sock.c revision a98b65a3ad71e702e760bc63f57684301628e837
1/*
2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
3 *		operating system.  INET is implemented using the  BSD Socket
4 *		interface as the means of communication with the user level.
5 *
6 *		Generic socket support routines. Memory allocators, socket lock/release
7 *		handler for protocols to use and generic option handler.
8 *
9 *
10 * Authors:	Ross Biro
11 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 *		Florian La Roche, <flla@stud.uni-sb.de>
13 *		Alan Cox, <A.Cox@swansea.ac.uk>
14 *
15 * Fixes:
16 *		Alan Cox	: 	Numerous verify_area() problems
17 *		Alan Cox	:	Connecting on a connecting socket
18 *					now returns an error for tcp.
19 *		Alan Cox	:	sock->protocol is set correctly.
20 *					and is not sometimes left as 0.
21 *		Alan Cox	:	connect handles icmp errors on a
22 *					connect properly. Unfortunately there
23 *					is a restart syscall nasty there. I
24 *					can't match BSD without hacking the C
25 *					library. Ideas urgently sought!
26 *		Alan Cox	:	Disallow bind() to addresses that are
27 *					not ours - especially broadcast ones!!
28 *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
29 *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
30 *					instead they leave that for the DESTROY timer.
31 *		Alan Cox	:	Clean up error flag in accept
32 *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
33 *					was buggy. Put a remove_sock() in the handler
34 *					for memory when we hit 0. Also altered the timer
35 *					code. The ACK stuff can wait and needs major
36 *					TCP layer surgery.
37 *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
38 *					and fixed timer/inet_bh race.
39 *		Alan Cox	:	Added zapped flag for TCP
40 *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
41 *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
43 *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
46 *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
47 *	Pauline Middelink	:	identd support
48 *		Alan Cox	:	Fixed connect() taking signals I think.
49 *		Alan Cox	:	SO_LINGER supported
50 *		Alan Cox	:	Error reporting fixes
51 *		Anonymous	:	inet_create tidied up (sk->reuse setting)
52 *		Alan Cox	:	inet sockets don't set sk->type!
53 *		Alan Cox	:	Split socket option code
54 *		Alan Cox	:	Callbacks
55 *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
56 *		Alex		:	Removed restriction on inet fioctl
57 *		Alan Cox	:	Splitting INET from NET core
58 *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
59 *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
60 *		Alan Cox	:	Split IP from generic code
61 *		Alan Cox	:	New kfree_skbmem()
62 *		Alan Cox	:	Make SO_DEBUG superuser only.
63 *		Alan Cox	:	Allow anyone to clear SO_DEBUG
64 *					(compatibility fix)
65 *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
66 *		Alan Cox	:	Allocator for a socket is settable.
67 *		Alan Cox	:	SO_ERROR includes soft errors.
68 *		Alan Cox	:	Allow NULL arguments on some SO_ opts
69 *		Alan Cox	: 	Generic socket allocation to make hooks
70 *					easier (suggested by Craig Metz).
71 *		Michael Pall	:	SO_ERROR returns positive errno again
72 *              Steve Whitehouse:       Added default destructor to free
73 *                                      protocol private data.
74 *              Steve Whitehouse:       Added various other default routines
75 *                                      common to several socket families.
76 *              Chris Evans     :       Call suser() check last on F_SETOWN
77 *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
79 *		Andi Kleen	:	Fix write_space callback
80 *		Chris Evans	:	Security fixes - signedness again
81 *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
82 *
83 * To Fix:
84 *
85 *
86 *		This program is free software; you can redistribute it and/or
87 *		modify it under the terms of the GNU General Public License
88 *		as published by the Free Software Foundation; either version
89 *		2 of the License, or (at your option) any later version.
90 */
91
92#include <linux/capability.h>
93#include <linux/errno.h>
94#include <linux/types.h>
95#include <linux/socket.h>
96#include <linux/in.h>
97#include <linux/kernel.h>
98#include <linux/module.h>
99#include <linux/proc_fs.h>
100#include <linux/seq_file.h>
101#include <linux/sched.h>
102#include <linux/timer.h>
103#include <linux/string.h>
104#include <linux/sockios.h>
105#include <linux/net.h>
106#include <linux/mm.h>
107#include <linux/slab.h>
108#include <linux/interrupt.h>
109#include <linux/poll.h>
110#include <linux/tcp.h>
111#include <linux/init.h>
112#include <linux/highmem.h>
113
114#include <asm/uaccess.h>
115#include <asm/system.h>
116
117#include <linux/netdevice.h>
118#include <net/protocol.h>
119#include <linux/skbuff.h>
120#include <net/net_namespace.h>
121#include <net/request_sock.h>
122#include <net/sock.h>
123#include <linux/net_tstamp.h>
124#include <net/xfrm.h>
125#include <linux/ipsec.h>
126
127#include <linux/filter.h>
128
129#ifdef CONFIG_INET
130#include <net/tcp.h>
131#endif
132
133/*
134 * Each address family might have different locking rules, so we have
135 * one slock key per address family:
136 */
137static struct lock_class_key af_family_keys[AF_MAX];
138static struct lock_class_key af_family_slock_keys[AF_MAX];
139
140/*
141 * Make lock validator output more readable. (we pre-construct these
142 * strings build-time, so that runtime initialization of socket
143 * locks is fast):
144 */
145static const char *af_family_key_strings[AF_MAX+1] = {
146  "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX"     , "sk_lock-AF_INET"     ,
147  "sk_lock-AF_AX25"  , "sk_lock-AF_IPX"      , "sk_lock-AF_APPLETALK",
148  "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE"   , "sk_lock-AF_ATMPVC"   ,
149  "sk_lock-AF_X25"   , "sk_lock-AF_INET6"    , "sk_lock-AF_ROSE"     ,
150  "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI"  , "sk_lock-AF_SECURITY" ,
151  "sk_lock-AF_KEY"   , "sk_lock-AF_NETLINK"  , "sk_lock-AF_PACKET"   ,
152  "sk_lock-AF_ASH"   , "sk_lock-AF_ECONET"   , "sk_lock-AF_ATMSVC"   ,
153  "sk_lock-AF_RDS"   , "sk_lock-AF_SNA"      , "sk_lock-AF_IRDA"     ,
154  "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE"  , "sk_lock-AF_LLC"      ,
155  "sk_lock-27"       , "sk_lock-28"          , "sk_lock-AF_CAN"      ,
156  "sk_lock-AF_TIPC"  , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV"        ,
157  "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN"     , "sk_lock-AF_PHONET"   ,
158  "sk_lock-AF_MAX"
159};
160static const char *af_family_slock_key_strings[AF_MAX+1] = {
161  "slock-AF_UNSPEC", "slock-AF_UNIX"     , "slock-AF_INET"     ,
162  "slock-AF_AX25"  , "slock-AF_IPX"      , "slock-AF_APPLETALK",
163  "slock-AF_NETROM", "slock-AF_BRIDGE"   , "slock-AF_ATMPVC"   ,
164  "slock-AF_X25"   , "slock-AF_INET6"    , "slock-AF_ROSE"     ,
165  "slock-AF_DECnet", "slock-AF_NETBEUI"  , "slock-AF_SECURITY" ,
166  "slock-AF_KEY"   , "slock-AF_NETLINK"  , "slock-AF_PACKET"   ,
167  "slock-AF_ASH"   , "slock-AF_ECONET"   , "slock-AF_ATMSVC"   ,
168  "slock-AF_RDS"   , "slock-AF_SNA"      , "slock-AF_IRDA"     ,
169  "slock-AF_PPPOX" , "slock-AF_WANPIPE"  , "slock-AF_LLC"      ,
170  "slock-27"       , "slock-28"          , "slock-AF_CAN"      ,
171  "slock-AF_TIPC"  , "slock-AF_BLUETOOTH", "slock-AF_IUCV"     ,
172  "slock-AF_RXRPC" , "slock-AF_ISDN"     , "slock-AF_PHONET"   ,
173  "slock-AF_MAX"
174};
175static const char *af_family_clock_key_strings[AF_MAX+1] = {
176  "clock-AF_UNSPEC", "clock-AF_UNIX"     , "clock-AF_INET"     ,
177  "clock-AF_AX25"  , "clock-AF_IPX"      , "clock-AF_APPLETALK",
178  "clock-AF_NETROM", "clock-AF_BRIDGE"   , "clock-AF_ATMPVC"   ,
179  "clock-AF_X25"   , "clock-AF_INET6"    , "clock-AF_ROSE"     ,
180  "clock-AF_DECnet", "clock-AF_NETBEUI"  , "clock-AF_SECURITY" ,
181  "clock-AF_KEY"   , "clock-AF_NETLINK"  , "clock-AF_PACKET"   ,
182  "clock-AF_ASH"   , "clock-AF_ECONET"   , "clock-AF_ATMSVC"   ,
183  "clock-AF_RDS"   , "clock-AF_SNA"      , "clock-AF_IRDA"     ,
184  "clock-AF_PPPOX" , "clock-AF_WANPIPE"  , "clock-AF_LLC"      ,
185  "clock-27"       , "clock-28"          , "clock-AF_CAN"      ,
186  "clock-AF_TIPC"  , "clock-AF_BLUETOOTH", "clock-AF_IUCV"     ,
187  "clock-AF_RXRPC" , "clock-AF_ISDN"     , "clock-AF_PHONET"   ,
188  "clock-AF_MAX"
189};
190
191/*
192 * sk_callback_lock locking rules are per-address-family,
193 * so split the lock classes by using a per-AF key:
194 */
195static struct lock_class_key af_callback_keys[AF_MAX];
196
197/* Take into consideration the size of the struct sk_buff overhead in the
198 * determination of these values, since that is non-constant across
199 * platforms.  This makes socket queueing behavior and performance
200 * not depend upon such differences.
