
998		break;
999
1000	case SO_DOMAIN:
1001		v.val = sk->sk_family;
1002		break;
1003
1004	case SO_ERROR:
1005		v.val = -sock_error(sk);
1006		if (v.val == 0)
1007			v.val = xchg(&sk->sk_err_soft, 0);
1008		break;
1009
1010	case SO_OOBINLINE:
1011		v.val = sock_flag(sk, SOCK_URGINLINE);
1012		break;
1013
1014	case SO_NO_CHECK:
1015		v.val = sk->sk_no_check;
1016		break;
1017
1018	case SO_PRIORITY:
1019		v.val = sk->sk_priority;
1020		break;
1021
1022	case SO_LINGER:
1023		lv		= sizeof(v.ling);
1024		v.ling.l_onoff	= sock_flag(sk, SOCK_LINGER);
1025		v.ling.l_linger	= sk->sk_lingertime / HZ;
1026		break;
1027
1028	case SO_BSDCOMPAT:
1029		sock_warn_obsolete_bsdism("getsockopt");
1030		break;
1031
1032	case SO_TIMESTAMP:
1033		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1034				!sock_flag(sk, SOCK_RCVTSTAMPNS);
1035		break;
1036
1037	case SO_TIMESTAMPNS:
1038		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
1039		break;
1040
1041	case SO_TIMESTAMPING:
1042		v.val = 0;
1043		if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
1044			v.val |= SOF_TIMESTAMPING_TX_HARDWARE;
1045		if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
1046			v.val |= SOF_TIMESTAMPING_TX_SOFTWARE;
1047		if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE))
1048			v.val |= SOF_TIMESTAMPING_RX_HARDWARE;
1049		if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE))
1050			v.val |= SOF_TIMESTAMPING_RX_SOFTWARE;
1051		if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE))
1052			v.val |= SOF_TIMESTAMPING_SOFTWARE;
1053		if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))
1054			v.val |= SOF_TIMESTAMPING_SYS_HARDWARE;
1055		if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE))
1056			v.val |= SOF_TIMESTAMPING_RAW_HARDWARE;
1057		break;
1058
1059	case SO_RCVTIMEO:
1060		lv = sizeof(struct timeval);
1061		if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
1062			v.tm.tv_sec = 0;
1063			v.tm.tv_usec = 0;
1064		} else {
1065			v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
1066			v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
1067		}
1068		break;
1069
1070	case SO_SNDTIMEO:
1071		lv = sizeof(struct timeval);
1072		if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
1073			v.tm.tv_sec = 0;
1074			v.tm.tv_usec = 0;
1075		} else {
1076			v.tm.tv_sec = sk->sk_sndtimeo / HZ;
1077			v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
1078		}
1079		break;
1080
1081	case SO_RCVLOWAT:
1082		v.val = sk->sk_rcvlowat;
1083		break;
1084
1085	case SO_SNDLOWAT:
1086		v.val = 1;
1087		break;
1088
1089	case SO_PASSCRED:
1090		v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1091		break;
1092
1093	case SO_PEERCRED:
1094	{
1095		struct ucred peercred;
1096		if (len > sizeof(peercred))
1097			len = sizeof(peercred);
1098		cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1099		if (copy_to_user(optval, &peercred, len))
1100			return -EFAULT;
1101		goto lenout;
1102	}
1103
1104	case SO_PEERNAME:
1105	{
1106		char address[128];
1107
1108		if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
1109			return -ENOTCONN;
1110		if (lv < len)
1111			return -EINVAL;
1112		if (copy_to_user(optval, address, len))
1113			return -EFAULT;
1114		goto lenout;
1115	}
1116
1117	/* Dubious BSD thing... Probably nobody even uses it, but
1118	 * the UNIX standard wants it for whatever reason... -DaveM
1119	 */
1120	case SO_ACCEPTCONN:
1121		v.val = sk->sk_state == TCP_LISTEN;
1122		break;
1123
1124	case SO_PASSSEC:
1125		v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1126		break;
1127
1128	case SO_PEERSEC:
1129		return security_socket_getpeersec_stream(sock, optval, optlen, len);
1130
1131	case SO_MARK:
1132		v.val = sk->sk_mark;
1133		break;
1134
1135	case SO_RXQ_OVFL:
1136		v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1137		break;
1138
1139	case SO_WIFI_STATUS:
1140		v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1141		break;
1142
1143	case SO_PEEK_OFF:
1144		if (!sock->ops->set_peek_off)
1145			return -EOPNOTSUPP;
1146
1147		v.val = sk->sk_peek_off;
1148		break;
1149	case SO_NOFCS:
1150		v.val = sock_flag(sk, SOCK_NOFCS);
1151		break;
1152
1153	case SO_BINDTODEVICE:
1154		return sock_getbindtodevice(sk, optval, optlen, len);
1155
1156	case SO_GET_FILTER:
1157		len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1158		if (len < 0)
1159			return len;
1160
1161		goto lenout;
1162
1163	case SO_LOCK_FILTER:
1164		v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1165		break;
1166
1167	case SO_SELECT_ERR_QUEUE:
1168		v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1169		break;
1170
1171	default:
1172		return -ENOPROTOOPT;
1173	}
1174
1175	if (len > lv)
1176		len = lv;
1177	if (copy_to_user(optval, &v, len))
1178		return -EFAULT;
1179lenout:
1180	if (put_user(len, optlen))
1181		return -EFAULT;
1182	return 0;
1183}
1184
1185/*
1186 * Initialize an sk_lock.
1187 *
1188 * (We also register the sk_lock with the lock validator.)
1189 */
1190static inline void sock_lock_init(struct sock *sk)
1191{
1192	sock_lock_init_class_and_name(sk,
1193			af_family_slock_key_strings[sk->sk_family],
1194			af_family_slock_keys + sk->sk_family,
1195			af_family_key_strings[sk->sk_family],
1196			af_family_keys + sk->sk_family);
1197}
1198
1199/*
1200 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1201 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1202 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1203 */
1204static void sock_copy(struct sock *nsk, const struct sock *osk)
1205{
1206#ifdef CONFIG_SECURITY_NETWORK
1207	void *sptr = nsk->sk_security;
1208#endif
1209	memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1210
1211	memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1212	       osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1213
1214#ifdef CONFIG_SECURITY_NETWORK
1215	nsk->sk_security = sptr;
1216	security_sk_clone(osk, nsk);
1217#endif
1218}
1219
1220/*
1221 * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
1222 * un-modified. Special care is taken when initializing object to zero.
