sock.c revision 8fb974c937570be38f944986456467b39a2dc252
1/*
2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
3 *		operating system.  INET is implemented using the  BSD Socket
4 *		interface as the means of communication with the user level.
5 *
6 *		Generic socket support routines. Memory allocators, socket lock/release
7 *		handler for protocols to use and generic option handler.
8 *
9 *
10 * Authors:	Ross Biro
11 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 *		Florian La Roche, <flla@stud.uni-sb.de>
13 *		Alan Cox, <A.Cox@swansea.ac.uk>
14 *
15 * Fixes:
16 *		Alan Cox	: 	Numerous verify_area() problems
17 *		Alan Cox	:	Connecting on a connecting socket
18 *					now returns an error for tcp.
19 *		Alan Cox	:	sock->protocol is set correctly.
20 *					and is not sometimes left as 0.
21 *		Alan Cox	:	connect handles icmp errors on a
22 *					connect properly. Unfortunately there
23 *					is a restart syscall nasty there. I
24 *					can't match BSD without hacking the C
25 *					library. Ideas urgently sought!
26 *		Alan Cox	:	Disallow bind() to addresses that are
27 *					not ours - especially broadcast ones!!
28 *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
29 *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
30 *					instead they leave that for the DESTROY timer.
31 *		Alan Cox	:	Clean up error flag in accept
32 *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
33 *					was buggy. Put a remove_sock() in the handler
34 *					for memory when we hit 0. Also altered the timer
35 *					code. The ACK stuff can wait and needs major
36 *					TCP layer surgery.
37 *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
38 *					and fixed timer/inet_bh race.
39 *		Alan Cox	:	Added zapped flag for TCP
40 *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
41 *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
43 *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
46 *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
47 *	Pauline Middelink	:	identd support
48 *		Alan Cox	:	Fixed connect() taking signals I think.
49 *		Alan Cox	:	SO_LINGER supported
50 *		Alan Cox	:	Error reporting fixes
51 *		Anonymous	:	inet_create tidied up (sk->reuse setting)
52 *		Alan Cox	:	inet sockets don't set sk->type!
53 *		Alan Cox	:	Split socket option code
54 *		Alan Cox	:	Callbacks
55 *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
56 *		Alex		:	Removed restriction on inet fioctl
57 *		Alan Cox	:	Splitting INET from NET core
58 *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
59 *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
60 *		Alan Cox	:	Split IP from generic code
61 *		Alan Cox	:	New kfree_skbmem()
62 *		Alan Cox	:	Make SO_DEBUG superuser only.
63 *		Alan Cox	:	Allow anyone to clear SO_DEBUG
64 *					(compatibility fix)
65 *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
66 *		Alan Cox	:	Allocator for a socket is settable.
67 *		Alan Cox	:	SO_ERROR includes soft errors.
68 *		Alan Cox	:	Allow NULL arguments on some SO_ opts
69 *		Alan Cox	: 	Generic socket allocation to make hooks
70 *					easier (suggested by Craig Metz).
71 *		Michael Pall	:	SO_ERROR returns positive errno again
72 *              Steve Whitehouse:       Added default destructor to free
73 *                                      protocol private data.
74 *              Steve Whitehouse:       Added various other default routines
75 *                                      common to several socket families.
76 *              Chris Evans     :       Call suser() check last on F_SETOWN
77 *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
79 *		Andi Kleen	:	Fix write_space callback
80 *		Chris Evans	:	Security fixes - signedness again
81 *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
82 *
83 * To Fix:
84 *
85 *
86 *		This program is free software; you can redistribute it and/or
87 *		modify it under the terms of the GNU General Public License
88 *		as published by the Free Software Foundation; either version
89 *		2 of the License, or (at your option) any later version.
90 */
91
92#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
93
94#include <linux/capability.h>
95#include <linux/errno.h>
96#include <linux/types.h>
97#include <linux/socket.h>
98#include <linux/in.h>
99#include <linux/kernel.h>
100#include <linux/module.h>
101#include <linux/proc_fs.h>
102#include <linux/seq_file.h>
103#include <linux/sched.h>
104#include <linux/timer.h>
105#include <linux/string.h>
106#include <linux/sockios.h>
107#include <linux/net.h>
108#include <linux/mm.h>
109#include <linux/slab.h>
110#include <linux/interrupt.h>
111#include <linux/poll.h>
112#include <linux/tcp.h>
113#include <linux/init.h>
114#include <linux/highmem.h>
115#include <linux/user_namespace.h>
116#include <linux/static_key.h>
117#include <linux/memcontrol.h>
118#include <linux/prefetch.h>
119
120#include <asm/uaccess.h>
121
122#include <linux/netdevice.h>
123#include <net/protocol.h>
124#include <linux/skbuff.h>
125#include <net/net_namespace.h>
126#include <net/request_sock.h>
127#include <net/sock.h>
128#include <linux/net_tstamp.h>
129#include <net/xfrm.h>
130#include <linux/ipsec.h>
131#include <net/cls_cgroup.h>
132#include <net/netprio_cgroup.h>
133
134#include <linux/filter.h>
135
136#include <trace/events/sock.h>
137
138#ifdef CONFIG_INET
139#include <net/tcp.h>
140#endif
141
142static DEFINE_MUTEX(proto_list_mutex);
143static LIST_HEAD(proto_list);
144
145#ifdef CONFIG_MEMCG_KMEM
146int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
147{
148	struct proto *proto;
149	int ret = 0;
150
151	mutex_lock(&proto_list_mutex);
152	list_for_each_entry(proto, &proto_list, node) {
153		if (proto->init_cgroup) {
154			ret = proto->init_cgroup(memcg, ss);
155			if (ret)
156				goto out;
157		}
158	}
159
160	mutex_unlock(&proto_list_mutex);
161	return ret;
162out:
163	list_for_each_entry_continue_reverse(proto, &proto_list, node)
164		if (proto->destroy_cgroup)
165			proto->destroy_cgroup(memcg);
166	mutex_unlock(&proto_list_mutex);
167	return ret;
168}
169
170void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
171{
172	struct proto *proto;
173
174	mutex_lock(&proto_list_mutex);
175	list_for_each_entry_reverse(proto, &proto_list, node)
176		if (proto->destroy_cgroup)
177			proto->destroy_cgroup(memcg);
178	mutex_unlock(&proto_list_mutex);
179}
180#endif
181
182/*
183 * Each address family might have different locking rules, so we have
184 * one slock key per address family:
185 */
186static struct lock_class_key af_family_keys[AF_MAX];
187static struct lock_class_key af_family_slock_keys[AF_MAX];
188
189struct static_key memcg_socket_limit_enabled;
190EXPORT_SYMBOL(memcg_socket_limit_enabled);
191
192/*
193 * Make lock validator output more readable. (we pre-construct these
194 * strings build-time, so that runtime initialization of socket
195 * locks is fast):
196 */
197static const char *const af_family_key_strings[AF_MAX+1] = {
198  "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX"     , "sk_lock-AF_INET"     ,
199  "sk_lock-AF_AX25"  , "sk_lock-AF_IPX"      , "sk_lock-AF_APPLETALK",
200  "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE"   , "sk_lock-AF_ATMPVC"   ,
201  "sk_lock-AF_X25"   , "sk_lock-AF_INET6"    , "sk_lock-AF_ROSE"     ,
202  "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI"  , "sk_lock-AF_SECURITY" ,
203  "sk_lock-AF_KEY"   , "sk_lock-AF_NETLINK"  , "sk_lock-AF_PACKET"   ,
204  "sk_lock-AF_ASH"   , "sk_lock-AF_ECONET"   , "sk_lock-AF_ATMSVC"   ,
205  "sk_lock-AF_RDS"   , "sk_lock-AF_SNA"      , "sk_lock-AF_IRDA"     ,
206  "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE"  , "sk_lock-AF_LLC"      ,
207  "sk_lock-27"       , "sk_lock-28"          , "sk_lock-AF_CAN"      ,
208  "sk_lock-AF_TIPC"  , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV"        ,
209  "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN"     , "sk_lock-AF_PHONET"   ,
210  "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG"      ,
211  "sk_lock-AF_NFC"   , "sk_lock-AF_MAX"
212};
213static const char *const af_family_slock_key_strings[AF_MAX+1] = {
214  "slock-AF_UNSPEC", "slock-AF_UNIX"     , "slock-AF_INET"     ,
215  "slock-AF_AX25"  , "slock-AF_IPX"      , "slock-AF_APPLETALK",
216  "slock-AF_NETROM", "slock-AF_BRIDGE"   , "slock-AF_ATMPVC"   ,
217  "slock-AF_X25"   , "slock-AF_INET6"    , "slock-AF_ROSE"     ,
218  "slock-AF_DECnet", "slock-AF_NETBEUI"  , "slock-AF_SECURITY" ,
219  "slock-AF_KEY"   , "slock-AF_NETLINK"  , "slock-AF_PACKET"   ,
220  "slock-AF_ASH"   , "slock-AF_ECONET"   , "slock-AF_ATMSVC"   ,
221  "slock-AF_RDS"   , "slock-AF_SNA"      , "slock-AF_IRDA"     ,
222  "slock-AF_PPPOX" , "slock-AF_WANPIPE"  , "slock-AF_LLC"      ,
223  "slock-27"       , "slock-28"          , "slock-AF_CAN"      ,
224  "slock-AF_TIPC"  , "slock-AF_BLUETOOTH", "slock-AF_IUCV"     ,
225  "slock-AF_RXRPC" , "slock-AF_ISDN"     , "slock-AF_PHONET"   ,
226  "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG"      ,
227  "slock-AF_NFC"   , "slock-AF_MAX"
228};
229static const char *const af_family_clock_key_strings[AF_MAX+1] = {
230  "clock-AF_UNSPEC", "clock-AF_UNIX"     , "clock-AF_INET"     ,
231  "clock-AF_AX25"  , "clock-AF_IPX"      , "clock-AF_APPLETALK",
232  "clock-AF_NETROM", "clock-AF_BRIDGE"   , "clock-AF_ATMPVC"   ,
233  "clock-AF_X25"   , "clock-AF_INET6"    , "clock-AF_ROSE"     ,
234  "clock-AF_DECnet", "clock-AF_NETBEUI"  , "clock-AF_SECURITY" ,
235  "clock-AF_KEY"   , "clock-AF_NETLINK"  , "clock-AF_PACKET"   ,
236  "clock-AF_ASH"   , "clock-AF_ECONET"   , "clock-AF_ATMSVC"   ,
237  "clock-AF_RDS"   , "clock-AF_SNA"      , "clock-AF_IRDA"     ,
238  "clock-AF_PPPOX" , "clock-AF_WANPIPE"  , "clock-AF_LLC"      ,
239  "clock-27"       , "clock-28"          , "clock-AF_CAN"      ,
240  "clock-AF_TIPC"  , "clock-AF_BLUETOOTH", "clock-AF_IUCV"     ,
241  "clock-AF_RXRPC" , "clock-AF_ISDN"     , "clock-AF_PHONET"   ,
242  "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG"      ,
243  "clock-AF_NFC"   , "clock-AF_MAX"
244};
245
246/*
247 * sk_callback_lock locking rules are per-address-family,
248 * so split the lock classes by using a per-AF key:
249 */
250static struct lock_class_key af_callback_keys[AF_MAX];
251
252/* Take into consideration the size of the struct sk_buff overhead in the
253 * determination of these values, since that is non-constant across
254 * platforms.  This makes socket queueing behavior and performance
255 * not depend upon such differences.