201 */
202#define _SK_MEM_PACKETS		256
203#define _SK_MEM_OVERHEAD	(sizeof(struct sk_buff) + 256)
204#define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
205#define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
206
207/* Run time adjustable parameters. */
208__u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
209__u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
210__u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
211__u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
212
213/* Maximal space eaten by iovec or ancilliary data plus some space */
214int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
215
216static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
217{
218	struct timeval tv;
219
220	if (optlen < sizeof(tv))
221		return -EINVAL;
222	if (copy_from_user(&tv, optval, sizeof(tv)))
223		return -EFAULT;
224	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
225		return -EDOM;
226
227	if (tv.tv_sec < 0) {
228		static int warned __read_mostly;
229
230		*timeo_p = 0;
231		if (warned < 10 && net_ratelimit()) {
232			warned++;
233			printk(KERN_INFO "sock_set_timeout: `%s' (pid %d) "
234			       "tries to set negative timeout\n",
235				current->comm, task_pid_nr(current));
236		}
237		return 0;
238	}
239	*timeo_p = MAX_SCHEDULE_TIMEOUT;
240	if (tv.tv_sec == 0 && tv.tv_usec == 0)
241		return 0;
242	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
243		*timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
244	return 0;
245}
246
247static void sock_warn_obsolete_bsdism(const char *name)
248{
249	static int warned;
250	static char warncomm[TASK_COMM_LEN];
251	if (strcmp(warncomm, current->comm) && warned < 5) {
252		strcpy(warncomm,  current->comm);
253		printk(KERN_WARNING "process `%s' is using obsolete "
254		       "%s SO_BSDCOMPAT\n", warncomm, name);
255		warned++;
256	}
257}
258
259static void sock_disable_timestamp(struct sock *sk, int flag)
260{
261	if (sock_flag(sk, flag)) {
262		sock_reset_flag(sk, flag);
263		if (!sock_flag(sk, SOCK_TIMESTAMP) &&
264		    !sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE)) {
265			net_disable_timestamp();
266		}
267	}
268}
269
270
271int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
272{
273	int err = 0;
274	int skb_len;
275
276	/* Cast sk->rcvbuf to unsigned... It's pointless, but reduces
277	   number of warnings when compiling with -W --ANK
278	 */
279	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
280	    (unsigned)sk->sk_rcvbuf) {
281		err = -ENOMEM;
282		goto out;
283	}
284
285	err = sk_filter(sk, skb);
286	if (err)
287		goto out;
288
289	if (!sk_rmem_schedule(sk, skb->truesize)) {
290		err = -ENOBUFS;
291		goto out;
292	}
293
294	skb->dev = NULL;
295	skb_set_owner_r(skb, sk);
296
297	/* Cache the SKB length before we tack it onto the receive
298	 * queue.  Once it is added it no longer belongs to us and
299	 * may be freed by other threads of control pulling packets
300	 * from the queue.
301	 */
302	skb_len = skb->len;
303
304	skb_queue_tail(&sk->sk_receive_queue, skb);
305
306	if (!sock_flag(sk, SOCK_DEAD))
307		sk->sk_data_ready(sk, skb_len);
308out:
309	return err;
310}
311EXPORT_SYMBOL(sock_queue_rcv_skb);
312
313int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
314{
315	int rc = NET_RX_SUCCESS;
316
317	if (sk_filter(sk, skb))
318		goto discard_and_relse;
319
320	skb->dev = NULL;
321
322	if (nested)
323		bh_lock_sock_nested(sk);
324	else
325		bh_lock_sock(sk);
326	if (!sock_owned_by_user(sk)) {
327		/*
328		 * trylock + unlock semantics:
329		 */
330		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
331
332		rc = sk_backlog_rcv(sk, skb);
333
334		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
335	} else
336		sk_add_backlog(sk, skb);
337	bh_unlock_sock(sk);
338out:
339	sock_put(sk);
340	return rc;
341discard_and_relse:
342	kfree_skb(skb);
343	goto out;
344}
345EXPORT_SYMBOL(sk_receive_skb);
346
347struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
348{
349	struct dst_entry *dst = sk->sk_dst_cache;
350
351	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
352		sk->sk_dst_cache = NULL;
353		dst_release(dst);
354		return NULL;
355	}
356
357	return dst;
358}
359EXPORT_SYMBOL(__sk_dst_check);
360
361struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
362{
363	struct dst_entry *dst = sk_dst_get(sk);
364
365	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
366		sk_dst_reset(sk);
367		dst_release(dst);
368		return NULL;
369	}
370
371	return dst;
372}
373EXPORT_SYMBOL(sk_dst_check);
374
375static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
376{
377	int ret = -ENOPROTOOPT;
378#ifdef CONFIG_NETDEVICES
379	struct net *net = sock_net(sk);
380	char devname[IFNAMSIZ];
381	int index;
382
383	/* Sorry... */
384	ret = -EPERM;
385	if (!capable(CAP_NET_RAW))
386		goto out;
387
388	ret = -EINVAL;
389	if (optlen < 0)
390		goto out;
391
392	/* Bind this socket to a particular device like "eth0",
393	 * as specified in the passed interface name. If the
394	 * name is "" or the option length is zero the socket
395	 * is not bound.
396	 */
397	if (optlen > IFNAMSIZ - 1)
398		optlen = IFNAMSIZ - 1;
399	memset(devname, 0, sizeof(devname));
400
401	ret = -EFAULT;
402	if (copy_from_user(devname, optval, optlen))
403		goto out;
404
405	if (devname[0] == '\0') {
406		index = 0;
407	} else {
408		struct net_device *dev = dev_get_by_name(net, devname);
409
410		ret = -ENODEV;
411		if (!dev)
412			goto out;
413
414		index = dev->ifindex;
415		dev_put(dev);
416	}
417
418	lock_sock(sk);
419	sk->sk_bound_dev_if = index;
420	sk_dst_reset(sk);
421	release_sock(sk);
422
423	ret = 0;
424
425out:
426#endif
427
428	return ret;
429}
430
431static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
432{
433	if (valbool)
434		sock_set_flag(sk, bit);
435	else
436		sock_reset_flag(sk, bit);
437}
438
439/*
440 *	This is meant for all protocols to use and covers goings on
441 *	at the socket level. Everything here is generic.
442 */
443
444int sock_setsockopt(struct socket *sock, int level, int optname,
445		    char __user *optval, int optlen)
446{
447	struct sock *sk=sock->sk;
448	int val;
449	int valbool;
450	struct linger ling;
451	int ret = 0;
452
453	/*
454	 *	Options without arguments
455	 */
456
457	if (optname == SO_BINDTODEVICE)
458		return sock_bindtodevice(sk, optval, optlen);
459
460	if (optlen < sizeof(int))
461		return -EINVAL;
462
463	if (get_user(val, (int __user *)optval))
464		return -EFAULT;
465
466	valbool = val?1:0;
467
468	lock_sock(sk);
469
470	switch(optname) {
471	case SO_DEBUG:
472		if (val && !capable(CAP_NET_ADMIN)) {
473			ret = -EACCES;
474		} else
475			sock_valbool_flag(sk, SOCK_DBG, valbool);
476		break;
477	case SO_REUSEADDR:
478		sk->sk_reuse = valbool;
479		break;
480	case SO_TYPE:
481	case SO_ERROR:
482		ret = -ENOPROTOOPT;
483		break;
484	case SO_DONTROUTE:
485		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
486		break;
487	case SO_BROADCAST:
488		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
489		break;
490	case SO_SNDBUF:
491		/* Don't error on this BSD doesn't and if you think
492		   about it this is right. Otherwise apps have to
493		   play 'guess the biggest size' games. RCVBUF/SNDBUF
494		   are treated in BSD as hints */
495
496		if (val > sysctl_wmem_max)
497			val = sysctl_wmem_max;
498set_sndbuf:
499		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
500		if ((val * 2) < SOCK_MIN_SNDBUF)
501			sk->sk_sndbuf = SOCK_MIN_SNDBUF;
502		else
503			sk->sk_sndbuf = val * 2;
504
505		/*
506		 *	Wake up sending tasks if we
507		 *	upped the value.
508		 */
509		sk->sk_write_space(sk);
510		break;
511
512	case SO_SNDBUFFORCE:
513		if (!capable(CAP_NET_ADMIN)) {
514			ret = -EPERM;
515			break;
516		}
517		goto set_sndbuf;
518
519	case SO_RCVBUF:
520		/* Don't error on this BSD doesn't and if you think
521		   about it this is right. Otherwise apps have to
522		   play 'guess the biggest size' games. RCVBUF/SNDBUF
523		   are treated in BSD as hints */
524
525		if (val > sysctl_rmem_max)
526			val = sysctl_rmem_max;
527set_rcvbuf:
528		sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
529		/*
530		 * We double it on the way in to account for
531		 * "struct sk_buff" etc. overhead.   Applications
532		 * assume that the SO_RCVBUF setting they make will
533		 * allow that much actual data to be received on that
534		 * socket.
