sock.c revision b4942af65028c5eb516fdd9053020ccb2ee186ce
1/*
2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
3 *		operating system.  INET is implemented using the  BSD Socket
4 *		interface as the means of communication with the user level.
5 *
6 *		Generic socket support routines. Memory allocators, socket lock/release
7 *		handler for protocols to use and generic option handler.
8 *
9 *
10 * Authors:	Ross Biro
11 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 *		Florian La Roche, <flla@stud.uni-sb.de>
13 *		Alan Cox, <A.Cox@swansea.ac.uk>
14 *
15 * Fixes:
16 *		Alan Cox	: 	Numerous verify_area() problems
17 *		Alan Cox	:	Connecting on a connecting socket
18 *					now returns an error for tcp.
19 *		Alan Cox	:	sock->protocol is set correctly.
20 *					and is not sometimes left as 0.
21 *		Alan Cox	:	connect handles icmp errors on a
22 *					connect properly. Unfortunately there
23 *					is a restart syscall nasty there. I
24 *					can't match BSD without hacking the C
25 *					library. Ideas urgently sought!
26 *		Alan Cox	:	Disallow bind() to addresses that are
27 *					not ours - especially broadcast ones!!
28 *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
29 *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
30 *					instead they leave that for the DESTROY timer.
31 *		Alan Cox	:	Clean up error flag in accept
32 *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
33 *					was buggy. Put a remove_sock() in the handler
34 *					for memory when we hit 0. Also altered the timer
35 *					code. The ACK stuff can wait and needs major
36 *					TCP layer surgery.
37 *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
38 *					and fixed timer/inet_bh race.
39 *		Alan Cox	:	Added zapped flag for TCP
40 *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
41 *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
43 *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
46 *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
47 *	Pauline Middelink	:	identd support
48 *		Alan Cox	:	Fixed connect() taking signals I think.
49 *		Alan Cox	:	SO_LINGER supported
50 *		Alan Cox	:	Error reporting fixes
51 *		Anonymous	:	inet_create tidied up (sk->reuse setting)
52 *		Alan Cox	:	inet sockets don't set sk->type!
53 *		Alan Cox	:	Split socket option code
54 *		Alan Cox	:	Callbacks
55 *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
56 *		Alex		:	Removed restriction on inet fioctl
57 *		Alan Cox	:	Splitting INET from NET core
58 *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
59 *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
60 *		Alan Cox	:	Split IP from generic code
61 *		Alan Cox	:	New kfree_skbmem()
62 *		Alan Cox	:	Make SO_DEBUG superuser only.
63 *		Alan Cox	:	Allow anyone to clear SO_DEBUG
64 *					(compatibility fix)
65 *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
66 *		Alan Cox	:	Allocator for a socket is settable.
67 *		Alan Cox	:	SO_ERROR includes soft errors.
68 *		Alan Cox	:	Allow NULL arguments on some SO_ opts
69 *		Alan Cox	: 	Generic socket allocation to make hooks
70 *					easier (suggested by Craig Metz).
71 *		Michael Pall	:	SO_ERROR returns positive errno again
72 *              Steve Whitehouse:       Added default destructor to free
73 *                                      protocol private data.
74 *              Steve Whitehouse:       Added various other default routines
75 *                                      common to several socket families.
76 *              Chris Evans     :       Call suser() check last on F_SETOWN
77 *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
79 *		Andi Kleen	:	Fix write_space callback
80 *		Chris Evans	:	Security fixes - signedness again
81 *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
82 *
83 * To Fix:
84 *
85 *
86 *		This program is free software; you can redistribute it and/or
87 *		modify it under the terms of the GNU General Public License
88 *		as published by the Free Software Foundation; either version
89 *		2 of the License, or (at your option) any later version.
90 */
91
92#include <linux/capability.h>
93#include <linux/errno.h>
94#include <linux/types.h>
95#include <linux/socket.h>
96#include <linux/in.h>
97#include <linux/kernel.h>
98#include <linux/module.h>
99#include <linux/proc_fs.h>
100#include <linux/seq_file.h>
101#include <linux/sched.h>
102#include <linux/timer.h>
103#include <linux/string.h>
104#include <linux/sockios.h>
105#include <linux/net.h>
106#include <linux/mm.h>
107#include <linux/slab.h>
108#include <linux/interrupt.h>
109#include <linux/poll.h>
110#include <linux/tcp.h>
111#include <linux/init.h>
112#include <linux/highmem.h>
113
114#include <asm/uaccess.h>
115#include <asm/system.h>
116
117#include <linux/netdevice.h>
118#include <net/protocol.h>
119#include <linux/skbuff.h>
120#include <net/net_namespace.h>
121#include <net/request_sock.h>
122#include <net/sock.h>
123#include <net/xfrm.h>
124#include <linux/ipsec.h>
125
126#include <linux/filter.h>
127
128#ifdef CONFIG_INET
129#include <net/tcp.h>
130#endif
131
132/*
133 * Each address family might have different locking rules, so we have
134 * one slock key per address family:
135 */
136static struct lock_class_key af_family_keys[AF_MAX];
137static struct lock_class_key af_family_slock_keys[AF_MAX];
138
139#ifdef CONFIG_DEBUG_LOCK_ALLOC
140/*
141 * Make lock validator output more readable. (we pre-construct these
142 * strings build-time, so that runtime initialization of socket
143 * locks is fast):
144 */
145static const char *af_family_key_strings[AF_MAX+1] = {
146  "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX"     , "sk_lock-AF_INET"     ,
147  "sk_lock-AF_AX25"  , "sk_lock-AF_IPX"      , "sk_lock-AF_APPLETALK",
148  "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE"   , "sk_lock-AF_ATMPVC"   ,
149  "sk_lock-AF_X25"   , "sk_lock-AF_INET6"    , "sk_lock-AF_ROSE"     ,
150  "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI"  , "sk_lock-AF_SECURITY" ,
151  "sk_lock-AF_KEY"   , "sk_lock-AF_NETLINK"  , "sk_lock-AF_PACKET"   ,
152  "sk_lock-AF_ASH"   , "sk_lock-AF_ECONET"   , "sk_lock-AF_ATMSVC"   ,
153  "sk_lock-21"       , "sk_lock-AF_SNA"      , "sk_lock-AF_IRDA"     ,
154  "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE"  , "sk_lock-AF_LLC"      ,
155  "sk_lock-27"       , "sk_lock-28"          , "sk_lock-AF_CAN"      ,
156  "sk_lock-AF_TIPC"  , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV"        ,
157  "sk_lock-AF_RXRPC" , "sk_lock-AF_MAX"
158};
159static const char *af_family_slock_key_strings[AF_MAX+1] = {
160  "slock-AF_UNSPEC", "slock-AF_UNIX"     , "slock-AF_INET"     ,
161  "slock-AF_AX25"  , "slock-AF_IPX"      , "slock-AF_APPLETALK",
162  "slock-AF_NETROM", "slock-AF_BRIDGE"   , "slock-AF_ATMPVC"   ,
163  "slock-AF_X25"   , "slock-AF_INET6"    , "slock-AF_ROSE"     ,
164  "slock-AF_DECnet", "slock-AF_NETBEUI"  , "slock-AF_SECURITY" ,
165  "slock-AF_KEY"   , "slock-AF_NETLINK"  , "slock-AF_PACKET"   ,
166  "slock-AF_ASH"   , "slock-AF_ECONET"   , "slock-AF_ATMSVC"   ,
167  "slock-21"       , "slock-AF_SNA"      , "slock-AF_IRDA"     ,
168  "slock-AF_PPPOX" , "slock-AF_WANPIPE"  , "slock-AF_LLC"      ,
169  "slock-27"       , "slock-28"          , "slock-AF_CAN"      ,
170  "slock-AF_TIPC"  , "slock-AF_BLUETOOTH", "slock-AF_IUCV"     ,
171  "slock-AF_RXRPC" , "slock-AF_MAX"
172};
173static const char *af_family_clock_key_strings[AF_MAX+1] = {
174  "clock-AF_UNSPEC", "clock-AF_UNIX"     , "clock-AF_INET"     ,
175  "clock-AF_AX25"  , "clock-AF_IPX"      , "clock-AF_APPLETALK",
176  "clock-AF_NETROM", "clock-AF_BRIDGE"   , "clock-AF_ATMPVC"   ,
177  "clock-AF_X25"   , "clock-AF_INET6"    , "clock-AF_ROSE"     ,
178  "clock-AF_DECnet", "clock-AF_NETBEUI"  , "clock-AF_SECURITY" ,
179  "clock-AF_KEY"   , "clock-AF_NETLINK"  , "clock-AF_PACKET"   ,
180  "clock-AF_ASH"   , "clock-AF_ECONET"   , "clock-AF_ATMSVC"   ,
181  "clock-21"       , "clock-AF_SNA"      , "clock-AF_IRDA"     ,
182  "clock-AF_PPPOX" , "clock-AF_WANPIPE"  , "clock-AF_LLC"      ,
183  "clock-27"       , "clock-28"          , "clock-AF_CAN"      ,
184  "clock-AF_TIPC"  , "clock-AF_BLUETOOTH", "clock-AF_IUCV"     ,
185  "clock-AF_RXRPC" , "clock-AF_MAX"
186};
187#endif
188
189/*
190 * sk_callback_lock locking rules are per-address-family,
191 * so split the lock classes by using a per-AF key:
192 */
193static struct lock_class_key af_callback_keys[AF_MAX];
194
195/* Take into consideration the size of the struct sk_buff overhead in the
196 * determination of these values, since that is non-constant across
197 * platforms.  This makes socket queueing behavior and performance
198 * not depend upon such differences.