256 */
257#define _SK_MEM_PACKETS		256
258#define _SK_MEM_OVERHEAD	SKB_TRUESIZE(256)
259#define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
260#define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
261
262/* Run time adjustable parameters. */
263__u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
264EXPORT_SYMBOL(sysctl_wmem_max);
265__u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
266EXPORT_SYMBOL(sysctl_rmem_max);
267__u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
268__u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
269
270/* Maximal space eaten by iovec or ancillary data plus some space */
271int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
272EXPORT_SYMBOL(sysctl_optmem_max);
273
274struct static_key memalloc_socks = STATIC_KEY_INIT_FALSE;
275EXPORT_SYMBOL_GPL(memalloc_socks);
276
277/**
278 * sk_set_memalloc - sets %SOCK_MEMALLOC
279 * @sk: socket to set it on
280 *
281 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
282 * It's the responsibility of the admin to adjust min_free_kbytes
283 * to meet the requirements
284 */
285void sk_set_memalloc(struct sock *sk)
286{
287	sock_set_flag(sk, SOCK_MEMALLOC);
288	sk->sk_allocation |= __GFP_MEMALLOC;
289	static_key_slow_inc(&memalloc_socks);
290}
291EXPORT_SYMBOL_GPL(sk_set_memalloc);
292
293void sk_clear_memalloc(struct sock *sk)
294{
295	sock_reset_flag(sk, SOCK_MEMALLOC);
296	sk->sk_allocation &= ~__GFP_MEMALLOC;
297	static_key_slow_dec(&memalloc_socks);
298
299	/*
300	 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
301	 * progress of swapping. However, if SOCK_MEMALLOC is cleared while
302	 * it has rmem allocations there is a risk that the user of the
303	 * socket cannot make forward progress due to exceeding the rmem
304	 * limits. By rights, sk_clear_memalloc() should only be called
305	 * on sockets being torn down but warn and reset the accounting if
306	 * that assumption breaks.
307	 */
308	if (WARN_ON(sk->sk_forward_alloc))
309		sk_mem_reclaim(sk);
310}
311EXPORT_SYMBOL_GPL(sk_clear_memalloc);
312
313int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
314{
315	int ret;
316	unsigned long pflags = current->flags;
317
318	/* these should have been dropped before queueing */
319	BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
320
321	current->flags |= PF_MEMALLOC;
322	ret = sk->sk_backlog_rcv(sk, skb);
323	tsk_restore_flags(current, pflags, PF_MEMALLOC);
324
325	return ret;
326}
327EXPORT_SYMBOL(__sk_backlog_rcv);
328
329#if defined(CONFIG_CGROUPS)
330#if !defined(CONFIG_NET_CLS_CGROUP)
331int net_cls_subsys_id = -1;
332EXPORT_SYMBOL_GPL(net_cls_subsys_id);
333#endif
334#if !defined(CONFIG_NETPRIO_CGROUP)
335int net_prio_subsys_id = -1;
336EXPORT_SYMBOL_GPL(net_prio_subsys_id);
337#endif
338#endif
339
340static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
341{
342	struct timeval tv;
343
344	if (optlen < sizeof(tv))
345		return -EINVAL;
346	if (copy_from_user(&tv, optval, sizeof(tv)))
347		return -EFAULT;
348	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
349		return -EDOM;
350
351	if (tv.tv_sec < 0) {
352		static int warned __read_mostly;
353
354		*timeo_p = 0;
355		if (warned < 10 && net_ratelimit()) {
356			warned++;
357			pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
358				__func__, current->comm, task_pid_nr(current));
359		}
360		return 0;
361	}
362	*timeo_p = MAX_SCHEDULE_TIMEOUT;
363	if (tv.tv_sec == 0 && tv.tv_usec == 0)
364		return 0;
365	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
366		*timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
367	return 0;
368}
369
370static void sock_warn_obsolete_bsdism(const char *name)
371{
372	static int warned;
373	static char warncomm[TASK_COMM_LEN];
374	if (strcmp(warncomm, current->comm) && warned < 5) {
375		strcpy(warncomm,  current->comm);
376		pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
377			warncomm, name);
378		warned++;
379	}
380}
381
382#define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
383
384static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
385{
386	if (sk->sk_flags & flags) {
387		sk->sk_flags &= ~flags;
388		if (!(sk->sk_flags & SK_FLAGS_TIMESTAMP))
389			net_disable_timestamp();
390	}
391}
392
393
394int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
395{
396	int err;
397	int skb_len;
398	unsigned long flags;
399	struct sk_buff_head *list = &sk->sk_receive_queue;
400
401	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
402		atomic_inc(&sk->sk_drops);
403		trace_sock_rcvqueue_full(sk, skb);
404		return -ENOMEM;
405	}
406
407	err = sk_filter(sk, skb);
408	if (err)
409		return err;
410
411	if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
412		atomic_inc(&sk->sk_drops);
413		return -ENOBUFS;
414	}
415
416	skb->dev = NULL;
417	skb_set_owner_r(skb, sk);
418
419	/* Cache the SKB length before we tack it onto the receive
420	 * queue.  Once it is added it no longer belongs to us and
421	 * may be freed by other threads of control pulling packets
422	 * from the queue.
423	 */
424	skb_len = skb->len;
425
426	/* we escape from rcu protected region, make sure we dont leak
427	 * a norefcounted dst
428	 */
429	skb_dst_force(skb);
430
431	spin_lock_irqsave(&list->lock, flags);
432	skb->dropcount = atomic_read(&sk->sk_drops);
433	__skb_queue_tail(list, skb);
434	spin_unlock_irqrestore(&list->lock, flags);
435
436	if (!sock_flag(sk, SOCK_DEAD))
437		sk->sk_data_ready(sk, skb_len);
438	return 0;
439}
440EXPORT_SYMBOL(sock_queue_rcv_skb);
441
442int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
443{
444	int rc = NET_RX_SUCCESS;
445
446	if (sk_filter(sk, skb))
447		goto discard_and_relse;
448
449	skb->dev = NULL;
450
451	if (sk_rcvqueues_full(sk, skb, sk->sk_rcvbuf)) {
452		atomic_inc(&sk->sk_drops);
453		goto discard_and_relse;
454	}
455	if (nested)
456		bh_lock_sock_nested(sk);
457	else
458		bh_lock_sock(sk);
459	if (!sock_owned_by_user(sk)) {
460		/*
461		 * trylock + unlock semantics:
462		 */
463		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
464
465		rc = sk_backlog_rcv(sk, skb);
466
467		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
468	} else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
469		bh_unlock_sock(sk);
470		atomic_inc(&sk->sk_drops);
471		goto discard_and_relse;
472	}
473
474	bh_unlock_sock(sk);
475out:
476	sock_put(sk);
477	return rc;
478discard_and_relse:
479	kfree_skb(skb);
480	goto out;
481}
482EXPORT_SYMBOL(sk_receive_skb);
483
484void sk_reset_txq(struct sock *sk)
485{
486	sk_tx_queue_clear(sk);
487}
488EXPORT_SYMBOL(sk_reset_txq);
489
490struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
491{
492	struct dst_entry *dst = __sk_dst_get(sk);
493
494	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
495		sk_tx_queue_clear(sk);
496		RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
497		dst_release(dst);
498		return NULL;
499	}
500
501	return dst;
502}
503EXPORT_SYMBOL(__sk_dst_check);
504
505struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
506{
507	struct dst_entry *dst = sk_dst_get(sk);
508
509	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
510		sk_dst_reset(sk);
511		dst_release(dst);
512		return NULL;
513	}
514
515	return dst;
516}
517EXPORT_SYMBOL(sk_dst_check);
518
519static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
520{
521	int ret = -ENOPROTOOPT;
522#ifdef CONFIG_NETDEVICES
523	struct net *net = sock_net(sk);
524	char devname[IFNAMSIZ];
525	int index;
526
527	/* Sorry... */
528	ret = -EPERM;
529	if (!capable(CAP_NET_RAW))
530		goto out;
531
532	ret = -EINVAL;
533	if (optlen < 0)
534		goto out;
535
536	/* Bind this socket to a particular device like "eth0",
537	 * as specified in the passed interface name. If the
538	 * name is "" or the option length is zero the socket
539	 * is not bound.
540	 */
541	if (optlen > IFNAMSIZ - 1)
542		optlen = IFNAMSIZ - 1;
543	memset(devname, 0, sizeof(devname));
544
545	ret = -EFAULT;
546	if (copy_from_user(devname, optval, optlen))
547		goto out;
548
549	index = 0;
550	if (devname[0] != '\0') {
551		struct net_device *dev;
552
553		rcu_read_lock();
554		dev = dev_get_by_name_rcu(net, devname);
555		if (dev)
556			index = dev->ifindex;
557		rcu_read_unlock();
558		ret = -ENODEV;
559		if (!dev)
560			goto out;
561	}
562
563	lock_sock(sk);
564	sk->sk_bound_dev_if = index;
565	sk_dst_reset(sk);
566	release_sock(sk);
567
568	ret = 0;
569
570out:
571#endif
572
573	return ret;
574}
575
576static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
577{
578	if (valbool)
579		sock_set_flag(sk, bit);
580	else
581		sock_reset_flag(sk, bit);
582}
583
584/*
585 *	This is meant for all protocols to use and covers goings on
586 *	at the socket level. Everything here is generic.
