sock.c revision a3a858ff18a72a8d388e31ab0d98f7e944841a62
1/*
2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
3 *		operating system.  INET is implemented using the  BSD Socket
4 *		interface as the means of communication with the user level.
5 *
6 *		Generic socket support routines. Memory allocators, socket lock/release
7 *		handler for protocols to use and generic option handler.
8 *
9 *
10 * Authors:	Ross Biro
11 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 *		Florian La Roche, <flla@stud.uni-sb.de>
13 *		Alan Cox, <A.Cox@swansea.ac.uk>
14 *
15 * Fixes:
16 *		Alan Cox	: 	Numerous verify_area() problems
17 *		Alan Cox	:	Connecting on a connecting socket
18 *					now returns an error for tcp.
19 *		Alan Cox	:	sock->protocol is set correctly.
20 *					and is not sometimes left as 0.
21 *		Alan Cox	:	connect handles icmp errors on a
22 *					connect properly. Unfortunately there
23 *					is a restart syscall nasty there. I
24 *					can't match BSD without hacking the C
25 *					library. Ideas urgently sought!
26 *		Alan Cox	:	Disallow bind() to addresses that are
27 *					not ours - especially broadcast ones!!
28 *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
29 *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
30 *					instead they leave that for the DESTROY timer.
31 *		Alan Cox	:	Clean up error flag in accept
32 *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
33 *					was buggy. Put a remove_sock() in the handler
34 *					for memory when we hit 0. Also altered the timer
35 *					code. The ACK stuff can wait and needs major
36 *					TCP layer surgery.
37 *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
38 *					and fixed timer/inet_bh race.
39 *		Alan Cox	:	Added zapped flag for TCP
40 *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
41 *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
43 *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
46 *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
47 *	Pauline Middelink	:	identd support
48 *		Alan Cox	:	Fixed connect() taking signals I think.
49 *		Alan Cox	:	SO_LINGER supported
50 *		Alan Cox	:	Error reporting fixes
51 *		Anonymous	:	inet_create tidied up (sk->reuse setting)
52 *		Alan Cox	:	inet sockets don't set sk->type!
53 *		Alan Cox	:	Split socket option code
54 *		Alan Cox	:	Callbacks
55 *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
56 *		Alex		:	Removed restriction on inet fioctl
57 *		Alan Cox	:	Splitting INET from NET core
58 *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
59 *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
60 *		Alan Cox	:	Split IP from generic code
61 *		Alan Cox	:	New kfree_skbmem()
62 *		Alan Cox	:	Make SO_DEBUG superuser only.
63 *		Alan Cox	:	Allow anyone to clear SO_DEBUG
64 *					(compatibility fix)
65 *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
66 *		Alan Cox	:	Allocator for a socket is settable.
67 *		Alan Cox	:	SO_ERROR includes soft errors.
68 *		Alan Cox	:	Allow NULL arguments on some SO_ opts
69 *		Alan Cox	: 	Generic socket allocation to make hooks
70 *					easier (suggested by Craig Metz).
71 *		Michael Pall	:	SO_ERROR returns positive errno again
72 *              Steve Whitehouse:       Added default destructor to free
73 *                                      protocol private data.
74 *              Steve Whitehouse:       Added various other default routines
75 *                                      common to several socket families.
76 *              Chris Evans     :       Call suser() check last on F_SETOWN
77 *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
79 *		Andi Kleen	:	Fix write_space callback
80 *		Chris Evans	:	Security fixes - signedness again
81 *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
82 *
83 * To Fix:
84 *
85 *
86 *		This program is free software; you can redistribute it and/or
87 *		modify it under the terms of the GNU General Public License
88 *		as published by the Free Software Foundation; either version
89 *		2 of the License, or (at your option) any later version.
90 */
91
92#include <linux/capability.h>
93#include <linux/errno.h>
94#include <linux/types.h>
95#include <linux/socket.h>
96#include <linux/in.h>
97#include <linux/kernel.h>
98#include <linux/module.h>
99#include <linux/proc_fs.h>
100#include <linux/seq_file.h>
101#include <linux/sched.h>
102#include <linux/timer.h>
103#include <linux/string.h>
104#include <linux/sockios.h>
105#include <linux/net.h>
106#include <linux/mm.h>
107#include <linux/slab.h>
108#include <linux/interrupt.h>
109#include <linux/poll.h>
110#include <linux/tcp.h>
111#include <linux/init.h>
112#include <linux/highmem.h>
113
114#include <asm/uaccess.h>
115#include <asm/system.h>
116
117#include <linux/netdevice.h>
118#include <net/protocol.h>
119#include <linux/skbuff.h>
120#include <net/net_namespace.h>
121#include <net/request_sock.h>
122#include <net/sock.h>
123#include <linux/net_tstamp.h>
124#include <net/xfrm.h>
125#include <linux/ipsec.h>
126
127#include <linux/filter.h>
128
129#ifdef CONFIG_INET
130#include <net/tcp.h>
131#endif
132
133/*
134 * Each address family might have different locking rules, so we have
135 * one slock key per address family:
136 */
137static struct lock_class_key af_family_keys[AF_MAX];
138static struct lock_class_key af_family_slock_keys[AF_MAX];
139
140/*
141 * Make lock validator output more readable. (we pre-construct these
142 * strings build-time, so that runtime initialization of socket
143 * locks is fast):
144 */
145static const char *const af_family_key_strings[AF_MAX+1] = {
146  "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX"     , "sk_lock-AF_INET"     ,
147  "sk_lock-AF_AX25"  , "sk_lock-AF_IPX"      , "sk_lock-AF_APPLETALK",
148  "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE"   , "sk_lock-AF_ATMPVC"   ,
149  "sk_lock-AF_X25"   , "sk_lock-AF_INET6"    , "sk_lock-AF_ROSE"     ,
150  "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI"  , "sk_lock-AF_SECURITY" ,
151  "sk_lock-AF_KEY"   , "sk_lock-AF_NETLINK"  , "sk_lock-AF_PACKET"   ,
152  "sk_lock-AF_ASH"   , "sk_lock-AF_ECONET"   , "sk_lock-AF_ATMSVC"   ,
153  "sk_lock-AF_RDS"   , "sk_lock-AF_SNA"      , "sk_lock-AF_IRDA"     ,
154  "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE"  , "sk_lock-AF_LLC"      ,
155  "sk_lock-27"       , "sk_lock-28"          , "sk_lock-AF_CAN"      ,
156  "sk_lock-AF_TIPC"  , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV"        ,
157  "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN"     , "sk_lock-AF_PHONET"   ,
158  "sk_lock-AF_IEEE802154",
159  "sk_lock-AF_MAX"
160};
161static const char *const af_family_slock_key_strings[AF_MAX+1] = {
162  "slock-AF_UNSPEC", "slock-AF_UNIX"     , "slock-AF_INET"     ,
163  "slock-AF_AX25"  , "slock-AF_IPX"      , "slock-AF_APPLETALK",
164  "slock-AF_NETROM", "slock-AF_BRIDGE"   , "slock-AF_ATMPVC"   ,
165  "slock-AF_X25"   , "slock-AF_INET6"    , "slock-AF_ROSE"     ,
166  "slock-AF_DECnet", "slock-AF_NETBEUI"  , "slock-AF_SECURITY" ,
167  "slock-AF_KEY"   , "slock-AF_NETLINK"  , "slock-AF_PACKET"   ,
168  "slock-AF_ASH"   , "slock-AF_ECONET"   , "slock-AF_ATMSVC"   ,
169  "slock-AF_RDS"   , "slock-AF_SNA"      , "slock-AF_IRDA"     ,
170  "slock-AF_PPPOX" , "slock-AF_WANPIPE"  , "slock-AF_LLC"      ,
171  "slock-27"       , "slock-28"          , "slock-AF_CAN"      ,
172  "slock-AF_TIPC"  , "slock-AF_BLUETOOTH", "slock-AF_IUCV"     ,
173  "slock-AF_RXRPC" , "slock-AF_ISDN"     , "slock-AF_PHONET"   ,
174  "slock-AF_IEEE802154",
175  "slock-AF_MAX"
176};
177static const char *const af_family_clock_key_strings[AF_MAX+1] = {
178  "clock-AF_UNSPEC", "clock-AF_UNIX"     , "clock-AF_INET"     ,
179  "clock-AF_AX25"  , "clock-AF_IPX"      , "clock-AF_APPLETALK",
180  "clock-AF_NETROM", "clock-AF_BRIDGE"   , "clock-AF_ATMPVC"   ,
181  "clock-AF_X25"   , "clock-AF_INET6"    , "clock-AF_ROSE"     ,
182  "clock-AF_DECnet", "clock-AF_NETBEUI"  , "clock-AF_SECURITY" ,
183  "clock-AF_KEY"   , "clock-AF_NETLINK"  , "clock-AF_PACKET"   ,
184  "clock-AF_ASH"   , "clock-AF_ECONET"   , "clock-AF_ATMSVC"   ,
185  "clock-AF_RDS"   , "clock-AF_SNA"      , "clock-AF_IRDA"     ,
186  "clock-AF_PPPOX" , "clock-AF_WANPIPE"  , "clock-AF_LLC"      ,
187  "clock-27"       , "clock-28"          , "clock-AF_CAN"      ,
188  "clock-AF_TIPC"  , "clock-AF_BLUETOOTH", "clock-AF_IUCV"     ,
189  "clock-AF_RXRPC" , "clock-AF_ISDN"     , "clock-AF_PHONET"   ,
190  "clock-AF_IEEE802154",
191  "clock-AF_MAX"
192};
193
194/*
195 * sk_callback_lock locking rules are per-address-family,
196 * so split the lock classes by using a per-AF key:
197 */
198static struct lock_class_key af_callback_keys[AF_MAX];
199
200/* Take into consideration the size of the struct sk_buff overhead in the
201 * determination of these values, since that is non-constant across
202 * platforms.  This makes socket queueing behavior and performance
203 * not depend upon such differences.