199 */
200#define _SK_MEM_PACKETS		256
201#define _SK_MEM_OVERHEAD	(sizeof(struct sk_buff) + 256)
202#define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
203#define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
204
205/* Run time adjustable parameters. */
206__u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
207__u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
208__u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
209__u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
210
211/* Maximal space eaten by iovec or ancilliary data plus some space */
212int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
213
214static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
215{
216	struct timeval tv;
217
218	if (optlen < sizeof(tv))
219		return -EINVAL;
220	if (copy_from_user(&tv, optval, sizeof(tv)))
221		return -EFAULT;
222	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
223		return -EDOM;
224
225	if (tv.tv_sec < 0) {
226		static int warned __read_mostly;
227
228		*timeo_p = 0;
229		if (warned < 10 && net_ratelimit()) {
230			warned++;
231			printk(KERN_INFO "sock_set_timeout: `%s' (pid %d) "
232			       "tries to set negative timeout\n",
233				current->comm, task_pid_nr(current));
234		}
235		return 0;
236	}
237	*timeo_p = MAX_SCHEDULE_TIMEOUT;
238	if (tv.tv_sec == 0 && tv.tv_usec == 0)
239		return 0;
240	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
241		*timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
242	return 0;
243}
244
245static void sock_warn_obsolete_bsdism(const char *name)
246{
247	static int warned;
248	static char warncomm[TASK_COMM_LEN];
249	if (strcmp(warncomm, current->comm) && warned < 5) {
250		strcpy(warncomm,  current->comm);
251		printk(KERN_WARNING "process `%s' is using obsolete "
252		       "%s SO_BSDCOMPAT\n", warncomm, name);
253		warned++;
254	}
255}
256
257static void sock_disable_timestamp(struct sock *sk)
258{
259	if (sock_flag(sk, SOCK_TIMESTAMP)) {
260		sock_reset_flag(sk, SOCK_TIMESTAMP);
261		net_disable_timestamp();
262	}
263}
264
265
266int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
267{
268	int err = 0;
269	int skb_len;
270
271	/* Cast sk->rcvbuf to unsigned... It's pointless, but reduces
272	   number of warnings when compiling with -W --ANK
273	 */
274	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
275	    (unsigned)sk->sk_rcvbuf) {
276		err = -ENOMEM;
277		goto out;
278	}
279
280	err = sk_filter(sk, skb);
281	if (err)
282		goto out;
283
284	if (!sk_rmem_schedule(sk, skb->truesize)) {
285		err = -ENOBUFS;
286		goto out;
287	}
288
289	skb->dev = NULL;
290	skb_set_owner_r(skb, sk);
291
292	/* Cache the SKB length before we tack it onto the receive
293	 * queue.  Once it is added it no longer belongs to us and
294	 * may be freed by other threads of control pulling packets
295	 * from the queue.
296	 */
297	skb_len = skb->len;
298
299	skb_queue_tail(&sk->sk_receive_queue, skb);
300
301	if (!sock_flag(sk, SOCK_DEAD))
302		sk->sk_data_ready(sk, skb_len);
303out:
304	return err;
305}
306EXPORT_SYMBOL(sock_queue_rcv_skb);
307
308int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
309{
310	int rc = NET_RX_SUCCESS;
311
312	if (sk_filter(sk, skb))
313		goto discard_and_relse;
314
315	skb->dev = NULL;
316
317	if (nested)
318		bh_lock_sock_nested(sk);
319	else
320		bh_lock_sock(sk);
321	if (!sock_owned_by_user(sk)) {
322		/*
323		 * trylock + unlock semantics:
324		 */
325		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
326
327		rc = sk->sk_backlog_rcv(sk, skb);
328
329		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
330	} else
331		sk_add_backlog(sk, skb);
332	bh_unlock_sock(sk);
333out:
334	sock_put(sk);
335	return rc;
336discard_and_relse:
337	kfree_skb(skb);
338	goto out;
339}
340EXPORT_SYMBOL(sk_receive_skb);
341
342struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
343{
344	struct dst_entry *dst = sk->sk_dst_cache;
345
346	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
347		sk->sk_dst_cache = NULL;
348		dst_release(dst);
349		return NULL;
350	}
351
352	return dst;
353}
354EXPORT_SYMBOL(__sk_dst_check);
355
356struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
357{
358	struct dst_entry *dst = sk_dst_get(sk);
359
360	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
361		sk_dst_reset(sk);
362		dst_release(dst);
363		return NULL;
364	}
365
366	return dst;
367}
368EXPORT_SYMBOL(sk_dst_check);
369
370static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
371{
372	int ret = -ENOPROTOOPT;
373#ifdef CONFIG_NETDEVICES
374	struct net *net = sock_net(sk);
375	char devname[IFNAMSIZ];
376	int index;
377
378	/* Sorry... */
379	ret = -EPERM;
380	if (!capable(CAP_NET_RAW))
381		goto out;
382
383	ret = -EINVAL;
384	if (optlen < 0)
385		goto out;
386
387	/* Bind this socket to a particular device like "eth0",
388	 * as specified in the passed interface name. If the
389	 * name is "" or the option length is zero the socket
390	 * is not bound.
391	 */
392	if (optlen > IFNAMSIZ - 1)
393		optlen = IFNAMSIZ - 1;
394	memset(devname, 0, sizeof(devname));
395
396	ret = -EFAULT;
397	if (copy_from_user(devname, optval, optlen))
398		goto out;
399
400	if (devname[0] == '\0') {
401		index = 0;
402	} else {
403		struct net_device *dev = dev_get_by_name(net, devname);
404
405		ret = -ENODEV;
406		if (!dev)
407			goto out;
408
409		index = dev->ifindex;
410		dev_put(dev);
411	}
412
413	lock_sock(sk);
414	sk->sk_bound_dev_if = index;
415	sk_dst_reset(sk);
416	release_sock(sk);
417
418	ret = 0;
419
420out:
421#endif
422
423	return ret;
424}
425
426static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
427{
428	if (valbool)
429		sock_set_flag(sk, bit);
430	else
431		sock_reset_flag(sk, bit);
432}
433
434/*
435 *	This is meant for all protocols to use and covers goings on
436 *	at the socket level. Everything here is generic.
437 */
438
439int sock_setsockopt(struct socket *sock, int level, int optname,
440		    char __user *optval, int optlen)
441{
442	struct sock *sk=sock->sk;
443	int val;
444	int valbool;
445	struct linger ling;
446	int ret = 0;
447
448	/*
449	 *	Options without arguments
450	 */
451
452	if (optname == SO_BINDTODEVICE)
453		return sock_bindtodevice(sk, optval, optlen);
454
455	if (optlen < sizeof(int))
456		return -EINVAL;
457
458	if (get_user(val, (int __user *)optval))
459		return -EFAULT;
460
461	valbool = val?1:0;
462
463	lock_sock(sk);
464
465	switch(optname) {
466	case SO_DEBUG:
467		if (val && !capable(CAP_NET_ADMIN)) {
468			ret = -EACCES;
469		} else
470			sock_valbool_flag(sk, SOCK_DBG, valbool);
471		break;
472	case SO_REUSEADDR:
473		sk->sk_reuse = valbool;
474		break;
475	case SO_TYPE:
476	case SO_ERROR:
477		ret = -ENOPROTOOPT;
478		break;
479	case SO_DONTROUTE:
480		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
481		break;
482	case SO_BROADCAST:
483		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
484		break;
485	case SO_SNDBUF:
486		/* Don't error on this BSD doesn't and if you think
487		   about it this is right. Otherwise apps have to
488		   play 'guess the biggest size' games. RCVBUF/SNDBUF
489		   are treated in BSD as hints */
490
491		if (val > sysctl_wmem_max)
492			val = sysctl_wmem_max;
493set_sndbuf:
494		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
495		if ((val * 2) < SOCK_MIN_SNDBUF)
496			sk->sk_sndbuf = SOCK_MIN_SNDBUF;
497		else
498			sk->sk_sndbuf = val * 2;
499
500		/*
501		 *	Wake up sending tasks if we
502		 *	upped the value.