535		 *
536		 * Applications are unaware that "struct sk_buff" and
537		 * other overheads allocate from the receive buffer
538		 * during socket buffer allocation.
539		 *
540		 * And after considering the possible alternatives,
541		 * returning the value we actually used in getsockopt
542		 * is the most desirable behavior.
543		 */
544		if ((val * 2) < SOCK_MIN_RCVBUF)
545			sk->sk_rcvbuf = SOCK_MIN_RCVBUF;
546		else
547			sk->sk_rcvbuf = val * 2;
548		break;
549
550	case SO_RCVBUFFORCE:
551		if (!capable(CAP_NET_ADMIN)) {
552			ret = -EPERM;
553			break;
554		}
555		goto set_rcvbuf;
556
557	case SO_KEEPALIVE:
558#ifdef CONFIG_INET
559		if (sk->sk_protocol == IPPROTO_TCP)
560			tcp_set_keepalive(sk, valbool);
561#endif
562		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
563		break;
564
565	case SO_OOBINLINE:
566		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
567		break;
568
569	case SO_NO_CHECK:
570		sk->sk_no_check = valbool;
571		break;
572
573	case SO_PRIORITY:
574		if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
575			sk->sk_priority = val;
576		else
577			ret = -EPERM;
578		break;
579
580	case SO_LINGER:
581		if (optlen < sizeof(ling)) {
582			ret = -EINVAL;	/* 1003.1g */
583			break;
584		}
585		if (copy_from_user(&ling,optval,sizeof(ling))) {
586			ret = -EFAULT;
587			break;
588		}
589		if (!ling.l_onoff)
590			sock_reset_flag(sk, SOCK_LINGER);
591		else {
592#if (BITS_PER_LONG == 32)
593			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
594				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
595			else
596#endif
597				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
598			sock_set_flag(sk, SOCK_LINGER);
599		}
600		break;
601
602	case SO_BSDCOMPAT:
603		sock_warn_obsolete_bsdism("setsockopt");
604		break;
605
606	case SO_PASSCRED:
607		if (valbool)
608			set_bit(SOCK_PASSCRED, &sock->flags);
609		else
610			clear_bit(SOCK_PASSCRED, &sock->flags);
611		break;
612
613	case SO_TIMESTAMP:
614	case SO_TIMESTAMPNS:
615		if (valbool)  {
616			if (optname == SO_TIMESTAMP)
617				sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
618			else
619				sock_set_flag(sk, SOCK_RCVTSTAMPNS);
620			sock_set_flag(sk, SOCK_RCVTSTAMP);
621			sock_enable_timestamp(sk, SOCK_TIMESTAMP);
622		} else {
623			sock_reset_flag(sk, SOCK_RCVTSTAMP);
624			sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
625		}
626		break;
627
628	case SO_TIMESTAMPING:
629		if (val & ~SOF_TIMESTAMPING_MASK) {
630			ret = EINVAL;
631			break;
632		}
633		sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE,
634				  val & SOF_TIMESTAMPING_TX_HARDWARE);
635		sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE,
636				  val & SOF_TIMESTAMPING_TX_SOFTWARE);
637		sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE,
638				  val & SOF_TIMESTAMPING_RX_HARDWARE);
639		if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
640			sock_enable_timestamp(sk,
641					      SOCK_TIMESTAMPING_RX_SOFTWARE);
642		else
643			sock_disable_timestamp(sk,
644					       SOCK_TIMESTAMPING_RX_SOFTWARE);
645		sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE,
646				  val & SOF_TIMESTAMPING_SOFTWARE);
647		sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE,
648				  val & SOF_TIMESTAMPING_SYS_HARDWARE);
649		sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE,
650				  val & SOF_TIMESTAMPING_RAW_HARDWARE);
651		break;
652
653	case SO_RCVLOWAT:
654		if (val < 0)
655			val = INT_MAX;
656		sk->sk_rcvlowat = val ? : 1;
657		break;
658
659	case SO_RCVTIMEO:
660		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
661		break;
662
663	case SO_SNDTIMEO:
664		ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
665		break;
666
667	case SO_ATTACH_FILTER:
668		ret = -EINVAL;
669		if (optlen == sizeof(struct sock_fprog)) {
670			struct sock_fprog fprog;
671
672			ret = -EFAULT;
673			if (copy_from_user(&fprog, optval, sizeof(fprog)))
674				break;
675
676			ret = sk_attach_filter(&fprog, sk);
677		}
678		break;
679
680	case SO_DETACH_FILTER:
681		ret = sk_detach_filter(sk);
682		break;
683
684	case SO_PASSSEC:
685		if (valbool)
686			set_bit(SOCK_PASSSEC, &sock->flags);
687		else
688			clear_bit(SOCK_PASSSEC, &sock->flags);
689		break;
690	case SO_MARK:
691		if (!capable(CAP_NET_ADMIN))
692			ret = -EPERM;
693		else {
694			sk->sk_mark = val;
695		}
696		break;
697
698		/* We implement the SO_SNDLOWAT etc to
699		   not be settable (1003.1g 5.3) */
700	default:
701		ret = -ENOPROTOOPT;
702		break;
703	}
704	release_sock(sk);
705	return ret;
706}
707
708
709int sock_getsockopt(struct socket *sock, int level, int optname,
710		    char __user *optval, int __user *optlen)
711{
712	struct sock *sk = sock->sk;
713
714	union {
715		int val;
716		struct linger ling;
717		struct timeval tm;
718	} v;
719
720	unsigned int lv = sizeof(int);
721	int len;
722
723	if (get_user(len, optlen))
724		return -EFAULT;
725	if (len < 0)
726		return -EINVAL;
727
728	memset(&v, 0, sizeof(v));
729
730	switch(optname) {
731	case SO_DEBUG:
732		v.val = sock_flag(sk, SOCK_DBG);
733		break;
734
735	case SO_DONTROUTE:
736		v.val = sock_flag(sk, SOCK_LOCALROUTE);
737		break;
738
739	case SO_BROADCAST:
740		v.val = !!sock_flag(sk, SOCK_BROADCAST);
741		break;
742
743	case SO_SNDBUF:
744		v.val = sk->sk_sndbuf;
745		break;
746
747	case SO_RCVBUF:
748		v.val = sk->sk_rcvbuf;
749		break;
750
751	case SO_REUSEADDR:
752		v.val = sk->sk_reuse;
753		break;
754
755	case SO_KEEPALIVE:
756		v.val = !!sock_flag(sk, SOCK_KEEPOPEN);
757		break;
758
759	case SO_TYPE:
760		v.val = sk->sk_type;
761		break;
762
763	case SO_ERROR:
764		v.val = -sock_error(sk);
765		if (v.val==0)
766			v.val = xchg(&sk->sk_err_soft, 0);
767		break;
768
769	case SO_OOBINLINE:
770		v.val = !!sock_flag(sk, SOCK_URGINLINE);
771		break;
772
773	case SO_NO_CHECK:
774		v.val = sk->sk_no_check;
775		break;
776
777	case SO_PRIORITY:
778		v.val = sk->sk_priority;
779		break;
780
781	case SO_LINGER:
782		lv		= sizeof(v.ling);
783		v.ling.l_onoff	= !!sock_flag(sk, SOCK_LINGER);
784		v.ling.l_linger	= sk->sk_lingertime / HZ;
785		break;
786
787	case SO_BSDCOMPAT:
788		sock_warn_obsolete_bsdism("getsockopt");
789		break;
790
791	case SO_TIMESTAMP:
792		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
793				!sock_flag(sk, SOCK_RCVTSTAMPNS);
794		break;
795
796	case SO_TIMESTAMPNS:
797		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
798		break;
799
800	case SO_TIMESTAMPING:
801		v.val = 0;
802		if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
803			v.val |= SOF_TIMESTAMPING_TX_HARDWARE;
804		if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
805			v.val |= SOF_TIMESTAMPING_TX_SOFTWARE;
806		if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE))
807			v.val |= SOF_TIMESTAMPING_RX_HARDWARE;
808		if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE))
809			v.val |= SOF_TIMESTAMPING_RX_SOFTWARE;
810		if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE))
811			v.val |= SOF_TIMESTAMPING_SOFTWARE;
812		if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))
813			v.val |= SOF_TIMESTAMPING_SYS_HARDWARE;
814		if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE))
815			v.val |= SOF_TIMESTAMPING_RAW_HARDWARE;
816		break;
817
818	case SO_RCVTIMEO:
819		lv=sizeof(struct timeval);
820		if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
821			v.tm.tv_sec = 0;
822			v.tm.tv_usec = 0;
823		} else {
824			v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
825			v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
826		}
827		break;
828
829	case SO_SNDTIMEO:
830		lv=sizeof(struct timeval);
831		if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
832			v.tm.tv_sec = 0;
833			v.tm.tv_usec = 0;
834		} else {
835			v.tm.tv_sec = sk->sk_sndtimeo / HZ;
836			v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
837		}
838		break;
839
840	case SO_RCVLOWAT:
841		v.val = sk->sk_rcvlowat;
842		break;
843
844	case SO_SNDLOWAT:
845		v.val=1;
846		break;
847
848	case SO_PASSCRED:
849		v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0;
850		break;
851
852	case SO_PEERCRED:
853		if (len > sizeof(sk->sk_peercred))
854			len = sizeof(sk->sk_peercred);
855		if (copy_to_user(optval, &sk->sk_peercred, len))
856			return -EFAULT;
857		goto lenout;
858
859	case SO_PEERNAME:
860	{
861		char address[128];
862
863		if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
864			return -ENOTCONN;
865		if (lv < len)
866			return -EINVAL;
867		if (copy_to_user(optval, address, len))
868			return -EFAULT;
869		goto lenout;
870	}
871
872	/* Dubious BSD thing... Probably nobody even uses it, but
873	 * the UNIX standard wants it for whatever reason... -DaveM
874	 */
875	case SO_ACCEPTCONN:
876		v.val = sk->sk_state == TCP_LISTEN;
877		break;
878
879	case SO_PASSSEC:
880		v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0;
881		break;
882
883	case SO_PEERSEC:
884		return security_socket_getpeersec_stream(sock, optval, optlen, len);
885
886	case SO_MARK:
887		v.val = sk->sk_mark;
888		break;
889
890	default:
891		return -ENOPROTOOPT;
892	}
893
894	if (len > lv)
895		len = lv;
896	if (copy_to_user(optval, &v, len))
897		return -EFAULT;
898lenout:
899	if (put_user(len, optlen))
900		return -EFAULT;
901	return 0;
902}
903
904/*
905 * Initialize an sk_lock.