204 */
205#define _SK_MEM_PACKETS		256
206#define _SK_MEM_OVERHEAD	(sizeof(struct sk_buff) + 256)
207#define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
208#define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
209
210/* Run time adjustable parameters. */
211__u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
212__u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
213__u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
214__u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
215
216/* Maximal space eaten by iovec or ancilliary data plus some space */
217int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
218EXPORT_SYMBOL(sysctl_optmem_max);
219
220static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
221{
222	struct timeval tv;
223
224	if (optlen < sizeof(tv))
225		return -EINVAL;
226	if (copy_from_user(&tv, optval, sizeof(tv)))
227		return -EFAULT;
228	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
229		return -EDOM;
230
231	if (tv.tv_sec < 0) {
232		static int warned __read_mostly;
233
234		*timeo_p = 0;
235		if (warned < 10 && net_ratelimit()) {
236			warned++;
237			printk(KERN_INFO "sock_set_timeout: `%s' (pid %d) "
238			       "tries to set negative timeout\n",
239				current->comm, task_pid_nr(current));
240		}
241		return 0;
242	}
243	*timeo_p = MAX_SCHEDULE_TIMEOUT;
244	if (tv.tv_sec == 0 && tv.tv_usec == 0)
245		return 0;
246	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
247		*timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
248	return 0;
249}
250
251static void sock_warn_obsolete_bsdism(const char *name)
252{
253	static int warned;
254	static char warncomm[TASK_COMM_LEN];
255	if (strcmp(warncomm, current->comm) && warned < 5) {
256		strcpy(warncomm,  current->comm);
257		printk(KERN_WARNING "process `%s' is using obsolete "
258		       "%s SO_BSDCOMPAT\n", warncomm, name);
259		warned++;
260	}
261}
262
263static void sock_disable_timestamp(struct sock *sk, int flag)
264{
265	if (sock_flag(sk, flag)) {
266		sock_reset_flag(sk, flag);
267		if (!sock_flag(sk, SOCK_TIMESTAMP) &&
268		    !sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE)) {
269			net_disable_timestamp();
270		}
271	}
272}
273
274
275int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
276{
277	int err;
278	int skb_len;
279	unsigned long flags;
280	struct sk_buff_head *list = &sk->sk_receive_queue;
281
282	/* Cast sk->rcvbuf to unsigned... It's pointless, but reduces
283	   number of warnings when compiling with -W --ANK
284	 */
285	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
286	    (unsigned)sk->sk_rcvbuf) {
287		atomic_inc(&sk->sk_drops);
288		return -ENOMEM;
289	}
290
291	err = sk_filter(sk, skb);
292	if (err)
293		return err;
294
295	if (!sk_rmem_schedule(sk, skb->truesize)) {
296		atomic_inc(&sk->sk_drops);
297		return -ENOBUFS;
298	}
299
300	skb->dev = NULL;
301	skb_set_owner_r(skb, sk);
302
303	/* Cache the SKB length before we tack it onto the receive
304	 * queue.  Once it is added it no longer belongs to us and
305	 * may be freed by other threads of control pulling packets
306	 * from the queue.
307	 */
308	skb_len = skb->len;
309
310	spin_lock_irqsave(&list->lock, flags);
311	skb->dropcount = atomic_read(&sk->sk_drops);
312	__skb_queue_tail(list, skb);
313	spin_unlock_irqrestore(&list->lock, flags);
314
315	if (!sock_flag(sk, SOCK_DEAD))
316		sk->sk_data_ready(sk, skb_len);
317	return 0;
318}
319EXPORT_SYMBOL(sock_queue_rcv_skb);
320
321int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
322{
323	int rc = NET_RX_SUCCESS;
324
325	if (sk_filter(sk, skb))
326		goto discard_and_relse;
327
328	skb->dev = NULL;
329
330	if (nested)
331		bh_lock_sock_nested(sk);
332	else
333		bh_lock_sock(sk);
334	if (!sock_owned_by_user(sk)) {
335		/*
336		 * trylock + unlock semantics:
337		 */
338		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
339
340		rc = sk_backlog_rcv(sk, skb);
341
342		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
343	} else if (sk_add_backlog(sk, skb)) {
344		bh_unlock_sock(sk);
345		atomic_inc(&sk->sk_drops);
346		goto discard_and_relse;
347	}
348
349	bh_unlock_sock(sk);
350out:
351	sock_put(sk);
352	return rc;
353discard_and_relse:
354	kfree_skb(skb);
355	goto out;
356}
357EXPORT_SYMBOL(sk_receive_skb);
358
359void sk_reset_txq(struct sock *sk)
360{
361	sk_tx_queue_clear(sk);
362}
363EXPORT_SYMBOL(sk_reset_txq);
364
365struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
366{
367	struct dst_entry *dst = sk->sk_dst_cache;
368
369	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
370		sk_tx_queue_clear(sk);
371		sk->sk_dst_cache = NULL;
372		dst_release(dst);
373		return NULL;
374	}
375
376	return dst;
377}
378EXPORT_SYMBOL(__sk_dst_check);
379
380struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
381{
382	struct dst_entry *dst = sk_dst_get(sk);
383
384	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
385		sk_dst_reset(sk);
386		dst_release(dst);
387		return NULL;
388	}
389
390	return dst;
391}
392EXPORT_SYMBOL(sk_dst_check);
393
394static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
395{
396	int ret = -ENOPROTOOPT;
397#ifdef CONFIG_NETDEVICES
398	struct net *net = sock_net(sk);
399	char devname[IFNAMSIZ];
400	int index;
401
402	/* Sorry... */
403	ret = -EPERM;
404	if (!capable(CAP_NET_RAW))
405		goto out;
406
407	ret = -EINVAL;
408	if (optlen < 0)
409		goto out;
410
411	/* Bind this socket to a particular device like "eth0",
412	 * as specified in the passed interface name. If the
413	 * name is "" or the option length is zero the socket
414	 * is not bound.
415	 */
416	if (optlen > IFNAMSIZ - 1)
417		optlen = IFNAMSIZ - 1;
418	memset(devname, 0, sizeof(devname));
419
420	ret = -EFAULT;
421	if (copy_from_user(devname, optval, optlen))
422		goto out;
423
424	index = 0;
425	if (devname[0] != '\0') {
426		struct net_device *dev;
427
428		rcu_read_lock();
429		dev = dev_get_by_name_rcu(net, devname);
430		if (dev)
431			index = dev->ifindex;
432		rcu_read_unlock();
433		ret = -ENODEV;
434		if (!dev)
435			goto out;
436	}
437
438	lock_sock(sk);
439	sk->sk_bound_dev_if = index;
440	sk_dst_reset(sk);
441	release_sock(sk);
442
443	ret = 0;
444
445out:
446#endif
447
448	return ret;
449}
450
451static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
452{
453	if (valbool)
454		sock_set_flag(sk, bit);
455	else
456		sock_reset_flag(sk, bit);
457}
458
459/*
460 *	This is meant for all protocols to use and covers goings on
461 *	at the socket level. Everything here is generic.
462 */
463
464int sock_setsockopt(struct socket *sock, int level, int optname,
465		    char __user *optval, unsigned int optlen)
466{
467	struct sock *sk = sock->sk;
468	int val;
469	int valbool;
470	struct linger ling;
471	int ret = 0;
472
473	/*
474	 *	Options without arguments
475	 */
476
477	if (optname == SO_BINDTODEVICE)
478		return sock_bindtodevice(sk, optval, optlen);
479
480	if (optlen < sizeof(int))
481		return -EINVAL;
482
483	if (get_user(val, (int __user *)optval))
484		return -EFAULT;
485
486	valbool = val ? 1 : 0;
487
488	lock_sock(sk);
489
490	switch (optname) {
491	case SO_DEBUG:
492		if (val && !capable(CAP_NET_ADMIN))
493			ret = -EACCES;
494		else
495			sock_valbool_flag(sk, SOCK_DBG, valbool);
496		break;
497	case SO_REUSEADDR:
498		sk->sk_reuse = valbool;
499		break;
500	case SO_TYPE:
501	case SO_PROTOCOL:
502	case SO_DOMAIN:
503	case SO_ERROR:
504		ret = -ENOPROTOOPT;
505		break;
506	case SO_DONTROUTE:
507		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
508		break;
509	case SO_BROADCAST:
510		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
511		break;
512	case SO_SNDBUF:
513		/* Don't error on this BSD doesn't and if you think
514		   about it this is right. Otherwise apps have to
515		   play 'guess the biggest size' games. RCVBUF/SNDBUF
516		   are treated in BSD as hints */
517
518		if (val > sysctl_wmem_max)
519			val = sysctl_wmem_max;
520set_sndbuf:
521		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
522		if ((val * 2) < SOCK_MIN_SNDBUF)
523			sk->sk_sndbuf = SOCK_MIN_SNDBUF;
524		else
525			sk->sk_sndbuf = val * 2;
526
527		/*
528		 *	Wake up sending tasks if we
529		 *	upped the value.
530		 */
531		sk->sk_write_space(sk);
532		break;
533
534	case SO_SNDBUFFORCE:
535		if (!capable(CAP_NET_ADMIN)) {
536			ret = -EPERM;
537			break;
538		}
539		goto set_sndbuf;
540
541	case SO_RCVBUF:
542		/* Don't error on this BSD doesn't and if you think
543		   about it this is right. Otherwise apps have to
544		   play 'guess the biggest size' games. RCVBUF/SNDBUF
545		   are treated in BSD as hints */
546
547		if (val > sysctl_rmem_max)
548			val = sysctl_rmem_max;
549set_rcvbuf:
550		sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
551		/*
552		 * We double it on the way in to account for
553		 * "struct sk_buff" etc. overhead.   Applications
554		 * assume that the SO_RCVBUF setting they make will
555		 * allow that much actual data to be received on that
556		 * socket.