503		 */
504		sk->sk_write_space(sk);
505		break;
506
507	case SO_SNDBUFFORCE:
508		if (!capable(CAP_NET_ADMIN)) {
509			ret = -EPERM;
510			break;
511		}
512		goto set_sndbuf;
513
514	case SO_RCVBUF:
515		/* Don't error on this BSD doesn't and if you think
516		   about it this is right. Otherwise apps have to
517		   play 'guess the biggest size' games. RCVBUF/SNDBUF
518		   are treated in BSD as hints */
519
520		if (val > sysctl_rmem_max)
521			val = sysctl_rmem_max;
522set_rcvbuf:
523		sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
524		/*
525		 * We double it on the way in to account for
526		 * "struct sk_buff" etc. overhead.   Applications
527		 * assume that the SO_RCVBUF setting they make will
528		 * allow that much actual data to be received on that
529		 * socket.
530		 *
531		 * Applications are unaware that "struct sk_buff" and
532		 * other overheads allocate from the receive buffer
533		 * during socket buffer allocation.
534		 *
535		 * And after considering the possible alternatives,
536		 * returning the value we actually used in getsockopt
537		 * is the most desirable behavior.
538		 */
539		if ((val * 2) < SOCK_MIN_RCVBUF)
540			sk->sk_rcvbuf = SOCK_MIN_RCVBUF;
541		else
542			sk->sk_rcvbuf = val * 2;
543		break;
544
545	case SO_RCVBUFFORCE:
546		if (!capable(CAP_NET_ADMIN)) {
547			ret = -EPERM;
548			break;
549		}
550		goto set_rcvbuf;
551
552	case SO_KEEPALIVE:
553#ifdef CONFIG_INET
554		if (sk->sk_protocol == IPPROTO_TCP)
555			tcp_set_keepalive(sk, valbool);
556#endif
557		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
558		break;
559
560	case SO_OOBINLINE:
561		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
562		break;
563
564	case SO_NO_CHECK:
565		sk->sk_no_check = valbool;
566		break;
567
568	case SO_PRIORITY:
569		if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
570			sk->sk_priority = val;
571		else
572			ret = -EPERM;
573		break;
574
575	case SO_LINGER:
576		if (optlen < sizeof(ling)) {
577			ret = -EINVAL;	/* 1003.1g */
578			break;
579		}
580		if (copy_from_user(&ling,optval,sizeof(ling))) {
581			ret = -EFAULT;
582			break;
583		}
584		if (!ling.l_onoff)
585			sock_reset_flag(sk, SOCK_LINGER);
586		else {
587#if (BITS_PER_LONG == 32)
588			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
589				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
590			else
591#endif
592				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
593			sock_set_flag(sk, SOCK_LINGER);
594		}
595		break;
596
597	case SO_BSDCOMPAT:
598		sock_warn_obsolete_bsdism("setsockopt");
599		break;
600
601	case SO_PASSCRED:
602		if (valbool)
603			set_bit(SOCK_PASSCRED, &sock->flags);
604		else
605			clear_bit(SOCK_PASSCRED, &sock->flags);
606		break;
607
608	case SO_TIMESTAMP:
609	case SO_TIMESTAMPNS:
610		if (valbool)  {
611			if (optname == SO_TIMESTAMP)
612				sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
613			else
614				sock_set_flag(sk, SOCK_RCVTSTAMPNS);
615			sock_set_flag(sk, SOCK_RCVTSTAMP);
616			sock_enable_timestamp(sk);
617		} else {
618			sock_reset_flag(sk, SOCK_RCVTSTAMP);
619			sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
620		}
621		break;
622
623	case SO_RCVLOWAT:
624		if (val < 0)
625			val = INT_MAX;
626		sk->sk_rcvlowat = val ? : 1;
627		break;
628
629	case SO_RCVTIMEO:
630		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
631		break;
632
633	case SO_SNDTIMEO:
634		ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
635		break;
636
637	case SO_ATTACH_FILTER:
638		ret = -EINVAL;
639		if (optlen == sizeof(struct sock_fprog)) {
640			struct sock_fprog fprog;
641
642			ret = -EFAULT;
643			if (copy_from_user(&fprog, optval, sizeof(fprog)))
644				break;
645
646			ret = sk_attach_filter(&fprog, sk);
647		}
648		break;
649
650	case SO_DETACH_FILTER:
651		ret = sk_detach_filter(sk);
652		break;
653
654	case SO_PASSSEC:
655		if (valbool)
656			set_bit(SOCK_PASSSEC, &sock->flags);
657		else
658			clear_bit(SOCK_PASSSEC, &sock->flags);
659		break;
660	case SO_MARK:
661		if (!capable(CAP_NET_ADMIN))
662			ret = -EPERM;
663		else {
664			sk->sk_mark = val;
665		}
666		break;
667
668		/* We implement the SO_SNDLOWAT etc to
669		   not be settable (1003.1g 5.3) */
670	default:
671		ret = -ENOPROTOOPT;
672		break;
673	}
674	release_sock(sk);
675	return ret;
676}
677
678
679int sock_getsockopt(struct socket *sock, int level, int optname,
680		    char __user *optval, int __user *optlen)
681{
682	struct sock *sk = sock->sk;
683
684	union {
685		int val;
686		struct linger ling;
687		struct timeval tm;
688	} v;
689
690	unsigned int lv = sizeof(int);
691	int len;
692
693	if (get_user(len, optlen))
694		return -EFAULT;
695	if (len < 0)
696		return -EINVAL;
697
698	switch(optname) {
699	case SO_DEBUG:
700		v.val = sock_flag(sk, SOCK_DBG);
701		break;
702
703	case SO_DONTROUTE:
704		v.val = sock_flag(sk, SOCK_LOCALROUTE);
705		break;
706
707	case SO_BROADCAST:
708		v.val = !!sock_flag(sk, SOCK_BROADCAST);
709		break;
710
711	case SO_SNDBUF:
712		v.val = sk->sk_sndbuf;
713		break;
714
715	case SO_RCVBUF:
716		v.val = sk->sk_rcvbuf;
717		break;
718
719	case SO_REUSEADDR:
720		v.val = sk->sk_reuse;
721		break;
722
723	case SO_KEEPALIVE:
724		v.val = !!sock_flag(sk, SOCK_KEEPOPEN);
725		break;
726
727	case SO_TYPE:
728		v.val = sk->sk_type;
729		break;
730
731	case SO_ERROR:
732		v.val = -sock_error(sk);
733		if (v.val==0)
734			v.val = xchg(&sk->sk_err_soft, 0);
735		break;
736
737	case SO_OOBINLINE:
738		v.val = !!sock_flag(sk, SOCK_URGINLINE);
739		break;
740
741	case SO_NO_CHECK:
742		v.val = sk->sk_no_check;
743		break;
744
745	case SO_PRIORITY:
746		v.val = sk->sk_priority;
747		break;
748
749	case SO_LINGER:
750		lv		= sizeof(v.ling);
751		v.ling.l_onoff	= !!sock_flag(sk, SOCK_LINGER);
752		v.ling.l_linger	= sk->sk_lingertime / HZ;
753		break;
754
755	case SO_BSDCOMPAT:
756		sock_warn_obsolete_bsdism("getsockopt");
757		break;
758
759	case SO_TIMESTAMP:
760		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
761				!sock_flag(sk, SOCK_RCVTSTAMPNS);
762		break;
763
764	case SO_TIMESTAMPNS:
765		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
766		break;
767
768	case SO_RCVTIMEO:
769		lv=sizeof(struct timeval);
770		if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
771			v.tm.tv_sec = 0;
772			v.tm.tv_usec = 0;
773		} else {
774			v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
775			v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
776		}
777		break;
778
779	case SO_SNDTIMEO:
780		lv=sizeof(struct timeval);
781		if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
782			v.tm.tv_sec = 0;
783			v.tm.tv_usec = 0;
784		} else {
785			v.tm.tv_sec = sk->sk_sndtimeo / HZ;
786			v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
787		}
788		break;
789
790	case SO_RCVLOWAT:
791		v.val = sk->sk_rcvlowat;
792		break;
793
794	case SO_SNDLOWAT:
795		v.val=1;
796		break;
797
798	case SO_PASSCRED:
799		v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0;
800		break;
801
802	case SO_PEERCRED:
803		if (len > sizeof(sk->sk_peercred))
804			len = sizeof(sk->sk_peercred);
805		if (copy_to_user(optval, &sk->sk_peercred, len))
806			return -EFAULT;
807		goto lenout;
808
809	case SO_PEERNAME:
810	{
811		char address[128];
812
813		if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
814			return -ENOTCONN;
815		if (lv < len)
816			return -EINVAL;
817		if (copy_to_user(optval, address, len))
818			return -EFAULT;
819		goto lenout;
820	}
821
822	/* Dubious BSD thing... Probably nobody even uses it, but
823	 * the UNIX standard wants it for whatever reason... -DaveM
824	 */
825	case SO_ACCEPTCONN:
826		v.val = sk->sk_state == TCP_LISTEN;
827		break;
828
829	case SO_PASSSEC:
830		v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0;
831		break;
832
833	case SO_PEERSEC:
834		return security_socket_getpeersec_stream(sock, optval, optlen, len);
835
836	case SO_MARK:
837		v.val = sk->sk_mark;
838		break;
839
840	default:
841		return -ENOPROTOOPT;
842	}
843
844	if (len > lv)
845		len = lv;
846	if (copy_to_user(optval, &v, len))
847		return -EFAULT;
848lenout:
849	if (put_user(len, optlen))
850		return -EFAULT;
851	return 0;
852}
853
854/*
855 * Initialize an sk_lock.