906 *
907 * (We also register the sk_lock with the lock validator.)
908 */
909static inline void sock_lock_init(struct sock *sk)
910{
911	sock_lock_init_class_and_name(sk,
912			af_family_slock_key_strings[sk->sk_family],
913			af_family_slock_keys + sk->sk_family,
914			af_family_key_strings[sk->sk_family],
915			af_family_keys + sk->sk_family);
916}
917
918static void sock_copy(struct sock *nsk, const struct sock *osk)
919{
920#ifdef CONFIG_SECURITY_NETWORK
921	void *sptr = nsk->sk_security;
922#endif
923
924	memcpy(nsk, osk, osk->sk_prot->obj_size);
925#ifdef CONFIG_SECURITY_NETWORK
926	nsk->sk_security = sptr;
927	security_sk_clone(osk, nsk);
928#endif
929}
930
931static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
932		int family)
933{
934	struct sock *sk;
935	struct kmem_cache *slab;
936
937	slab = prot->slab;
938	if (slab != NULL)
939		sk = kmem_cache_alloc(slab, priority);
940	else
941		sk = kmalloc(prot->obj_size, priority);
942
943	if (sk != NULL) {
944		kmemcheck_annotate_bitfield(sk, flags);
945
946		if (security_sk_alloc(sk, family, priority))
947			goto out_free;
948
949		if (!try_module_get(prot->owner))
950			goto out_free_sec;
951	}
952
953	return sk;
954
955out_free_sec:
956	security_sk_free(sk);
957out_free:
958	if (slab != NULL)
959		kmem_cache_free(slab, sk);
960	else
961		kfree(sk);
962	return NULL;
963}
964
965static void sk_prot_free(struct proto *prot, struct sock *sk)
966{
967	struct kmem_cache *slab;
968	struct module *owner;
969
970	owner = prot->owner;
971	slab = prot->slab;
972
973	security_sk_free(sk);
974	if (slab != NULL)
975		kmem_cache_free(slab, sk);
976	else
977		kfree(sk);
978	module_put(owner);
979}
980
981/**
982 *	sk_alloc - All socket objects are allocated here
983 *	@net: the applicable net namespace
984 *	@family: protocol family
985 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
986 *	@prot: struct proto associated with this new sock instance
987 */
988struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
989		      struct proto *prot)
990{
991	struct sock *sk;
992
993	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
994	if (sk) {
995		sk->sk_family = family;
996		/*
997		 * See comment in struct sock definition to understand
998		 * why we need sk_prot_creator -acme
999		 */
1000		sk->sk_prot = sk->sk_prot_creator = prot;
1001		sock_lock_init(sk);
1002		sock_net_set(sk, get_net(net));
1003	}
1004
1005	return sk;
1006}
1007
1008void sk_free(struct sock *sk)
1009{
1010	struct sk_filter *filter;
1011
1012	if (sk->sk_destruct)
1013		sk->sk_destruct(sk);
1014
1015	filter = rcu_dereference(sk->sk_filter);
1016	if (filter) {
1017		sk_filter_uncharge(sk, filter);
1018		rcu_assign_pointer(sk->sk_filter, NULL);
1019	}
1020
1021	sock_disable_timestamp(sk, SOCK_TIMESTAMP);
1022	sock_disable_timestamp(sk, SOCK_TIMESTAMPING_RX_SOFTWARE);
1023
1024	if (atomic_read(&sk->sk_omem_alloc))
1025		printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n",
1026		       __func__, atomic_read(&sk->sk_omem_alloc));
1027
1028	put_net(sock_net(sk));
1029	sk_prot_free(sk->sk_prot_creator, sk);
1030}
1031
1032/*
1033 * Last sock_put should drop referrence to sk->sk_net. It has already
1034 * been dropped in sk_change_net. Taking referrence to stopping namespace
1035 * is not an option.
1036 * Take referrence to a socket to remove it from hash _alive_ and after that
1037 * destroy it in the context of init_net.
1038 */
1039void sk_release_kernel(struct sock *sk)
1040{
1041	if (sk == NULL || sk->sk_socket == NULL)
1042		return;
1043
1044	sock_hold(sk);
1045	sock_release(sk->sk_socket);
1046	release_net(sock_net(sk));
1047	sock_net_set(sk, get_net(&init_net));
1048	sock_put(sk);
1049}
1050EXPORT_SYMBOL(sk_release_kernel);
1051
1052struct sock *sk_clone(const struct sock *sk, const gfp_t priority)
1053{
1054	struct sock *newsk;
1055
1056	newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1057	if (newsk != NULL) {
1058		struct sk_filter *filter;
1059
1060		sock_copy(newsk, sk);
1061
1062		/* SANITY */
1063		get_net(sock_net(newsk));
1064		sk_node_init(&newsk->sk_node);
1065		sock_lock_init(newsk);
1066		bh_lock_sock(newsk);
1067		newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
1068
1069		atomic_set(&newsk->sk_rmem_alloc, 0);
1070		atomic_set(&newsk->sk_wmem_alloc, 0);
1071		atomic_set(&newsk->sk_omem_alloc, 0);
1072		skb_queue_head_init(&newsk->sk_receive_queue);
1073		skb_queue_head_init(&newsk->sk_write_queue);
1074#ifdef CONFIG_NET_DMA
1075		skb_queue_head_init(&newsk->sk_async_wait_queue);
1076#endif
1077
1078		rwlock_init(&newsk->sk_dst_lock);
1079		rwlock_init(&newsk->sk_callback_lock);
1080		lockdep_set_class_and_name(&newsk->sk_callback_lock,
1081				af_callback_keys + newsk->sk_family,
1082				af_family_clock_key_strings[newsk->sk_family]);
1083
1084		newsk->sk_dst_cache	= NULL;
1085		newsk->sk_wmem_queued	= 0;
1086		newsk->sk_forward_alloc = 0;
1087		newsk->sk_send_head	= NULL;
1088		newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1089
1090		sock_reset_flag(newsk, SOCK_DONE);
1091		skb_queue_head_init(&newsk->sk_error_queue);
1092
1093		filter = newsk->sk_filter;
1094		if (filter != NULL)
1095			sk_filter_charge(newsk, filter);
1096
1097		if (unlikely(xfrm_sk_clone_policy(newsk))) {
1098			/* It is still raw copy of parent, so invalidate
1099			 * destructor and make plain sk_free() */
1100			newsk->sk_destruct = NULL;
1101			sk_free(newsk);
1102			newsk = NULL;
1103			goto out;
1104		}
1105
1106		newsk->sk_err	   = 0;
1107		newsk->sk_priority = 0;
1108		atomic_set(&newsk->sk_refcnt, 2);
1109
1110		/*
1111		 * Increment the counter in the same struct proto as the master
1112		 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1113		 * is the same as sk->sk_prot->socks, as this field was copied
1114		 * with memcpy).
1115		 *
1116		 * This _changes_ the previous behaviour, where
1117		 * tcp_create_openreq_child always was incrementing the
1118		 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1119		 * to be taken into account in all callers. -acme
1120		 */
1121		sk_refcnt_debug_inc(newsk);
1122		sk_set_socket(newsk, NULL);
1123		newsk->sk_sleep	 = NULL;
1124
1125		if (newsk->sk_prot->sockets_allocated)
1126			percpu_counter_inc(newsk->sk_prot->sockets_allocated);
1127	}
1128out:
1129	return newsk;
1130}
1131
1132EXPORT_SYMBOL_GPL(sk_clone);
1133
1134void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1135{
1136	__sk_dst_set(sk, dst);
1137	sk->sk_route_caps = dst->dev->features;
1138	if (sk->sk_route_caps & NETIF_F_GSO)
1139		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1140	if (sk_can_gso(sk)) {
1141		if (dst->header_len) {
1142			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1143		} else {
1144			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1145			sk->sk_gso_max_size = dst->dev->gso_max_size;
1146		}
1147	}
1148}
1149EXPORT_SYMBOL_GPL(sk_setup_caps);
1150
1151void __init sk_init(void)
1152{
1153	if (num_physpages <= 4096) {
1154		sysctl_wmem_max = 32767;
1155		sysctl_rmem_max = 32767;
1156		sysctl_wmem_default = 32767;
1157		sysctl_rmem_default = 32767;
1158	} else if (num_physpages >= 131072) {
1159		sysctl_wmem_max = 131071;
1160		sysctl_rmem_max = 131071;
1161	}
1162}
1163
1164/*
1165 *	Simple resource managers for sockets.