557		 *
558		 * Applications are unaware that "struct sk_buff" and
559		 * other overheads allocate from the receive buffer
560		 * during socket buffer allocation.
561		 *
562		 * And after considering the possible alternatives,
563		 * returning the value we actually used in getsockopt
564		 * is the most desirable behavior.
565		 */
566		if ((val * 2) < SOCK_MIN_RCVBUF)
567			sk->sk_rcvbuf = SOCK_MIN_RCVBUF;
568		else
569			sk->sk_rcvbuf = val * 2;
570		break;
571
572	case SO_RCVBUFFORCE:
573		if (!capable(CAP_NET_ADMIN)) {
574			ret = -EPERM;
575			break;
576		}
577		goto set_rcvbuf;
578
579	case SO_KEEPALIVE:
580#ifdef CONFIG_INET
581		if (sk->sk_protocol == IPPROTO_TCP)
582			tcp_set_keepalive(sk, valbool);
583#endif
584		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
585		break;
586
587	case SO_OOBINLINE:
588		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
589		break;
590
591	case SO_NO_CHECK:
592		sk->sk_no_check = valbool;
593		break;
594
595	case SO_PRIORITY:
596		if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
597			sk->sk_priority = val;
598		else
599			ret = -EPERM;
600		break;
601
602	case SO_LINGER:
603		if (optlen < sizeof(ling)) {
604			ret = -EINVAL;	/* 1003.1g */
605			break;
606		}
607		if (copy_from_user(&ling, optval, sizeof(ling))) {
608			ret = -EFAULT;
609			break;
610		}
611		if (!ling.l_onoff)
612			sock_reset_flag(sk, SOCK_LINGER);
613		else {
614#if (BITS_PER_LONG == 32)
615			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
616				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
617			else
618#endif
619				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
620			sock_set_flag(sk, SOCK_LINGER);
621		}
622		break;
623
624	case SO_BSDCOMPAT:
625		sock_warn_obsolete_bsdism("setsockopt");
626		break;
627
628	case SO_PASSCRED:
629		if (valbool)
630			set_bit(SOCK_PASSCRED, &sock->flags);
631		else
632			clear_bit(SOCK_PASSCRED, &sock->flags);
633		break;
634
635	case SO_TIMESTAMP:
636	case SO_TIMESTAMPNS:
637		if (valbool)  {
638			if (optname == SO_TIMESTAMP)
639				sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
640			else
641				sock_set_flag(sk, SOCK_RCVTSTAMPNS);
642			sock_set_flag(sk, SOCK_RCVTSTAMP);
643			sock_enable_timestamp(sk, SOCK_TIMESTAMP);
644		} else {
645			sock_reset_flag(sk, SOCK_RCVTSTAMP);
646			sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
647		}
648		break;
649
650	case SO_TIMESTAMPING:
651		if (val & ~SOF_TIMESTAMPING_MASK) {
652			ret = -EINVAL;
653			break;
654		}
655		sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE,
656				  val & SOF_TIMESTAMPING_TX_HARDWARE);
657		sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE,
658				  val & SOF_TIMESTAMPING_TX_SOFTWARE);
659		sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE,
660				  val & SOF_TIMESTAMPING_RX_HARDWARE);
661		if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
662			sock_enable_timestamp(sk,
663					      SOCK_TIMESTAMPING_RX_SOFTWARE);
664		else
665			sock_disable_timestamp(sk,
666					       SOCK_TIMESTAMPING_RX_SOFTWARE);
667		sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE,
668				  val & SOF_TIMESTAMPING_SOFTWARE);
669		sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE,
670				  val & SOF_TIMESTAMPING_SYS_HARDWARE);
671		sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE,
672				  val & SOF_TIMESTAMPING_RAW_HARDWARE);
673		break;
674
675	case SO_RCVLOWAT:
676		if (val < 0)
677			val = INT_MAX;
678		sk->sk_rcvlowat = val ? : 1;
679		break;
680
681	case SO_RCVTIMEO:
682		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
683		break;
684
685	case SO_SNDTIMEO:
686		ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
687		break;
688
689	case SO_ATTACH_FILTER:
690		ret = -EINVAL;
691		if (optlen == sizeof(struct sock_fprog)) {
692			struct sock_fprog fprog;
693
694			ret = -EFAULT;
695			if (copy_from_user(&fprog, optval, sizeof(fprog)))
696				break;
697
698			ret = sk_attach_filter(&fprog, sk);
699		}
700		break;
701
702	case SO_DETACH_FILTER:
703		ret = sk_detach_filter(sk);
704		break;
705
706	case SO_PASSSEC:
707		if (valbool)
708			set_bit(SOCK_PASSSEC, &sock->flags);
709		else
710			clear_bit(SOCK_PASSSEC, &sock->flags);
711		break;
712	case SO_MARK:
713		if (!capable(CAP_NET_ADMIN))
714			ret = -EPERM;
715		else
716			sk->sk_mark = val;
717		break;
718
719		/* We implement the SO_SNDLOWAT etc to
720		   not be settable (1003.1g 5.3) */
721	case SO_RXQ_OVFL:
722		if (valbool)
723			sock_set_flag(sk, SOCK_RXQ_OVFL);
724		else
725			sock_reset_flag(sk, SOCK_RXQ_OVFL);
726		break;
727	default:
728		ret = -ENOPROTOOPT;
729		break;
730	}
731	release_sock(sk);
732	return ret;
733}
734EXPORT_SYMBOL(sock_setsockopt);
735
736
737int sock_getsockopt(struct socket *sock, int level, int optname,
738		    char __user *optval, int __user *optlen)
739{
740	struct sock *sk = sock->sk;
741
742	union {
743		int val;
744		struct linger ling;
745		struct timeval tm;
746	} v;
747
748	int lv = sizeof(int);
749	int len;
750
751	if (get_user(len, optlen))
752		return -EFAULT;
753	if (len < 0)
754		return -EINVAL;
755
756	memset(&v, 0, sizeof(v));
757
758	switch (optname) {
759	case SO_DEBUG:
760		v.val = sock_flag(sk, SOCK_DBG);
761		break;
762
763	case SO_DONTROUTE:
764		v.val = sock_flag(sk, SOCK_LOCALROUTE);
765		break;
766
767	case SO_BROADCAST:
768		v.val = !!sock_flag(sk, SOCK_BROADCAST);
769		break;
770
771	case SO_SNDBUF:
772		v.val = sk->sk_sndbuf;
773		break;
774
775	case SO_RCVBUF:
776		v.val = sk->sk_rcvbuf;
777		break;
778
779	case SO_REUSEADDR:
780		v.val = sk->sk_reuse;
781		break;
782
783	case SO_KEEPALIVE:
784		v.val = !!sock_flag(sk, SOCK_KEEPOPEN);
785		break;
786
787	case SO_TYPE:
788		v.val = sk->sk_type;
789		break;
790
791	case SO_PROTOCOL:
792		v.val = sk->sk_protocol;
793		break;
794
795	case SO_DOMAIN:
796		v.val = sk->sk_family;
797		break;
798
799	case SO_ERROR:
800		v.val = -sock_error(sk);
801		if (v.val == 0)
802			v.val = xchg(&sk->sk_err_soft, 0);
803		break;
804
805	case SO_OOBINLINE:
806		v.val = !!sock_flag(sk, SOCK_URGINLINE);
807		break;
808
809	case SO_NO_CHECK:
810		v.val = sk->sk_no_check;
811		break;
812
813	case SO_PRIORITY:
814		v.val = sk->sk_priority;
815		break;
816
817	case SO_LINGER:
818		lv		= sizeof(v.ling);
819		v.ling.l_onoff	= !!sock_flag(sk, SOCK_LINGER);
820		v.ling.l_linger	= sk->sk_lingertime / HZ;
821		break;
822
823	case SO_BSDCOMPAT:
824		sock_warn_obsolete_bsdism("getsockopt");
825		break;
826
827	case SO_TIMESTAMP:
828		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
829				!sock_flag(sk, SOCK_RCVTSTAMPNS);
830		break;
831
832	case SO_TIMESTAMPNS:
833		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
834		break;
835
836	case SO_TIMESTAMPING:
837		v.val = 0;
838		if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
839			v.val |= SOF_TIMESTAMPING_TX_HARDWARE;
840		if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
841			v.val |= SOF_TIMESTAMPING_TX_SOFTWARE;
842		if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE))
843			v.val |= SOF_TIMESTAMPING_RX_HARDWARE;
844		if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE))
845			v.val |= SOF_TIMESTAMPING_RX_SOFTWARE;
846		if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE))
847			v.val |= SOF_TIMESTAMPING_SOFTWARE;
848		if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))
849			v.val |= SOF_TIMESTAMPING_SYS_HARDWARE;
850		if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE))
851			v.val |= SOF_TIMESTAMPING_RAW_HARDWARE;
852		break;
853
854	case SO_RCVTIMEO:
855		lv = sizeof(struct timeval);
856		if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
857			v.tm.tv_sec = 0;
858			v.tm.tv_usec = 0;
859		} else {
860			v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
861			v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
862		}
863		break;
864
865	case SO_SNDTIMEO:
866		lv = sizeof(struct timeval);
867		if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
868			v.tm.tv_sec = 0;
869			v.tm.tv_usec = 0;
870		} else {
871			v.tm.tv_sec = sk->sk_sndtimeo / HZ;
872			v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
873		}
874		break;
875
876	case SO_RCVLOWAT:
877		v.val = sk->sk_rcvlowat;
878		break;
879
880	case SO_SNDLOWAT:
881		v.val = 1;
882		break;
883
884	case SO_PASSCRED:
885		v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0;
886		break;
887
888	case SO_PEERCRED:
889		if (len > sizeof(sk->sk_peercred))
890			len = sizeof(sk->sk_peercred);
891		if (copy_to_user(optval, &sk->sk_peercred, len))
892			return -EFAULT;
893		goto lenout;
894
895	case SO_PEERNAME:
896	{
897		char address[128];
898
899		if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
900			return -ENOTCONN;
901		if (lv < len)
902			return -EINVAL;
903		if (copy_to_user(optval, address, len))
904			return -EFAULT;
905		goto lenout;
906	}
907
908	/* Dubious BSD thing... Probably nobody even uses it, but
909	 * the UNIX standard wants it for whatever reason... -DaveM
910	 */
911	case SO_ACCEPTCONN:
912		v.val = sk->sk_state == TCP_LISTEN;
913		break;
914
915	case SO_PASSSEC:
916		v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0;
917		break;
918
919	case SO_PEERSEC:
920		return security_socket_getpeersec_stream(sock, optval, optlen, len);
921
922	case SO_MARK:
923		v.val = sk->sk_mark;
924		break;
925
926	case SO_RXQ_OVFL:
927		v.val = !!sock_flag(sk, SOCK_RXQ_OVFL);
928		break;
929
930	default:
931		return -ENOPROTOOPT;
932	}
933
934	if (len > lv)
935		len = lv;
936	if (copy_to_user(optval, &v, len))
937		return -EFAULT;
938lenout:
939	if (put_user(len, optlen))
940		return -EFAULT;
941	return 0;
942}
943
944/*
945 * Initialize an sk_lock.