1223 */
1224static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1225{
1226	if (offsetof(struct sock, sk_node.next) != 0)
1227		memset(sk, 0, offsetof(struct sock, sk_node.next));
1228	memset(&sk->sk_node.pprev, 0,
1229	       size - offsetof(struct sock, sk_node.pprev));
1230}
1231
1232void sk_prot_clear_portaddr_nulls(struct sock *sk, int size)
1233{
1234	unsigned long nulls1, nulls2;
1235
1236	nulls1 = offsetof(struct sock, __sk_common.skc_node.next);
1237	nulls2 = offsetof(struct sock, __sk_common.skc_portaddr_node.next);
1238	if (nulls1 > nulls2)
1239		swap(nulls1, nulls2);
1240
1241	if (nulls1 != 0)
1242		memset((char *)sk, 0, nulls1);
1243	memset((char *)sk + nulls1 + sizeof(void *), 0,
1244	       nulls2 - nulls1 - sizeof(void *));
1245	memset((char *)sk + nulls2 + sizeof(void *), 0,
1246	       size - nulls2 - sizeof(void *));
1247}
1248EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls);
1249
1250static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1251		int family)
1252{
1253	struct sock *sk;
1254	struct kmem_cache *slab;
1255
1256	slab = prot->slab;
1257	if (slab != NULL) {
1258		sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1259		if (!sk)
1260			return sk;
1261		if (priority & __GFP_ZERO) {
1262			if (prot->clear_sk)
1263				prot->clear_sk(sk, prot->obj_size);
1264			else
1265				sk_prot_clear_nulls(sk, prot->obj_size);
1266		}
1267	} else
1268		sk = kmalloc(prot->obj_size, priority);
1269
1270	if (sk != NULL) {
1271		kmemcheck_annotate_bitfield(sk, flags);
1272
1273		if (security_sk_alloc(sk, family, priority))
1274			goto out_free;
1275
1276		if (!try_module_get(prot->owner))
1277			goto out_free_sec;
1278		sk_tx_queue_clear(sk);
1279	}
1280
1281	return sk;
1282
1283out_free_sec:
1284	security_sk_free(sk);
1285out_free:
1286	if (slab != NULL)
1287		kmem_cache_free(slab, sk);
1288	else
1289		kfree(sk);
1290	return NULL;
1291}
1292
1293static void sk_prot_free(struct proto *prot, struct sock *sk)
1294{
1295	struct kmem_cache *slab;
1296	struct module *owner;
1297
1298	owner = prot->owner;
1299	slab = prot->slab;
1300
1301	security_sk_free(sk);
1302	if (slab != NULL)
1303		kmem_cache_free(slab, sk);
1304	else
1305		kfree(sk);
1306	module_put(owner);
1307}
1308
1309#if IS_ENABLED(CONFIG_NET_CLS_CGROUP)
1310void sock_update_classid(struct sock *sk, struct task_struct *task)
1311{
1312	u32 classid;
1313
1314	classid = task_cls_classid(task);
1315	if (classid != sk->sk_classid)
1316		sk->sk_classid = classid;
1317}
1318EXPORT_SYMBOL(sock_update_classid);
1319#endif
1320
1321#if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
1322void sock_update_netprioidx(struct sock *sk, struct task_struct *task)
1323{
1324	if (in_interrupt())
1325		return;
1326
1327	sk->sk_cgrp_prioidx = task_netprioidx(task);
1328}
1329EXPORT_SYMBOL_GPL(sock_update_netprioidx);
1330#endif
1331
1332/**
1333 *	sk_alloc - All socket objects are allocated here
1334 *	@net: the applicable net namespace
1335 *	@family: protocol family
1336 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1337 *	@prot: struct proto associated with this new sock instance
1338 */
1339struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1340		      struct proto *prot)
1341{
1342	struct sock *sk;
1343
1344	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1345	if (sk) {
1346		sk->sk_family = family;
1347		/*
1348		 * See comment in struct sock definition to understand
1349		 * why we need sk_prot_creator -acme
1350		 */
1351		sk->sk_prot = sk->sk_prot_creator = prot;
1352		sock_lock_init(sk);
1353		sock_net_set(sk, get_net(net));
1354		atomic_set(&sk->sk_wmem_alloc, 1);
1355
1356		sock_update_classid(sk, current);
1357		sock_update_netprioidx(sk, current);
1358	}
1359
1360	return sk;
1361}
1362EXPORT_SYMBOL(sk_alloc);
1363
1364static void __sk_free(struct sock *sk)
1365{
1366	struct sk_filter *filter;
1367
1368	if (sk->sk_destruct)
1369		sk->sk_destruct(sk);
1370
1371	filter = rcu_dereference_check(sk->sk_filter,
1372				       atomic_read(&sk->sk_wmem_alloc) == 0);
1373	if (filter) {
1374		sk_filter_uncharge(sk, filter);
1375		RCU_INIT_POINTER(sk->sk_filter, NULL);
1376	}
1377
1378	sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1379
1380	if (atomic_read(&sk->sk_omem_alloc))
1381		pr_debug("%s: optmem leakage (%d bytes) detected\n",
1382			 __func__, atomic_read(&sk->sk_omem_alloc));
1383
1384	if (sk->sk_peer_cred)
1385		put_cred(sk->sk_peer_cred);
1386	put_pid(sk->sk_peer_pid);
1387	put_net(sock_net(sk));
1388	sk_prot_free(sk->sk_prot_creator, sk);
1389}
1390
1391void sk_free(struct sock *sk)
1392{
1393	/*
1394	 * We subtract one from sk_wmem_alloc and can know if
1395	 * some packets are still in some tx queue.
1396	 * If not null, sock_wfree() will call __sk_free(sk) later
1397	 */
1398	if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1399		__sk_free(sk);
1400}
1401EXPORT_SYMBOL(sk_free);
1402
1403/*
1404 * Last sock_put should drop reference to sk->sk_net. It has already
1405 * been dropped in sk_change_net. Taking reference to stopping namespace
1406 * is not an option.
1407 * Take reference to a socket to remove it from hash _alive_ and after that
1408 * destroy it in the context of init_net.
1409 */
1410void sk_release_kernel(struct sock *sk)
1411{
1412	if (sk == NULL || sk->sk_socket == NULL)
1413		return;
1414
1415	sock_hold(sk);
1416	sock_release(sk->sk_socket);
1417	release_net(sock_net(sk));
1418	sock_net_set(sk, get_net(&init_net));
1419	sock_put(sk);
1420}
1421EXPORT_SYMBOL(sk_release_kernel);
1422
1423static void sk_update_clone(const struct sock *sk, struct sock *newsk)
1424{
1425	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1426		sock_update_memcg(newsk);
1427}
1428
1429/**
1430 *	sk_clone_lock - clone a socket, and lock its clone
1431 *	@sk: the socket to clone
1432 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1433 *
1434 *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1435 */
1436struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1437{
1438	struct sock *newsk;
1439
1440	newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1441	if (newsk != NULL) {
1442		struct sk_filter *filter;
1443
1444		sock_copy(newsk, sk);
1445
1446		/* SANITY */
1447		get_net(sock_net(newsk));
1448		sk_node_init(&newsk->sk_node);
1449		sock_lock_init(newsk);
1450		bh_lock_sock(newsk);
1451		newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
1452		newsk->sk_backlog.len = 0;
1453
1454		atomic_set(&newsk->sk_rmem_alloc, 0);
1455		/*
1456		 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1457		 */
1458		atomic_set(&newsk->sk_wmem_alloc, 1);
1459		atomic_set(&newsk->sk_omem_alloc, 0);
1460		skb_queue_head_init(&newsk->sk_receive_queue);
1461		skb_queue_head_init(&newsk->sk_write_queue);
1462#ifdef CONFIG_NET_DMA
1463		skb_queue_head_init(&newsk->sk_async_wait_queue);
1464#endif
1465
1466		spin_lock_init(&newsk->sk_dst_lock);
1467		rwlock_init(&newsk->sk_callback_lock);
1468		lockdep_set_class_and_name(&newsk->sk_callback_lock,
1469				af_callback_keys + newsk->sk_family,
1470				af_family_clock_key_strings[newsk->sk_family]);
1471
1472		newsk->sk_dst_cache	= NULL;
1473		newsk->sk_wmem_queued	= 0;
1474		newsk->sk_forward_alloc = 0;
1475		newsk->sk_send_head	= NULL;
1476		newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1477
1478		sock_reset_flag(newsk, SOCK_DONE);
1479		skb_queue_head_init(&newsk->sk_error_queue);
1480
1481		filter = rcu_dereference_protected(newsk->sk_filter, 1);
1482		if (filter != NULL)
1483			sk_filter_charge(newsk, filter);
1484
1485		if (unlikely(xfrm_sk_clone_policy(newsk))) {
1486			/* It is still raw copy of parent, so invalidate
1487			 * destructor and make plain sk_free() */
1488			newsk->sk_destruct = NULL;
1489			bh_unlock_sock(newsk);
1490			sk_free(newsk);
1491			newsk = NULL;
1492			goto out;
1493		}
1494
1495		newsk->sk_err	   = 0;
1496		newsk->sk_priority = 0;
1497		/*
1498		 * Before updating sk_refcnt, we must commit prior changes to memory
1499		 * (Documentation/RCU/rculist_nulls.txt for details)
1500		 */
1501		smp_wmb();
1502		atomic_set(&newsk->sk_refcnt, 2);
1503
1504		/*
1505		 * Increment the counter in the same struct proto as the master
1506		 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1507		 * is the same as sk->sk_prot->socks, as this field was copied
1508		 * with memcpy).