856 *
857 * (We also register the sk_lock with the lock validator.)
858 */
859static inline void sock_lock_init(struct sock *sk)
860{
861	sock_lock_init_class_and_name(sk,
862			af_family_slock_key_strings[sk->sk_family],
863			af_family_slock_keys + sk->sk_family,
864			af_family_key_strings[sk->sk_family],
865			af_family_keys + sk->sk_family);
866}
867
868static void sock_copy(struct sock *nsk, const struct sock *osk)
869{
870#ifdef CONFIG_SECURITY_NETWORK
871	void *sptr = nsk->sk_security;
872#endif
873
874	memcpy(nsk, osk, osk->sk_prot->obj_size);
875#ifdef CONFIG_SECURITY_NETWORK
876	nsk->sk_security = sptr;
877	security_sk_clone(osk, nsk);
878#endif
879}
880
881static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
882		int family)
883{
884	struct sock *sk;
885	struct kmem_cache *slab;
886
887	slab = prot->slab;
888	if (slab != NULL)
889		sk = kmem_cache_alloc(slab, priority);
890	else
891		sk = kmalloc(prot->obj_size, priority);
892
893	if (sk != NULL) {
894		if (security_sk_alloc(sk, family, priority))
895			goto out_free;
896
897		if (!try_module_get(prot->owner))
898			goto out_free_sec;
899	}
900
901	return sk;
902
903out_free_sec:
904	security_sk_free(sk);
905out_free:
906	if (slab != NULL)
907		kmem_cache_free(slab, sk);
908	else
909		kfree(sk);
910	return NULL;
911}
912
913static void sk_prot_free(struct proto *prot, struct sock *sk)
914{
915	struct kmem_cache *slab;
916	struct module *owner;
917
918	owner = prot->owner;
919	slab = prot->slab;
920
921	security_sk_free(sk);
922	if (slab != NULL)
923		kmem_cache_free(slab, sk);
924	else
925		kfree(sk);
926	module_put(owner);
927}
928
929/**
930 *	sk_alloc - All socket objects are allocated here
931 *	@net: the applicable net namespace
932 *	@family: protocol family
933 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
934 *	@prot: struct proto associated with this new sock instance
935 */
936struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
937		      struct proto *prot)
938{
939	struct sock *sk;
940
941	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
942	if (sk) {
943		sk->sk_family = family;
944		/*
945		 * See comment in struct sock definition to understand
946		 * why we need sk_prot_creator -acme
947		 */
948		sk->sk_prot = sk->sk_prot_creator = prot;
949		sock_lock_init(sk);
950		sock_net_set(sk, get_net(net));
951	}
952
953	return sk;
954}
955
956void sk_free(struct sock *sk)
957{
958	struct sk_filter *filter;
959
960	if (sk->sk_destruct)
961		sk->sk_destruct(sk);
962
963	filter = rcu_dereference(sk->sk_filter);
964	if (filter) {
965		sk_filter_uncharge(sk, filter);
966		rcu_assign_pointer(sk->sk_filter, NULL);
967	}
968
969	sock_disable_timestamp(sk);
970
971	if (atomic_read(&sk->sk_omem_alloc))
972		printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n",
973		       __func__, atomic_read(&sk->sk_omem_alloc));
974
975	put_net(sock_net(sk));
976	sk_prot_free(sk->sk_prot_creator, sk);
977}
978
979/*
980 * Last sock_put should drop referrence to sk->sk_net. It has already
981 * been dropped in sk_change_net. Taking referrence to stopping namespace
982 * is not an option.
983 * Take referrence to a socket to remove it from hash _alive_ and after that
984 * destroy it in the context of init_net.
985 */
986void sk_release_kernel(struct sock *sk)
987{
988	if (sk == NULL || sk->sk_socket == NULL)
989		return;
990
991	sock_hold(sk);
992	sock_release(sk->sk_socket);
993	release_net(sock_net(sk));
994	sock_net_set(sk, get_net(&init_net));
995	sock_put(sk);
996}
997EXPORT_SYMBOL(sk_release_kernel);
998
999struct sock *sk_clone(const struct sock *sk, const gfp_t priority)
1000{
1001	struct sock *newsk;
1002
1003	newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1004	if (newsk != NULL) {
1005		struct sk_filter *filter;
1006
1007		sock_copy(newsk, sk);
1008
1009		/* SANITY */
1010		get_net(sock_net(newsk));
1011		sk_node_init(&newsk->sk_node);
1012		sock_lock_init(newsk);
1013		bh_lock_sock(newsk);
1014		newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
1015
1016		atomic_set(&newsk->sk_rmem_alloc, 0);
1017		atomic_set(&newsk->sk_wmem_alloc, 0);
1018		atomic_set(&newsk->sk_omem_alloc, 0);
1019		skb_queue_head_init(&newsk->sk_receive_queue);
1020		skb_queue_head_init(&newsk->sk_write_queue);
1021#ifdef CONFIG_NET_DMA
1022		skb_queue_head_init(&newsk->sk_async_wait_queue);
1023#endif
1024
1025		rwlock_init(&newsk->sk_dst_lock);
1026		rwlock_init(&newsk->sk_callback_lock);
1027		lockdep_set_class_and_name(&newsk->sk_callback_lock,
1028				af_callback_keys + newsk->sk_family,
1029				af_family_clock_key_strings[newsk->sk_family]);
1030
1031		newsk->sk_dst_cache	= NULL;
1032		newsk->sk_wmem_queued	= 0;
1033		newsk->sk_forward_alloc = 0;
1034		newsk->sk_send_head	= NULL;
1035		newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1036
1037		sock_reset_flag(newsk, SOCK_DONE);
1038		skb_queue_head_init(&newsk->sk_error_queue);
1039
1040		filter = newsk->sk_filter;
1041		if (filter != NULL)
1042			sk_filter_charge(newsk, filter);
1043
1044		if (unlikely(xfrm_sk_clone_policy(newsk))) {
1045			/* It is still raw copy of parent, so invalidate
1046			 * destructor and make plain sk_free() */
1047			newsk->sk_destruct = NULL;
1048			sk_free(newsk);
1049			newsk = NULL;
1050			goto out;
1051		}
1052
1053		newsk->sk_err	   = 0;
1054		newsk->sk_priority = 0;
1055		atomic_set(&newsk->sk_refcnt, 2);
1056
1057		/*
1058		 * Increment the counter in the same struct proto as the master
1059		 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1060		 * is the same as sk->sk_prot->socks, as this field was copied
1061		 * with memcpy).
1062		 *
1063		 * This _changes_ the previous behaviour, where
1064		 * tcp_create_openreq_child always was incrementing the
1065		 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1066		 * to be taken into account in all callers. -acme
1067		 */
1068		sk_refcnt_debug_inc(newsk);
1069		sk_set_socket(newsk, NULL);
1070		newsk->sk_sleep	 = NULL;
1071
1072		if (newsk->sk_prot->sockets_allocated)
1073			atomic_inc(newsk->sk_prot->sockets_allocated);
1074	}
1075out:
1076	return newsk;
1077}
1078
1079EXPORT_SYMBOL_GPL(sk_clone);
1080
1081void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1082{
1083	__sk_dst_set(sk, dst);
1084	sk->sk_route_caps = dst->dev->features;
1085	if (sk->sk_route_caps & NETIF_F_GSO)
1086		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1087	if (sk_can_gso(sk)) {
1088		if (dst->header_len) {
1089			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1090		} else {
1091			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1092			sk->sk_gso_max_size = dst->dev->gso_max_size;
1093		}
1094	}
1095}
1096EXPORT_SYMBOL_GPL(sk_setup_caps);
1097
1098void __init sk_init(void)
1099{
1100	if (num_physpages <= 4096) {
1101		sysctl_wmem_max = 32767;
1102		sysctl_rmem_max = 32767;
1103		sysctl_wmem_default = 32767;
1104		sysctl_rmem_default = 32767;
1105	} else if (num_physpages >= 131072) {
1106		sysctl_wmem_max = 131071;
1107		sysctl_rmem_max = 131071;
1108	}
1109}
1110
1111/*
1112 *	Simple resource managers for sockets.
1113 */
1114
1115
1116/*
1117 * Write buffer destructor automatically called from kfree_skb.
1118 */
1119void sock_wfree(struct sk_buff *skb)
1120{
1121	struct sock *sk = skb->sk;
1122
1123	/* In case it might be waiting for more memory. */
1124	atomic_sub(skb->truesize, &sk->sk_wmem_alloc);
1125	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE))
1126		sk->sk_write_space(sk);
1127	sock_put(sk);
1128}
1129
1130/*
1131 * Read buffer destructor automatically called from kfree_skb.