946 *
947 * (We also register the sk_lock with the lock validator.)
948 */
949static inline void sock_lock_init(struct sock *sk)
950{
951	sock_lock_init_class_and_name(sk,
952			af_family_slock_key_strings[sk->sk_family],
953			af_family_slock_keys + sk->sk_family,
954			af_family_key_strings[sk->sk_family],
955			af_family_keys + sk->sk_family);
956}
957
958/*
959 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
960 * even temporarly, because of RCU lookups. sk_node should also be left as is.
961 */
962static void sock_copy(struct sock *nsk, const struct sock *osk)
963{
964#ifdef CONFIG_SECURITY_NETWORK
965	void *sptr = nsk->sk_security;
966#endif
967	BUILD_BUG_ON(offsetof(struct sock, sk_copy_start) !=
968		     sizeof(osk->sk_node) + sizeof(osk->sk_refcnt) +
969		     sizeof(osk->sk_tx_queue_mapping));
970	memcpy(&nsk->sk_copy_start, &osk->sk_copy_start,
971	       osk->sk_prot->obj_size - offsetof(struct sock, sk_copy_start));
972#ifdef CONFIG_SECURITY_NETWORK
973	nsk->sk_security = sptr;
974	security_sk_clone(osk, nsk);
975#endif
976}
977
978static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
979		int family)
980{
981	struct sock *sk;
982	struct kmem_cache *slab;
983
984	slab = prot->slab;
985	if (slab != NULL) {
986		sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
987		if (!sk)
988			return sk;
989		if (priority & __GFP_ZERO) {
990			/*
991			 * caches using SLAB_DESTROY_BY_RCU should let
992			 * sk_node.next un-modified. Special care is taken
993			 * when initializing object to zero.
994			 */
995			if (offsetof(struct sock, sk_node.next) != 0)
996				memset(sk, 0, offsetof(struct sock, sk_node.next));
997			memset(&sk->sk_node.pprev, 0,
998			       prot->obj_size - offsetof(struct sock,
999							 sk_node.pprev));
1000		}
1001	}
1002	else
1003		sk = kmalloc(prot->obj_size, priority);
1004
1005	if (sk != NULL) {
1006		kmemcheck_annotate_bitfield(sk, flags);
1007
1008		if (security_sk_alloc(sk, family, priority))
1009			goto out_free;
1010
1011		if (!try_module_get(prot->owner))
1012			goto out_free_sec;
1013		sk_tx_queue_clear(sk);
1014	}
1015
1016	return sk;
1017
1018out_free_sec:
1019	security_sk_free(sk);
1020out_free:
1021	if (slab != NULL)
1022		kmem_cache_free(slab, sk);
1023	else
1024		kfree(sk);
1025	return NULL;
1026}
1027
1028static void sk_prot_free(struct proto *prot, struct sock *sk)
1029{
1030	struct kmem_cache *slab;
1031	struct module *owner;
1032
1033	owner = prot->owner;
1034	slab = prot->slab;
1035
1036	security_sk_free(sk);
1037	if (slab != NULL)
1038		kmem_cache_free(slab, sk);
1039	else
1040		kfree(sk);
1041	module_put(owner);
1042}
1043
1044/**
1045 *	sk_alloc - All socket objects are allocated here
1046 *	@net: the applicable net namespace
1047 *	@family: protocol family
1048 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1049 *	@prot: struct proto associated with this new sock instance
1050 */
1051struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1052		      struct proto *prot)
1053{
1054	struct sock *sk;
1055
1056	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1057	if (sk) {
1058		sk->sk_family = family;
1059		/*
1060		 * See comment in struct sock definition to understand
1061		 * why we need sk_prot_creator -acme
1062		 */
1063		sk->sk_prot = sk->sk_prot_creator = prot;
1064		sock_lock_init(sk);
1065		sock_net_set(sk, get_net(net));
1066		atomic_set(&sk->sk_wmem_alloc, 1);
1067	}
1068
1069	return sk;
1070}
1071EXPORT_SYMBOL(sk_alloc);
1072
1073static void __sk_free(struct sock *sk)
1074{
1075	struct sk_filter *filter;
1076
1077	if (sk->sk_destruct)
1078		sk->sk_destruct(sk);
1079
1080	filter = rcu_dereference_check(sk->sk_filter,
1081				       atomic_read(&sk->sk_wmem_alloc) == 0);
1082	if (filter) {
1083		sk_filter_uncharge(sk, filter);
1084		rcu_assign_pointer(sk->sk_filter, NULL);
1085	}
1086
1087	sock_disable_timestamp(sk, SOCK_TIMESTAMP);
1088	sock_disable_timestamp(sk, SOCK_TIMESTAMPING_RX_SOFTWARE);
1089
1090	if (atomic_read(&sk->sk_omem_alloc))
1091		printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n",
1092		       __func__, atomic_read(&sk->sk_omem_alloc));
1093
1094	put_net(sock_net(sk));
1095	sk_prot_free(sk->sk_prot_creator, sk);
1096}
1097
1098void sk_free(struct sock *sk)
1099{
1100	/*
1101	 * We substract one from sk_wmem_alloc and can know if
1102	 * some packets are still in some tx queue.
1103	 * If not null, sock_wfree() will call __sk_free(sk) later
1104	 */
1105	if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1106		__sk_free(sk);
1107}
1108EXPORT_SYMBOL(sk_free);
1109
1110/*
1111 * Last sock_put should drop referrence to sk->sk_net. It has already
1112 * been dropped in sk_change_net. Taking referrence to stopping namespace
1113 * is not an option.
1114 * Take referrence to a socket to remove it from hash _alive_ and after that
1115 * destroy it in the context of init_net.
1116 */
1117void sk_release_kernel(struct sock *sk)
1118{
1119	if (sk == NULL || sk->sk_socket == NULL)
1120		return;
1121
1122	sock_hold(sk);
1123	sock_release(sk->sk_socket);
1124	release_net(sock_net(sk));
1125	sock_net_set(sk, get_net(&init_net));
1126	sock_put(sk);
1127}
1128EXPORT_SYMBOL(sk_release_kernel);
1129
1130struct sock *sk_clone(const struct sock *sk, const gfp_t priority)
1131{
1132	struct sock *newsk;
1133
1134	newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1135	if (newsk != NULL) {
1136		struct sk_filter *filter;
1137
1138		sock_copy(newsk, sk);
1139
1140		/* SANITY */
1141		get_net(sock_net(newsk));
1142		sk_node_init(&newsk->sk_node);
1143		sock_lock_init(newsk);
1144		bh_lock_sock(newsk);
1145		newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
1146		newsk->sk_backlog.len = 0;
1147
1148		atomic_set(&newsk->sk_rmem_alloc, 0);
1149		/*
1150		 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1151		 */
1152		atomic_set(&newsk->sk_wmem_alloc, 1);
1153		atomic_set(&newsk->sk_omem_alloc, 0);
1154		skb_queue_head_init(&newsk->sk_receive_queue);
1155		skb_queue_head_init(&newsk->sk_write_queue);
1156#ifdef CONFIG_NET_DMA
1157		skb_queue_head_init(&newsk->sk_async_wait_queue);
1158#endif
1159
1160		rwlock_init(&newsk->sk_dst_lock);
1161		rwlock_init(&newsk->sk_callback_lock);
1162		lockdep_set_class_and_name(&newsk->sk_callback_lock,
1163				af_callback_keys + newsk->sk_family,
1164				af_family_clock_key_strings[newsk->sk_family]);
1165
1166		newsk->sk_dst_cache	= NULL;
1167		newsk->sk_wmem_queued	= 0;
1168		newsk->sk_forward_alloc = 0;
1169		newsk->sk_send_head	= NULL;
1170		newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1171
1172		sock_reset_flag(newsk, SOCK_DONE);
1173		skb_queue_head_init(&newsk->sk_error_queue);
1174
1175		filter = newsk->sk_filter;
1176		if (filter != NULL)
1177			sk_filter_charge(newsk, filter);
1178
1179		if (unlikely(xfrm_sk_clone_policy(newsk))) {
1180			/* It is still raw copy of parent, so invalidate
1181			 * destructor and make plain sk_free() */
1182			newsk->sk_destruct = NULL;
1183			sk_free(newsk);
1184			newsk = NULL;
1185			goto out;
1186		}
1187
1188		newsk->sk_err	   = 0;
1189		newsk->sk_priority = 0;
1190		/*
1191		 * Before updating sk_refcnt, we must commit prior changes to memory
1192		 * (Documentation/RCU/rculist_nulls.txt for details)
1193		 */
1194		smp_wmb();
1195		atomic_set(&newsk->sk_refcnt, 2);
1196
1197		/*
1198		 * Increment the counter in the same struct proto as the master
1199		 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1200		 * is the same as sk->sk_prot->socks, as this field was copied
1201		 * with memcpy).