1509		 *
1510		 * This _changes_ the previous behaviour, where
1511		 * tcp_create_openreq_child always was incrementing the
1512		 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1513		 * to be taken into account in all callers. -acme
1514		 */
1515		sk_refcnt_debug_inc(newsk);
1516		sk_set_socket(newsk, NULL);
1517		newsk->sk_wq = NULL;
1518
1519		sk_update_clone(sk, newsk);
1520
1521		if (newsk->sk_prot->sockets_allocated)
1522			sk_sockets_allocated_inc(newsk);
1523
1524		if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1525			net_enable_timestamp();
1526	}
1527out:
1528	return newsk;
1529}
1530EXPORT_SYMBOL_GPL(sk_clone_lock);
1531
1532void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1533{
1534	__sk_dst_set(sk, dst);
1535	sk->sk_route_caps = dst->dev->features;
1536	if (sk->sk_route_caps & NETIF_F_GSO)
1537		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1538	sk->sk_route_caps &= ~sk->sk_route_nocaps;
1539	if (sk_can_gso(sk)) {
1540		if (dst->header_len) {
1541			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1542		} else {
1543			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1544			sk->sk_gso_max_size = dst->dev->gso_max_size;
1545			sk->sk_gso_max_segs = dst->dev->gso_max_segs;
1546		}
1547	}
1548}
1549EXPORT_SYMBOL_GPL(sk_setup_caps);
1550
1551/*
1552 *	Simple resource managers for sockets.
1553 */
1554
1555
1556/*
1557 * Write buffer destructor automatically called from kfree_skb.
1558 */
1559void sock_wfree(struct sk_buff *skb)
1560{
1561	struct sock *sk = skb->sk;
1562	unsigned int len = skb->truesize;
1563
1564	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1565		/*
1566		 * Keep a reference on sk_wmem_alloc, this will be released
1567		 * after sk_write_space() call
1568		 */
1569		atomic_sub(len - 1, &sk->sk_wmem_alloc);
1570		sk->sk_write_space(sk);
1571		len = 1;
1572	}
1573	/*
1574	 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1575	 * could not do because of in-flight packets
1576	 */
1577	if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1578		__sk_free(sk);
1579}
1580EXPORT_SYMBOL(sock_wfree);
1581
1582/*
1583 * Read buffer destructor automatically called from kfree_skb.
1584 */
1585void sock_rfree(struct sk_buff *skb)
1586{
1587	struct sock *sk = skb->sk;
1588	unsigned int len = skb->truesize;
1589
1590	atomic_sub(len, &sk->sk_rmem_alloc);
1591	sk_mem_uncharge(sk, len);
1592}
1593EXPORT_SYMBOL(sock_rfree);
1594
1595void sock_edemux(struct sk_buff *skb)
1596{
1597	struct sock *sk = skb->sk;
1598
1599#ifdef CONFIG_INET
1600	if (sk->sk_state == TCP_TIME_WAIT)
1601		inet_twsk_put(inet_twsk(sk));
1602	else
1603#endif
1604		sock_put(sk);
1605}
1606EXPORT_SYMBOL(sock_edemux);
1607
1608kuid_t sock_i_uid(struct sock *sk)
1609{
1610	kuid_t uid;
1611
1612	read_lock_bh(&sk->sk_callback_lock);
1613	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
1614	read_unlock_bh(&sk->sk_callback_lock);
1615	return uid;
1616}
1617EXPORT_SYMBOL(sock_i_uid);
1618
1619unsigned long sock_i_ino(struct sock *sk)
1620{
1621	unsigned long ino;
1622
1623	read_lock_bh(&sk->sk_callback_lock);
1624	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1625	read_unlock_bh(&sk->sk_callback_lock);
1626	return ino;
1627}
1628EXPORT_SYMBOL(sock_i_ino);
1629
1630/*
1631 * Allocate a skb from the socket's send buffer.
1632 */
1633struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1634			     gfp_t priority)
1635{
1636	if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1637		struct sk_buff *skb = alloc_skb(size, priority);
1638		if (skb) {
1639			skb_set_owner_w(skb, sk);
1640			return skb;
1641		}
1642	}
1643	return NULL;
1644}
1645EXPORT_SYMBOL(sock_wmalloc);
1646
1647/*
1648 * Allocate a skb from the socket's receive buffer.
1649 */
1650struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1651			     gfp_t priority)
1652{
1653	if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1654		struct sk_buff *skb = alloc_skb(size, priority);
1655		if (skb) {
1656			skb_set_owner_r(skb, sk);
1657			return skb;
1658		}
1659	}
1660	return NULL;
1661}
1662
1663/*
1664 * Allocate a memory block from the socket's option memory buffer.
1665 */
1666void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1667{
1668	if ((unsigned int)size <= sysctl_optmem_max &&
1669	    atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1670		void *mem;
1671		/* First do the add, to avoid the race if kmalloc
1672		 * might sleep.
1673		 */
1674		atomic_add(size, &sk->sk_omem_alloc);
1675		mem = kmalloc(size, priority);
1676		if (mem)
1677			return mem;
1678		atomic_sub(size, &sk->sk_omem_alloc);
1679	}
1680	return NULL;
1681}
1682EXPORT_SYMBOL(sock_kmalloc);
1683
1684/*
1685 * Free an option memory block.
1686 */
1687void sock_kfree_s(struct sock *sk, void *mem, int size)
1688{
1689	kfree(mem);
1690	atomic_sub(size, &sk->sk_omem_alloc);
1691}
1692EXPORT_SYMBOL(sock_kfree_s);
1693
1694/* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1695   I think, these locks should be removed for datagram sockets.