1132 */
1133void sock_rfree(struct sk_buff *skb)
1134{
1135	struct sock *sk = skb->sk;
1136
1137	skb_truesize_check(skb);
1138	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1139	sk_mem_uncharge(skb->sk, skb->truesize);
1140}
1141
1142
1143int sock_i_uid(struct sock *sk)
1144{
1145	int uid;
1146
1147	read_lock(&sk->sk_callback_lock);
1148	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1149	read_unlock(&sk->sk_callback_lock);
1150	return uid;
1151}
1152
1153unsigned long sock_i_ino(struct sock *sk)
1154{
1155	unsigned long ino;
1156
1157	read_lock(&sk->sk_callback_lock);
1158	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1159	read_unlock(&sk->sk_callback_lock);
1160	return ino;
1161}
1162
1163/*
1164 * Allocate a skb from the socket's send buffer.
1165 */
1166struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1167			     gfp_t priority)
1168{
1169	if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1170		struct sk_buff * skb = alloc_skb(size, priority);
1171		if (skb) {
1172			skb_set_owner_w(skb, sk);
1173			return skb;
1174		}
1175	}
1176	return NULL;
1177}
1178
1179/*
1180 * Allocate a skb from the socket's receive buffer.
1181 */
1182struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1183			     gfp_t priority)
1184{
1185	if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1186		struct sk_buff *skb = alloc_skb(size, priority);
1187		if (skb) {
1188			skb_set_owner_r(skb, sk);
1189			return skb;
1190		}
1191	}
1192	return NULL;
1193}
1194
1195/*
1196 * Allocate a memory block from the socket's option memory buffer.
1197 */
1198void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1199{
1200	if ((unsigned)size <= sysctl_optmem_max &&
1201	    atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1202		void *mem;
1203		/* First do the add, to avoid the race if kmalloc
1204		 * might sleep.
1205		 */
1206		atomic_add(size, &sk->sk_omem_alloc);
1207		mem = kmalloc(size, priority);
1208		if (mem)
1209			return mem;
1210		atomic_sub(size, &sk->sk_omem_alloc);
1211	}
1212	return NULL;
1213}
1214
1215/*
1216 * Free an option memory block.
1217 */
1218void sock_kfree_s(struct sock *sk, void *mem, int size)
1219{
1220	kfree(mem);
1221	atomic_sub(size, &sk->sk_omem_alloc);
1222}
1223
1224/* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1225   I think, these locks should be removed for datagram sockets.
1226 */
1227static long sock_wait_for_wmem(struct sock * sk, long timeo)
1228{
1229	DEFINE_WAIT(wait);
1230
1231	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1232	for (;;) {
1233		if (!timeo)
1234			break;
1235		if (signal_pending(current))
1236			break;
1237		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1238		prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1239		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1240			break;
1241		if (sk->sk_shutdown & SEND_SHUTDOWN)
1242			break;
1243		if (sk->sk_err)
1244			break;
1245		timeo = schedule_timeout(timeo);
1246	}
1247	finish_wait(sk->sk_sleep, &wait);
1248	return timeo;
1249}
1250
1251
1252/*
1253 *	Generic send/receive buffer handlers
1254 */
1255
1256static struct sk_buff *sock_alloc_send_pskb(struct sock *sk,
1257					    unsigned long header_len,
1258					    unsigned long data_len,
1259					    int noblock, int *errcode)
1260{
1261	struct sk_buff *skb;
1262	gfp_t gfp_mask;
1263	long timeo;
1264	int err;
1265
1266	gfp_mask = sk->sk_allocation;
1267	if (gfp_mask & __GFP_WAIT)
1268		gfp_mask |= __GFP_REPEAT;
1269
1270	timeo = sock_sndtimeo(sk, noblock);
1271	while (1) {
1272		err = sock_error(sk);
1273		if (err != 0)
1274			goto failure;
1275
1276		err = -EPIPE;
1277		if (sk->sk_shutdown & SEND_SHUTDOWN)
1278			goto failure;
1279
1280		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1281			skb = alloc_skb(header_len, gfp_mask);
1282			if (skb) {
1283				int npages;
1284				int i;
1285
1286				/* No pages, we're done... */
1287				if (!data_len)
1288					break;
1289
1290				npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1291				skb->truesize += data_len;
1292				skb_shinfo(skb)->nr_frags = npages;
1293				for (i = 0; i < npages; i++) {
1294					struct page *page;
1295					skb_frag_t *frag;
1296
1297					page = alloc_pages(sk->sk_allocation, 0);
1298					if (!page) {
1299						err = -ENOBUFS;
1300						skb_shinfo(skb)->nr_frags = i;
1301						kfree_skb(skb);
1302						goto failure;
1303					}
1304
1305					frag = &skb_shinfo(skb)->frags[i];
1306					frag->page = page;
1307					frag->page_offset = 0;
1308					frag->size = (data_len >= PAGE_SIZE ?
1309						      PAGE_SIZE :
1310						      data_len);
1311					data_len -= PAGE_SIZE;
1312				}
1313
1314				/* Full success... */
1315				break;
1316			}
1317			err = -ENOBUFS;
1318			goto failure;
1319		}
1320		set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1321		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1322		err = -EAGAIN;
1323		if (!timeo)
1324			goto failure;
1325		if (signal_pending(current))
1326			goto interrupted;
1327		timeo = sock_wait_for_wmem(sk, timeo);
1328	}
1329
1330	skb_set_owner_w(skb, sk);
1331	return skb;
1332
1333interrupted:
1334	err = sock_intr_errno(timeo);
1335failure:
1336	*errcode = err;
1337	return NULL;
1338}
1339
1340struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1341				    int noblock, int *errcode)
1342{
1343	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1344}
1345
1346static void __lock_sock(struct sock *sk)
1347{
1348	DEFINE_WAIT(wait);
1349
1350	for (;;) {
1351		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1352					TASK_UNINTERRUPTIBLE);
1353		spin_unlock_bh(&sk->sk_lock.slock);
1354		schedule();
1355		spin_lock_bh(&sk->sk_lock.slock);
1356		if (!sock_owned_by_user(sk))
1357			break;
1358	}
1359	finish_wait(&sk->sk_lock.wq, &wait);
1360}
1361
1362static void __release_sock(struct sock *sk)
1363{
1364	struct sk_buff *skb = sk->sk_backlog.head;
1365
1366	do {
1367		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1368		bh_unlock_sock(sk);
1369
1370		do {
1371			struct sk_buff *next = skb->next;
1372
1373			skb->next = NULL;
1374			sk->sk_backlog_rcv(sk, skb);
1375
1376			/*
1377			 * We are in process context here with softirqs
1378			 * disabled, use cond_resched_softirq() to preempt.
1379			 * This is safe to do because we've taken the backlog
1380			 * queue private:
1381			 */
1382			cond_resched_softirq();
1383
1384			skb = next;
1385		} while (skb != NULL);
1386
1387		bh_lock_sock(sk);
1388	} while ((skb = sk->sk_backlog.head) != NULL);
1389}
1390
1391/**
1392 * sk_wait_data - wait for data to arrive at sk_receive_queue
1393 * @sk:    sock to wait on
1394 * @timeo: for how long
1395 *
1396 * Now socket state including sk->sk_err is changed only under lock,
1397 * hence we may omit checks after joining wait queue.
1398 * We check receive queue before schedule() only as optimization;
1399 * it is very likely that release_sock() added new data.
1400 */
1401int sk_wait_data(struct sock *sk, long *timeo)
1402{
1403	int rc;
1404	DEFINE_WAIT(wait);
1405
1406	prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1407	set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1408	rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1409	clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1410	finish_wait(sk->sk_sleep, &wait);
1411	return rc;
1412}
1413
1414EXPORT_SYMBOL(sk_wait_data);
1415
1416/**
1417 *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1418 *	@sk: socket
1419 *	@size: memory size to allocate
1420 *	@kind: allocation type
1421 *
1422 *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1423 *	rmem allocation. This function assumes that protocols which have
1424 *	memory_pressure use sk_wmem_queued as write buffer accounting.
1425 */
1426int __sk_mem_schedule(struct sock *sk, int size, int kind)
1427{
1428	struct proto *prot = sk->sk_prot;
1429	int amt = sk_mem_pages(size);
1430	int allocated;
1431
1432	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
1433	allocated = atomic_add_return(amt, prot->memory_allocated);
1434
1435	/* Under limit. */
1436	if (allocated <= prot->sysctl_mem[0]) {
1437		if (prot->memory_pressure && *prot->memory_pressure)
1438			*prot->memory_pressure = 0;
1439		return 1;
1440	}
1441
1442	/* Under pressure. */
1443	if (allocated > prot->sysctl_mem[1])
1444		if (prot->enter_memory_pressure)
1445			prot->enter_memory_pressure(sk);
1446
1447	/* Over hard limit. */
1448	if (allocated > prot->sysctl_mem[2])
1449		goto suppress_allocation;
1450
1451	/* guarantee minimum buffer size under pressure */
1452	if (kind == SK_MEM_RECV) {
1453		if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
1454			return 1;
1455	} else { /* SK_MEM_SEND */
1456		if (sk->sk_type == SOCK_STREAM) {
1457			if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
1458				return 1;
1459		} else if (atomic_read(&sk->sk_wmem_alloc) <
1460			   prot->sysctl_wmem[0])
1461				return 1;
1462	}
1463
1464	if (prot->memory_pressure) {
1465		if (!*prot->memory_pressure ||
1466		    prot->sysctl_mem[2] > atomic_read(prot->sockets_allocated) *
1467		    sk_mem_pages(sk->sk_wmem_queued +
1468				 atomic_read(&sk->sk_rmem_alloc) +
1469				 sk->sk_forward_alloc))
1470			return 1;
1471	}
1472
1473suppress_allocation:
1474
1475	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
1476		sk_stream_moderate_sndbuf(sk);
1477
1478		/* Fail only if socket is _under_ its sndbuf.