587 */
588
589int sock_setsockopt(struct socket *sock, int level, int optname,
590		    char __user *optval, unsigned int optlen)
591{
592	struct sock *sk = sock->sk;
593	int val;
594	int valbool;
595	struct linger ling;
596	int ret = 0;
597
598	/*
599	 *	Options without arguments
600	 */
601
602	if (optname == SO_BINDTODEVICE)
603		return sock_bindtodevice(sk, optval, optlen);
604
605	if (optlen < sizeof(int))
606		return -EINVAL;
607
608	if (get_user(val, (int __user *)optval))
609		return -EFAULT;
610
611	valbool = val ? 1 : 0;
612
613	lock_sock(sk);
614
615	switch (optname) {
616	case SO_DEBUG:
617		if (val && !capable(CAP_NET_ADMIN))
618			ret = -EACCES;
619		else
620			sock_valbool_flag(sk, SOCK_DBG, valbool);
621		break;
622	case SO_REUSEADDR:
623		sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
624		break;
625	case SO_TYPE:
626	case SO_PROTOCOL:
627	case SO_DOMAIN:
628	case SO_ERROR:
629		ret = -ENOPROTOOPT;
630		break;
631	case SO_DONTROUTE:
632		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
633		break;
634	case SO_BROADCAST:
635		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
636		break;
637	case SO_SNDBUF:
638		/* Don't error on this BSD doesn't and if you think
639		 * about it this is right. Otherwise apps have to
640		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
641		 * are treated in BSD as hints
642		 */
643		val = min_t(u32, val, sysctl_wmem_max);
644set_sndbuf:
645		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
646		sk->sk_sndbuf = max_t(u32, val * 2, SOCK_MIN_SNDBUF);
647		/* Wake up sending tasks if we upped the value. */
648		sk->sk_write_space(sk);
649		break;
650
651	case SO_SNDBUFFORCE:
652		if (!capable(CAP_NET_ADMIN)) {
653			ret = -EPERM;
654			break;
655		}
656		goto set_sndbuf;
657
658	case SO_RCVBUF:
659		/* Don't error on this BSD doesn't and if you think
660		 * about it this is right. Otherwise apps have to
661		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
662		 * are treated in BSD as hints
663		 */
664		val = min_t(u32, val, sysctl_rmem_max);
665set_rcvbuf:
666		sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
667		/*
668		 * We double it on the way in to account for
669		 * "struct sk_buff" etc. overhead.   Applications
670		 * assume that the SO_RCVBUF setting they make will
671		 * allow that much actual data to be received on that
672		 * socket.
673		 *
674		 * Applications are unaware that "struct sk_buff" and
675		 * other overheads allocate from the receive buffer
676		 * during socket buffer allocation.
677		 *
678		 * And after considering the possible alternatives,
679		 * returning the value we actually used in getsockopt
680		 * is the most desirable behavior.
681		 */
682		sk->sk_rcvbuf = max_t(u32, val * 2, SOCK_MIN_RCVBUF);
683		break;
684
685	case SO_RCVBUFFORCE:
686		if (!capable(CAP_NET_ADMIN)) {
687			ret = -EPERM;
688			break;
689		}
690		goto set_rcvbuf;
691
692	case SO_KEEPALIVE:
693#ifdef CONFIG_INET
694		if (sk->sk_protocol == IPPROTO_TCP)
695			tcp_set_keepalive(sk, valbool);
696#endif
697		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
698		break;
699
700	case SO_OOBINLINE:
701		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
702		break;
703
704	case SO_NO_CHECK:
705		sk->sk_no_check = valbool;
706		break;
707
708	case SO_PRIORITY:
709		if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
710			sk->sk_priority = val;
711		else
712			ret = -EPERM;
713		break;
714
715	case SO_LINGER:
716		if (optlen < sizeof(ling)) {
717			ret = -EINVAL;	/* 1003.1g */
718			break;
719		}
720		if (copy_from_user(&ling, optval, sizeof(ling))) {
721			ret = -EFAULT;
722			break;
723		}
724		if (!ling.l_onoff)
725			sock_reset_flag(sk, SOCK_LINGER);
726		else {
727#if (BITS_PER_LONG == 32)
728			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
729				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
730			else
731#endif
732				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
733			sock_set_flag(sk, SOCK_LINGER);
734		}
735		break;
736
737	case SO_BSDCOMPAT:
738		sock_warn_obsolete_bsdism("setsockopt");
739		break;
740
741	case SO_PASSCRED:
742		if (valbool)
743			set_bit(SOCK_PASSCRED, &sock->flags);
744		else
745			clear_bit(SOCK_PASSCRED, &sock->flags);
746		break;
747
748	case SO_TIMESTAMP:
749	case SO_TIMESTAMPNS:
750		if (valbool)  {
751			if (optname == SO_TIMESTAMP)
752				sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
753			else
754				sock_set_flag(sk, SOCK_RCVTSTAMPNS);
755			sock_set_flag(sk, SOCK_RCVTSTAMP);
756			sock_enable_timestamp(sk, SOCK_TIMESTAMP);
757		} else {
758			sock_reset_flag(sk, SOCK_RCVTSTAMP);
759			sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
760		}
761		break;
762
763	case SO_TIMESTAMPING:
764		if (val & ~SOF_TIMESTAMPING_MASK) {
765			ret = -EINVAL;
766			break;
767		}
768		sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE,
769				  val & SOF_TIMESTAMPING_TX_HARDWARE);
770		sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE,
771				  val & SOF_TIMESTAMPING_TX_SOFTWARE);
772		sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE,
773				  val & SOF_TIMESTAMPING_RX_HARDWARE);
774		if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
775			sock_enable_timestamp(sk,
776					      SOCK_TIMESTAMPING_RX_SOFTWARE);
777		else
778			sock_disable_timestamp(sk,
779					       (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
780		sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE,
781				  val & SOF_TIMESTAMPING_SOFTWARE);
782		sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE,
783				  val & SOF_TIMESTAMPING_SYS_HARDWARE);
784		sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE,
785				  val & SOF_TIMESTAMPING_RAW_HARDWARE);
786		break;
787
788	case SO_RCVLOWAT:
789		if (val < 0)
790			val = INT_MAX;
791		sk->sk_rcvlowat = val ? : 1;
792		break;
793
794	case SO_RCVTIMEO:
795		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
796		break;
797
798	case SO_SNDTIMEO:
799		ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
800		break;
801
802	case SO_ATTACH_FILTER:
803		ret = -EINVAL;
804		if (optlen == sizeof(struct sock_fprog)) {
805			struct sock_fprog fprog;
806
807			ret = -EFAULT;
808			if (copy_from_user(&fprog, optval, sizeof(fprog)))
809				break;
810
811			ret = sk_attach_filter(&fprog, sk);
812		}
813		break;
814
815	case SO_DETACH_FILTER:
816		ret = sk_detach_filter(sk);
817		break;
818
819	case SO_PASSSEC:
820		if (valbool)
821			set_bit(SOCK_PASSSEC, &sock->flags);
822		else
823			clear_bit(SOCK_PASSSEC, &sock->flags);
824		break;
825	case SO_MARK:
826		if (!capable(CAP_NET_ADMIN))
827			ret = -EPERM;
828		else
829			sk->sk_mark = val;
830		break;
831
832		/* We implement the SO_SNDLOWAT etc to
833		   not be settable (1003.1g 5.3) */
834	case SO_RXQ_OVFL:
835		sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
836		break;
837
838	case SO_WIFI_STATUS:
839		sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
840		break;
841
842	case SO_PEEK_OFF:
843		if (sock->ops->set_peek_off)
844			sock->ops->set_peek_off(sk, val);
845		else
846			ret = -EOPNOTSUPP;
847		break;
848
849	case SO_NOFCS:
850		sock_valbool_flag(sk, SOCK_NOFCS, valbool);
851		break;
852
853	default:
854		ret = -ENOPROTOOPT;
855		break;
856	}
857	release_sock(sk);
858	return ret;
859}
860EXPORT_SYMBOL(sock_setsockopt);
861
862
863void cred_to_ucred(struct pid *pid, const struct cred *cred,
864		   struct ucred *ucred)
865{
866	ucred->pid = pid_vnr(pid);
867	ucred->uid = ucred->gid = -1;
868	if (cred) {
869		struct user_namespace *current_ns = current_user_ns();
870
871		ucred->uid = from_kuid(current_ns, cred->euid);
872		ucred->gid = from_kgid(current_ns, cred->egid);
873	}
874}
875EXPORT_SYMBOL_GPL(cred_to_ucred);
876
877int sock_getsockopt(struct socket *sock, int level, int optname,
878		    char __user *optval, int __user *optlen)
879{
880	struct sock *sk = sock->sk;
881
882	union {
883		int val;
884		struct linger ling;
885		struct timeval tm;
886	} v;
887
888	int lv = sizeof(int);
889	int len;
890
891	if (get_user(len, optlen))
892		return -EFAULT;
893	if (len < 0)
894		return -EINVAL;
895
896	memset(&v, 0, sizeof(v));
897
898	switch (optname) {
899	case SO_DEBUG:
900		v.val = sock_flag(sk, SOCK_DBG);
901		break;
902
903	case SO_DONTROUTE:
904		v.val = sock_flag(sk, SOCK_LOCALROUTE);
905		break;
906
907	case SO_BROADCAST:
908		v.val = sock_flag(sk, SOCK_BROADCAST);
909		break;
910
911	case SO_SNDBUF:
912		v.val = sk->sk_sndbuf;
913		break;
914
915	case SO_RCVBUF:
916		v.val = sk->sk_rcvbuf;
917		break;
918
919	case SO_REUSEADDR:
920		v.val = sk->sk_reuse;
921		break;
922
923	case SO_KEEPALIVE:
924		v.val = sock_flag(sk, SOCK_KEEPOPEN);
925		break;
926
927	case SO_TYPE:
928		v.val = sk->sk_type;
929		break;
930
931	case SO_PROTOCOL:
932		v.val = sk->sk_protocol;
933		break;
934
935	case SO_DOMAIN:
936		v.val = sk->sk_family;
937		break;
938
939	case SO_ERROR:
940		v.val = -sock_error(sk);
941		if (v.val == 0)
942			v.val = xchg(&sk->sk_err_soft, 0);
943		break;
944
945	case SO_OOBINLINE:
946		v.val = sock_flag(sk, SOCK_URGINLINE);
947		break;
948
949	case SO_NO_CHECK:
950		v.val = sk->sk_no_check;
951		break;
952
953	case SO_PRIORITY:
954		v.val = sk->sk_priority;
955		break;
956
957	case SO_LINGER:
958		lv		= sizeof(v.ling);
959		v.ling.l_onoff	= sock_flag(sk, SOCK_LINGER);
960		v.ling.l_linger	= sk->sk_lingertime / HZ;
961		break;
962
963	case SO_BSDCOMPAT:
964		sock_warn_obsolete_bsdism("getsockopt");
965		break;
966
967	case SO_TIMESTAMP:
968		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
969				!sock_flag(sk, SOCK_RCVTSTAMPNS);
970		break;
971
972	case SO_TIMESTAMPNS:
973		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
974		break;
975
976	case SO_TIMESTAMPING:
977		v.val = 0;
978		if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
979			v.val |= SOF_TIMESTAMPING_TX_HARDWARE;
980		if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
981			v.val |= SOF_TIMESTAMPING_TX_SOFTWARE;
982		if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE))
983			v.val |= SOF_TIMESTAMPING_RX_HARDWARE;
984		if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE))
985			v.val |= SOF_TIMESTAMPING_RX_SOFTWARE;
986		if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE))
987			v.val |= SOF_TIMESTAMPING_SOFTWARE;
988		if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))
989			v.val |= SOF_TIMESTAMPING_SYS_HARDWARE;
990		if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE))
991			v.val |= SOF_TIMESTAMPING_RAW_HARDWARE;
992		break;
993
994	case SO_RCVTIMEO:
995		lv = sizeof(struct timeval);
996		if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
997			v.tm.tv_sec = 0;
998			v.tm.tv_usec = 0;
999		} else {
1000			v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
1001			v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
1002		}
1003		break;
1004
1005	case SO_SNDTIMEO:
1006		lv = sizeof(struct timeval);
1007		if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
1008			v.tm.tv_sec = 0;
1009			v.tm.tv_usec = 0;
1010		} else {
1011			v.tm.tv_sec = sk->sk_sndtimeo / HZ;
1012			v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
1013		}
1014		break;
1015
1016	case SO_RCVLOWAT:
1017		v.val = sk->sk_rcvlowat;
1018		break;
1019
1020	case SO_SNDLOWAT:
1021		v.val = 1;
1022		break;
1023
1024	case SO_PASSCRED:
1025		v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1026		break;
1027
1028	case SO_PEERCRED:
1029	{
1030		struct ucred peercred;
1031		if (len > sizeof(peercred))
1032			len = sizeof(peercred);
1033		cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1034		if (copy_to_user(optval, &peercred, len))
1035			return -EFAULT;
1036		goto lenout;
1037	}
1038
1039	case SO_PEERNAME:
1040	{
1041		char address[128];
1042
1043		if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
1044			return -ENOTCONN;
1045		if (lv < len)
1046			return -EINVAL;
1047		if (copy_to_user(optval, address, len))
1048			return -EFAULT;
1049		goto lenout;
1050	}
1051
1052	/* Dubious BSD thing... Probably nobody even uses it, but
1053	 * the UNIX standard wants it for whatever reason... -DaveM
1054	 */
1055	case SO_ACCEPTCONN:
1056		v.val = sk->sk_state == TCP_LISTEN;
1057		break;
1058
1059	case SO_PASSSEC:
1060		v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1061		break;
1062
1063	case SO_PEERSEC:
1064		return security_socket_getpeersec_stream(sock, optval, optlen, len);
1065
1066	case SO_MARK:
1067		v.val = sk->sk_mark;
1068		break;
1069
1070	case SO_RXQ_OVFL:
1071		v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1072		break;
1073
1074	case SO_WIFI_STATUS:
1075		v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1076		break;
1077
1078	case SO_PEEK_OFF:
1079		if (!sock->ops->set_peek_off)
1080			return -EOPNOTSUPP;
1081
1082		v.val = sk->sk_peek_off;
1083		break;
1084	case SO_NOFCS:
1085		v.val = sock_flag(sk, SOCK_NOFCS);
1086		break;
1087	default:
1088		return -ENOPROTOOPT;
1089	}
1090
1091	if (len > lv)
1092		len = lv;
1093	if (copy_to_user(optval, &v, len))
1094		return -EFAULT;
1095lenout:
1096	if (put_user(len, optlen))
1097		return -EFAULT;
1098	return 0;
1099}
1100
1101/*
1102 * Initialize an sk_lock.