1696 */
1697static long sock_wait_for_wmem(struct sock *sk, long timeo)
1698{
1699	DEFINE_WAIT(wait);
1700
1701	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1702	for (;;) {
1703		if (!timeo)
1704			break;
1705		if (signal_pending(current))
1706			break;
1707		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1708		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1709		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1710			break;
1711		if (sk->sk_shutdown & SEND_SHUTDOWN)
1712			break;
1713		if (sk->sk_err)
1714			break;
1715		timeo = schedule_timeout(timeo);
1716	}
1717	finish_wait(sk_sleep(sk), &wait);
1718	return timeo;
1719}
1720
1721
1722/*
1723 *	Generic send/receive buffer handlers
1724 */
1725
1726struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1727				     unsigned long data_len, int noblock,
1728				     int *errcode)
1729{
1730	struct sk_buff *skb;
1731	gfp_t gfp_mask;
1732	long timeo;
1733	int err;
1734	int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1735
1736	err = -EMSGSIZE;
1737	if (npages > MAX_SKB_FRAGS)
1738		goto failure;
1739
1740	gfp_mask = sk->sk_allocation;
1741	if (gfp_mask & __GFP_WAIT)
1742		gfp_mask |= __GFP_REPEAT;
1743
1744	timeo = sock_sndtimeo(sk, noblock);
1745	while (1) {
1746		err = sock_error(sk);
1747		if (err != 0)
1748			goto failure;
1749
1750		err = -EPIPE;
1751		if (sk->sk_shutdown & SEND_SHUTDOWN)
1752			goto failure;
1753
1754		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1755			skb = alloc_skb(header_len, gfp_mask);
1756			if (skb) {
1757				int i;
1758
1759				/* No pages, we're done... */
1760				if (!data_len)
1761					break;
1762
1763				skb->truesize += data_len;
1764				skb_shinfo(skb)->nr_frags = npages;
1765				for (i = 0; i < npages; i++) {
1766					struct page *page;
1767
1768					page = alloc_pages(sk->sk_allocation, 0);
1769					if (!page) {
1770						err = -ENOBUFS;
1771						skb_shinfo(skb)->nr_frags = i;
1772						kfree_skb(skb);
1773						goto failure;
1774					}
1775
1776					__skb_fill_page_desc(skb, i,
1777							page, 0,
1778							(data_len >= PAGE_SIZE ?
1779							 PAGE_SIZE :
1780							 data_len));
1781					data_len -= PAGE_SIZE;
1782				}
1783
1784				/* Full success... */
1785				break;
1786			}
1787			err = -ENOBUFS;
1788			goto failure;
1789		}
1790		set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1791		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1792		err = -EAGAIN;
1793		if (!timeo)
1794			goto failure;
1795		if (signal_pending(current))
1796			goto interrupted;
1797		timeo = sock_wait_for_wmem(sk, timeo);
1798	}
1799
1800	skb_set_owner_w(skb, sk);
1801	return skb;
1802
1803interrupted:
1804	err = sock_intr_errno(timeo);
1805failure:
1806	*errcode = err;
1807	return NULL;
1808}
1809EXPORT_SYMBOL(sock_alloc_send_pskb);
1810
1811struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1812				    int noblock, int *errcode)
1813{
1814	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1815}
1816EXPORT_SYMBOL(sock_alloc_send_skb);
1817
1818/* On 32bit arches, an skb frag is limited to 2^15 */
1819#define SKB_FRAG_PAGE_ORDER	get_order(32768)
1820
1821bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
1822{
1823	int order;
1824
1825	if (pfrag->page) {
1826		if (atomic_read(&pfrag->page->_count) == 1) {
1827			pfrag->offset = 0;
1828			return true;
1829		}
1830		if (pfrag->offset < pfrag->size)
1831			return true;
1832		put_page(pfrag->page);
1833	}
1834
1835	/* We restrict high order allocations to users that can afford to wait */
1836	order = (sk->sk_allocation & __GFP_WAIT) ? SKB_FRAG_PAGE_ORDER : 0;
1837
1838	do {
1839		gfp_t gfp = sk->sk_allocation;
1840
1841		if (order)
1842			gfp |= __GFP_COMP | __GFP_NOWARN;
1843		pfrag->page = alloc_pages(gfp, order);
1844		if (likely(pfrag->page)) {
1845			pfrag->offset = 0;
1846			pfrag->size = PAGE_SIZE << order;
1847			return true;
1848		}
1849	} while (--order >= 0);
1850
1851	sk_enter_memory_pressure(sk);
1852	sk_stream_moderate_sndbuf(sk);
1853	return false;
1854}
1855EXPORT_SYMBOL(sk_page_frag_refill);
1856
1857static void __lock_sock(struct sock *sk)
1858	__releases(&sk->sk_lock.slock)
1859	__acquires(&sk->sk_lock.slock)
1860{
1861	DEFINE_WAIT(wait);
1862
1863	for (;;) {
1864		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1865					TASK_UNINTERRUPTIBLE);
1866		spin_unlock_bh(&sk->sk_lock.slock);
1867		schedule();
1868		spin_lock_bh(&sk->sk_lock.slock);
1869		if (!sock_owned_by_user(sk))
1870			break;
1871	}
1872	finish_wait(&sk->sk_lock.wq, &wait);
1873}
1874
1875static void __release_sock(struct sock *sk)
1876	__releases(&sk->sk_lock.slock)
1877	__acquires(&sk->sk_lock.slock)
1878{
1879	struct sk_buff *skb = sk->sk_backlog.head;
1880
1881	do {
1882		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1883		bh_unlock_sock(sk);
1884
1885		do {
1886			struct sk_buff *next = skb->next;
1887
1888			prefetch(next);
1889			WARN_ON_ONCE(skb_dst_is_noref(skb));
1890			skb->next = NULL;
1891			sk_backlog_rcv(sk, skb);
1892
1893			/*
1894			 * We are in process context here with softirqs
1895			 * disabled, use cond_resched_softirq() to preempt.
1896			 * This is safe to do because we've taken the backlog
1897			 * queue private:
1898			 */
1899			cond_resched_softirq();
1900
1901			skb = next;
1902		} while (skb != NULL);
1903
1904		bh_lock_sock(sk);
1905	} while ((skb = sk->sk_backlog.head) != NULL);
1906
1907	/*
1908	 * Doing the zeroing here guarantee we can not loop forever
1909	 * while a wild producer attempts to flood us.
1910	 */
1911	sk->sk_backlog.len = 0;
1912}
1913
1914/**
1915 * sk_wait_data - wait for data to arrive at sk_receive_queue
1916 * @sk:    sock to wait on
1917 * @timeo: for how long
1918 *
1919 * Now socket state including sk->sk_err is changed only under lock,
1920 * hence we may omit checks after joining wait queue.
1921 * We check receive queue before schedule() only as optimization;
1922 * it is very likely that release_sock() added new data.
1923 */
1924int sk_wait_data(struct sock *sk, long *timeo)
1925{
1926	int rc;
1927	DEFINE_WAIT(wait);
1928
1929	prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1930	set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1931	rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1932	clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1933	finish_wait(sk_sleep(sk), &wait);
1934	return rc;
1935}
1936EXPORT_SYMBOL(sk_wait_data);
1937
1938/**
1939 *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1940 *	@sk: socket
1941 *	@size: memory size to allocate
1942 *	@kind: allocation type
1943 *
1944 *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1945 *	rmem allocation. This function assumes that protocols which have
1946 *	memory_pressure use sk_wmem_queued as write buffer accounting.