1479		 * In this case we cannot block, so that we have to fail.
1480		 */
1481		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
1482			return 1;
1483	}
1484
1485	/* Alas. Undo changes. */
1486	sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
1487	atomic_sub(amt, prot->memory_allocated);
1488	return 0;
1489}
1490
1491EXPORT_SYMBOL(__sk_mem_schedule);
1492
1493/**
1494 *	__sk_reclaim - reclaim memory_allocated
1495 *	@sk: socket
1496 */
1497void __sk_mem_reclaim(struct sock *sk)
1498{
1499	struct proto *prot = sk->sk_prot;
1500
1501	atomic_sub(sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT,
1502		   prot->memory_allocated);
1503	sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
1504
1505	if (prot->memory_pressure && *prot->memory_pressure &&
1506	    (atomic_read(prot->memory_allocated) < prot->sysctl_mem[0]))
1507		*prot->memory_pressure = 0;
1508}
1509
1510EXPORT_SYMBOL(__sk_mem_reclaim);
1511
1512
1513/*
1514 * Set of default routines for initialising struct proto_ops when
1515 * the protocol does not support a particular function. In certain
1516 * cases where it makes no sense for a protocol to have a "do nothing"
1517 * function, some default processing is provided.
1518 */
1519
1520int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1521{
1522	return -EOPNOTSUPP;
1523}
1524
1525int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1526		    int len, int flags)
1527{
1528	return -EOPNOTSUPP;
1529}
1530
1531int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1532{
1533	return -EOPNOTSUPP;
1534}
1535
1536int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1537{
1538	return -EOPNOTSUPP;
1539}
1540
1541int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1542		    int *len, int peer)
1543{
1544	return -EOPNOTSUPP;
1545}
1546
1547unsigned int sock_no_poll(struct file * file, struct socket *sock, poll_table *pt)
1548{
1549	return 0;
1550}
1551
1552int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1553{
1554	return -EOPNOTSUPP;
1555}
1556
1557int sock_no_listen(struct socket *sock, int backlog)
1558{
1559	return -EOPNOTSUPP;
1560}
1561
1562int sock_no_shutdown(struct socket *sock, int how)
1563{
1564	return -EOPNOTSUPP;
1565}
1566
1567int sock_no_setsockopt(struct socket *sock, int level, int optname,
1568		    char __user *optval, int optlen)
1569{
1570	return -EOPNOTSUPP;
1571}
1572
1573int sock_no_getsockopt(struct socket *sock, int level, int optname,
1574		    char __user *optval, int __user *optlen)
1575{
1576	return -EOPNOTSUPP;
1577}
1578
1579int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1580		    size_t len)
1581{
1582	return -EOPNOTSUPP;
1583}
1584
1585int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1586		    size_t len, int flags)
1587{
1588	return -EOPNOTSUPP;
1589}
1590
1591int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
1592{
1593	/* Mirror missing mmap method error code */
1594	return -ENODEV;
1595}
1596
1597ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
1598{
1599	ssize_t res;
1600	struct msghdr msg = {.msg_flags = flags};
1601	struct kvec iov;
1602	char *kaddr = kmap(page);
1603	iov.iov_base = kaddr + offset;
1604	iov.iov_len = size;
1605	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
1606	kunmap(page);
1607	return res;
1608}
1609
1610/*
1611 *	Default Socket Callbacks
1612 */
1613
1614static void sock_def_wakeup(struct sock *sk)
1615{
1616	read_lock(&sk->sk_callback_lock);
1617	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1618		wake_up_interruptible_all(sk->sk_sleep);
1619	read_unlock(&sk->sk_callback_lock);
1620}
1621
1622static void sock_def_error_report(struct sock *sk)
1623{
1624	read_lock(&sk->sk_callback_lock);
1625	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1626		wake_up_interruptible(sk->sk_sleep);
1627	sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
1628	read_unlock(&sk->sk_callback_lock);
1629}
1630
1631static void sock_def_readable(struct sock *sk, int len)
1632{
1633	read_lock(&sk->sk_callback_lock);
1634	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1635		wake_up_interruptible_sync(sk->sk_sleep);
1636	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
1637	read_unlock(&sk->sk_callback_lock);
1638}
1639
1640static void sock_def_write_space(struct sock *sk)
1641{
1642	read_lock(&sk->sk_callback_lock);
1643
1644	/* Do not wake up a writer until he can make "significant"
1645	 * progress.  --DaveM
1646	 */
1647	if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
1648		if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1649			wake_up_interruptible_sync(sk->sk_sleep);
1650
1651		/* Should agree with poll, otherwise some programs break */
1652		if (sock_writeable(sk))
1653			sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
1654	}
1655
1656	read_unlock(&sk->sk_callback_lock);
1657}
1658
1659static void sock_def_destruct(struct sock *sk)
1660{
1661	kfree(sk->sk_protinfo);
1662}
1663
1664void sk_send_sigurg(struct sock *sk)
1665{
1666	if (sk->sk_socket && sk->sk_socket->file)
1667		if (send_sigurg(&sk->sk_socket->file->f_owner))
1668			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
1669}
1670
1671void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1672		    unsigned long expires)
1673{
1674	if (!mod_timer(timer, expires))
1675		sock_hold(sk);
1676}
1677
1678EXPORT_SYMBOL(sk_reset_timer);
1679
1680void sk_stop_timer(struct sock *sk, struct timer_list* timer)
1681{
1682	if (timer_pending(timer) && del_timer(timer))
1683		__sock_put(sk);
1684}
1685
1686EXPORT_SYMBOL(sk_stop_timer);
1687
1688void sock_init_data(struct socket *sock, struct sock *sk)
1689{
1690	skb_queue_head_init(&sk->sk_receive_queue);
1691	skb_queue_head_init(&sk->sk_write_queue);
1692	skb_queue_head_init(&sk->sk_error_queue);
1693#ifdef CONFIG_NET_DMA
1694	skb_queue_head_init(&sk->sk_async_wait_queue);
1695#endif
1696
1697	sk->sk_send_head	=	NULL;
1698
1699	init_timer(&sk->sk_timer);
1700
1701	sk->sk_allocation	=	GFP_KERNEL;
1702	sk->sk_rcvbuf		=	sysctl_rmem_default;
1703	sk->sk_sndbuf		=	sysctl_wmem_default;
1704	sk->sk_state		=	TCP_CLOSE;
1705	sk_set_socket(sk, sock);
1706
1707	sock_set_flag(sk, SOCK_ZAPPED);
1708
1709	if (sock) {
1710		sk->sk_type	=	sock->type;
1711		sk->sk_sleep	=	&sock->wait;
1712		sock->sk	=	sk;
1713	} else
1714		sk->sk_sleep	=	NULL;
1715
1716	rwlock_init(&sk->sk_dst_lock);
1717	rwlock_init(&sk->sk_callback_lock);
1718	lockdep_set_class_and_name(&sk->sk_callback_lock,
1719			af_callback_keys + sk->sk_family,
1720			af_family_clock_key_strings[sk->sk_family]);
1721
1722	sk->sk_state_change	=	sock_def_wakeup;
1723	sk->sk_data_ready	=	sock_def_readable;
1724	sk->sk_write_space	=	sock_def_write_space;
1725	sk->sk_error_report	=	sock_def_error_report;
1726	sk->sk_destruct		=	sock_def_destruct;
1727
1728	sk->sk_sndmsg_page	=	NULL;
1729	sk->sk_sndmsg_off	=	0;
1730
1731	sk->sk_peercred.pid 	=	0;
1732	sk->sk_peercred.uid	=	-1;
1733	sk->sk_peercred.gid	=	-1;
1734	sk->sk_write_pending	=	0;
1735	sk->sk_rcvlowat		=	1;
1736	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
1737	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
1738
1739	sk->sk_stamp = ktime_set(-1L, 0);
1740
1741	atomic_set(&sk->sk_refcnt, 1);
1742	atomic_set(&sk->sk_drops, 0);
1743}
1744
1745void lock_sock_nested(struct sock *sk, int subclass)
1746{
1747	might_sleep();
1748	spin_lock_bh(&sk->sk_lock.slock);
1749	if (sk->sk_lock.owned)
1750		__lock_sock(sk);
1751	sk->sk_lock.owned = 1;
1752	spin_unlock(&sk->sk_lock.slock);
1753	/*
1754	 * The sk_lock has mutex_lock() semantics here:
1755	 */
1756	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
1757	local_bh_enable();
1758}
1759
1760EXPORT_SYMBOL(lock_sock_nested);
1761
1762void release_sock(struct sock *sk)
1763{
1764	/*
1765	 * The sk_lock has mutex_unlock() semantics:
1766	 */
1767	mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1768
1769	spin_lock_bh(&sk->sk_lock.slock);
1770	if (sk->sk_backlog.tail)
1771		__release_sock(sk);
1772	sk->sk_lock.owned = 0;
1773	if (waitqueue_active(&sk->sk_lock.wq))
1774		wake_up(&sk->sk_lock.wq);
1775	spin_unlock_bh(&sk->sk_lock.slock);
1776}
1777EXPORT_SYMBOL(release_sock);
1778
1779int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
1780{
1781	struct timeval tv;
1782	if (!sock_flag(sk, SOCK_TIMESTAMP))
1783		sock_enable_timestamp(sk);
1784	tv = ktime_to_timeval(sk->sk_stamp);
1785	if (tv.tv_sec == -1)
1786		return -ENOENT;
1787	if (tv.tv_sec == 0) {
1788		sk->sk_stamp = ktime_get_real();
1789		tv = ktime_to_timeval(sk->sk_stamp);
1790	}
1791	return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
1792}
1793EXPORT_SYMBOL(sock_get_timestamp);
1794
1795int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
1796{
1797	struct timespec ts;
1798	if (!sock_flag(sk, SOCK_TIMESTAMP))
1799		sock_enable_timestamp(sk);
1800	ts = ktime_to_timespec(sk->sk_stamp);
1801	if (ts.tv_sec == -1)
1802		return -ENOENT;
1803	if (ts.tv_sec == 0) {
1804		sk->sk_stamp = ktime_get_real();
1805		ts = ktime_to_timespec(sk->sk_stamp);
1806	}
1807	return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
1808}
1809EXPORT_SYMBOL(sock_get_timestampns);
1810
1811void sock_enable_timestamp(struct sock *sk)
1812{
1813	if (!sock_flag(sk, SOCK_TIMESTAMP)) {
1814		sock_set_flag(sk, SOCK_TIMESTAMP);
1815		net_enable_timestamp();
1816	}
1817}
1818
1819/*
1820 *	Get a socket option on an socket.