1103 *
1104 * (We also register the sk_lock with the lock validator.)
1105 */
1106static inline void sock_lock_init(struct sock *sk)
1107{
1108	sock_lock_init_class_and_name(sk,
1109			af_family_slock_key_strings[sk->sk_family],
1110			af_family_slock_keys + sk->sk_family,
1111			af_family_key_strings[sk->sk_family],
1112			af_family_keys + sk->sk_family);
1113}
1114
1115/*
1116 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1117 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1118 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1119 */
1120static void sock_copy(struct sock *nsk, const struct sock *osk)
1121{
1122#ifdef CONFIG_SECURITY_NETWORK
1123	void *sptr = nsk->sk_security;
1124#endif
1125	memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1126
1127	memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1128	       osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1129
1130#ifdef CONFIG_SECURITY_NETWORK
1131	nsk->sk_security = sptr;
1132	security_sk_clone(osk, nsk);
1133#endif
1134}
1135
1136/*
1137 * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
1138 * un-modified. Special care is taken when initializing object to zero.
1139 */
1140static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1141{
1142	if (offsetof(struct sock, sk_node.next) != 0)
1143		memset(sk, 0, offsetof(struct sock, sk_node.next));
1144	memset(&sk->sk_node.pprev, 0,
1145	       size - offsetof(struct sock, sk_node.pprev));
1146}
1147
1148void sk_prot_clear_portaddr_nulls(struct sock *sk, int size)
1149{
1150	unsigned long nulls1, nulls2;
1151
1152	nulls1 = offsetof(struct sock, __sk_common.skc_node.next);
1153	nulls2 = offsetof(struct sock, __sk_common.skc_portaddr_node.next);
1154	if (nulls1 > nulls2)
1155		swap(nulls1, nulls2);
1156
1157	if (nulls1 != 0)
1158		memset((char *)sk, 0, nulls1);
1159	memset((char *)sk + nulls1 + sizeof(void *), 0,
1160	       nulls2 - nulls1 - sizeof(void *));
1161	memset((char *)sk + nulls2 + sizeof(void *), 0,
1162	       size - nulls2 - sizeof(void *));
1163}
1164EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls);
1165
1166static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1167		int family)
1168{
1169	struct sock *sk;
1170	struct kmem_cache *slab;
1171
1172	slab = prot->slab;
1173	if (slab != NULL) {
1174		sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1175		if (!sk)
1176			return sk;
1177		if (priority & __GFP_ZERO) {
1178			if (prot->clear_sk)
1179				prot->clear_sk(sk, prot->obj_size);
1180			else
1181				sk_prot_clear_nulls(sk, prot->obj_size);
1182		}
1183	} else
1184		sk = kmalloc(prot->obj_size, priority);
1185
1186	if (sk != NULL) {
1187		kmemcheck_annotate_bitfield(sk, flags);
1188
1189		if (security_sk_alloc(sk, family, priority))
1190			goto out_free;
1191
1192		if (!try_module_get(prot->owner))
1193			goto out_free_sec;
1194		sk_tx_queue_clear(sk);
1195	}
1196
1197	return sk;
1198
1199out_free_sec:
1200	security_sk_free(sk);
1201out_free:
1202	if (slab != NULL)
1203		kmem_cache_free(slab, sk);
1204	else
1205		kfree(sk);
1206	return NULL;
1207}
1208
1209static void sk_prot_free(struct proto *prot, struct sock *sk)
1210{
1211	struct kmem_cache *slab;
1212	struct module *owner;
1213
1214	owner = prot->owner;
1215	slab = prot->slab;
1216
1217	security_sk_free(sk);
1218	if (slab != NULL)
1219		kmem_cache_free(slab, sk);
1220	else
1221		kfree(sk);
1222	module_put(owner);
1223}
1224
1225#ifdef CONFIG_CGROUPS
1226#if IS_ENABLED(CONFIG_NET_CLS_CGROUP)
1227void sock_update_classid(struct sock *sk)
1228{
1229	u32 classid;
1230
1231	rcu_read_lock();  /* doing current task, which cannot vanish. */
1232	classid = task_cls_classid(current);
1233	rcu_read_unlock();
1234	if (classid && classid != sk->sk_classid)
1235		sk->sk_classid = classid;
1236}
1237EXPORT_SYMBOL(sock_update_classid);
1238#endif
1239
1240void sock_update_netprioidx(struct sock *sk, struct task_struct *task)
1241{
1242	if (in_interrupt())
1243		return;
1244
1245	sk->sk_cgrp_prioidx = task_netprioidx(task);
1246}
1247EXPORT_SYMBOL_GPL(sock_update_netprioidx);
1248#endif
1249
1250/**
1251 *	sk_alloc - All socket objects are allocated here
1252 *	@net: the applicable net namespace
1253 *	@family: protocol family
1254 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1255 *	@prot: struct proto associated with this new sock instance
1256 */
1257struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1258		      struct proto *prot)
1259{
1260	struct sock *sk;
1261
1262	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1263	if (sk) {
1264		sk->sk_family = family;
1265		/*
1266		 * See comment in struct sock definition to understand
1267		 * why we need sk_prot_creator -acme
1268		 */
1269		sk->sk_prot = sk->sk_prot_creator = prot;
1270		sock_lock_init(sk);
1271		sock_net_set(sk, get_net(net));
1272		atomic_set(&sk->sk_wmem_alloc, 1);
1273
1274		sock_update_classid(sk);
1275		sock_update_netprioidx(sk, current);
1276	}
1277
1278	return sk;
1279}
1280EXPORT_SYMBOL(sk_alloc);
1281
1282static void __sk_free(struct sock *sk)
1283{
1284	struct sk_filter *filter;
1285
1286	if (sk->sk_destruct)
1287		sk->sk_destruct(sk);
1288
1289	filter = rcu_dereference_check(sk->sk_filter,
1290				       atomic_read(&sk->sk_wmem_alloc) == 0);
1291	if (filter) {
1292		sk_filter_uncharge(sk, filter);
1293		RCU_INIT_POINTER(sk->sk_filter, NULL);
1294	}
1295
1296	sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1297
1298	if (atomic_read(&sk->sk_omem_alloc))
1299		pr_debug("%s: optmem leakage (%d bytes) detected\n",
1300			 __func__, atomic_read(&sk->sk_omem_alloc));
1301
1302	if (sk->sk_peer_cred)
1303		put_cred(sk->sk_peer_cred);
1304	put_pid(sk->sk_peer_pid);
1305	put_net(sock_net(sk));
1306	sk_prot_free(sk->sk_prot_creator, sk);
1307}
1308
1309void sk_free(struct sock *sk)
1310{
1311	/*
1312	 * We subtract one from sk_wmem_alloc and can know if
1313	 * some packets are still in some tx queue.
1314	 * If not null, sock_wfree() will call __sk_free(sk) later
1315	 */
1316	if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1317		__sk_free(sk);
1318}
1319EXPORT_SYMBOL(sk_free);
1320
1321/*
1322 * Last sock_put should drop reference to sk->sk_net. It has already
1323 * been dropped in sk_change_net. Taking reference to stopping namespace
1324 * is not an option.
1325 * Take reference to a socket to remove it from hash _alive_ and after that
1326 * destroy it in the context of init_net.