1947 */
1948int __sk_mem_schedule(struct sock *sk, int size, int kind)
1949{
1950	struct proto *prot = sk->sk_prot;
1951	int amt = sk_mem_pages(size);
1952	long allocated;
1953	int parent_status = UNDER_LIMIT;
1954
1955	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
1956
1957	allocated = sk_memory_allocated_add(sk, amt, &parent_status);
1958
1959	/* Under limit. */
1960	if (parent_status == UNDER_LIMIT &&
1961			allocated <= sk_prot_mem_limits(sk, 0)) {
1962		sk_leave_memory_pressure(sk);
1963		return 1;
1964	}
1965
1966	/* Under pressure. (we or our parents) */
1967	if ((parent_status > SOFT_LIMIT) ||
1968			allocated > sk_prot_mem_limits(sk, 1))
1969		sk_enter_memory_pressure(sk);
1970
1971	/* Over hard limit (we or our parents) */
1972	if ((parent_status == OVER_LIMIT) ||
1973			(allocated > sk_prot_mem_limits(sk, 2)))
1974		goto suppress_allocation;
1975
1976	/* guarantee minimum buffer size under pressure */
1977	if (kind == SK_MEM_RECV) {
1978		if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
1979			return 1;
1980
1981	} else { /* SK_MEM_SEND */
1982		if (sk->sk_type == SOCK_STREAM) {
1983			if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
1984				return 1;
1985		} else if (atomic_read(&sk->sk_wmem_alloc) <
1986			   prot->sysctl_wmem[0])
1987				return 1;
1988	}
1989
1990	if (sk_has_memory_pressure(sk)) {
1991		int alloc;
1992
1993		if (!sk_under_memory_pressure(sk))
1994			return 1;
1995		alloc = sk_sockets_allocated_read_positive(sk);
1996		if (sk_prot_mem_limits(sk, 2) > alloc *
1997		    sk_mem_pages(sk->sk_wmem_queued +
1998				 atomic_read(&sk->sk_rmem_alloc) +
1999				 sk->sk_forward_alloc))
2000			return 1;
2001	}
2002
2003suppress_allocation:
2004
2005	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2006		sk_stream_moderate_sndbuf(sk);
2007
2008		/* Fail only if socket is _under_ its sndbuf.
2009		 * In this case we cannot block, so that we have to fail.
2010		 */
2011		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
2012			return 1;
2013	}
2014
2015	trace_sock_exceed_buf_limit(sk, prot, allocated);
2016
2017	/* Alas. Undo changes. */
2018	sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
2019
2020	sk_memory_allocated_sub(sk, amt);
2021
2022	return 0;
2023}
2024EXPORT_SYMBOL(__sk_mem_schedule);
2025
2026/**
2027 *	__sk_reclaim - reclaim memory_allocated
2028 *	@sk: socket
2029 */
2030void __sk_mem_reclaim(struct sock *sk)
2031{
2032	sk_memory_allocated_sub(sk,
2033				sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT);
2034	sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
2035
2036	if (sk_under_memory_pressure(sk) &&
2037	    (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2038		sk_leave_memory_pressure(sk);
2039}
2040EXPORT_SYMBOL(__sk_mem_reclaim);
2041
2042
2043/*
2044 * Set of default routines for initialising struct proto_ops when
2045 * the protocol does not support a particular function. In certain
2046 * cases where it makes no sense for a protocol to have a "do nothing"
2047 * function, some default processing is provided.
2048 */
2049
2050int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2051{
2052	return -EOPNOTSUPP;
2053}
2054EXPORT_SYMBOL(sock_no_bind);
2055
2056int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2057		    int len, int flags)
2058{
2059	return -EOPNOTSUPP;
2060}
2061EXPORT_SYMBOL(sock_no_connect);
2062
2063int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2064{
2065	return -EOPNOTSUPP;
2066}
2067EXPORT_SYMBOL(sock_no_socketpair);
2068
2069int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
2070{
2071	return -EOPNOTSUPP;
2072}
2073EXPORT_SYMBOL(sock_no_accept);
2074
2075int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2076		    int *len, int peer)
2077{
2078	return -EOPNOTSUPP;
2079}
2080EXPORT_SYMBOL(sock_no_getname);
2081
2082unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
2083{
2084	return 0;
2085}
2086EXPORT_SYMBOL(sock_no_poll);
2087
2088int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2089{
2090	return -EOPNOTSUPP;
2091}
2092EXPORT_SYMBOL(sock_no_ioctl);
2093
2094int sock_no_listen(struct socket *sock, int backlog)
2095{
2096	return -EOPNOTSUPP;
2097}
2098EXPORT_SYMBOL(sock_no_listen);
2099
2100int sock_no_shutdown(struct socket *sock, int how)
2101{
2102	return -EOPNOTSUPP;
2103}
2104EXPORT_SYMBOL(sock_no_shutdown);
2105
2106int sock_no_setsockopt(struct socket *sock, int level, int optname,
2107		    char __user *optval, unsigned int optlen)
2108{
2109	return -EOPNOTSUPP;
2110}
2111EXPORT_SYMBOL(sock_no_setsockopt);
2112
2113int sock_no_getsockopt(struct socket *sock, int level, int optname,
2114		    char __user *optval, int __user *optlen)
2115{
2116	return -EOPNOTSUPP;
2117}
2118EXPORT_SYMBOL(sock_no_getsockopt);
2119
2120int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
2121		    size_t len)
2122{
2123	return -EOPNOTSUPP;
2124}
2125EXPORT_SYMBOL(sock_no_sendmsg);
2126
2127int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
2128		    size_t len, int flags)
2129{
2130	return -EOPNOTSUPP;
2131}
2132EXPORT_SYMBOL(sock_no_recvmsg);
2133
2134int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2135{
2136	/* Mirror missing mmap method error code */
2137	return -ENODEV;
2138}
2139EXPORT_SYMBOL(sock_no_mmap);
2140
2141ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2142{
2143	ssize_t res;
2144	struct msghdr msg = {.msg_flags = flags};
2145	struct kvec iov;
2146	char *kaddr = kmap(page);
2147	iov.iov_base = kaddr + offset;
2148	iov.iov_len = size;
2149	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2150	kunmap(page);
2151	return res;
2152}
2153EXPORT_SYMBOL(sock_no_sendpage);
2154
2155/*
2156 *	Default Socket Callbacks
2157 */
2158
2159static void sock_def_wakeup(struct sock *sk)
2160{
2161	struct socket_wq *wq;
2162
2163	rcu_read_lock();
2164	wq = rcu_dereference(sk->sk_wq);
2165	if (wq_has_sleeper(wq))
2166		wake_up_interruptible_all(&wq->wait);
2167	rcu_read_unlock();
2168}
2169
2170static void sock_def_error_report(struct sock *sk)
2171{
2172	struct socket_wq *wq;
2173
2174	rcu_read_lock();
2175	wq = rcu_dereference(sk->sk_wq);
2176	if (wq_has_sleeper(wq))
2177		wake_up_interruptible_poll(&wq->wait, POLLERR);
2178	sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2179	rcu_read_unlock();
2180}
2181
2182static void sock_def_readable(struct sock *sk, int len)
2183{
2184	struct socket_wq *wq;
2185
2186	rcu_read_lock();
2187	wq = rcu_dereference(sk->sk_wq);
2188	if (wq_has_sleeper(wq))
2189		wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
2190						POLLRDNORM | POLLRDBAND);
2191	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2192	rcu_read_unlock();
2193}