1821 *
1822 *	FIX: POSIX 1003.1g is very ambiguous here. It states that
1823 *	asynchronous errors should be reported by getsockopt. We assume
1824 *	this means if you specify SO_ERROR (otherwise whats the point of it).
1825 */
1826int sock_common_getsockopt(struct socket *sock, int level, int optname,
1827			   char __user *optval, int __user *optlen)
1828{
1829	struct sock *sk = sock->sk;
1830
1831	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1832}
1833
1834EXPORT_SYMBOL(sock_common_getsockopt);
1835
1836#ifdef CONFIG_COMPAT
1837int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
1838				  char __user *optval, int __user *optlen)
1839{
1840	struct sock *sk = sock->sk;
1841
1842	if (sk->sk_prot->compat_getsockopt != NULL)
1843		return sk->sk_prot->compat_getsockopt(sk, level, optname,
1844						      optval, optlen);
1845	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1846}
1847EXPORT_SYMBOL(compat_sock_common_getsockopt);
1848#endif
1849
1850int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1851			struct msghdr *msg, size_t size, int flags)
1852{
1853	struct sock *sk = sock->sk;
1854	int addr_len = 0;
1855	int err;
1856
1857	err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
1858				   flags & ~MSG_DONTWAIT, &addr_len);
1859	if (err >= 0)
1860		msg->msg_namelen = addr_len;
1861	return err;
1862}
1863
1864EXPORT_SYMBOL(sock_common_recvmsg);
1865
1866/*
1867 *	Set socket options on an inet socket.
1868 */
1869int sock_common_setsockopt(struct socket *sock, int level, int optname,
1870			   char __user *optval, int optlen)
1871{
1872	struct sock *sk = sock->sk;
1873
1874	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
1875}
1876
1877EXPORT_SYMBOL(sock_common_setsockopt);
1878
1879#ifdef CONFIG_COMPAT
1880int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
1881				  char __user *optval, int optlen)
1882{
1883	struct sock *sk = sock->sk;
1884
1885	if (sk->sk_prot->compat_setsockopt != NULL)
1886		return sk->sk_prot->compat_setsockopt(sk, level, optname,
1887						      optval, optlen);
1888	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
1889}
1890EXPORT_SYMBOL(compat_sock_common_setsockopt);
1891#endif
1892
1893void sk_common_release(struct sock *sk)
1894{
1895	if (sk->sk_prot->destroy)
1896		sk->sk_prot->destroy(sk);
1897
1898	/*
1899	 * Observation: when sock_common_release is called, processes have
1900	 * no access to socket. But net still has.
1901	 * Step one, detach it from networking:
1902	 *
1903	 * A. Remove from hash tables.
1904	 */
1905
1906	sk->sk_prot->unhash(sk);
1907
1908	/*
1909	 * In this point socket cannot receive new packets, but it is possible
1910	 * that some packets are in flight because some CPU runs receiver and
1911	 * did hash table lookup before we unhashed socket. They will achieve
1912	 * receive queue and will be purged by socket destructor.
1913	 *
1914	 * Also we still have packets pending on receive queue and probably,
1915	 * our own packets waiting in device queues. sock_destroy will drain
1916	 * receive queue, but transmitted packets will delay socket destruction
1917	 * until the last reference will be released.
1918	 */
1919
1920	sock_orphan(sk);
1921
1922	xfrm_sk_free_policy(sk);
1923
1924	sk_refcnt_debug_release(sk);
1925	sock_put(sk);
1926}
1927
1928EXPORT_SYMBOL(sk_common_release);
1929
1930static DEFINE_RWLOCK(proto_list_lock);
1931static LIST_HEAD(proto_list);
1932
1933#ifdef CONFIG_PROC_FS
1934#define PROTO_INUSE_NR	64	/* should be enough for the first time */
1935struct prot_inuse {
1936	int val[PROTO_INUSE_NR];
1937};
1938
1939static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
1940
1941#ifdef CONFIG_NET_NS
1942void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
1943{
1944	int cpu = smp_processor_id();
1945	per_cpu_ptr(net->core.inuse, cpu)->val[prot->inuse_idx] += val;
1946}
1947EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
1948
1949int sock_prot_inuse_get(struct net *net, struct proto *prot)
1950{
1951	int cpu, idx = prot->inuse_idx;
1952	int res = 0;
1953
1954	for_each_possible_cpu(cpu)
1955		res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
1956
1957	return res >= 0 ? res : 0;
1958}
1959EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
1960
1961static int sock_inuse_init_net(struct net *net)
1962{
1963	net->core.inuse = alloc_percpu(struct prot_inuse);
1964	return net->core.inuse ? 0 : -ENOMEM;
1965}
1966
1967static void sock_inuse_exit_net(struct net *net)
1968{
1969	free_percpu(net->core.inuse);
1970}
1971
1972static struct pernet_operations net_inuse_ops = {
1973	.init = sock_inuse_init_net,
1974	.exit = sock_inuse_exit_net,
1975};
1976
1977static __init int net_inuse_init(void)
1978{
1979	if (register_pernet_subsys(&net_inuse_ops))
1980		panic("Cannot initialize net inuse counters");
1981
1982	return 0;
1983}
1984
1985core_initcall(net_inuse_init);
1986#else
1987static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
1988
1989void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
1990{
1991	__get_cpu_var(prot_inuse).val[prot->inuse_idx] += val;
1992}
1993EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
1994
1995int sock_prot_inuse_get(struct net *net, struct proto *prot)
1996{
1997	int cpu, idx = prot->inuse_idx;
1998	int res = 0;
1999
2000	for_each_possible_cpu(cpu)
2001		res += per_cpu(prot_inuse, cpu).val[idx];
2002
2003	return res >= 0 ? res : 0;
2004}
2005EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2006#endif
2007
2008static void assign_proto_idx(struct proto *prot)
2009{
2010	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2011
2012	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2013		printk(KERN_ERR "PROTO_INUSE_NR exhausted\n");
2014		return;
2015	}
2016
2017	set_bit(prot->inuse_idx, proto_inuse_idx);
2018}
2019
2020static void release_proto_idx(struct proto *prot)
2021{
2022	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2023		clear_bit(prot->inuse_idx, proto_inuse_idx);
2024}
2025#else
2026static inline void assign_proto_idx(struct proto *prot)
2027{
2028}
2029
2030static inline void release_proto_idx(struct proto *prot)
2031{
2032}
2033#endif
2034
2035int proto_register(struct proto *prot, int alloc_slab)
2036{
2037	char *request_sock_slab_name = NULL;
2038	char *timewait_sock_slab_name;
2039
2040	if (alloc_slab) {
2041		prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2042					       SLAB_HWCACHE_ALIGN, NULL);
2043
2044		if (prot->slab == NULL) {
2045			printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n",
2046			       prot->name);
2047			goto out;
2048		}
2049
2050		if (prot->rsk_prot != NULL) {
2051			static const char mask[] = "request_sock_%s";
2052
2053			request_sock_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
2054			if (request_sock_slab_name == NULL)
2055				goto out_free_sock_slab;
2056
2057			sprintf(request_sock_slab_name, mask, prot->name);
2058			prot->rsk_prot->slab = kmem_cache_create(request_sock_slab_name,