1327 */
1328void sk_release_kernel(struct sock *sk)
1329{
1330	if (sk == NULL || sk->sk_socket == NULL)
1331		return;
1332
1333	sock_hold(sk);
1334	sock_release(sk->sk_socket);
1335	release_net(sock_net(sk));
1336	sock_net_set(sk, get_net(&init_net));
1337	sock_put(sk);
1338}
1339EXPORT_SYMBOL(sk_release_kernel);
1340
1341static void sk_update_clone(const struct sock *sk, struct sock *newsk)
1342{
1343	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1344		sock_update_memcg(newsk);
1345}
1346
1347/**
1348 *	sk_clone_lock - clone a socket, and lock its clone
1349 *	@sk: the socket to clone
1350 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1351 *
1352 *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1353 */
1354struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1355{
1356	struct sock *newsk;
1357
1358	newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1359	if (newsk != NULL) {
1360		struct sk_filter *filter;
1361
1362		sock_copy(newsk, sk);
1363
1364		/* SANITY */
1365		get_net(sock_net(newsk));
1366		sk_node_init(&newsk->sk_node);
1367		sock_lock_init(newsk);
1368		bh_lock_sock(newsk);
1369		newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
1370		newsk->sk_backlog.len = 0;
1371
1372		atomic_set(&newsk->sk_rmem_alloc, 0);
1373		/*
1374		 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1375		 */
1376		atomic_set(&newsk->sk_wmem_alloc, 1);
1377		atomic_set(&newsk->sk_omem_alloc, 0);
1378		skb_queue_head_init(&newsk->sk_receive_queue);
1379		skb_queue_head_init(&newsk->sk_write_queue);
1380#ifdef CONFIG_NET_DMA
1381		skb_queue_head_init(&newsk->sk_async_wait_queue);
1382#endif
1383
1384		spin_lock_init(&newsk->sk_dst_lock);
1385		rwlock_init(&newsk->sk_callback_lock);
1386		lockdep_set_class_and_name(&newsk->sk_callback_lock,
1387				af_callback_keys + newsk->sk_family,
1388				af_family_clock_key_strings[newsk->sk_family]);
1389
1390		newsk->sk_dst_cache	= NULL;
1391		newsk->sk_wmem_queued	= 0;
1392		newsk->sk_forward_alloc = 0;
1393		newsk->sk_send_head	= NULL;
1394		newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1395
1396		sock_reset_flag(newsk, SOCK_DONE);
1397		skb_queue_head_init(&newsk->sk_error_queue);
1398
1399		filter = rcu_dereference_protected(newsk->sk_filter, 1);
1400		if (filter != NULL)
1401			sk_filter_charge(newsk, filter);
1402
1403		if (unlikely(xfrm_sk_clone_policy(newsk))) {
1404			/* It is still raw copy of parent, so invalidate
1405			 * destructor and make plain sk_free() */
1406			newsk->sk_destruct = NULL;
1407			bh_unlock_sock(newsk);
1408			sk_free(newsk);
1409			newsk = NULL;
1410			goto out;
1411		}
1412
1413		newsk->sk_err	   = 0;
1414		newsk->sk_priority = 0;
1415		/*
1416		 * Before updating sk_refcnt, we must commit prior changes to memory
1417		 * (Documentation/RCU/rculist_nulls.txt for details)
1418		 */
1419		smp_wmb();
1420		atomic_set(&newsk->sk_refcnt, 2);
1421
1422		/*
1423		 * Increment the counter in the same struct proto as the master
1424		 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1425		 * is the same as sk->sk_prot->socks, as this field was copied
1426		 * with memcpy).
1427		 *
1428		 * This _changes_ the previous behaviour, where
1429		 * tcp_create_openreq_child always was incrementing the
1430		 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1431		 * to be taken into account in all callers. -acme
1432		 */
1433		sk_refcnt_debug_inc(newsk);
1434		sk_set_socket(newsk, NULL);
1435		newsk->sk_wq = NULL;
1436
1437		sk_update_clone(sk, newsk);
1438
1439		if (newsk->sk_prot->sockets_allocated)
1440			sk_sockets_allocated_inc(newsk);
1441
1442		if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1443			net_enable_timestamp();
1444	}
1445out:
1446	return newsk;
1447}
1448EXPORT_SYMBOL_GPL(sk_clone_lock);
1449
1450void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1451{
1452	__sk_dst_set(sk, dst);
1453	sk->sk_route_caps = dst->dev->features;
1454	if (sk->sk_route_caps & NETIF_F_GSO)
1455		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1456	sk->sk_route_caps &= ~sk->sk_route_nocaps;
1457	if (sk_can_gso(sk)) {
1458		if (dst->header_len) {
1459			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1460		} else {
1461			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1462			sk->sk_gso_max_size = dst->dev->gso_max_size;
1463			sk->sk_gso_max_segs = dst->dev->gso_max_segs;
1464		}
1465	}
1466}
1467EXPORT_SYMBOL_GPL(sk_setup_caps);
1468
1469void __init sk_init(void)
1470{
1471	if (totalram_pages <= 4096) {
1472		sysctl_wmem_max = 32767;
1473		sysctl_rmem_max = 32767;
1474		sysctl_wmem_default = 32767;
1475		sysctl_rmem_default = 32767;
1476	} else if (totalram_pages >= 131072) {
1477		sysctl_wmem_max = 131071;
1478		sysctl_rmem_max = 131071;
1479	}
1480}
1481
1482/*
1483 *	Simple resource managers for sockets.
1484 */
1485
1486
1487/*
1488 * Write buffer destructor automatically called from kfree_skb.
1489 */
1490void sock_wfree(struct sk_buff *skb)
1491{
1492	struct sock *sk = skb->sk;
1493	unsigned int len = skb->truesize;
1494
1495	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1496		/*
1497		 * Keep a reference on sk_wmem_alloc, this will be released
1498		 * after sk_write_space() call
1499		 */
1500		atomic_sub(len - 1, &sk->sk_wmem_alloc);
1501		sk->sk_write_space(sk);
1502		len = 1;
1503	}
1504	/*
1505	 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1506	 * could not do because of in-flight packets
1507	 */
1508	if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1509		__sk_free(sk);
1510}
1511EXPORT_SYMBOL(sock_wfree);
1512
1513/*
1514 * Read buffer destructor automatically called from kfree_skb.
1515 */
1516void sock_rfree(struct sk_buff *skb)
1517{
1518	struct sock *sk = skb->sk;
1519	unsigned int len = skb->truesize;
1520
1521	atomic_sub(len, &sk->sk_rmem_alloc);
1522	sk_mem_uncharge(sk, len);
1523}
1524EXPORT_SYMBOL(sock_rfree);
1525
1526void sock_edemux(struct sk_buff *skb)
1527{
1528	sock_put(skb->sk);
1529}
1530EXPORT_SYMBOL(sock_edemux);
1531
1532int sock_i_uid(struct sock *sk)
1533{
1534	int uid;
1535
1536	read_lock_bh(&sk->sk_callback_lock);
1537	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1538	read_unlock_bh(&sk->sk_callback_lock);
1539	return uid;
1540}
1541EXPORT_SYMBOL(sock_i_uid);
1542
1543unsigned long sock_i_ino(struct sock *sk)
1544{
1545	unsigned long ino;
1546
1547	read_lock_bh(&sk->sk_callback_lock);
1548	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1549	read_unlock_bh(&sk->sk_callback_lock);
1550	return ino;
1551}
1552EXPORT_SYMBOL(sock_i_ino);
1553
1554/*
1555 * Allocate a skb from the socket's send buffer.
1556 */
1557struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1558			     gfp_t priority)
1559{
1560	if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1561		struct sk_buff *skb = alloc_skb(size, priority);
1562		if (skb) {
1563			skb_set_owner_w(skb, sk);
1564			return skb;
1565		}
1566	}
1567	return NULL;
1568}
1569EXPORT_SYMBOL(sock_wmalloc);
1570
1571/*
1572 * Allocate a skb from the socket's receive buffer.
1573 */
1574struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1575			     gfp_t priority)
1576{
1577	if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1578		struct sk_buff *skb = alloc_skb(size, priority);
1579		if (skb) {
1580			skb_set_owner_r(skb, sk);
1581			return skb;
1582		}
1583	}
1584	return NULL;
1585}
1586
1587/*
1588 * Allocate a memory block from the socket's option memory buffer.
1589 */
1590void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1591{
1592	if ((unsigned int)size <= sysctl_optmem_max &&
1593	    atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1594		void *mem;
1595		/* First do the add, to avoid the race if kmalloc
1596		 * might sleep.
1597		 */
1598		atomic_add(size, &sk->sk_omem_alloc);
1599		mem = kmalloc(size, priority);
1600		if (mem)
1601			return mem;
1602		atomic_sub(size, &sk->sk_omem_alloc);
1603	}
1604	return NULL;
1605}
1606EXPORT_SYMBOL(sock_kmalloc);
1607
1608/*
1609 * Free an option memory block.
1610 */
1611void sock_kfree_s(struct sock *sk, void *mem, int size)
1612{
1613	kfree(mem);
1614	atomic_sub(size, &sk->sk_omem_alloc);
1615}
1616EXPORT_SYMBOL(sock_kfree_s);
1617
1618/* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1619   I think, these locks should be removed for datagram sockets.
1620 */
1621static long sock_wait_for_wmem(struct sock *sk, long timeo)
1622{
1623	DEFINE_WAIT(wait);
1624
1625	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1626	for (;;) {
1627		if (!timeo)
1628			break;
1629		if (signal_pending(current))
1630			break;
1631		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1632		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1633		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1634			break;
1635		if (sk->sk_shutdown & SEND_SHUTDOWN)
1636			break;
1637		if (sk->sk_err)
1638			break;
1639		timeo = schedule_timeout(timeo);
1640	}
1641	finish_wait(sk_sleep(sk), &wait);
1642	return timeo;
1643}
1644
1645
1646/*
1647 *	Generic send/receive buffer handlers
1648 */
1649
1650struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1651				     unsigned long data_len, int noblock,
1652				     int *errcode)
1653{
1654	struct sk_buff *skb;
1655	gfp_t gfp_mask;
1656	long timeo;
1657	int err;
1658	int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1659
1660	err = -EMSGSIZE;
1661	if (npages > MAX_SKB_FRAGS)
1662		goto failure;
1663
1664	gfp_mask = sk->sk_allocation;
1665	if (gfp_mask & __GFP_WAIT)
1666		gfp_mask |= __GFP_REPEAT;
1667
1668	timeo = sock_sndtimeo(sk, noblock);
1669	while (1) {
1670		err = sock_error(sk);
1671		if (err != 0)
1672			goto failure;
1673
1674		err = -EPIPE;
1675		if (sk->sk_shutdown & SEND_SHUTDOWN)
1676			goto failure;
1677
1678		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1679			skb = alloc_skb(header_len, gfp_mask);
1680			if (skb) {
1681				int i;
1682
1683				/* No pages, we're done... */
1684				if (!data_len)
1685					break;
1686
1687				skb->truesize += data_len;
1688				skb_shinfo(skb)->nr_frags = npages;
1689				for (i = 0; i < npages; i++) {
1690					struct page *page;
1691
1692					page = alloc_pages(sk->sk_allocation, 0);
1693					if (!page) {
1694						err = -ENOBUFS;
1695						skb_shinfo(skb)->nr_frags = i;
1696						kfree_skb(skb);
1697						goto failure;
1698					}
1699
1700					__skb_fill_page_desc(skb, i,
1701							page, 0,
1702							(data_len >= PAGE_SIZE ?