1202		 *
1203		 * This _changes_ the previous behaviour, where
1204		 * tcp_create_openreq_child always was incrementing the
1205		 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1206		 * to be taken into account in all callers. -acme
1207		 */
1208		sk_refcnt_debug_inc(newsk);
1209		sk_set_socket(newsk, NULL);
1210		newsk->sk_sleep	 = NULL;
1211
1212		if (newsk->sk_prot->sockets_allocated)
1213			percpu_counter_inc(newsk->sk_prot->sockets_allocated);
1214
1215		if (sock_flag(newsk, SOCK_TIMESTAMP) ||
1216		    sock_flag(newsk, SOCK_TIMESTAMPING_RX_SOFTWARE))
1217			net_enable_timestamp();
1218	}
1219out:
1220	return newsk;
1221}
1222EXPORT_SYMBOL_GPL(sk_clone);
1223
1224void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1225{
1226	__sk_dst_set(sk, dst);
1227	sk->sk_route_caps = dst->dev->features;
1228	if (sk->sk_route_caps & NETIF_F_GSO)
1229		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1230	if (sk_can_gso(sk)) {
1231		if (dst->header_len) {
1232			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1233		} else {
1234			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1235			sk->sk_gso_max_size = dst->dev->gso_max_size;
1236		}
1237	}
1238}
1239EXPORT_SYMBOL_GPL(sk_setup_caps);
1240
1241void __init sk_init(void)
1242{
1243	if (totalram_pages <= 4096) {
1244		sysctl_wmem_max = 32767;
1245		sysctl_rmem_max = 32767;
1246		sysctl_wmem_default = 32767;
1247		sysctl_rmem_default = 32767;
1248	} else if (totalram_pages >= 131072) {
1249		sysctl_wmem_max = 131071;
1250		sysctl_rmem_max = 131071;
1251	}
1252}
1253
1254/*
1255 *	Simple resource managers for sockets.
1256 */
1257
1258
1259/*
1260 * Write buffer destructor automatically called from kfree_skb.
1261 */
1262void sock_wfree(struct sk_buff *skb)
1263{
1264	struct sock *sk = skb->sk;
1265	unsigned int len = skb->truesize;
1266
1267	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1268		/*
1269		 * Keep a reference on sk_wmem_alloc, this will be released
1270		 * after sk_write_space() call
1271		 */
1272		atomic_sub(len - 1, &sk->sk_wmem_alloc);
1273		sk->sk_write_space(sk);
1274		len = 1;
1275	}
1276	/*
1277	 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1278	 * could not do because of in-flight packets
1279	 */
1280	if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1281		__sk_free(sk);
1282}
1283EXPORT_SYMBOL(sock_wfree);
1284
1285/*
1286 * Read buffer destructor automatically called from kfree_skb.
1287 */
1288void sock_rfree(struct sk_buff *skb)
1289{
1290	struct sock *sk = skb->sk;
1291
1292	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1293	sk_mem_uncharge(skb->sk, skb->truesize);
1294}
1295EXPORT_SYMBOL(sock_rfree);
1296
1297
1298int sock_i_uid(struct sock *sk)
1299{
1300	int uid;
1301
1302	read_lock(&sk->sk_callback_lock);
1303	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1304	read_unlock(&sk->sk_callback_lock);
1305	return uid;
1306}
1307EXPORT_SYMBOL(sock_i_uid);
1308
1309unsigned long sock_i_ino(struct sock *sk)
1310{
1311	unsigned long ino;
1312
1313	read_lock(&sk->sk_callback_lock);
1314	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1315	read_unlock(&sk->sk_callback_lock);
1316	return ino;
1317}
1318EXPORT_SYMBOL(sock_i_ino);
1319
1320/*
1321 * Allocate a skb from the socket's send buffer.
1322 */
1323struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1324			     gfp_t priority)
1325{
1326	if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1327		struct sk_buff *skb = alloc_skb(size, priority);
1328		if (skb) {
1329			skb_set_owner_w(skb, sk);
1330			return skb;
1331		}
1332	}
1333	return NULL;
1334}
1335EXPORT_SYMBOL(sock_wmalloc);
1336
1337/*
1338 * Allocate a skb from the socket's receive buffer.
1339 */
1340struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1341			     gfp_t priority)
1342{
1343	if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1344		struct sk_buff *skb = alloc_skb(size, priority);
1345		if (skb) {
1346			skb_set_owner_r(skb, sk);
1347			return skb;
1348		}
1349	}
1350	return NULL;
1351}
1352
1353/*
1354 * Allocate a memory block from the socket's option memory buffer.
1355 */
1356void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1357{
1358	if ((unsigned)size <= sysctl_optmem_max &&
1359	    atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1360		void *mem;
1361		/* First do the add, to avoid the race if kmalloc
1362		 * might sleep.
1363		 */
1364		atomic_add(size, &sk->sk_omem_alloc);
1365		mem = kmalloc(size, priority);
1366		if (mem)
1367			return mem;
1368		atomic_sub(size, &sk->sk_omem_alloc);
1369	}
1370	return NULL;
1371}
1372EXPORT_SYMBOL(sock_kmalloc);
1373
1374/*
1375 * Free an option memory block.
1376 */
1377void sock_kfree_s(struct sock *sk, void *mem, int size)
1378{
1379	kfree(mem);
1380	atomic_sub(size, &sk->sk_omem_alloc);
1381}
1382EXPORT_SYMBOL(sock_kfree_s);
1383
1384/* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1385   I think, these locks should be removed for datagram sockets.
1386 */
1387static long sock_wait_for_wmem(struct sock *sk, long timeo)
1388{
1389	DEFINE_WAIT(wait);
1390
1391	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1392	for (;;) {
1393		if (!timeo)
1394			break;
1395		if (signal_pending(current))
1396			break;
1397		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1398		prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1399		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1400			break;
1401		if (sk->sk_shutdown & SEND_SHUTDOWN)
1402			break;
1403		if (sk->sk_err)
1404			break;
1405		timeo = schedule_timeout(timeo);
1406	}
1407	finish_wait(sk->sk_sleep, &wait);
1408	return timeo;
1409}
1410
1411
1412/*
1413 *	Generic send/receive buffer handlers
1414 */
1415
1416struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1417				     unsigned long data_len, int noblock,
1418				     int *errcode)
1419{
1420	struct sk_buff *skb;
1421	gfp_t gfp_mask;
1422	long timeo;
1423	int err;
1424
1425	gfp_mask = sk->sk_allocation;
1426	if (gfp_mask & __GFP_WAIT)
1427		gfp_mask |= __GFP_REPEAT;
1428
1429	timeo = sock_sndtimeo(sk, noblock);
1430	while (1) {
1431		err = sock_error(sk);
1432		if (err != 0)
1433			goto failure;
1434
1435		err = -EPIPE;
1436		if (sk->sk_shutdown & SEND_SHUTDOWN)
1437			goto failure;
1438
1439		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1440			skb = alloc_skb(header_len, gfp_mask);
1441			if (skb) {
1442				int npages;
1443				int i;
1444
1445				/* No pages, we're done... */
1446				if (!data_len)
1447					break;
1448
1449				npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1450				skb->truesize += data_len;
1451				skb_shinfo(skb)->nr_frags = npages;
1452				for (i = 0; i < npages; i++) {
1453					struct page *page;
1454					skb_frag_t *frag;
1455
1456					page = alloc_pages(sk->sk_allocation, 0);
1457					if (!page) {
1458						err = -ENOBUFS;
1459						skb_shinfo(skb)->nr_frags = i;
1460						kfree_skb(skb);
1461						goto failure;
1462					}
1463
1464					frag = &skb_shinfo(skb)->frags[i];
1465					frag->page = page;
1466					frag->page_offset = 0;
1467					frag->size = (data_len >= PAGE_SIZE ?
1468						      PAGE_SIZE :
1469						      data_len);
1470					data_len -= PAGE_SIZE;
1471				}
1472
1473				/* Full success... */
1474				break;
1475			}
1476			err = -ENOBUFS;
1477			goto failure;
1478		}
1479		set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1480		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1481		err = -EAGAIN;
1482		if (!timeo)
1483			goto failure;
1484		if (signal_pending(current))
1485			goto interrupted;
1486		timeo = sock_wait_for_wmem(sk, timeo);
1487	}
1488
1489	skb_set_owner_w(skb, sk);
1490	return skb;
1491
1492interrupted:
1493	err = sock_intr_errno(timeo);
1494failure:
1495	*errcode = err;
1496	return NULL;
1497}
1498EXPORT_SYMBOL(sock_alloc_send_pskb);
1499
1500struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1501				    int noblock, int *errcode)
1502{
1503	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1504}
1505EXPORT_SYMBOL(sock_alloc_send_skb);
1506
1507static void __lock_sock(struct sock *sk)
1508{
1509	DEFINE_WAIT(wait);
1510
1511	for (;;) {
1512		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1513					TASK_UNINTERRUPTIBLE);
1514		spin_unlock_bh(&sk->sk_lock.slock);
1515		schedule();
1516		spin_lock_bh(&sk->sk_lock.slock);
1517		if (!sock_owned_by_user(sk))
1518			break;
1519	}
1520	finish_wait(&sk->sk_lock.wq, &wait);
1521}
1522
1523static void __release_sock(struct sock *sk)
1524{
1525	struct sk_buff *skb = sk->sk_backlog.head;
1526
1527	do {
1528		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1529		bh_unlock_sock(sk);
1530
1531		do {
1532			struct sk_buff *next = skb->next;
1533
1534			skb->next = NULL;
1535			sk_backlog_rcv(sk, skb);
1536
1537			/*
1538			 * We are in process context here with softirqs
1539			 * disabled, use cond_resched_softirq() to preempt.