1166 */
1167
1168
1169/*
1170 * Write buffer destructor automatically called from kfree_skb.
1171 */
1172void sock_wfree(struct sk_buff *skb)
1173{
1174	struct sock *sk = skb->sk;
1175
1176	/* In case it might be waiting for more memory. */
1177	atomic_sub(skb->truesize, &sk->sk_wmem_alloc);
1178	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE))
1179		sk->sk_write_space(sk);
1180	sock_put(sk);
1181}
1182
1183/*
1184 * Read buffer destructor automatically called from kfree_skb.
1185 */
1186void sock_rfree(struct sk_buff *skb)
1187{
1188	struct sock *sk = skb->sk;
1189
1190	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1191	sk_mem_uncharge(skb->sk, skb->truesize);
1192}
1193
1194
1195int sock_i_uid(struct sock *sk)
1196{
1197	int uid;
1198
1199	read_lock(&sk->sk_callback_lock);
1200	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1201	read_unlock(&sk->sk_callback_lock);
1202	return uid;
1203}
1204
1205unsigned long sock_i_ino(struct sock *sk)
1206{
1207	unsigned long ino;
1208
1209	read_lock(&sk->sk_callback_lock);
1210	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1211	read_unlock(&sk->sk_callback_lock);
1212	return ino;
1213}
1214
1215/*
1216 * Allocate a skb from the socket's send buffer.
1217 */
1218struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1219			     gfp_t priority)
1220{
1221	if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1222		struct sk_buff * skb = alloc_skb(size, priority);
1223		if (skb) {
1224			skb_set_owner_w(skb, sk);
1225			return skb;
1226		}
1227	}
1228	return NULL;
1229}
1230
1231/*
1232 * Allocate a skb from the socket's receive buffer.
1233 */
1234struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1235			     gfp_t priority)
1236{
1237	if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1238		struct sk_buff *skb = alloc_skb(size, priority);
1239		if (skb) {
1240			skb_set_owner_r(skb, sk);
1241			return skb;
1242		}
1243	}
1244	return NULL;
1245}
1246
1247/*
1248 * Allocate a memory block from the socket's option memory buffer.
1249 */
1250void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1251{
1252	if ((unsigned)size <= sysctl_optmem_max &&
1253	    atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1254		void *mem;
1255		/* First do the add, to avoid the race if kmalloc
1256		 * might sleep.
1257		 */
1258		atomic_add(size, &sk->sk_omem_alloc);
1259		mem = kmalloc(size, priority);
1260		if (mem)
1261			return mem;
1262		atomic_sub(size, &sk->sk_omem_alloc);
1263	}
1264	return NULL;
1265}
1266
1267/*
1268 * Free an option memory block.
1269 */
1270void sock_kfree_s(struct sock *sk, void *mem, int size)
1271{
1272	kfree(mem);
1273	atomic_sub(size, &sk->sk_omem_alloc);
1274}
1275
1276/* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1277   I think, these locks should be removed for datagram sockets.
1278 */
1279static long sock_wait_for_wmem(struct sock * sk, long timeo)
1280{
1281	DEFINE_WAIT(wait);
1282
1283	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1284	for (;;) {
1285		if (!timeo)
1286			break;
1287		if (signal_pending(current))
1288			break;
1289		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1290		prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1291		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1292			break;
1293		if (sk->sk_shutdown & SEND_SHUTDOWN)
1294			break;
1295		if (sk->sk_err)
1296			break;
1297		timeo = schedule_timeout(timeo);
1298	}
1299	finish_wait(sk->sk_sleep, &wait);
1300	return timeo;
1301}
1302
1303
1304/*
1305 *	Generic send/receive buffer handlers
1306 */
1307
1308struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1309				     unsigned long data_len, int noblock,
1310				     int *errcode)
1311{
1312	struct sk_buff *skb;
1313	gfp_t gfp_mask;
1314	long timeo;
1315	int err;
1316
1317	gfp_mask = sk->sk_allocation;
1318	if (gfp_mask & __GFP_WAIT)
1319		gfp_mask |= __GFP_REPEAT;
1320
1321	timeo = sock_sndtimeo(sk, noblock);
1322	while (1) {
1323		err = sock_error(sk);
1324		if (err != 0)
1325			goto failure;
1326
1327		err = -EPIPE;
1328		if (sk->sk_shutdown & SEND_SHUTDOWN)
1329			goto failure;
1330
1331		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1332			skb = alloc_skb(header_len, gfp_mask);
1333			if (skb) {
1334				int npages;
1335				int i;
1336
1337				/* No pages, we're done... */
1338				if (!data_len)
1339					break;
1340
1341				npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1342				skb->truesize += data_len;
1343				skb_shinfo(skb)->nr_frags = npages;
1344				for (i = 0; i < npages; i++) {
1345					struct page *page;
1346					skb_frag_t *frag;
1347
1348					page = alloc_pages(sk->sk_allocation, 0);
1349					if (!page) {
1350						err = -ENOBUFS;
1351						skb_shinfo(skb)->nr_frags = i;
1352						kfree_skb(skb);
1353						goto failure;
1354					}
1355
1356					frag = &skb_shinfo(skb)->frags[i];
1357					frag->page = page;
1358					frag->page_offset = 0;
1359					frag->size = (data_len >= PAGE_SIZE ?
1360						      PAGE_SIZE :
1361						      data_len);
1362					data_len -= PAGE_SIZE;
1363				}
1364
1365				/* Full success... */
1366				break;
1367			}
1368			err = -ENOBUFS;
1369			goto failure;
1370		}
1371		set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1372		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1373		err = -EAGAIN;
1374		if (!timeo)
1375			goto failure;
1376		if (signal_pending(current))
1377			goto interrupted;
1378		timeo = sock_wait_for_wmem(sk, timeo);
1379	}
1380
1381	skb_set_owner_w(skb, sk);
1382	return skb;
1383
1384interrupted:
1385	err = sock_intr_errno(timeo);
1386failure:
1387	*errcode = err;
1388	return NULL;
1389}
1390EXPORT_SYMBOL(sock_alloc_send_pskb);
1391
1392struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1393				    int noblock, int *errcode)
1394{
1395	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1396}
1397
1398static void __lock_sock(struct sock *sk)
1399{
1400	DEFINE_WAIT(wait);
1401
1402	for (;;) {
1403		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1404					TASK_UNINTERRUPTIBLE);
1405		spin_unlock_bh(&sk->sk_lock.slock);
1406		schedule();
1407		spin_lock_bh(&sk->sk_lock.slock);
1408		if (!sock_owned_by_user(sk))
1409			break;
1410	}
1411	finish_wait(&sk->sk_lock.wq, &wait);
1412}
1413
1414static void __release_sock(struct sock *sk)
1415{
1416	struct sk_buff *skb = sk->sk_backlog.head;
1417
1418	do {
1419		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1420		bh_unlock_sock(sk);
1421
1422		do {
1423			struct sk_buff *next = skb->next;
1424
1425			skb->next = NULL;
1426			sk_backlog_rcv(sk, skb);
1427
1428			/*
1429			 * We are in process context here with softirqs
1430			 * disabled, use cond_resched_softirq() to preempt.
1431			 * This is safe to do because we've taken the backlog
1432			 * queue private:
1433			 */
1434			cond_resched_softirq();
1435
1436			skb = next;
1437		} while (skb != NULL);
1438
1439		bh_lock_sock(sk);
1440	} while ((skb = sk->sk_backlog.head) != NULL);
1441}
1442
1443/**
1444 * sk_wait_data - wait for data to arrive at sk_receive_queue
1445 * @sk:    sock to wait on
1446 * @timeo: for how long
1447 *
1448 * Now socket state including sk->sk_err is changed only under lock,
1449 * hence we may omit checks after joining wait queue.
1450 * We check receive queue before schedule() only as optimization;
1451 * it is very likely that release_sock() added new data.
1452 */
1453int sk_wait_data(struct sock *sk, long *timeo)
1454{
1455	int rc;
1456	DEFINE_WAIT(wait);
1457
1458	prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1459	set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1460	rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1461	clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1462	finish_wait(sk->sk_sleep, &wait);
1463	return rc;
1464}
1465
1466EXPORT_SYMBOL(sk_wait_data);
1467
1468/**
1469 *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1470 *	@sk: socket
1471 *	@size: memory size to allocate
1472 *	@kind: allocation type
1473 *
1474 *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1475 *	rmem allocation. This function assumes that protocols which have
1476 *	memory_pressure use sk_wmem_queued as write buffer accounting.