1703							 PAGE_SIZE :
1704							 data_len));
1705					data_len -= PAGE_SIZE;
1706				}
1707
1708				/* Full success... */
1709				break;
1710			}
1711			err = -ENOBUFS;
1712			goto failure;
1713		}
1714		set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1715		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1716		err = -EAGAIN;
1717		if (!timeo)
1718			goto failure;
1719		if (signal_pending(current))
1720			goto interrupted;
1721		timeo = sock_wait_for_wmem(sk, timeo);
1722	}
1723
1724	skb_set_owner_w(skb, sk);
1725	return skb;
1726
1727interrupted:
1728	err = sock_intr_errno(timeo);
1729failure:
1730	*errcode = err;
1731	return NULL;
1732}
1733EXPORT_SYMBOL(sock_alloc_send_pskb);
1734
1735struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1736				    int noblock, int *errcode)
1737{
1738	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1739}
1740EXPORT_SYMBOL(sock_alloc_send_skb);
1741
1742static void __lock_sock(struct sock *sk)
1743	__releases(&sk->sk_lock.slock)
1744	__acquires(&sk->sk_lock.slock)
1745{
1746	DEFINE_WAIT(wait);
1747
1748	for (;;) {
1749		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1750					TASK_UNINTERRUPTIBLE);
1751		spin_unlock_bh(&sk->sk_lock.slock);
1752		schedule();
1753		spin_lock_bh(&sk->sk_lock.slock);
1754		if (!sock_owned_by_user(sk))
1755			break;
1756	}
1757	finish_wait(&sk->sk_lock.wq, &wait);
1758}
1759
1760static void __release_sock(struct sock *sk)
1761	__releases(&sk->sk_lock.slock)
1762	__acquires(&sk->sk_lock.slock)
1763{
1764	struct sk_buff *skb = sk->sk_backlog.head;
1765
1766	do {
1767		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1768		bh_unlock_sock(sk);
1769
1770		do {
1771			struct sk_buff *next = skb->next;
1772
1773			prefetch(next);
1774			WARN_ON_ONCE(skb_dst_is_noref(skb));
1775			skb->next = NULL;
1776			sk_backlog_rcv(sk, skb);
1777
1778			/*
1779			 * We are in process context here with softirqs
1780			 * disabled, use cond_resched_softirq() to preempt.
1781			 * This is safe to do because we've taken the backlog
1782			 * queue private:
1783			 */
1784			cond_resched_softirq();
1785
1786			skb = next;
1787		} while (skb != NULL);
1788
1789		bh_lock_sock(sk);
1790	} while ((skb = sk->sk_backlog.head) != NULL);
1791
1792	/*
1793	 * Doing the zeroing here guarantee we can not loop forever
1794	 * while a wild producer attempts to flood us.
1795	 */
1796	sk->sk_backlog.len = 0;
1797}
1798
1799/**
1800 * sk_wait_data - wait for data to arrive at sk_receive_queue
1801 * @sk:    sock to wait on
1802 * @timeo: for how long
1803 *
1804 * Now socket state including sk->sk_err is changed only under lock,
1805 * hence we may omit checks after joining wait queue.
1806 * We check receive queue before schedule() only as optimization;
1807 * it is very likely that release_sock() added new data.
1808 */
1809int sk_wait_data(struct sock *sk, long *timeo)
1810{
1811	int rc;
1812	DEFINE_WAIT(wait);
1813
1814	prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1815	set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1816	rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1817	clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1818	finish_wait(sk_sleep(sk), &wait);
1819	return rc;
1820}
1821EXPORT_SYMBOL(sk_wait_data);
1822
1823/**
1824 *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1825 *	@sk: socket
1826 *	@size: memory size to allocate
1827 *	@kind: allocation type
1828 *
1829 *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1830 *	rmem allocation. This function assumes that protocols which have
1831 *	memory_pressure use sk_wmem_queued as write buffer accounting.
1832 */
1833int __sk_mem_schedule(struct sock *sk, int size, int kind)
1834{
1835	struct proto *prot = sk->sk_prot;
1836	int amt = sk_mem_pages(size);
1837	long allocated;
1838	int parent_status = UNDER_LIMIT;
1839
1840	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
1841
1842	allocated = sk_memory_allocated_add(sk, amt, &parent_status);
1843
1844	/* Under limit. */
1845	if (parent_status == UNDER_LIMIT &&
1846			allocated <= sk_prot_mem_limits(sk, 0)) {
1847		sk_leave_memory_pressure(sk);
1848		return 1;
1849	}
1850
1851	/* Under pressure. (we or our parents) */
1852	if ((parent_status > SOFT_LIMIT) ||
1853			allocated > sk_prot_mem_limits(sk, 1))
1854		sk_enter_memory_pressure(sk);
1855
1856	/* Over hard limit (we or our parents) */
1857	if ((parent_status == OVER_LIMIT) ||
1858			(allocated > sk_prot_mem_limits(sk, 2)))
1859		goto suppress_allocation;
1860
1861	/* guarantee minimum buffer size under pressure */
1862	if (kind == SK_MEM_RECV) {
1863		if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
1864			return 1;
1865
1866	} else { /* SK_MEM_SEND */
1867		if (sk->sk_type == SOCK_STREAM) {
1868			if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
1869				return 1;
1870		} else if (atomic_read(&sk->sk_wmem_alloc) <
1871			   prot->sysctl_wmem[0])
1872				return 1;
1873	}
1874
1875	if (sk_has_memory_pressure(sk)) {
1876		int alloc;
1877
1878		if (!sk_under_memory_pressure(sk))
1879			return 1;
1880		alloc = sk_sockets_allocated_read_positive(sk);
1881		if (sk_prot_mem_limits(sk, 2) > alloc *
1882		    sk_mem_pages(sk->sk_wmem_queued +
1883				 atomic_read(&sk->sk_rmem_alloc) +
1884				 sk->sk_forward_alloc))
1885			return 1;
1886	}
1887
1888suppress_allocation:
1889
1890	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
1891		sk_stream_moderate_sndbuf(sk);
1892
1893		/* Fail only if socket is _under_ its sndbuf.
1894		 * In this case we cannot block, so that we have to fail.
1895		 */
1896		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
1897			return 1;
1898	}
1899
1900	trace_sock_exceed_buf_limit(sk, prot, allocated);
1901
1902	/* Alas. Undo changes. */
1903	sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
1904
1905	sk_memory_allocated_sub(sk, amt);
1906
1907	return 0;
1908}
1909EXPORT_SYMBOL(__sk_mem_schedule);
1910
1911/**
1912 *	__sk_reclaim - reclaim memory_allocated
1913 *	@sk: socket
1914 */
1915void __sk_mem_reclaim(struct sock *sk)
1916{
1917	sk_memory_allocated_sub(sk,
1918				sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT);
1919	sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
1920
1921	if (sk_under_memory_pressure(sk) &&
1922	    (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
1923		sk_leave_memory_pressure(sk);
1924}
1925EXPORT_SYMBOL(__sk_mem_reclaim);
1926
1927
1928/*
1929 * Set of default routines for initialising struct proto_ops when
1930 * the protocol does not support a particular function. In certain
1931 * cases where it makes no sense for a protocol to have a "do nothing"
1932 * function, some default processing is provided.
1933 */
1934
1935int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1936{
1937	return -EOPNOTSUPP;
1938}
1939EXPORT_SYMBOL(sock_no_bind);
1940
1941int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1942		    int len, int flags)
1943{
1944	return -EOPNOTSUPP;
1945}
1946EXPORT_SYMBOL(sock_no_connect);
1947
1948int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1949{
1950	return -EOPNOTSUPP;
1951}
1952EXPORT_SYMBOL(sock_no_socketpair);
1953
1954int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1955{
1956	return -EOPNOTSUPP;
1957}
1958EXPORT_SYMBOL(sock_no_accept);
1959
1960int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1961		    int *len, int peer)
1962{
1963	return -EOPNOTSUPP;
1964}
1965EXPORT_SYMBOL(sock_no_getname);
1966
1967unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
1968{
1969	return 0;
1970}
1971EXPORT_SYMBOL(sock_no_poll);
1972
1973int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1974{
1975	return -EOPNOTSUPP;
1976}
1977EXPORT_SYMBOL(sock_no_ioctl);
1978
1979int sock_no_listen(struct socket *sock, int backlog)
1980{
1981	return -EOPNOTSUPP;
1982}
1983EXPORT_SYMBOL(sock_no_listen);
1984
1985int sock_no_shutdown(struct socket *sock, int how)
1986{
1987	return -EOPNOTSUPP;
1988}
1989EXPORT_SYMBOL(sock_no_shutdown);
1990
1991int sock_no_setsockopt(struct socket *sock, int level, int optname,
1992		    char __user *optval, unsigned int optlen)
1993{
1994	return -EOPNOTSUPP;
1995}
1996EXPORT_SYMBOL(sock_no_setsockopt);
1997
1998int sock_no_getsockopt(struct socket *sock, int level, int optname,
1999		    char __user *optval, int __user *optlen)
2000{
2001	return -EOPNOTSUPP;
2002}
2003EXPORT_SYMBOL(sock_no_getsockopt);
2004
2005int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
2006		    size_t len)
2007{
2008	return -EOPNOTSUPP;
2009}
2010EXPORT_SYMBOL(sock_no_sendmsg);
2011
2012int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
2013		    size_t len, int flags)
2014{
2015	return -EOPNOTSUPP;
2016}
2017EXPORT_SYMBOL(sock_no_recvmsg);
2018
2019int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2020{
2021	/* Mirror missing mmap method error code */
2022	return -ENODEV;
2023}
2024EXPORT_SYMBOL(sock_no_mmap);
2025
2026ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2027{
2028	ssize_t res;
2029	struct msghdr msg = {.msg_flags = flags};
2030	struct kvec iov;
2031	char *kaddr = kmap(page);
2032	iov.iov_base = kaddr + offset;
2033	iov.iov_len = size;
2034	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2035	kunmap(page);
2036	return res;
2037}
2038EXPORT_SYMBOL(sock_no_sendpage);
2039
2040/*
2041 *	Default Socket Callbacks
2042 */
2043
2044static void sock_def_wakeup(struct sock *sk)
2045{
2046	struct socket_wq *wq;
2047
2048	rcu_read_lock();
2049	wq = rcu_dereference(sk->sk_wq);
2050	if (wq_has_sleeper(wq))
2051		wake_up_interruptible_all(&wq->wait);
2052	rcu_read_unlock();
2053}
2054
2055static void sock_def_error_report(struct sock *sk)
2056{
2057	struct socket_wq *wq;
2058
2059	rcu_read_lock();
2060	wq = rcu_dereference(sk->sk_wq);
2061	if (wq_has_sleeper(wq))
2062		wake_up_interruptible_poll(&wq->wait, POLLERR);
2063	sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2064	rcu_read_unlock();
2065}
2066