2194
2195static void sock_def_write_space(struct sock *sk)
2196{
2197	struct socket_wq *wq;
2198
2199	rcu_read_lock();
2200
2201	/* Do not wake up a writer until he can make "significant"
2202	 * progress.  --DaveM
2203	 */
2204	if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
2205		wq = rcu_dereference(sk->sk_wq);
2206		if (wq_has_sleeper(wq))
2207			wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
2208						POLLWRNORM | POLLWRBAND);
2209
2210		/* Should agree with poll, otherwise some programs break */
2211		if (sock_writeable(sk))
2212			sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2213	}
2214
2215	rcu_read_unlock();
2216}
2217
2218static void sock_def_destruct(struct sock *sk)
2219{
2220	kfree(sk->sk_protinfo);
2221}
2222
2223void sk_send_sigurg(struct sock *sk)
2224{
2225	if (sk->sk_socket && sk->sk_socket->file)
2226		if (send_sigurg(&sk->sk_socket->file->f_owner))
2227			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2228}
2229EXPORT_SYMBOL(sk_send_sigurg);
2230
2231void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2232		    unsigned long expires)
2233{
2234	if (!mod_timer(timer, expires))
2235		sock_hold(sk);
2236}
2237EXPORT_SYMBOL(sk_reset_timer);
2238
2239void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2240{
2241	if (del_timer(timer))
2242		__sock_put(sk);
2243}
2244EXPORT_SYMBOL(sk_stop_timer);
2245
2246void sock_init_data(struct socket *sock, struct sock *sk)
2247{
2248	skb_queue_head_init(&sk->sk_receive_queue);
2249	skb_queue_head_init(&sk->sk_write_queue);
2250	skb_queue_head_init(&sk->sk_error_queue);
2251#ifdef CONFIG_NET_DMA
2252	skb_queue_head_init(&sk->sk_async_wait_queue);
2253#endif
2254
2255	sk->sk_send_head	=	NULL;
2256
2257	init_timer(&sk->sk_timer);
2258
2259	sk->sk_allocation	=	GFP_KERNEL;
2260	sk->sk_rcvbuf		=	sysctl_rmem_default;
2261	sk->sk_sndbuf		=	sysctl_wmem_default;
2262	sk->sk_state		=	TCP_CLOSE;
2263	sk_set_socket(sk, sock);
2264
2265	sock_set_flag(sk, SOCK_ZAPPED);
2266
2267	if (sock) {
2268		sk->sk_type	=	sock->type;
2269		sk->sk_wq	=	sock->wq;
2270		sock->sk	=	sk;
2271	} else
2272		sk->sk_wq	=	NULL;
2273
2274	spin_lock_init(&sk->sk_dst_lock);
2275	rwlock_init(&sk->sk_callback_lock);
2276	lockdep_set_class_and_name(&sk->sk_callback_lock,
2277			af_callback_keys + sk->sk_family,
2278			af_family_clock_key_strings[sk->sk_family]);
2279
2280	sk->sk_state_change	=	sock_def_wakeup;
2281	sk->sk_data_ready	=	sock_def_readable;
2282	sk->sk_write_space	=	sock_def_write_space;
2283	sk->sk_error_report	=	sock_def_error_report;
2284	sk->sk_destruct		=	sock_def_destruct;
2285
2286	sk->sk_frag.page	=	NULL;
2287	sk->sk_frag.offset	=	0;
2288	sk->sk_peek_off		=	-1;
2289
2290	sk->sk_peer_pid 	=	NULL;
2291	sk->sk_peer_cred	=	NULL;
2292	sk->sk_write_pending	=	0;
2293	sk->sk_rcvlowat		=	1;
2294	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
2295	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
2296
2297	sk->sk_stamp = ktime_set(-1L, 0);
2298
2299	/*
2300	 * Before updating sk_refcnt, we must commit prior changes to memory
2301	 * (Documentation/RCU/rculist_nulls.txt for details)
2302	 */
2303	smp_wmb();
2304	atomic_set(&sk->sk_refcnt, 1);
2305	atomic_set(&sk->sk_drops, 0);
2306}
2307EXPORT_SYMBOL(sock_init_data);
2308
2309void lock_sock_nested(struct sock *sk, int subclass)
2310{
2311	might_sleep();
2312	spin_lock_bh(&sk->sk_lock.slock);
2313	if (sk->sk_lock.owned)
2314		__lock_sock(sk);
2315	sk->sk_lock.owned = 1;
2316	spin_unlock(&sk->sk_lock.slock);
2317	/*
2318	 * The sk_lock has mutex_lock() semantics here:
2319	 */
2320	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2321	local_bh_enable();
2322}
2323EXPORT_SYMBOL(lock_sock_nested);
2324
2325void release_sock(struct sock *sk)
2326{
2327	/*
2328	 * The sk_lock has mutex_unlock() semantics:
2329	 */
2330	mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
2331
2332	spin_lock_bh(&sk->sk_lock.slock);
2333	if (sk->sk_backlog.tail)
2334		__release_sock(sk);
2335
2336	if (sk->sk_prot->release_cb)
2337		sk->sk_prot->release_cb(sk);
2338
2339	sk->sk_lock.owned = 0;
2340	if (waitqueue_active(&sk->sk_lock.wq))
2341		wake_up(&sk->sk_lock.wq);
2342	spin_unlock_bh(&sk->sk_lock.slock);
2343}
2344EXPORT_SYMBOL(release_sock);
2345
2346/**
2347 * lock_sock_fast - fast version of lock_sock
2348 * @sk: socket
2349 *
2350 * This version should be used for very small section, where process wont block
2351 * return false if fast path is taken
2352 *   sk_lock.slock locked, owned = 0, BH disabled
2353 * return true if slow path is taken
2354 *   sk_lock.slock unlocked, owned = 1, BH enabled
2355 */
2356bool lock_sock_fast(struct sock *sk)
2357{
2358	might_sleep();
2359	spin_lock_bh(&sk->sk_lock.slock);
2360
2361	if (!sk->sk_lock.owned)
2362		/*
2363		 * Note : We must disable BH
2364		 */
2365		return false;
2366
2367	__lock_sock(sk);
2368	sk->sk_lock.owned = 1;
2369	spin_unlock(&sk->sk_lock.slock);
2370	/*
2371	 * The sk_lock has mutex_lock() semantics here:
2372	 */
2373	mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2374	local_bh_enable();
2375	return true;
2376}
2377EXPORT_SYMBOL(lock_sock_fast);
2378
2379int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2380{
2381	struct timeval tv;
2382	if (!sock_flag(sk, SOCK_TIMESTAMP))
2383		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2384	tv = ktime_to_timeval(sk->sk_stamp);
2385	if (tv.tv_sec == -1)
2386		return -ENOENT;
2387	if (tv.tv_sec == 0) {
2388		sk->sk_stamp = ktime_get_real();
2389		tv = ktime_to_timeval(sk->sk_stamp);
2390	}
2391	return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2392}
2393EXPORT_SYMBOL(sock_get_timestamp);
2394
2395int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2396{
2397	struct timespec ts;
2398	if (!sock_flag(sk, SOCK_TIMESTAMP))
2399		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2400	ts = ktime_to_timespec(sk->sk_stamp);
2401	if (ts.tv_sec == -1)
2402		return -ENOENT;
2403	if (ts.tv_sec == 0) {
2404		sk->sk_stamp = ktime_get_real();
2405		ts = ktime_to_timespec(sk->sk_stamp);
2406	}
2407	return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2408}
2409EXPORT_SYMBOL(sock_get_timestampns);
2410
2411void sock_enable_timestamp(struct sock *sk, int flag)
2412{
2413	if (!sock_flag(sk, flag)) {
2414		unsigned long previous_flags = sk->sk_flags;
2415
2416		sock_set_flag(sk, flag);
2417		/*
2418		 * we just set one of the two flags which require net
2419		 * time stamping, but time stamping might have been on
2420		 * already because of the other one
2421		 */
2422		if (!(previous_flags & SK_FLAGS_TIMESTAMP))
2423			net_enable_timestamp();
2424	}
2425}
2426
2427/*
2428 *	Get a socket option on an socket.