1540			 * This is safe to do because we've taken the backlog
1541			 * queue private:
1542			 */
1543			cond_resched_softirq();
1544
1545			skb = next;
1546		} while (skb != NULL);
1547
1548		bh_lock_sock(sk);
1549	} while ((skb = sk->sk_backlog.head) != NULL);
1550
1551	/*
1552	 * Doing the zeroing here guarantee we can not loop forever
1553	 * while a wild producer attempts to flood us.
1554	 */
1555	sk->sk_backlog.len = 0;
1556}
1557
1558/**
1559 * sk_wait_data - wait for data to arrive at sk_receive_queue
1560 * @sk:    sock to wait on
1561 * @timeo: for how long
1562 *
1563 * Now socket state including sk->sk_err is changed only under lock,
1564 * hence we may omit checks after joining wait queue.
1565 * We check receive queue before schedule() only as optimization;
1566 * it is very likely that release_sock() added new data.
1567 */
1568int sk_wait_data(struct sock *sk, long *timeo)
1569{
1570	int rc;
1571	DEFINE_WAIT(wait);
1572
1573	prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1574	set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1575	rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1576	clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1577	finish_wait(sk->sk_sleep, &wait);
1578	return rc;
1579}
1580EXPORT_SYMBOL(sk_wait_data);
1581
1582/**
1583 *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1584 *	@sk: socket
1585 *	@size: memory size to allocate
1586 *	@kind: allocation type
1587 *
1588 *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1589 *	rmem allocation. This function assumes that protocols which have
1590 *	memory_pressure use sk_wmem_queued as write buffer accounting.
1591 */
1592int __sk_mem_schedule(struct sock *sk, int size, int kind)
1593{
1594	struct proto *prot = sk->sk_prot;
1595	int amt = sk_mem_pages(size);
1596	int allocated;
1597
1598	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
1599	allocated = atomic_add_return(amt, prot->memory_allocated);
1600
1601	/* Under limit. */
1602	if (allocated <= prot->sysctl_mem[0]) {
1603		if (prot->memory_pressure && *prot->memory_pressure)
1604			*prot->memory_pressure = 0;
1605		return 1;
1606	}
1607
1608	/* Under pressure. */
1609	if (allocated > prot->sysctl_mem[1])
1610		if (prot->enter_memory_pressure)
1611			prot->enter_memory_pressure(sk);
1612
1613	/* Over hard limit. */
1614	if (allocated > prot->sysctl_mem[2])
1615		goto suppress_allocation;
1616
1617	/* guarantee minimum buffer size under pressure */
1618	if (kind == SK_MEM_RECV) {
1619		if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
1620			return 1;
1621	} else { /* SK_MEM_SEND */
1622		if (sk->sk_type == SOCK_STREAM) {
1623			if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
1624				return 1;
1625		} else if (atomic_read(&sk->sk_wmem_alloc) <
1626			   prot->sysctl_wmem[0])
1627				return 1;
1628	}
1629
1630	if (prot->memory_pressure) {
1631		int alloc;
1632
1633		if (!*prot->memory_pressure)
1634			return 1;
1635		alloc = percpu_counter_read_positive(prot->sockets_allocated);
1636		if (prot->sysctl_mem[2] > alloc *
1637		    sk_mem_pages(sk->sk_wmem_queued +
1638				 atomic_read(&sk->sk_rmem_alloc) +
1639				 sk->sk_forward_alloc))
1640			return 1;
1641	}
1642
1643suppress_allocation:
1644
1645	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
1646		sk_stream_moderate_sndbuf(sk);
1647
1648		/* Fail only if socket is _under_ its sndbuf.
1649		 * In this case we cannot block, so that we have to fail.
1650		 */
1651		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
1652			return 1;
1653	}
1654
1655	/* Alas. Undo changes. */
1656	sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
1657	atomic_sub(amt, prot->memory_allocated);
1658	return 0;
1659}
1660EXPORT_SYMBOL(__sk_mem_schedule);
1661
1662/**
1663 *	__sk_reclaim - reclaim memory_allocated
1664 *	@sk: socket
1665 */
1666void __sk_mem_reclaim(struct sock *sk)
1667{
1668	struct proto *prot = sk->sk_prot;
1669
1670	atomic_sub(sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT,
1671		   prot->memory_allocated);
1672	sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
1673
1674	if (prot->memory_pressure && *prot->memory_pressure &&
1675	    (atomic_read(prot->memory_allocated) < prot->sysctl_mem[0]))
1676		*prot->memory_pressure = 0;
1677}
1678EXPORT_SYMBOL(__sk_mem_reclaim);
1679
1680
1681/*
1682 * Set of default routines for initialising struct proto_ops when
1683 * the protocol does not support a particular function. In certain
1684 * cases where it makes no sense for a protocol to have a "do nothing"
1685 * function, some default processing is provided.
1686 */
1687
1688int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1689{
1690	return -EOPNOTSUPP;
1691}
1692EXPORT_SYMBOL(sock_no_bind);
1693
1694int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1695		    int len, int flags)
1696{
1697	return -EOPNOTSUPP;
1698}
1699EXPORT_SYMBOL(sock_no_connect);
1700
1701int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1702{
1703	return -EOPNOTSUPP;
1704}
1705EXPORT_SYMBOL(sock_no_socketpair);
1706
1707int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1708{
1709	return -EOPNOTSUPP;
1710}
1711EXPORT_SYMBOL(sock_no_accept);
1712
1713int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1714		    int *len, int peer)
1715{
1716	return -EOPNOTSUPP;
1717}
1718EXPORT_SYMBOL(sock_no_getname);
1719
1720unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
1721{
1722	return 0;
1723}
1724EXPORT_SYMBOL(sock_no_poll);
1725
1726int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1727{
1728	return -EOPNOTSUPP;
1729}
1730EXPORT_SYMBOL(sock_no_ioctl);
1731
1732int sock_no_listen(struct socket *sock, int backlog)
1733{
1734	return -EOPNOTSUPP;
1735}
1736EXPORT_SYMBOL(sock_no_listen);
1737
1738int sock_no_shutdown(struct socket *sock, int how)
1739{
1740	return -EOPNOTSUPP;
1741}
1742EXPORT_SYMBOL(sock_no_shutdown);
1743
1744int sock_no_setsockopt(struct socket *sock, int level, int optname,
1745		    char __user *optval, unsigned int optlen)
1746{
1747	return -EOPNOTSUPP;
1748}
1749EXPORT_SYMBOL(sock_no_setsockopt);
1750
1751int sock_no_getsockopt(struct socket *sock, int level, int optname,
1752		    char __user *optval, int __user *optlen)
1753{
1754	return -EOPNOTSUPP;
1755}
1756EXPORT_SYMBOL(sock_no_getsockopt);
1757
1758int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1759		    size_t len)
1760{
1761	return -EOPNOTSUPP;
1762}
1763EXPORT_SYMBOL(sock_no_sendmsg);
1764
1765int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1766		    size_t len, int flags)
1767{
1768	return -EOPNOTSUPP;
1769}
1770EXPORT_SYMBOL(sock_no_recvmsg);
1771
1772int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
1773{
1774	/* Mirror missing mmap method error code */
1775	return -ENODEV;
1776}
1777EXPORT_SYMBOL(sock_no_mmap);
1778
1779ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
1780{
1781	ssize_t res;
1782	struct msghdr msg = {.msg_flags = flags};
1783	struct kvec iov;
1784	char *kaddr = kmap(page);
1785	iov.iov_base = kaddr + offset;
1786	iov.iov_len = size;
1787	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
1788	kunmap(page);
1789	return res;
1790}
1791EXPORT_SYMBOL(sock_no_sendpage);
1792
1793/*
1794 *	Default Socket Callbacks
1795 */
1796
1797static void sock_def_wakeup(struct sock *sk)
1798{
1799	read_lock(&sk->sk_callback_lock);
1800	if (sk_has_sleeper(sk))
1801		wake_up_interruptible_all(sk->sk_sleep);
1802	read_unlock(&sk->sk_callback_lock);
1803}
1804
1805static void sock_def_error_report(struct sock *sk)
1806{
1807	read_lock(&sk->sk_callback_lock);
1808	if (sk_has_sleeper(sk))
1809		wake_up_interruptible_poll(sk->sk_sleep, POLLERR);
1810	sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
1811	read_unlock(&sk->sk_callback_lock);
1812}
1813
1814static void sock_def_readable(struct sock *sk, int len)
1815{
1816	read_lock(&sk->sk_callback_lock);
1817	if (sk_has_sleeper(sk))
1818		wake_up_interruptible_sync_poll(sk->sk_sleep, POLLIN |
1819						POLLRDNORM | POLLRDBAND);
1820	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
1821	read_unlock(&sk->sk_callback_lock);
1822}
1823
1824static void sock_def_write_space(struct sock *sk)
1825{
1826	read_lock(&sk->sk_callback_lock);
1827
1828	/* Do not wake up a writer until he can make "significant"
1829	 * progress.  --DaveM
1830	 */
1831	if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
1832		if (sk_has_sleeper(sk))
1833			wake_up_interruptible_sync_poll(sk->sk_sleep, POLLOUT |
1834						POLLWRNORM | POLLWRBAND);
1835