2067static void sock_def_readable(struct sock *sk, int len)
2068{
2069	struct socket_wq *wq;
2070
2071	rcu_read_lock();
2072	wq = rcu_dereference(sk->sk_wq);
2073	if (wq_has_sleeper(wq))
2074		wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
2075						POLLRDNORM | POLLRDBAND);
2076	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2077	rcu_read_unlock();
2078}
2079
2080static void sock_def_write_space(struct sock *sk)
2081{
2082	struct socket_wq *wq;
2083
2084	rcu_read_lock();
2085
2086	/* Do not wake up a writer until he can make "significant"
2087	 * progress.  --DaveM
2088	 */
2089	if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
2090		wq = rcu_dereference(sk->sk_wq);
2091		if (wq_has_sleeper(wq))
2092			wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
2093						POLLWRNORM | POLLWRBAND);
2094
2095		/* Should agree with poll, otherwise some programs break */
2096		if (sock_writeable(sk))
2097			sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2098	}
2099
2100	rcu_read_unlock();
2101}
2102
2103static void sock_def_destruct(struct sock *sk)
2104{
2105	kfree(sk->sk_protinfo);
2106}
2107
2108void sk_send_sigurg(struct sock *sk)
2109{
2110	if (sk->sk_socket && sk->sk_socket->file)
2111		if (send_sigurg(&sk->sk_socket->file->f_owner))
2112			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2113}
2114EXPORT_SYMBOL(sk_send_sigurg);
2115
2116void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2117		    unsigned long expires)
2118{
2119	if (!mod_timer(timer, expires))
2120		sock_hold(sk);
2121}
2122EXPORT_SYMBOL(sk_reset_timer);
2123
2124void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2125{
2126	if (timer_pending(timer) && del_timer(timer))
2127		__sock_put(sk);
2128}
2129EXPORT_SYMBOL(sk_stop_timer);
2130
2131void sock_init_data(struct socket *sock, struct sock *sk)
2132{
2133	skb_queue_head_init(&sk->sk_receive_queue);
2134	skb_queue_head_init(&sk->sk_write_queue);
2135	skb_queue_head_init(&sk->sk_error_queue);
2136#ifdef CONFIG_NET_DMA
2137	skb_queue_head_init(&sk->sk_async_wait_queue);
2138#endif
2139
2140	sk->sk_send_head	=	NULL;
2141
2142	init_timer(&sk->sk_timer);
2143
2144	sk->sk_allocation	=	GFP_KERNEL;
2145	sk->sk_rcvbuf		=	sysctl_rmem_default;
2146	sk->sk_sndbuf		=	sysctl_wmem_default;
2147	sk->sk_state		=	TCP_CLOSE;
2148	sk_set_socket(sk, sock);
2149
2150	sock_set_flag(sk, SOCK_ZAPPED);
2151
2152	if (sock) {
2153		sk->sk_type	=	sock->type;
2154		sk->sk_wq	=	sock->wq;
2155		sock->sk	=	sk;
2156	} else
2157		sk->sk_wq	=	NULL;
2158
2159	spin_lock_init(&sk->sk_dst_lock);
2160	rwlock_init(&sk->sk_callback_lock);
2161	lockdep_set_class_and_name(&sk->sk_callback_lock,
2162			af_callback_keys + sk->sk_family,
2163			af_family_clock_key_strings[sk->sk_family]);
2164
2165	sk->sk_state_change	=	sock_def_wakeup;
2166	sk->sk_data_ready	=	sock_def_readable;
2167	sk->sk_write_space	=	sock_def_write_space;
2168	sk->sk_error_report	=	sock_def_error_report;
2169	sk->sk_destruct		=	sock_def_destruct;
2170
2171	sk->sk_sndmsg_page	=	NULL;
2172	sk->sk_sndmsg_off	=	0;
2173	sk->sk_peek_off		=	-1;
2174
2175	sk->sk_peer_pid 	=	NULL;
2176	sk->sk_peer_cred	=	NULL;
2177	sk->sk_write_pending	=	0;
2178	sk->sk_rcvlowat		=	1;
2179	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
2180	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
2181
2182	sk->sk_stamp = ktime_set(-1L, 0);
2183
2184	/*
2185	 * Before updating sk_refcnt, we must commit prior changes to memory
2186	 * (Documentation/RCU/rculist_nulls.txt for details)
2187	 */
2188	smp_wmb();
2189	atomic_set(&sk->sk_refcnt, 1);
2190	atomic_set(&sk->sk_drops, 0);
2191}
2192EXPORT_SYMBOL(sock_init_data);
2193
2194void lock_sock_nested(struct sock *sk, int subclass)
2195{
2196	might_sleep();
2197	spin_lock_bh(&sk->sk_lock.slock);
2198	if (sk->sk_lock.owned)
2199		__lock_sock(sk);
2200	sk->sk_lock.owned = 1;
2201	spin_unlock(&sk->sk_lock.slock);
2202	/*
2203	 * The sk_lock has mutex_lock() semantics here:
2204	 */
2205	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2206	local_bh_enable();
2207}
2208EXPORT_SYMBOL(lock_sock_nested);
2209
2210void release_sock(struct sock *sk)
2211{
2212	/*
2213	 * The sk_lock has mutex_unlock() semantics:
2214	 */
2215	mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
2216
2217	spin_lock_bh(&sk->sk_lock.slock);
2218	if (sk->sk_backlog.tail)
2219		__release_sock(sk);
2220
2221	if (sk->sk_prot->release_cb)
2222		sk->sk_prot->release_cb(sk);
2223
2224	sk->sk_lock.owned = 0;
2225	if (waitqueue_active(&sk->sk_lock.wq))
2226		wake_up(&sk->sk_lock.wq);
2227	spin_unlock_bh(&sk->sk_lock.slock);
2228}
2229EXPORT_SYMBOL(release_sock);
2230
2231/**
2232 * lock_sock_fast - fast version of lock_sock
2233 * @sk: socket
2234 *
2235 * This version should be used for very small section, where process wont block
2236 * return false if fast path is taken
2237 *   sk_lock.slock locked, owned = 0, BH disabled
2238 * return true if slow path is taken
2239 *   sk_lock.slock unlocked, owned = 1, BH enabled
2240 */
2241bool lock_sock_fast(struct sock *sk)
2242{
2243	might_sleep();
2244	spin_lock_bh(&sk->sk_lock.slock);
2245
2246	if (!sk->sk_lock.owned)
2247		/*
2248		 * Note : We must disable BH
2249		 */
2250		return false;
2251
2252	__lock_sock(sk);
2253	sk->sk_lock.owned = 1;
2254	spin_unlock(&sk->sk_lock.slock);
2255	/*
2256	 * The sk_lock has mutex_lock() semantics here:
2257	 */
2258	mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2259	local_bh_enable();
2260	return true;
2261}
2262EXPORT_SYMBOL(lock_sock_fast);
2263
2264int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2265{
2266	struct timeval tv;
2267	if (!sock_flag(sk, SOCK_TIMESTAMP))
2268		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2269	tv = ktime_to_timeval(sk->sk_stamp);
2270	if (tv.tv_sec == -1)
2271		return -ENOENT;
2272	if (tv.tv_sec == 0) {
2273		sk->sk_stamp = ktime_get_real();
2274		tv = ktime_to_timeval(sk->sk_stamp);
2275	}
2276	return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2277}
2278EXPORT_SYMBOL(sock_get_timestamp);
2279
2280int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2281{
2282	struct timespec ts;
2283	if (!sock_flag(sk, SOCK_TIMESTAMP))
2284		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2285	ts = ktime_to_timespec(sk->sk_stamp);
2286	if (ts.tv_sec == -1)
2287		return -ENOENT;
2288	if (ts.tv_sec == 0) {
2289		sk->sk_stamp = ktime_get_real();
2290		ts = ktime_to_timespec(sk->sk_stamp);
2291	}
2292	return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2293}
2294EXPORT_SYMBOL(sock_get_timestampns);
2295
2296void sock_enable_timestamp(struct sock *sk, int flag)
2297{
2298	if (!sock_flag(sk, flag)) {
2299		unsigned long previous_flags = sk->sk_flags;
2300
2301		sock_set_flag(sk, flag);
2302		/*
2303		 * we just set one of the two flags which require net
2304		 * time stamping, but time stamping might have been on
2305		 * already because of the other one
2306		 */
2307		if (!(previous_flags & SK_FLAGS_TIMESTAMP))
2308			net_enable_timestamp();
2309	}
2310}
2311
2312/*
2313 *	Get a socket option on an socket.
2314 *
2315 *	FIX: POSIX 1003.1g is very ambiguous here. It states that
2316 *	asynchronous errors should be reported by getsockopt. We assume
2317 *	this means if you specify SO_ERROR (otherwise whats the point of it).
2318 */
2319int sock_common_getsockopt(struct socket *sock, int level, int optname,
2320			   char __user *optval, int __user *optlen)
2321{
2322	struct sock *sk = sock->sk;
2323
2324	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2325}
2326EXPORT_SYMBOL(sock_common_getsockopt);
2327
2328#ifdef CONFIG_COMPAT
2329int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2330				  char __user *optval, int __user *optlen)
2331{
2332	struct sock *sk = sock->sk;
2333
2334	if (sk->sk_prot->compat_getsockopt != NULL)
2335		return sk->sk_prot->compat_getsockopt(sk, level, optname,
2336						      optval, optlen);
2337	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2338}
2339EXPORT_SYMBOL(compat_sock_common_getsockopt);
2340#endif
2341
2342int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
2343			struct msghdr *msg, size_t size, int flags)
2344{
2345	struct sock *sk = sock->sk;
2346	int addr_len = 0;
2347	int err;
2348
2349	err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
2350				   flags & ~MSG_DONTWAIT, &addr_len);
2351	if (err >= 0)
2352		msg->msg_namelen = addr_len;
2353	return err;
2354}
2355EXPORT_SYMBOL(sock_common_recvmsg);
2356
2357/*
2358 *	Set socket options on an inet socket.
2359 */
2360int sock_common_setsockopt(struct socket *sock, int level, int optname,
2361			   char __user *optval, unsigned int optlen)
2362{
2363	struct sock *sk = sock->sk;
2364
2365	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2366}
2367EXPORT_SYMBOL(sock_common_setsockopt);
2368
2369#ifdef CONFIG_COMPAT
2370int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2371				  char __user *optval, unsigned int optlen)
2372{
2373	struct sock *sk = sock->sk;
2374
2375	if (sk->sk_prot->compat_setsockopt != NULL)
2376		return sk->sk_prot->compat_setsockopt(sk, level, optname,
2377						      optval, optlen);
2378	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2379}
2380EXPORT_SYMBOL(compat_sock_common_setsockopt);
2381#endif
2382
2383void sk_common_release(struct sock *sk)
2384{
2385	if (sk->sk_prot->destroy)
2386		sk->sk_prot->destroy(sk);
2387
2388	/*
2389	 * Observation: when sock_common_release is called, processes have
2390	 * no access to socket. But net still has.
2391	 * Step one, detach it from networking:
2392	 *
2393	 * A. Remove from hash tables.
2394	 */
2395
2396	sk->sk_prot->unhash(sk);
2397
2398	/*
2399	 * In this point socket cannot receive new packets, but it is possible
2400	 * that some packets are in flight because some CPU runs receiver and
2401	 * did hash table lookup before we unhashed socket. They will achieve
2402	 * receive queue and will be purged by socket destructor.