1477 */
1478int __sk_mem_schedule(struct sock *sk, int size, int kind)
1479{
1480	struct proto *prot = sk->sk_prot;
1481	int amt = sk_mem_pages(size);
1482	int allocated;
1483
1484	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
1485	allocated = atomic_add_return(amt, prot->memory_allocated);
1486
1487	/* Under limit. */
1488	if (allocated <= prot->sysctl_mem[0]) {
1489		if (prot->memory_pressure && *prot->memory_pressure)
1490			*prot->memory_pressure = 0;
1491		return 1;
1492	}
1493
1494	/* Under pressure. */
1495	if (allocated > prot->sysctl_mem[1])
1496		if (prot->enter_memory_pressure)
1497			prot->enter_memory_pressure(sk);
1498
1499	/* Over hard limit. */
1500	if (allocated > prot->sysctl_mem[2])
1501		goto suppress_allocation;
1502
1503	/* guarantee minimum buffer size under pressure */
1504	if (kind == SK_MEM_RECV) {
1505		if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
1506			return 1;
1507	} else { /* SK_MEM_SEND */
1508		if (sk->sk_type == SOCK_STREAM) {
1509			if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
1510				return 1;
1511		} else if (atomic_read(&sk->sk_wmem_alloc) <
1512			   prot->sysctl_wmem[0])
1513				return 1;
1514	}
1515
1516	if (prot->memory_pressure) {
1517		int alloc;
1518
1519		if (!*prot->memory_pressure)
1520			return 1;
1521		alloc = percpu_counter_read_positive(prot->sockets_allocated);
1522		if (prot->sysctl_mem[2] > alloc *
1523		    sk_mem_pages(sk->sk_wmem_queued +
1524				 atomic_read(&sk->sk_rmem_alloc) +
1525				 sk->sk_forward_alloc))
1526			return 1;
1527	}
1528
1529suppress_allocation:
1530
1531	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
1532		sk_stream_moderate_sndbuf(sk);
1533
1534		/* Fail only if socket is _under_ its sndbuf.
1535		 * In this case we cannot block, so that we have to fail.
1536		 */
1537		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
1538			return 1;
1539	}
1540
1541	/* Alas. Undo changes. */
1542	sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
1543	atomic_sub(amt, prot->memory_allocated);
1544	return 0;
1545}
1546
1547EXPORT_SYMBOL(__sk_mem_schedule);
1548
1549/**
1550 *	__sk_reclaim - reclaim memory_allocated
1551 *	@sk: socket
1552 */
1553void __sk_mem_reclaim(struct sock *sk)
1554{
1555	struct proto *prot = sk->sk_prot;
1556
1557	atomic_sub(sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT,
1558		   prot->memory_allocated);
1559	sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
1560
1561	if (prot->memory_pressure && *prot->memory_pressure &&
1562	    (atomic_read(prot->memory_allocated) < prot->sysctl_mem[0]))
1563		*prot->memory_pressure = 0;
1564}
1565
1566EXPORT_SYMBOL(__sk_mem_reclaim);
1567
1568
1569/*
1570 * Set of default routines for initialising struct proto_ops when
1571 * the protocol does not support a particular function. In certain
1572 * cases where it makes no sense for a protocol to have a "do nothing"
1573 * function, some default processing is provided.
1574 */
1575
1576int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1577{
1578	return -EOPNOTSUPP;
1579}
1580
1581int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1582		    int len, int flags)
1583{
1584	return -EOPNOTSUPP;
1585}
1586
1587int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1588{
1589	return -EOPNOTSUPP;
1590}
1591
1592int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1593{
1594	return -EOPNOTSUPP;
1595}
1596
1597int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1598		    int *len, int peer)
1599{
1600	return -EOPNOTSUPP;
1601}
1602
1603unsigned int sock_no_poll(struct file * file, struct socket *sock, poll_table *pt)
1604{
1605	return 0;
1606}
1607
1608int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1609{
1610	return -EOPNOTSUPP;
1611}
1612
1613int sock_no_listen(struct socket *sock, int backlog)
1614{
1615	return -EOPNOTSUPP;
1616}
1617
1618int sock_no_shutdown(struct socket *sock, int how)
1619{
1620	return -EOPNOTSUPP;
1621}
1622
1623int sock_no_setsockopt(struct socket *sock, int level, int optname,
1624		    char __user *optval, int optlen)
1625{
1626	return -EOPNOTSUPP;
1627}
1628
1629int sock_no_getsockopt(struct socket *sock, int level, int optname,
1630		    char __user *optval, int __user *optlen)
1631{
1632	return -EOPNOTSUPP;
1633}
1634
1635int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1636		    size_t len)
1637{
1638	return -EOPNOTSUPP;
1639}
1640
1641int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1642		    size_t len, int flags)
1643{
1644	return -EOPNOTSUPP;
1645}
1646
1647int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
1648{
1649	/* Mirror missing mmap method error code */
1650	return -ENODEV;
1651}
1652
1653ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
1654{
1655	ssize_t res;
1656	struct msghdr msg = {.msg_flags = flags};
1657	struct kvec iov;
1658	char *kaddr = kmap(page);
1659	iov.iov_base = kaddr + offset;
1660	iov.iov_len = size;
1661	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
1662	kunmap(page);
1663	return res;
1664}
1665
1666/*
1667 *	Default Socket Callbacks
1668 */
1669
1670static void sock_def_wakeup(struct sock *sk)
1671{
1672	read_lock(&sk->sk_callback_lock);
1673	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1674		wake_up_interruptible_all(sk->sk_sleep);
1675	read_unlock(&sk->sk_callback_lock);
1676}
1677
1678static void sock_def_error_report(struct sock *sk)
1679{
1680	read_lock(&sk->sk_callback_lock);
1681	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1682		wake_up_interruptible_poll(sk->sk_sleep, POLLERR);
1683	sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
1684	read_unlock(&sk->sk_callback_lock);
1685}
1686
1687static void sock_def_readable(struct sock *sk, int len)
1688{
1689	read_lock(&sk->sk_callback_lock);
1690	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1691		wake_up_interruptible_sync_poll(sk->sk_sleep, POLLIN |
1692						POLLRDNORM | POLLRDBAND);
1693	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
1694	read_unlock(&sk->sk_callback_lock);
1695}
1696
1697static void sock_def_write_space(struct sock *sk)
1698{
1699	read_lock(&sk->sk_callback_lock);
1700
1701	/* Do not wake up a writer until he can make "significant"
1702	 * progress.  --DaveM
1703	 */
1704	if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
1705		if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1706			wake_up_interruptible_sync_poll(sk->sk_sleep, POLLOUT |
1707						POLLWRNORM | POLLWRBAND);
1708
1709		/* Should agree with poll, otherwise some programs break */
1710		if (sock_writeable(sk))
1711			sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
1712	}
1713
1714	read_unlock(&sk->sk_callback_lock);
1715}
1716
1717static void sock_def_destruct(struct sock *sk)
1718{
1719	kfree(sk->sk_protinfo);
1720}
1721
1722void sk_send_sigurg(struct sock *sk)
1723{
1724	if (sk->sk_socket && sk->sk_socket->file)
1725		if (send_sigurg(&sk->sk_socket->file->f_owner))
1726			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
1727}
1728
1729void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1730		    unsigned long expires)
1731{
1732	if (!mod_timer(timer, expires))
1733		sock_hold(sk);
1734}
1735
1736EXPORT_SYMBOL(sk_reset_timer);
1737
1738void sk_stop_timer(struct sock *sk, struct timer_list* timer)
1739{
1740	if (timer_pending(timer) && del_timer(timer))
1741		__sock_put(sk);
1742}
1743
1744EXPORT_SYMBOL(sk_stop_timer);
1745
1746void sock_init_data(struct socket *sock, struct sock *sk)
1747{
1748	skb_queue_head_init(&sk->sk_receive_queue);
1749	skb_queue_head_init(&sk->sk_write_queue);
1750	skb_queue_head_init(&sk->sk_error_queue);
1751#ifdef CONFIG_NET_DMA
1752	skb_queue_head_init(&sk->sk_async_wait_queue);
1753#endif
1754
1755	sk->sk_send_head	=	NULL;
1756
1757	init_timer(&sk->sk_timer);
1758
1759	sk->sk_allocation	=	GFP_KERNEL;
1760	sk->sk_rcvbuf		=	sysctl_rmem_default;
1761	sk->sk_sndbuf		=	sysctl_wmem_default;
1762	sk->sk_state		=	TCP_CLOSE;
1763	sk_set_socket(sk, sock);
1764
1765	sock_set_flag(sk, SOCK_ZAPPED);
1766
1767	if (sock) {
1768		sk->sk_type	=	sock->type;
1769		sk->sk_sleep	=	&sock->wait;
1770		sock->sk	=	sk;
1771	} else
1772		sk->sk_sleep	=	NULL;
1773
1774	rwlock_init(&sk->sk_dst_lock);
1775	rwlock_init(&sk->sk_callback_lock);
1776	lockdep_set_class_and_name(&sk->sk_callback_lock,
1777			af_callback_keys + sk->sk_family,
1778			af_family_clock_key_strings[sk->sk_family]);
1779
1780	sk->sk_state_change	=	sock_def_wakeup;
1781	sk->sk_data_ready	=	sock_def_readable;
1782	sk->sk_write_space	=	sock_def_write_space;
1783	sk->sk_error_report	=	sock_def_error_report;
1784	sk->sk_destruct		=	sock_def_destruct;
1785
1786	sk->sk_sndmsg_page	=	NULL;
1787	sk->sk_sndmsg_off	=	0;
1788
1789	sk->sk_peercred.pid 	=	0;
1790	sk->sk_peercred.uid	=	-1;
1791	sk->sk_peercred.gid	=	-1;
1792	sk->sk_write_pending	=	0;
1793	sk->sk_rcvlowat		=	1;
1794	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
1795	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
1796
1797	sk->sk_stamp = ktime_set(-1L, 0);
1798
1799	atomic_set(&sk->sk_refcnt, 1);
1800	atomic_set(&sk->sk_drops, 0);
1801}
1802
1803void lock_sock_nested(struct sock *sk, int subclass)
1804{
1805	might_sleep();
1806	spin_lock_bh(&sk->sk_lock.slock);
1807	if (sk->sk_lock.owned)
1808		__lock_sock(sk);
1809	sk->sk_lock.owned = 1;
1810	spin_unlock(&sk->sk_lock.slock);
1811	/*
1812	 * The sk_lock has mutex_lock() semantics here:
1813	 */
1814	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
1815	local_bh_enable();
1816}
1817
1818EXPORT_SYMBOL(lock_sock_nested);
1819
1820void release_sock(struct sock *sk)
1821{
1822	/*
1823	 * The sk_lock has mutex_unlock() semantics:
1824	 */
1825	mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1826
1827	spin_lock_bh(&sk->sk_lock.slock);
1828	if (sk->sk_backlog.tail)
1829		__release_sock(sk);
1830	sk->sk_lock.owned = 0;
1831	if (waitqueue_active(&sk->sk_lock.wq))
1832		wake_up(&sk->sk_lock.wq);
1833	spin_unlock_bh(&sk->sk_lock.slock);
1834}
1835EXPORT_SYMBOL(release_sock);
1836
1837int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
1838{
1839	struct timeval tv;
1840	if (!sock_flag(sk, SOCK_TIMESTAMP))
1841		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
1842	tv = ktime_to_timeval(sk->sk_stamp);
1843	if (tv.tv_sec == -1)
1844		return -ENOENT;
1845	if (tv.tv_sec == 0) {
1846		sk->sk_stamp = ktime_get_real();
1847		tv = ktime_to_timeval(sk->sk_stamp);
1848	}
1849	return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
1850}
1851EXPORT_SYMBOL(sock_get_timestamp);
1852
1853int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
1854{
1855	struct timespec ts;
1856	if (!sock_flag(sk, SOCK_TIMESTAMP))
1857		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
1858	ts = ktime_to_timespec(sk->sk_stamp);
1859	if (ts.tv_sec == -1)
1860		return -ENOENT;
1861	if (ts.tv_sec == 0) {
1862		sk->sk_stamp = ktime_get_real();
1863		ts = ktime_to_timespec(sk->sk_stamp);
1864	}
1865	return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
1866}
1867EXPORT_SYMBOL(sock_get_timestampns);
1868
1869void sock_enable_timestamp(struct sock *sk, int flag)
1870{
1871	if (!sock_flag(sk, flag)) {
1872		sock_set_flag(sk, flag);
1873		/*
1874		 * we just set one of the two flags which require net
1875		 * time stamping, but time stamping might have been on
1876		 * already because of the other one
1877		 */
1878		if (!sock_flag(sk,
1879				flag == SOCK_TIMESTAMP ?