1836		/* Should agree with poll, otherwise some programs break */
1837		if (sock_writeable(sk))
1838			sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
1839	}
1840
1841	read_unlock(&sk->sk_callback_lock);
1842}
1843
1844static void sock_def_destruct(struct sock *sk)
1845{
1846	kfree(sk->sk_protinfo);
1847}
1848
1849void sk_send_sigurg(struct sock *sk)
1850{
1851	if (sk->sk_socket && sk->sk_socket->file)
1852		if (send_sigurg(&sk->sk_socket->file->f_owner))
1853			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
1854}
1855EXPORT_SYMBOL(sk_send_sigurg);
1856
1857void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1858		    unsigned long expires)
1859{
1860	if (!mod_timer(timer, expires))
1861		sock_hold(sk);
1862}
1863EXPORT_SYMBOL(sk_reset_timer);
1864
1865void sk_stop_timer(struct sock *sk, struct timer_list* timer)
1866{
1867	if (timer_pending(timer) && del_timer(timer))
1868		__sock_put(sk);
1869}
1870EXPORT_SYMBOL(sk_stop_timer);
1871
1872void sock_init_data(struct socket *sock, struct sock *sk)
1873{
1874	skb_queue_head_init(&sk->sk_receive_queue);
1875	skb_queue_head_init(&sk->sk_write_queue);
1876	skb_queue_head_init(&sk->sk_error_queue);
1877#ifdef CONFIG_NET_DMA
1878	skb_queue_head_init(&sk->sk_async_wait_queue);
1879#endif
1880
1881	sk->sk_send_head	=	NULL;
1882
1883	init_timer(&sk->sk_timer);
1884
1885	sk->sk_allocation	=	GFP_KERNEL;
1886	sk->sk_rcvbuf		=	sysctl_rmem_default;
1887	sk->sk_sndbuf		=	sysctl_wmem_default;
1888	sk->sk_backlog.limit	=	sk->sk_rcvbuf << 1;
1889	sk->sk_state		=	TCP_CLOSE;
1890	sk_set_socket(sk, sock);
1891
1892	sock_set_flag(sk, SOCK_ZAPPED);
1893
1894	if (sock) {
1895		sk->sk_type	=	sock->type;
1896		sk->sk_sleep	=	&sock->wait;
1897		sock->sk	=	sk;
1898	} else
1899		sk->sk_sleep	=	NULL;
1900
1901	rwlock_init(&sk->sk_dst_lock);
1902	rwlock_init(&sk->sk_callback_lock);
1903	lockdep_set_class_and_name(&sk->sk_callback_lock,
1904			af_callback_keys + sk->sk_family,
1905			af_family_clock_key_strings[sk->sk_family]);
1906
1907	sk->sk_state_change	=	sock_def_wakeup;
1908	sk->sk_data_ready	=	sock_def_readable;
1909	sk->sk_write_space	=	sock_def_write_space;
1910	sk->sk_error_report	=	sock_def_error_report;
1911	sk->sk_destruct		=	sock_def_destruct;
1912
1913	sk->sk_sndmsg_page	=	NULL;
1914	sk->sk_sndmsg_off	=	0;
1915
1916	sk->sk_peercred.pid 	=	0;
1917	sk->sk_peercred.uid	=	-1;
1918	sk->sk_peercred.gid	=	-1;
1919	sk->sk_write_pending	=	0;
1920	sk->sk_rcvlowat		=	1;
1921	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
1922	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
1923
1924	sk->sk_stamp = ktime_set(-1L, 0);
1925
1926	/*
1927	 * Before updating sk_refcnt, we must commit prior changes to memory
1928	 * (Documentation/RCU/rculist_nulls.txt for details)
1929	 */
1930	smp_wmb();
1931	atomic_set(&sk->sk_refcnt, 1);
1932	atomic_set(&sk->sk_drops, 0);
1933}
1934EXPORT_SYMBOL(sock_init_data);
1935
1936void lock_sock_nested(struct sock *sk, int subclass)
1937{
1938	might_sleep();
1939	spin_lock_bh(&sk->sk_lock.slock);
1940	if (sk->sk_lock.owned)
1941		__lock_sock(sk);
1942	sk->sk_lock.owned = 1;
1943	spin_unlock(&sk->sk_lock.slock);
1944	/*
1945	 * The sk_lock has mutex_lock() semantics here:
1946	 */
1947	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
1948	local_bh_enable();
1949}
1950EXPORT_SYMBOL(lock_sock_nested);
1951
1952void release_sock(struct sock *sk)
1953{
1954	/*
1955	 * The sk_lock has mutex_unlock() semantics:
1956	 */
1957	mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1958
1959	spin_lock_bh(&sk->sk_lock.slock);
1960	if (sk->sk_backlog.tail)
1961		__release_sock(sk);
1962	sk->sk_lock.owned = 0;
1963	if (waitqueue_active(&sk->sk_lock.wq))
1964		wake_up(&sk->sk_lock.wq);
1965	spin_unlock_bh(&sk->sk_lock.slock);
1966}
1967EXPORT_SYMBOL(release_sock);
1968
1969int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
1970{
1971	struct timeval tv;
1972	if (!sock_flag(sk, SOCK_TIMESTAMP))
1973		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
1974	tv = ktime_to_timeval(sk->sk_stamp);
1975	if (tv.tv_sec == -1)
1976		return -ENOENT;
1977	if (tv.tv_sec == 0) {
1978		sk->sk_stamp = ktime_get_real();
1979		tv = ktime_to_timeval(sk->sk_stamp);
1980	}
1981	return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
1982}
1983EXPORT_SYMBOL(sock_get_timestamp);
1984
1985int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
1986{
1987	struct timespec ts;
1988	if (!sock_flag(sk, SOCK_TIMESTAMP))
1989		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
1990	ts = ktime_to_timespec(sk->sk_stamp);
1991	if (ts.tv_sec == -1)
1992		return -ENOENT;
1993	if (ts.tv_sec == 0) {
1994		sk->sk_stamp = ktime_get_real();
1995		ts = ktime_to_timespec(sk->sk_stamp);
1996	}
1997	return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
1998}
1999EXPORT_SYMBOL(sock_get_timestampns);
2000
2001void sock_enable_timestamp(struct sock *sk, int flag)
2002{
2003	if (!sock_flag(sk, flag)) {
2004		sock_set_flag(sk, flag);
2005		/*
2006		 * we just set one of the two flags which require net
2007		 * time stamping, but time stamping might have been on
2008		 * already because of the other one
2009		 */
2010		if (!sock_flag(sk,
2011				flag == SOCK_TIMESTAMP ?
2012				SOCK_TIMESTAMPING_RX_SOFTWARE :
2013				SOCK_TIMESTAMP))
2014			net_enable_timestamp();
2015	}
2016}
2017
2018/*
2019 *	Get a socket option on an socket.
2020 *
2021 *	FIX: POSIX 1003.1g is very ambiguous here. It states that
2022 *	asynchronous errors should be reported by getsockopt. We assume
2023 *	this means if you specify SO_ERROR (otherwise whats the point of it).
2024 */
2025int sock_common_getsockopt(struct socket *sock, int level, int optname,
2026			   char __user *optval, int __user *optlen)
2027{
2028	struct sock *sk = sock->sk;
2029
2030	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2031}
2032EXPORT_SYMBOL(sock_common_getsockopt);
2033
2034#ifdef CONFIG_COMPAT
2035int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2036				  char __user *optval, int __user *optlen)
2037{
2038	struct sock *sk = sock->sk;
2039
2040	if (sk->sk_prot->compat_getsockopt != NULL)
2041		return sk->sk_prot->compat_getsockopt(sk, level, optname,
2042						      optval, optlen);
2043	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2044}
2045EXPORT_SYMBOL(compat_sock_common_getsockopt);
2046#endif
2047
2048int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
2049			struct msghdr *msg, size_t size, int flags)
2050{
2051	struct sock *sk = sock->sk;
2052	int addr_len = 0;
2053	int err;
2054
2055	err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
2056				   flags & ~MSG_DONTWAIT, &addr_len);
2057	if (err >= 0)
2058		msg->msg_namelen = addr_len;
2059	return err;
2060}
2061EXPORT_SYMBOL(sock_common_recvmsg);
2062
2063/*
2064 *	Set socket options on an inet socket.
2065 */
2066int sock_common_setsockopt(struct socket *sock, int level, int optname,
2067			   char __user *optval, unsigned int optlen)
2068{
2069	struct sock *sk = sock->sk;
2070
2071	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2072}
2073EXPORT_SYMBOL(sock_common_setsockopt);
2074
2075#ifdef CONFIG_COMPAT
2076int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2077				  char __user *optval, unsigned int optlen)
2078{
2079	struct sock *sk = sock->sk;
2080
2081	if (sk->sk_prot->compat_setsockopt != NULL)
2082		return sk->sk_prot->compat_setsockopt(sk, level, optname,
2083						      optval, optlen);
2084	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2085}
2086EXPORT_SYMBOL(compat_sock_common_setsockopt);
2087#endif
2088
2089void sk_common_release(struct sock *sk)
2090{
2091	if (sk->sk_prot->destroy)
2092		sk->sk_prot->destroy(sk);
2093
2094	/*
2095	 * Observation: when sock_common_release is called, processes have
2096	 * no access to socket. But net still has.
2097	 * Step one, detach it from networking:
2098	 *
2099	 * A. Remove from hash tables.
2100	 */
2101
2102	sk->sk_prot->unhash(sk);
2103
2104	/*
2105	 * In this point socket cannot receive new packets, but it is possible
2106	 * that some packets are in flight because some CPU runs receiver and
2107	 * did hash table lookup before we unhashed socket. They will achieve
2108	 * receive queue and will be purged by socket destructor.
2109	 *
2110	 * Also we still have packets pending on receive queue and probably,
2111	 * our own packets waiting in device queues. sock_destroy will drain
2112	 * receive queue, but transmitted packets will delay socket destruction
2113	 * until the last reference will be released.