2403	 *
2404	 * Also we still have packets pending on receive queue and probably,
2405	 * our own packets waiting in device queues. sock_destroy will drain
2406	 * receive queue, but transmitted packets will delay socket destruction
2407	 * until the last reference will be released.
2408	 */
2409
2410	sock_orphan(sk);
2411
2412	xfrm_sk_free_policy(sk);
2413
2414	sk_refcnt_debug_release(sk);
2415	sock_put(sk);
2416}
2417EXPORT_SYMBOL(sk_common_release);
2418
2419#ifdef CONFIG_PROC_FS
2420#define PROTO_INUSE_NR	64	/* should be enough for the first time */
2421struct prot_inuse {
2422	int val[PROTO_INUSE_NR];
2423};
2424
2425static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2426
2427#ifdef CONFIG_NET_NS
2428void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2429{
2430	__this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
2431}
2432EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2433
2434int sock_prot_inuse_get(struct net *net, struct proto *prot)
2435{
2436	int cpu, idx = prot->inuse_idx;
2437	int res = 0;
2438
2439	for_each_possible_cpu(cpu)
2440		res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2441
2442	return res >= 0 ? res : 0;
2443}
2444EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2445
2446static int __net_init sock_inuse_init_net(struct net *net)
2447{
2448	net->core.inuse = alloc_percpu(struct prot_inuse);
2449	return net->core.inuse ? 0 : -ENOMEM;
2450}
2451
2452static void __net_exit sock_inuse_exit_net(struct net *net)
2453{
2454	free_percpu(net->core.inuse);
2455}
2456
2457static struct pernet_operations net_inuse_ops = {
2458	.init = sock_inuse_init_net,
2459	.exit = sock_inuse_exit_net,
2460};
2461
2462static __init int net_inuse_init(void)
2463{
2464	if (register_pernet_subsys(&net_inuse_ops))
2465		panic("Cannot initialize net inuse counters");
2466
2467	return 0;
2468}
2469
2470core_initcall(net_inuse_init);
2471#else
2472static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2473
2474void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2475{
2476	__this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
2477}
2478EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2479
2480int sock_prot_inuse_get(struct net *net, struct proto *prot)
2481{
2482	int cpu, idx = prot->inuse_idx;
2483	int res = 0;
2484
2485	for_each_possible_cpu(cpu)
2486		res += per_cpu(prot_inuse, cpu).val[idx];
2487
2488	return res >= 0 ? res : 0;
2489}
2490EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2491#endif
2492
2493static void assign_proto_idx(struct proto *prot)
2494{
2495	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2496
2497	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2498		pr_err("PROTO_INUSE_NR exhausted\n");
2499		return;
2500	}
2501
2502	set_bit(prot->inuse_idx, proto_inuse_idx);
2503}
2504
2505static void release_proto_idx(struct proto *prot)
2506{
2507	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2508		clear_bit(prot->inuse_idx, proto_inuse_idx);
2509}
2510#else
2511static inline void assign_proto_idx(struct proto *prot)
2512{
2513}
2514
2515static inline void release_proto_idx(struct proto *prot)
2516{
2517}
2518#endif
2519
2520int proto_register(struct proto *prot, int alloc_slab)
2521{
2522	if (alloc_slab) {
2523		prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2524					SLAB_HWCACHE_ALIGN | prot->slab_flags,
2525					NULL);
2526
2527		if (prot->slab == NULL) {
2528			pr_crit("%s: Can't create sock SLAB cache!\n",
2529				prot->name);
2530			goto out;
2531		}
2532
2533		if (prot->rsk_prot != NULL) {
2534			prot->rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", prot->name);
2535			if (prot->rsk_prot->slab_name == NULL)
2536				goto out_free_sock_slab;
2537
2538			prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
2539								 prot->rsk_prot->obj_size, 0,
2540								 SLAB_HWCACHE_ALIGN, NULL);
2541
2542			if (prot->rsk_prot->slab == NULL) {
2543				pr_crit("%s: Can't create request sock SLAB cache!\n",
2544					prot->name);
2545				goto out_free_request_sock_slab_name;
2546			}
2547		}
2548
2549		if (prot->twsk_prot != NULL) {
2550			prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
2551
2552			if (prot->twsk_prot->twsk_slab_name == NULL)
2553				goto out_free_request_sock_slab;
2554
2555			prot->twsk_prot->twsk_slab =
2556				kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2557						  prot->twsk_prot->twsk_obj_size,
2558						  0,
2559						  SLAB_HWCACHE_ALIGN |
2560							prot->slab_flags,
2561						  NULL);
2562			if (prot->twsk_prot->twsk_slab == NULL)
2563				goto out_free_timewait_sock_slab_name;
2564		}
2565	}
2566
2567	mutex_lock(&proto_list_mutex);
2568	list_add(&prot->node, &proto_list);
2569	assign_proto_idx(prot);
2570	mutex_unlock(&proto_list_mutex);
2571	return 0;
2572
2573out_free_timewait_sock_slab_name:
2574	kfree(prot->twsk_prot->twsk_slab_name);
2575out_free_request_sock_slab:
2576	if (prot->rsk_prot && prot->rsk_prot->slab) {
2577		kmem_cache_destroy(prot->rsk_prot->slab);
2578		prot->rsk_prot->slab = NULL;
2579	}
2580out_free_request_sock_slab_name:
2581	if (prot->rsk_prot)
2582		kfree(prot->rsk_prot->slab_name);
2583out_free_sock_slab:
2584	kmem_cache_destroy(prot->slab);
2585	prot->slab = NULL;
2586out:
2587	return -ENOBUFS;
2588}
2589EXPORT_SYMBOL(proto_register);
2590
2591void proto_unregister(struct proto *prot)
2592{
2593	mutex_lock(&proto_list_mutex);
2594	release_proto_idx(prot);
2595	list_del(&prot->node);
2596	mutex_unlock(&proto_list_mutex);
2597
2598	if (prot->slab != NULL) {
2599		kmem_cache_destroy(prot->slab);
2600		prot->slab = NULL;
2601	}
2602
2603	if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2604		kmem_cache_destroy(prot->rsk_prot->slab);
2605		kfree(prot->rsk_prot->slab_name);
2606		prot->rsk_prot->slab = NULL;
2607	}
2608
2609	if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2610		kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2611		kfree(prot->twsk_prot->twsk_slab_name);
2612		prot->twsk_prot->twsk_slab = NULL;
2613	}
2614}
2615EXPORT_SYMBOL(proto_unregister);
2616
2617#ifdef CONFIG_PROC_FS
2618static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2619	__acquires(proto_list_mutex)
2620{
2621	mutex_lock(&proto_list_mutex);
2622	return seq_list_start_head(&proto_list, *pos);
2623}
2624
2625static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2626{
2627	return seq_list_next(v, &proto_list, pos);
2628}
2629
2630static void proto_seq_stop(struct seq_file *seq, void *v)
2631	__releases(proto_list_mutex)
2632{
2633	mutex_unlock(&proto_list_mutex);
2634}
2635
2636static char proto_method_implemented(const void *method)
2637{
2638	return method == NULL ? 'n' : 'y';
2639}
2640static long sock_prot_memory_allocated(struct proto *proto)
2641{
2642	return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
2643}
2644
2645static char *sock_prot_memory_pressure(struct proto *proto)
2646{
2647	return proto->memory_pressure != NULL ?
2648	proto_memory_pressure(proto) ? "yes" : "no" : "NI";
2649}
2650
2651static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2652{
2653
2654	seq_printf(seq, "%-9s %4u %6d  %6ld   %-3s %6u   %-3s  %-10s "
2655			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2656		   proto->name,
2657		   proto->obj_size,
2658		   sock_prot_inuse_get(seq_file_net(seq), proto),
2659		   sock_prot_memory_allocated(proto),
2660		   sock_prot_memory_pressure(proto),
2661		   proto->max_header,
2662		   proto->slab == NULL ? "no" : "yes",
2663		   module_name(proto->owner),
2664		   proto_method_implemented(proto->close),
2665		   proto_method_implemented(proto->connect),
2666		   proto_method_implemented(proto->disconnect),
2667		   proto_method_implemented(proto->accept),
2668		   proto_method_implemented(proto->ioctl),
2669		   proto_method_implemented(proto->init),
2670		   proto_method_implemented(proto->destroy),
2671		   proto_method_implemented(proto->shutdown),
2672		   proto_method_implemented(proto->setsockopt),
2673		   proto_method_implemented(proto->getsockopt),
2674		   proto_method_implemented(proto->sendmsg),
2675		   proto_method_implemented(proto->recvmsg),
2676		   proto_method_implemented(proto->sendpage),
2677		   proto_method_implemented(proto->bind),
2678		   proto_method_implemented(proto->backlog_rcv),
2679		   proto_method_implemented(proto->hash),
2680		   proto_method_implemented(proto->unhash),
2681		   proto_method_implemented(proto->get_port),
2682		   proto_method_implemented(proto->enter_memory_pressure));
2683}
2684
2685static int proto_seq_show(struct seq_file *seq, void *v)
2686{
2687	if (v == &proto_list)
2688		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2689			   "protocol",
2690			   "size",
2691			   "sockets",
2692			   "memory",
2693			   "press",
2694			   "maxhdr",
2695			   "slab",
2696			   "module",
2697			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2698	else
2699		proto_seq_printf(seq, list_entry(v, struct proto, node));
2700	return 0;
2701}
2702
2703static const struct seq_operations proto_seq_ops = {
2704	.start  = proto_seq_start,
2705	.next   = proto_seq_next,
2706	.stop   = proto_seq_stop,
2707	.show   = proto_seq_show,
2708};
2709
2710static int proto_seq_open(struct inode *inode, struct file *file)
2711{
2712	return seq_open_net(inode, file, &proto_seq_ops,
2713			    sizeof(struct seq_net_private));
2714}
2715
2716static const struct file_operations proto_seq_fops = {
2717	.owner		= THIS_MODULE,
2718	.open		= proto_seq_open,
2719	.read		= seq_read,
2720	.llseek		= seq_lseek,
2721	.release	= seq_release_net,
2722};
2723
2724static __net_init int proto_init_net(struct net *net)
2725{
2726	if (!proc_net_fops_create(net, "protocols", S_IRUGO, &proto_seq_fops))
2727		return -ENOMEM;
2728
2729	return 0;
2730}
2731
2732static __net_exit void proto_exit_net(struct net *net)
2733{
2734	proc_net_remove(net, "protocols");
2735}
2736
2737
2738static __net_initdata struct pernet_operations proto_net_ops = {
2739	.init = proto_init_net,
2740	.exit = proto_exit_net,
2741};
2742
2743static int __init proto_init(void)
2744{
2745	return register_pernet_subsys(&proto_net_ops);
2746}
2747
2748subsys_initcall(proto_init);
2749
2750#endif /* PROC_FS */
2751