2429 *
2430 *	FIX: POSIX 1003.1g is very ambiguous here. It states that
2431 *	asynchronous errors should be reported by getsockopt. We assume
2432 *	this means if you specify SO_ERROR (otherwise whats the point of it).
2433 */
2434int sock_common_getsockopt(struct socket *sock, int level, int optname,
2435			   char __user *optval, int __user *optlen)
2436{
2437	struct sock *sk = sock->sk;
2438
2439	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2440}
2441EXPORT_SYMBOL(sock_common_getsockopt);
2442
2443#ifdef CONFIG_COMPAT
2444int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2445				  char __user *optval, int __user *optlen)
2446{
2447	struct sock *sk = sock->sk;
2448
2449	if (sk->sk_prot->compat_getsockopt != NULL)
2450		return sk->sk_prot->compat_getsockopt(sk, level, optname,
2451						      optval, optlen);
2452	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2453}
2454EXPORT_SYMBOL(compat_sock_common_getsockopt);
2455#endif
2456
2457int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
2458			struct msghdr *msg, size_t size, int flags)
2459{
2460	struct sock *sk = sock->sk;
2461	int addr_len = 0;
2462	int err;
2463
2464	err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
2465				   flags & ~MSG_DONTWAIT, &addr_len);
2466	if (err >= 0)
2467		msg->msg_namelen = addr_len;
2468	return err;
2469}
2470EXPORT_SYMBOL(sock_common_recvmsg);
2471
2472/*
2473 *	Set socket options on an inet socket.
2474 */
2475int sock_common_setsockopt(struct socket *sock, int level, int optname,
2476			   char __user *optval, unsigned int optlen)
2477{
2478	struct sock *sk = sock->sk;
2479
2480	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2481}
2482EXPORT_SYMBOL(sock_common_setsockopt);
2483
2484#ifdef CONFIG_COMPAT
2485int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2486				  char __user *optval, unsigned int optlen)
2487{
2488	struct sock *sk = sock->sk;
2489
2490	if (sk->sk_prot->compat_setsockopt != NULL)
2491		return sk->sk_prot->compat_setsockopt(sk, level, optname,
2492						      optval, optlen);
2493	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2494}
2495EXPORT_SYMBOL(compat_sock_common_setsockopt);
2496#endif
2497
2498void sk_common_release(struct sock *sk)
2499{
2500	if (sk->sk_prot->destroy)
2501		sk->sk_prot->destroy(sk);
2502
2503	/*
2504	 * Observation: when sock_common_release is called, processes have
2505	 * no access to socket. But net still has.
2506	 * Step one, detach it from networking:
2507	 *
2508	 * A. Remove from hash tables.
2509	 */
2510
2511	sk->sk_prot->unhash(sk);
2512
2513	/*
2514	 * In this point socket cannot receive new packets, but it is possible
2515	 * that some packets are in flight because some CPU runs receiver and
2516	 * did hash table lookup before we unhashed socket. They will achieve
2517	 * receive queue and will be purged by socket destructor.
2518	 *
2519	 * Also we still have packets pending on receive queue and probably,
2520	 * our own packets waiting in device queues. sock_destroy will drain
2521	 * receive queue, but transmitted packets will delay socket destruction
2522	 * until the last reference will be released.
2523	 */
2524
2525	sock_orphan(sk);
2526
2527	xfrm_sk_free_policy(sk);
2528
2529	sk_refcnt_debug_release(sk);
2530
2531	if (sk->sk_frag.page) {
2532		put_page(sk->sk_frag.page);
2533		sk->sk_frag.page = NULL;
2534	}
2535
2536	sock_put(sk);
2537}
2538EXPORT_SYMBOL(sk_common_release);
2539
2540#ifdef CONFIG_PROC_FS
2541#define PROTO_INUSE_NR	64	/* should be enough for the first time */
2542struct prot_inuse {
2543	int val[PROTO_INUSE_NR];
2544};
2545
2546static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2547
2548#ifdef CONFIG_NET_NS
2549void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2550{
2551	__this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
2552}
2553EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2554
2555int sock_prot_inuse_get(struct net *net, struct proto *prot)
2556{
2557	int cpu, idx = prot->inuse_idx;
2558	int res = 0;
2559
2560	for_each_possible_cpu(cpu)
2561		res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2562
2563	return res >= 0 ? res : 0;
2564}
2565EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2566
2567static int __net_init sock_inuse_init_net(struct net *net)
2568{
2569	net->core.inuse = alloc_percpu(struct prot_inuse);
2570	return net->core.inuse ? 0 : -ENOMEM;
2571}
2572
2573static void __net_exit sock_inuse_exit_net(struct net *net)
2574{
2575	free_percpu(net->core.inuse);
2576}
2577
2578static struct pernet_operations net_inuse_ops = {
2579	.init = sock_inuse_init_net,
2580	.exit = sock_inuse_exit_net,
2581};
2582
2583static __init int net_inuse_init(void)
2584{
2585	if (register_pernet_subsys(&net_inuse_ops))
2586		panic("Cannot initialize net inuse counters");
2587
2588	return 0;
2589}
2590
2591core_initcall(net_inuse_init);
2592#else
2593static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2594
2595void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2596{
2597	__this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
2598}
2599EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2600
2601int sock_prot_inuse_get(struct net *net, struct proto *prot)
2602{
2603	int cpu, idx = prot->inuse_idx;
2604	int res = 0;
2605
2606	for_each_possible_cpu(cpu)
2607		res += per_cpu(prot_inuse, cpu).val[idx];
2608
2609	return res >= 0 ? res : 0;
2610}
2611EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2612#endif
2613
2614static void assign_proto_idx(struct proto *prot)
2615{
2616	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2617
2618	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2619		pr_err("PROTO_INUSE_NR exhausted\n");
2620		return;
2621	}
2622
2623	set_bit(prot->inuse_idx, proto_inuse_idx);
2624}
2625
2626static void release_proto_idx(struct proto *prot)
2627{
2628	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2629		clear_bit(prot->inuse_idx, proto_inuse_idx);
2630}
2631#else
2632static inline void assign_proto_idx(struct proto *prot)
2633{
2634}
2635
2636static inline void release_proto_idx(struct proto *prot)
2637{
2638}
2639#endif
2640
2641int proto_register(struct proto *prot, int alloc_slab)
2642{
2643	if (alloc_slab) {
2644		prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2645					SLAB_HWCACHE_ALIGN | prot->slab_flags,
2646					NULL);
2647
2648		if (prot->slab == NULL) {
2649			pr_crit("%s: Can't create sock SLAB cache!\n",
2650				prot->name);
2651			goto out;
2652		}
2653
2654		if (prot->rsk_prot != NULL) {
2655			prot->rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", prot->name);