2114	 */
2115
2116	sock_orphan(sk);
2117
2118	xfrm_sk_free_policy(sk);
2119
2120	sk_refcnt_debug_release(sk);
2121	sock_put(sk);
2122}
2123EXPORT_SYMBOL(sk_common_release);
2124
2125static DEFINE_RWLOCK(proto_list_lock);
2126static LIST_HEAD(proto_list);
2127
2128#ifdef CONFIG_PROC_FS
2129#define PROTO_INUSE_NR	64	/* should be enough for the first time */
2130struct prot_inuse {
2131	int val[PROTO_INUSE_NR];
2132};
2133
2134static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2135
2136#ifdef CONFIG_NET_NS
2137void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2138{
2139	int cpu = smp_processor_id();
2140	per_cpu_ptr(net->core.inuse, cpu)->val[prot->inuse_idx] += val;
2141}
2142EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2143
2144int sock_prot_inuse_get(struct net *net, struct proto *prot)
2145{
2146	int cpu, idx = prot->inuse_idx;
2147	int res = 0;
2148
2149	for_each_possible_cpu(cpu)
2150		res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2151
2152	return res >= 0 ? res : 0;
2153}
2154EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2155
2156static int __net_init sock_inuse_init_net(struct net *net)
2157{
2158	net->core.inuse = alloc_percpu(struct prot_inuse);
2159	return net->core.inuse ? 0 : -ENOMEM;
2160}
2161
2162static void __net_exit sock_inuse_exit_net(struct net *net)
2163{
2164	free_percpu(net->core.inuse);
2165}
2166
2167static struct pernet_operations net_inuse_ops = {
2168	.init = sock_inuse_init_net,
2169	.exit = sock_inuse_exit_net,
2170};
2171
2172static __init int net_inuse_init(void)
2173{
2174	if (register_pernet_subsys(&net_inuse_ops))
2175		panic("Cannot initialize net inuse counters");
2176
2177	return 0;
2178}
2179
2180core_initcall(net_inuse_init);
2181#else
2182static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2183
2184void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2185{
2186	__get_cpu_var(prot_inuse).val[prot->inuse_idx] += val;
2187}
2188EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2189
2190int sock_prot_inuse_get(struct net *net, struct proto *prot)
2191{
2192	int cpu, idx = prot->inuse_idx;
2193	int res = 0;
2194
2195	for_each_possible_cpu(cpu)
2196		res += per_cpu(prot_inuse, cpu).val[idx];
2197
2198	return res >= 0 ? res : 0;
2199}
2200EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2201#endif
2202
2203static void assign_proto_idx(struct proto *prot)
2204{
2205	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2206
2207	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2208		printk(KERN_ERR "PROTO_INUSE_NR exhausted\n");
2209		return;
2210	}
2211
2212	set_bit(prot->inuse_idx, proto_inuse_idx);
2213}
2214
2215static void release_proto_idx(struct proto *prot)
2216{
2217	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2218		clear_bit(prot->inuse_idx, proto_inuse_idx);
2219}
2220#else
2221static inline void assign_proto_idx(struct proto *prot)
2222{
2223}
2224
2225static inline void release_proto_idx(struct proto *prot)
2226{
2227}
2228#endif
2229
2230int proto_register(struct proto *prot, int alloc_slab)
2231{
2232	if (alloc_slab) {
2233		prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2234					SLAB_HWCACHE_ALIGN | prot->slab_flags,
2235					NULL);
2236
2237		if (prot->slab == NULL) {
2238			printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n",
2239			       prot->name);
2240			goto out;
2241		}
2242
2243		if (prot->rsk_prot != NULL) {
2244			prot->rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", prot->name);
2245			if (prot->rsk_prot->slab_name == NULL)
2246				goto out_free_sock_slab;
2247
2248			prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
2249								 prot->rsk_prot->obj_size, 0,
2250								 SLAB_HWCACHE_ALIGN, NULL);
2251
2252			if (prot->rsk_prot->slab == NULL) {
2253				printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n",
2254				       prot->name);
2255				goto out_free_request_sock_slab_name;
2256			}
2257		}
2258
2259		if (prot->twsk_prot != NULL) {
2260			prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
2261
2262			if (prot->twsk_prot->twsk_slab_name == NULL)
2263				goto out_free_request_sock_slab;
2264
2265			prot->twsk_prot->twsk_slab =
2266				kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2267						  prot->twsk_prot->twsk_obj_size,
2268						  0,
2269						  SLAB_HWCACHE_ALIGN |
2270							prot->slab_flags,
2271						  NULL);
2272			if (prot->twsk_prot->twsk_slab == NULL)
2273				goto out_free_timewait_sock_slab_name;
2274		}
2275	}
2276
2277	write_lock(&proto_list_lock);
2278	list_add(&prot->node, &proto_list);
2279	assign_proto_idx(prot);
2280	write_unlock(&proto_list_lock);
2281	return 0;
2282
2283out_free_timewait_sock_slab_name:
2284	kfree(prot->twsk_prot->twsk_slab_name);
2285out_free_request_sock_slab:
2286	if (prot->rsk_prot && prot->rsk_prot->slab) {
2287		kmem_cache_destroy(prot->rsk_prot->slab);
2288		prot->rsk_prot->slab = NULL;
2289	}
2290out_free_request_sock_slab_name:
2291	kfree(prot->rsk_prot->slab_name);
2292out_free_sock_slab:
2293	kmem_cache_destroy(prot->slab);
2294	prot->slab = NULL;
2295out:
2296	return -ENOBUFS;
2297}
2298EXPORT_SYMBOL(proto_register);
2299
2300void proto_unregister(struct proto *prot)
2301{
2302	write_lock(&proto_list_lock);
2303	release_proto_idx(prot);
2304	list_del(&prot->node);
2305	write_unlock(&proto_list_lock);
2306
2307	if (prot->slab != NULL) {
2308		kmem_cache_destroy(prot->slab);
2309		prot->slab = NULL;
2310	}
2311
2312	if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2313		kmem_cache_destroy(prot->rsk_prot->slab);
2314		kfree(prot->rsk_prot->slab_name);
2315		prot->rsk_prot->slab = NULL;
2316	}
2317
2318	if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2319		kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2320		kfree(prot->twsk_prot->twsk_slab_name);
2321		prot->twsk_prot->twsk_slab = NULL;
2322	}
2323}
2324EXPORT_SYMBOL(proto_unregister);
2325
2326#ifdef CONFIG_PROC_FS
2327static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2328	__acquires(proto_list_lock)
2329{
2330	read_lock(&proto_list_lock);
2331	return seq_list_start_head(&proto_list, *pos);
2332}
2333
2334static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2335{
2336	return seq_list_next(v, &proto_list, pos);
2337}
2338
2339static void proto_seq_stop(struct seq_file *seq, void *v)
2340	__releases(proto_list_lock)
2341{
2342	read_unlock(&proto_list_lock);
2343}
2344
2345static char proto_method_implemented(const void *method)
2346{
2347	return method == NULL ? 'n' : 'y';
2348}
2349
2350static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2351{
2352	seq_printf(seq, "%-9s %4u %6d  %6d   %-3s %6u   %-3s  %-10s "
2353			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2354		   proto->name,
2355		   proto->obj_size,
2356		   sock_prot_inuse_get(seq_file_net(seq), proto),
2357		   proto->memory_allocated != NULL ? atomic_read(proto->memory_allocated) : -1,
2358		   proto->memory_pressure != NULL ? *proto->memory_pressure ? "yes" : "no" : "NI",
2359		   proto->max_header,
2360		   proto->slab == NULL ? "no" : "yes",
2361		   module_name(proto->owner),
2362		   proto_method_implemented(proto->close),
2363		   proto_method_implemented(proto->connect),
2364		   proto_method_implemented(proto->disconnect),
2365		   proto_method_implemented(proto->accept),
2366		   proto_method_implemented(proto->ioctl),
2367		   proto_method_implemented(proto->init),
2368		   proto_method_implemented(proto->destroy),
2369		   proto_method_implemented(proto->shutdown),
2370		   proto_method_implemented(proto->setsockopt),
2371		   proto_method_implemented(proto->getsockopt),
2372		   proto_method_implemented(proto->sendmsg),
2373		   proto_method_implemented(proto->recvmsg),
2374		   proto_method_implemented(proto->sendpage),
2375		   proto_method_implemented(proto->bind),
2376		   proto_method_implemented(proto->backlog_rcv),
2377		   proto_method_implemented(proto->hash),
2378		   proto_method_implemented(proto->unhash),
2379		   proto_method_implemented(proto->get_port),
2380		   proto_method_implemented(proto->enter_memory_pressure));
2381}
2382
2383static int proto_seq_show(struct seq_file *seq, void *v)
2384{
2385	if (v == &proto_list)
2386		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2387			   "protocol",
2388			   "size",
2389			   "sockets",
2390			   "memory",
2391			   "press",
2392			   "maxhdr",
2393			   "slab",
2394			   "module",
2395			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2396	else
2397		proto_seq_printf(seq, list_entry(v, struct proto, node));
2398	return 0;
2399}
2400
2401static const struct seq_operations proto_seq_ops = {
2402	.start  = proto_seq_start,
2403	.next   = proto_seq_next,
2404	.stop   = proto_seq_stop,
2405	.show   = proto_seq_show,
2406};
2407
2408static int proto_seq_open(struct inode *inode, struct file *file)
2409{
2410	return seq_open_net(inode, file, &proto_seq_ops,
2411			    sizeof(struct seq_net_private));
2412}
2413
2414static const struct file_operations proto_seq_fops = {
2415	.owner		= THIS_MODULE,
2416	.open		= proto_seq_open,
2417	.read		= seq_read,
2418	.llseek		= seq_lseek,
2419	.release	= seq_release_net,
2420};
2421
2422static __net_init int proto_init_net(struct net *net)
2423{
2424	if (!proc_net_fops_create(net, "protocols", S_IRUGO, &proto_seq_fops))
2425		return -ENOMEM;
2426
2427	return 0;
2428}
2429
2430static __net_exit void proto_exit_net(struct net *net)
2431{
2432	proc_net_remove(net, "protocols");
2433}
2434
2435
2436static __net_initdata struct pernet_operations proto_net_ops = {
2437	.init = proto_init_net,
2438	.exit = proto_exit_net,
2439};
2440
2441static int __init proto_init(void)
2442{
2443	return register_pernet_subsys(&proto_net_ops);
2444}
2445
2446subsys_initcall(proto_init);
2447
2448#endif /* PROC_FS */
2449