1880				SOCK_TIMESTAMPING_RX_SOFTWARE :
1881				SOCK_TIMESTAMP))
1882			net_enable_timestamp();
1883	}
1884}
1885
1886/*
1887 *	Get a socket option on an socket.
1888 *
1889 *	FIX: POSIX 1003.1g is very ambiguous here. It states that
1890 *	asynchronous errors should be reported by getsockopt. We assume
1891 *	this means if you specify SO_ERROR (otherwise whats the point of it).
1892 */
1893int sock_common_getsockopt(struct socket *sock, int level, int optname,
1894			   char __user *optval, int __user *optlen)
1895{
1896	struct sock *sk = sock->sk;
1897
1898	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1899}
1900
1901EXPORT_SYMBOL(sock_common_getsockopt);
1902
1903#ifdef CONFIG_COMPAT
1904int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
1905				  char __user *optval, int __user *optlen)
1906{
1907	struct sock *sk = sock->sk;
1908
1909	if (sk->sk_prot->compat_getsockopt != NULL)
1910		return sk->sk_prot->compat_getsockopt(sk, level, optname,
1911						      optval, optlen);
1912	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1913}
1914EXPORT_SYMBOL(compat_sock_common_getsockopt);
1915#endif
1916
1917int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1918			struct msghdr *msg, size_t size, int flags)
1919{
1920	struct sock *sk = sock->sk;
1921	int addr_len = 0;
1922	int err;
1923
1924	err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
1925				   flags & ~MSG_DONTWAIT, &addr_len);
1926	if (err >= 0)
1927		msg->msg_namelen = addr_len;
1928	return err;
1929}
1930
1931EXPORT_SYMBOL(sock_common_recvmsg);
1932
1933/*
1934 *	Set socket options on an inet socket.
1935 */
1936int sock_common_setsockopt(struct socket *sock, int level, int optname,
1937			   char __user *optval, int optlen)
1938{
1939	struct sock *sk = sock->sk;
1940
1941	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
1942}
1943
1944EXPORT_SYMBOL(sock_common_setsockopt);
1945
1946#ifdef CONFIG_COMPAT
1947int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
1948				  char __user *optval, int optlen)
1949{
1950	struct sock *sk = sock->sk;
1951
1952	if (sk->sk_prot->compat_setsockopt != NULL)
1953		return sk->sk_prot->compat_setsockopt(sk, level, optname,
1954						      optval, optlen);
1955	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
1956}
1957EXPORT_SYMBOL(compat_sock_common_setsockopt);
1958#endif
1959
1960void sk_common_release(struct sock *sk)
1961{
1962	if (sk->sk_prot->destroy)
1963		sk->sk_prot->destroy(sk);
1964
1965	/*
1966	 * Observation: when sock_common_release is called, processes have
1967	 * no access to socket. But net still has.
1968	 * Step one, detach it from networking:
1969	 *
1970	 * A. Remove from hash tables.
1971	 */
1972
1973	sk->sk_prot->unhash(sk);
1974
1975	/*
1976	 * In this point socket cannot receive new packets, but it is possible
1977	 * that some packets are in flight because some CPU runs receiver and
1978	 * did hash table lookup before we unhashed socket. They will achieve
1979	 * receive queue and will be purged by socket destructor.
1980	 *
1981	 * Also we still have packets pending on receive queue and probably,
1982	 * our own packets waiting in device queues. sock_destroy will drain
1983	 * receive queue, but transmitted packets will delay socket destruction
1984	 * until the last reference will be released.
1985	 */
1986
1987	sock_orphan(sk);
1988
1989	xfrm_sk_free_policy(sk);
1990
1991	sk_refcnt_debug_release(sk);
1992	sock_put(sk);
1993}
1994
1995EXPORT_SYMBOL(sk_common_release);
1996
1997static DEFINE_RWLOCK(proto_list_lock);
1998static LIST_HEAD(proto_list);
1999
2000#ifdef CONFIG_PROC_FS
2001#define PROTO_INUSE_NR	64	/* should be enough for the first time */
2002struct prot_inuse {
2003	int val[PROTO_INUSE_NR];
2004};
2005
2006static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2007
2008#ifdef CONFIG_NET_NS
2009void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2010{
2011	int cpu = smp_processor_id();
2012	per_cpu_ptr(net->core.inuse, cpu)->val[prot->inuse_idx] += val;
2013}
2014EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2015
2016int sock_prot_inuse_get(struct net *net, struct proto *prot)
2017{
2018	int cpu, idx = prot->inuse_idx;
2019	int res = 0;
2020
2021	for_each_possible_cpu(cpu)
2022		res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2023
2024	return res >= 0 ? res : 0;
2025}
2026EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2027
2028static int sock_inuse_init_net(struct net *net)
2029{
2030	net->core.inuse = alloc_percpu(struct prot_inuse);
2031	return net->core.inuse ? 0 : -ENOMEM;
2032}
2033
2034static void sock_inuse_exit_net(struct net *net)
2035{
2036	free_percpu(net->core.inuse);
2037}
2038
2039static struct pernet_operations net_inuse_ops = {
2040	.init = sock_inuse_init_net,
2041	.exit = sock_inuse_exit_net,
2042};
2043
2044static __init int net_inuse_init(void)
2045{
2046	if (register_pernet_subsys(&net_inuse_ops))
2047		panic("Cannot initialize net inuse counters");
2048
2049	return 0;
2050}
2051
2052core_initcall(net_inuse_init);
2053#else
2054static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2055
2056void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2057{
2058	__get_cpu_var(prot_inuse).val[prot->inuse_idx] += val;
2059}
2060EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2061
2062int sock_prot_inuse_get(struct net *net, struct proto *prot)
2063{
2064	int cpu, idx = prot->inuse_idx;
2065	int res = 0;
2066
2067	for_each_possible_cpu(cpu)
2068		res += per_cpu(prot_inuse, cpu).val[idx];
2069
2070	return res >= 0 ? res : 0;
2071}
2072EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2073#endif
2074
2075static void assign_proto_idx(struct proto *prot)
2076{
2077	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2078
2079	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2080		printk(KERN_ERR "PROTO_INUSE_NR exhausted\n");
2081		return;
2082	}
2083
2084	set_bit(prot->inuse_idx, proto_inuse_idx);
2085}
2086
2087static void release_proto_idx(struct proto *prot)
2088{
2089	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2090		clear_bit(prot->inuse_idx, proto_inuse_idx);
2091}
2092#else
2093static inline void assign_proto_idx(struct proto *prot)
2094{
2095}
2096
2097static inline void release_proto_idx(struct proto *prot)
2098{
2099}
2100#endif
2101
2102int proto_register(struct proto *prot, int alloc_slab)
2103{
2104	if (alloc_slab) {
2105		prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2106					SLAB_HWCACHE_ALIGN | prot->slab_flags,
2107					NULL);
2108
2109		if (prot->slab == NULL) {
2110			printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n",
2111			       prot->name);
2112			goto out;
2113		}
2114
2115		if (prot->rsk_prot != NULL) {
2116			static const char mask[] = "request_sock_%s";
2117
2118			prot->rsk_prot->slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
2119			if (prot->rsk_prot->slab_name == NULL)
2120				goto out_free_sock_slab;
2121
2122			sprintf(prot->rsk_prot->slab_name, mask, prot->name);
2123			prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
2124								 prot->rsk_prot->obj_size, 0,
2125								 SLAB_HWCACHE_ALIGN, NULL);
2126
2127			if (prot->rsk_prot->slab == NULL) {