2656			if (prot->rsk_prot->slab_name == NULL)
2657				goto out_free_sock_slab;
2658
2659			prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
2660								 prot->rsk_prot->obj_size, 0,
2661								 SLAB_HWCACHE_ALIGN, NULL);
2662
2663			if (prot->rsk_prot->slab == NULL) {
2664				pr_crit("%s: Can't create request sock SLAB cache!\n",
2665					prot->name);
2666				goto out_free_request_sock_slab_name;
2667			}
2668		}
2669
2670		if (prot->twsk_prot != NULL) {
2671			prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
2672
2673			if (prot->twsk_prot->twsk_slab_name == NULL)
2674				goto out_free_request_sock_slab;
2675
2676			prot->twsk_prot->twsk_slab =
2677				kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2678						  prot->twsk_prot->twsk_obj_size,
2679						  0,
2680						  SLAB_HWCACHE_ALIGN |
2681							prot->slab_flags,
2682						  NULL);
2683			if (prot->twsk_prot->twsk_slab == NULL)
2684				goto out_free_timewait_sock_slab_name;
2685		}
2686	}
2687
2688	mutex_lock(&proto_list_mutex);
2689	list_add(&prot->node, &proto_list);
2690	assign_proto_idx(prot);
2691	mutex_unlock(&proto_list_mutex);
2692	return 0;
2693
2694out_free_timewait_sock_slab_name:
2695	kfree(prot->twsk_prot->twsk_slab_name);
2696out_free_request_sock_slab:
2697	if (prot->rsk_prot && prot->rsk_prot->slab) {
2698		kmem_cache_destroy(prot->rsk_prot->slab);
2699		prot->rsk_prot->slab = NULL;
2700	}
2701out_free_request_sock_slab_name:
2702	if (prot->rsk_prot)
2703		kfree(prot->rsk_prot->slab_name);
2704out_free_sock_slab:
2705	kmem_cache_destroy(prot->slab);
2706	prot->slab = NULL;
2707out:
2708	return -ENOBUFS;
2709}
2710EXPORT_SYMBOL(proto_register);
2711
2712void proto_unregister(struct proto *prot)
2713{
2714	mutex_lock(&proto_list_mutex);
2715	release_proto_idx(prot);
2716	list_del(&prot->node);
2717	mutex_unlock(&proto_list_mutex);
2718
2719	if (prot->slab != NULL) {
2720		kmem_cache_destroy(prot->slab);
2721		prot->slab = NULL;
2722	}
2723
2724	if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2725		kmem_cache_destroy(prot->rsk_prot->slab);
2726		kfree(prot->rsk_prot->slab_name);
2727		prot->rsk_prot->slab = NULL;
2728	}
2729
2730	if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2731		kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2732		kfree(prot->twsk_prot->twsk_slab_name);
2733		prot->twsk_prot->twsk_slab = NULL;
2734	}
2735}
2736EXPORT_SYMBOL(proto_unregister);
2737
2738#ifdef CONFIG_PROC_FS
2739static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2740	__acquires(proto_list_mutex)
2741{
2742	mutex_lock(&proto_list_mutex);
2743	return seq_list_start_head(&proto_list, *pos);
2744}
2745
2746static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2747{
2748	return seq_list_next(v, &proto_list, pos);
2749}
2750
2751static void proto_seq_stop(struct seq_file *seq, void *v)
2752	__releases(proto_list_mutex)
2753{
2754	mutex_unlock(&proto_list_mutex);
2755}
2756
2757static char proto_method_implemented(const void *method)
2758{
2759	return method == NULL ? 'n' : 'y';
2760}
2761static long sock_prot_memory_allocated(struct proto *proto)
2762{
2763	return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
2764}
2765
2766static char *sock_prot_memory_pressure(struct proto *proto)
2767{
2768	return proto->memory_pressure != NULL ?
2769	proto_memory_pressure(proto) ? "yes" : "no" : "NI";
2770}
2771
2772static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2773{
2774
2775	seq_printf(seq, "%-9s %4u %6d  %6ld   %-3s %6u   %-3s  %-10s "
2776			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2777		   proto->name,
2778		   proto->obj_size,
2779		   sock_prot_inuse_get(seq_file_net(seq), proto),
2780		   sock_prot_memory_allocated(proto),
2781		   sock_prot_memory_pressure(proto),
2782		   proto->max_header,
2783		   proto->slab == NULL ? "no" : "yes",
2784		   module_name(proto->owner),
2785		   proto_method_implemented(proto->close),
2786		   proto_method_implemented(proto->connect),
2787		   proto_method_implemented(proto->disconnect),
2788		   proto_method_implemented(proto->accept),
2789		   proto_method_implemented(proto->ioctl),
2790		   proto_method_implemented(proto->init),
2791		   proto_method_implemented(proto->destroy),
2792		   proto_method_implemented(proto->shutdown),
2793		   proto_method_implemented(proto->setsockopt),
2794		   proto_method_implemented(proto->getsockopt),
2795		   proto_method_implemented(proto->sendmsg),
2796		   proto_method_implemented(proto->recvmsg),
2797		   proto_method_implemented(proto->sendpage),
2798		   proto_method_implemented(proto->bind),
2799		   proto_method_implemented(proto->backlog_rcv),
2800		   proto_method_implemented(proto->hash),
2801		   proto_method_implemented(proto->unhash),
2802		   proto_method_implemented(proto->get_port),
2803		   proto_method_implemented(proto->enter_memory_pressure));
2804}
2805
2806static int proto_seq_show(struct seq_file *seq, void *v)
2807{
2808	if (v == &proto_list)
2809		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2810			   "protocol",
2811			   "size",
2812			   "sockets",
2813			   "memory",
2814			   "press",
2815			   "maxhdr",
2816			   "slab",
2817			   "module",
2818			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2819	else
2820		proto_seq_printf(seq, list_entry(v, struct proto, node));
2821	return 0;
2822}
2823
2824static const struct seq_operations proto_seq_ops = {
2825	.start  = proto_seq_start,
2826	.next   = proto_seq_next,
2827	.stop   = proto_seq_stop,
2828	.show   = proto_seq_show,
2829};
2830
2831static int proto_seq_open(struct inode *inode, struct file *file)
2832{
2833	return seq_open_net(inode, file, &proto_seq_ops,
2834			    sizeof(struct seq_net_private));
2835}
2836
2837static const struct file_operations proto_seq_fops = {
2838	.owner		= THIS_MODULE,
2839	.open		= proto_seq_open,
2840	.read		= seq_read,
2841	.llseek		= seq_lseek,
2842	.release	= seq_release_net,
2843};
2844
2845static __net_init int proto_init_net(struct net *net)
2846{
2847	if (!proc_create("protocols", S_IRUGO, net->proc_net, &proto_seq_fops))
2848		return -ENOMEM;
2849
2850	return 0;
2851}
2852
2853static __net_exit void proto_exit_net(struct net *net)
2854{
2855	remove_proc_entry("protocols", net->proc_net);
2856}
2857
2858
2859static __net_initdata struct pernet_operations proto_net_ops = {
2860	.init = proto_init_net,
2861	.exit = proto_exit_net,
2862};
2863
2864static int __init proto_init(void)
2865{
2866	return register_pernet_subsys(&proto_net_ops);
2867}
2868
2869subsys_initcall(proto_init);
2870
2871#endif /* PROC_FS */
2872