2059								 prot->rsk_prot->obj_size, 0,
2060								 SLAB_HWCACHE_ALIGN, NULL);
2061
2062			if (prot->rsk_prot->slab == NULL) {
2063				printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n",
2064				       prot->name);
2065				goto out_free_request_sock_slab_name;
2066			}
2067		}
2068
2069		if (prot->twsk_prot != NULL) {
2070			static const char mask[] = "tw_sock_%s";
2071
2072			timewait_sock_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
2073
2074			if (timewait_sock_slab_name == NULL)
2075				goto out_free_request_sock_slab;
2076
2077			sprintf(timewait_sock_slab_name, mask, prot->name);
2078			prot->twsk_prot->twsk_slab =
2079				kmem_cache_create(timewait_sock_slab_name,
2080						  prot->twsk_prot->twsk_obj_size,
2081						  0, SLAB_HWCACHE_ALIGN,
2082						  NULL);
2083			if (prot->twsk_prot->twsk_slab == NULL)
2084				goto out_free_timewait_sock_slab_name;
2085		}
2086	}
2087
2088	write_lock(&proto_list_lock);
2089	list_add(&prot->node, &proto_list);
2090	assign_proto_idx(prot);
2091	write_unlock(&proto_list_lock);
2092	return 0;
2093
2094out_free_timewait_sock_slab_name:
2095	kfree(timewait_sock_slab_name);
2096out_free_request_sock_slab:
2097	if (prot->rsk_prot && prot->rsk_prot->slab) {
2098		kmem_cache_destroy(prot->rsk_prot->slab);
2099		prot->rsk_prot->slab = NULL;
2100	}
2101out_free_request_sock_slab_name:
2102	kfree(request_sock_slab_name);
2103out_free_sock_slab:
2104	kmem_cache_destroy(prot->slab);
2105	prot->slab = NULL;
2106out:
2107	return -ENOBUFS;
2108}
2109
2110EXPORT_SYMBOL(proto_register);
2111
2112void proto_unregister(struct proto *prot)
2113{
2114	write_lock(&proto_list_lock);
2115	release_proto_idx(prot);
2116	list_del(&prot->node);
2117	write_unlock(&proto_list_lock);
2118
2119	if (prot->slab != NULL) {
2120		kmem_cache_destroy(prot->slab);
2121		prot->slab = NULL;
2122	}
2123
2124	if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2125		const char *name = kmem_cache_name(prot->rsk_prot->slab);
2126
2127		kmem_cache_destroy(prot->rsk_prot->slab);
2128		kfree(name);
2129		prot->rsk_prot->slab = NULL;
2130	}
2131
2132	if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2133		const char *name = kmem_cache_name(prot->twsk_prot->twsk_slab);
2134
2135		kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2136		kfree(name);
2137		prot->twsk_prot->twsk_slab = NULL;
2138	}
2139}
2140
2141EXPORT_SYMBOL(proto_unregister);
2142
2143#ifdef CONFIG_PROC_FS
2144static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2145	__acquires(proto_list_lock)
2146{
2147	read_lock(&proto_list_lock);
2148	return seq_list_start_head(&proto_list, *pos);
2149}
2150
2151static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2152{
2153	return seq_list_next(v, &proto_list, pos);
2154}
2155
2156static void proto_seq_stop(struct seq_file *seq, void *v)
2157	__releases(proto_list_lock)
2158{
2159	read_unlock(&proto_list_lock);
2160}
2161
2162static char proto_method_implemented(const void *method)
2163{
2164	return method == NULL ? 'n' : 'y';
2165}
2166
2167static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2168{
2169	seq_printf(seq, "%-9s %4u %6d  %6d   %-3s %6u   %-3s  %-10s "
2170			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2171		   proto->name,
2172		   proto->obj_size,
2173		   proto->sockets_allocated != NULL ? atomic_read(proto->sockets_allocated) : -1,
2174		   proto->memory_allocated != NULL ? atomic_read(proto->memory_allocated) : -1,
2175		   proto->memory_pressure != NULL ? *proto->memory_pressure ? "yes" : "no" : "NI",
2176		   proto->max_header,
2177		   proto->slab == NULL ? "no" : "yes",
2178		   module_name(proto->owner),
2179		   proto_method_implemented(proto->close),
2180		   proto_method_implemented(proto->connect),
2181		   proto_method_implemented(proto->disconnect),
2182		   proto_method_implemented(proto->accept),
2183		   proto_method_implemented(proto->ioctl),
2184		   proto_method_implemented(proto->init),
2185		   proto_method_implemented(proto->destroy),
2186		   proto_method_implemented(proto->shutdown),
2187		   proto_method_implemented(proto->setsockopt),
2188		   proto_method_implemented(proto->getsockopt),
2189		   proto_method_implemented(proto->sendmsg),
2190		   proto_method_implemented(proto->recvmsg),
2191		   proto_method_implemented(proto->sendpage),
2192		   proto_method_implemented(proto->bind),
2193		   proto_method_implemented(proto->backlog_rcv),
2194		   proto_method_implemented(proto->hash),
2195		   proto_method_implemented(proto->unhash),
2196		   proto_method_implemented(proto->get_port),
2197		   proto_method_implemented(proto->enter_memory_pressure));
2198}
2199
2200static int proto_seq_show(struct seq_file *seq, void *v)
2201{
2202	if (v == &proto_list)
2203		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2204			   "protocol",
2205			   "size",
2206			   "sockets",
2207			   "memory",
2208			   "press",
2209			   "maxhdr",
2210			   "slab",
2211			   "module",
2212			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2213	else
2214		proto_seq_printf(seq, list_entry(v, struct proto, node));
2215	return 0;
2216}
2217
2218static const struct seq_operations proto_seq_ops = {
2219	.start  = proto_seq_start,
2220	.next   = proto_seq_next,
2221	.stop   = proto_seq_stop,
2222	.show   = proto_seq_show,
2223};
2224
2225static int proto_seq_open(struct inode *inode, struct file *file)
2226{
2227	return seq_open(file, &proto_seq_ops);
2228}
2229
2230static const struct file_operations proto_seq_fops = {
2231	.owner		= THIS_MODULE,
2232	.open		= proto_seq_open,
2233	.read		= seq_read,
2234	.llseek		= seq_lseek,
2235	.release	= seq_release,
2236};
2237
2238static int __init proto_init(void)
2239{
2240	/* register /proc/net/protocols */
2241	return proc_net_fops_create(&init_net, "protocols", S_IRUGO, &proto_seq_fops) == NULL ? -ENOBUFS : 0;
2242}
2243
2244subsys_initcall(proto_init);
2245
2246#endif /* PROC_FS */
2247
2248EXPORT_SYMBOL(sk_alloc);
2249EXPORT_SYMBOL(sk_free);
2250EXPORT_SYMBOL(sk_send_sigurg);
2251EXPORT_SYMBOL(sock_alloc_send_skb);
2252EXPORT_SYMBOL(sock_init_data);
2253EXPORT_SYMBOL(sock_kfree_s);
2254EXPORT_SYMBOL(sock_kmalloc);
2255EXPORT_SYMBOL(sock_no_accept);
2256EXPORT_SYMBOL(sock_no_bind);
2257EXPORT_SYMBOL(sock_no_connect);
2258EXPORT_SYMBOL(sock_no_getname);
2259EXPORT_SYMBOL(sock_no_getsockopt);
2260EXPORT_SYMBOL(sock_no_ioctl);
2261EXPORT_SYMBOL(sock_no_listen);
2262EXPORT_SYMBOL(sock_no_mmap);
2263EXPORT_SYMBOL(sock_no_poll);
2264EXPORT_SYMBOL(sock_no_recvmsg);
2265EXPORT_SYMBOL(sock_no_sendmsg);
2266EXPORT_SYMBOL(sock_no_sendpage);
2267EXPORT_SYMBOL(sock_no_setsockopt);
2268EXPORT_SYMBOL(sock_no_shutdown);
2269EXPORT_SYMBOL(sock_no_socketpair);
2270EXPORT_SYMBOL(sock_rfree);
2271EXPORT_SYMBOL(sock_setsockopt);
2272EXPORT_SYMBOL(sock_wfree);
2273EXPORT_SYMBOL(sock_wmalloc);
2274EXPORT_SYMBOL(sock_i_uid);
2275EXPORT_SYMBOL(sock_i_ino);
2276EXPORT_SYMBOL(sysctl_optmem_max);
2277