2128				printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n",
2129				       prot->name);
2130				goto out_free_request_sock_slab_name;
2131			}
2132		}
2133
2134		if (prot->twsk_prot != NULL) {
2135			static const char mask[] = "tw_sock_%s";
2136
2137			prot->twsk_prot->twsk_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
2138
2139			if (prot->twsk_prot->twsk_slab_name == NULL)
2140				goto out_free_request_sock_slab;
2141
2142			sprintf(prot->twsk_prot->twsk_slab_name, mask, prot->name);
2143			prot->twsk_prot->twsk_slab =
2144				kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2145						  prot->twsk_prot->twsk_obj_size,
2146						  0,
2147						  SLAB_HWCACHE_ALIGN |
2148							prot->slab_flags,
2149						  NULL);
2150			if (prot->twsk_prot->twsk_slab == NULL)
2151				goto out_free_timewait_sock_slab_name;
2152		}
2153	}
2154
2155	write_lock(&proto_list_lock);
2156	list_add(&prot->node, &proto_list);
2157	assign_proto_idx(prot);
2158	write_unlock(&proto_list_lock);
2159	return 0;
2160
2161out_free_timewait_sock_slab_name:
2162	kfree(prot->twsk_prot->twsk_slab_name);
2163out_free_request_sock_slab:
2164	if (prot->rsk_prot && prot->rsk_prot->slab) {
2165		kmem_cache_destroy(prot->rsk_prot->slab);
2166		prot->rsk_prot->slab = NULL;
2167	}
2168out_free_request_sock_slab_name:
2169	kfree(prot->rsk_prot->slab_name);
2170out_free_sock_slab:
2171	kmem_cache_destroy(prot->slab);
2172	prot->slab = NULL;
2173out:
2174	return -ENOBUFS;
2175}
2176
2177EXPORT_SYMBOL(proto_register);
2178
2179void proto_unregister(struct proto *prot)
2180{
2181	write_lock(&proto_list_lock);
2182	release_proto_idx(prot);
2183	list_del(&prot->node);
2184	write_unlock(&proto_list_lock);
2185
2186	if (prot->slab != NULL) {
2187		kmem_cache_destroy(prot->slab);
2188		prot->slab = NULL;
2189	}
2190
2191	if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2192		kmem_cache_destroy(prot->rsk_prot->slab);
2193		kfree(prot->rsk_prot->slab_name);
2194		prot->rsk_prot->slab = NULL;
2195	}
2196
2197	if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2198		kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2199		kfree(prot->twsk_prot->twsk_slab_name);
2200		prot->twsk_prot->twsk_slab = NULL;
2201	}
2202}
2203
2204EXPORT_SYMBOL(proto_unregister);
2205
2206#ifdef CONFIG_PROC_FS
2207static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2208	__acquires(proto_list_lock)
2209{
2210	read_lock(&proto_list_lock);
2211	return seq_list_start_head(&proto_list, *pos);
2212}
2213
2214static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2215{
2216	return seq_list_next(v, &proto_list, pos);
2217}
2218
2219static void proto_seq_stop(struct seq_file *seq, void *v)
2220	__releases(proto_list_lock)
2221{
2222	read_unlock(&proto_list_lock);
2223}
2224
2225static char proto_method_implemented(const void *method)
2226{
2227	return method == NULL ? 'n' : 'y';
2228}
2229
2230static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2231{
2232	seq_printf(seq, "%-9s %4u %6d  %6d   %-3s %6u   %-3s  %-10s "
2233			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2234		   proto->name,
2235		   proto->obj_size,
2236		   sock_prot_inuse_get(seq_file_net(seq), proto),
2237		   proto->memory_allocated != NULL ? atomic_read(proto->memory_allocated) : -1,
2238		   proto->memory_pressure != NULL ? *proto->memory_pressure ? "yes" : "no" : "NI",
2239		   proto->max_header,
2240		   proto->slab == NULL ? "no" : "yes",
2241		   module_name(proto->owner),
2242		   proto_method_implemented(proto->close),
2243		   proto_method_implemented(proto->connect),
2244		   proto_method_implemented(proto->disconnect),
2245		   proto_method_implemented(proto->accept),
2246		   proto_method_implemented(proto->ioctl),
2247		   proto_method_implemented(proto->init),
2248		   proto_method_implemented(proto->destroy),
2249		   proto_method_implemented(proto->shutdown),
2250		   proto_method_implemented(proto->setsockopt),
2251		   proto_method_implemented(proto->getsockopt),
2252		   proto_method_implemented(proto->sendmsg),
2253		   proto_method_implemented(proto->recvmsg),
2254		   proto_method_implemented(proto->sendpage),
2255		   proto_method_implemented(proto->bind),
2256		   proto_method_implemented(proto->backlog_rcv),
2257		   proto_method_implemented(proto->hash),
2258		   proto_method_implemented(proto->unhash),
2259		   proto_method_implemented(proto->get_port),
2260		   proto_method_implemented(proto->enter_memory_pressure));
2261}
2262
2263static int proto_seq_show(struct seq_file *seq, void *v)
2264{
2265	if (v == &proto_list)
2266		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2267			   "protocol",
2268			   "size",
2269			   "sockets",
2270			   "memory",
2271			   "press",
2272			   "maxhdr",
2273			   "slab",
2274			   "module",
2275			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2276	else
2277		proto_seq_printf(seq, list_entry(v, struct proto, node));
2278	return 0;
2279}
2280
2281static const struct seq_operations proto_seq_ops = {
2282	.start  = proto_seq_start,
2283	.next   = proto_seq_next,
2284	.stop   = proto_seq_stop,
2285	.show   = proto_seq_show,
2286};
2287
2288static int proto_seq_open(struct inode *inode, struct file *file)
2289{
2290	return seq_open_net(inode, file, &proto_seq_ops,
2291			    sizeof(struct seq_net_private));
2292}
2293
2294static const struct file_operations proto_seq_fops = {
2295	.owner		= THIS_MODULE,
2296	.open		= proto_seq_open,
2297	.read		= seq_read,
2298	.llseek		= seq_lseek,
2299	.release	= seq_release_net,
2300};
2301
2302static __net_init int proto_init_net(struct net *net)
2303{
2304	if (!proc_net_fops_create(net, "protocols", S_IRUGO, &proto_seq_fops))
2305		return -ENOMEM;
2306
2307	return 0;
2308}
2309
2310static __net_exit void proto_exit_net(struct net *net)
2311{
2312	proc_net_remove(net, "protocols");
2313}
2314
2315
2316static __net_initdata struct pernet_operations proto_net_ops = {
2317	.init = proto_init_net,
2318	.exit = proto_exit_net,
2319};
2320
2321static int __init proto_init(void)
2322{
2323	return register_pernet_subsys(&proto_net_ops);
2324}
2325
2326subsys_initcall(proto_init);
2327
2328#endif /* PROC_FS */
2329
2330EXPORT_SYMBOL(sk_alloc);
2331EXPORT_SYMBOL(sk_free);
2332EXPORT_SYMBOL(sk_send_sigurg);
2333EXPORT_SYMBOL(sock_alloc_send_skb);
2334EXPORT_SYMBOL(sock_init_data);
2335EXPORT_SYMBOL(sock_kfree_s);
2336EXPORT_SYMBOL(sock_kmalloc);
2337EXPORT_SYMBOL(sock_no_accept);
2338EXPORT_SYMBOL(sock_no_bind);
2339EXPORT_SYMBOL(sock_no_connect);
2340EXPORT_SYMBOL(sock_no_getname);
2341EXPORT_SYMBOL(sock_no_getsockopt);
2342EXPORT_SYMBOL(sock_no_ioctl);
2343EXPORT_SYMBOL(sock_no_listen);
2344EXPORT_SYMBOL(sock_no_mmap);
2345EXPORT_SYMBOL(sock_no_poll);
2346EXPORT_SYMBOL(sock_no_recvmsg);
2347EXPORT_SYMBOL(sock_no_sendmsg);
2348EXPORT_SYMBOL(sock_no_sendpage);
2349EXPORT_SYMBOL(sock_no_setsockopt);
2350EXPORT_SYMBOL(sock_no_shutdown);
2351EXPORT_SYMBOL(sock_no_socketpair);
2352EXPORT_SYMBOL(sock_rfree);
2353EXPORT_SYMBOL(sock_setsockopt);
2354EXPORT_SYMBOL(sock_wfree);
2355EXPORT_SYMBOL(sock_wmalloc);
2356EXPORT_SYMBOL(sock_i_uid);
2357EXPORT_SYMBOL(sock_i_ino);
2358EXPORT_SYMBOL(sysctl_optmem_max);
2359