sock.c revision b5606c2d4447e80b1d72406af4e78af1eda611d4
1/*
2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
3 *		operating system.  INET is implemented using the  BSD Socket
4 *		interface as the means of communication with the user level.
5 *
6 *		Generic socket support routines. Memory allocators, socket lock/release
7 *		handler for protocols to use and generic option handler.
8 *
9 *
10 * Version:	$Id: sock.c,v 1.117 2002/02/01 22:01:03 davem Exp $
11 *
12 * Authors:	Ross Biro
13 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
14 *		Florian La Roche, <flla@stud.uni-sb.de>
15 *		Alan Cox, <A.Cox@swansea.ac.uk>
16 *
17 * Fixes:
18 *		Alan Cox	: 	Numerous verify_area() problems
19 *		Alan Cox	:	Connecting on a connecting socket
20 *					now returns an error for tcp.
21 *		Alan Cox	:	sock->protocol is set correctly.
22 *					and is not sometimes left as 0.
23 *		Alan Cox	:	connect handles icmp errors on a
24 *					connect properly. Unfortunately there
25 *					is a restart syscall nasty there. I
26 *					can't match BSD without hacking the C
27 *					library. Ideas urgently sought!
28 *		Alan Cox	:	Disallow bind() to addresses that are
29 *					not ours - especially broadcast ones!!
30 *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
31 *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
32 *					instead they leave that for the DESTROY timer.
33 *		Alan Cox	:	Clean up error flag in accept
34 *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
35 *					was buggy. Put a remove_sock() in the handler
36 *					for memory when we hit 0. Also altered the timer
37 *					code. The ACK stuff can wait and needs major
38 *					TCP layer surgery.
39 *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
40 *					and fixed timer/inet_bh race.
41 *		Alan Cox	:	Added zapped flag for TCP
42 *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
43 *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
44 *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
45 *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
46 *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
47 *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
48 *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
49 *	Pauline Middelink	:	identd support
50 *		Alan Cox	:	Fixed connect() taking signals I think.
51 *		Alan Cox	:	SO_LINGER supported
52 *		Alan Cox	:	Error reporting fixes
53 *		Anonymous	:	inet_create tidied up (sk->reuse setting)
54 *		Alan Cox	:	inet sockets don't set sk->type!
55 *		Alan Cox	:	Split socket option code
56 *		Alan Cox	:	Callbacks
57 *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
58 *		Alex		:	Removed restriction on inet fioctl
59 *		Alan Cox	:	Splitting INET from NET core
60 *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
61 *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
62 *		Alan Cox	:	Split IP from generic code
63 *		Alan Cox	:	New kfree_skbmem()
64 *		Alan Cox	:	Make SO_DEBUG superuser only.
65 *		Alan Cox	:	Allow anyone to clear SO_DEBUG
66 *					(compatibility fix)
67 *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
68 *		Alan Cox	:	Allocator for a socket is settable.
69 *		Alan Cox	:	SO_ERROR includes soft errors.
70 *		Alan Cox	:	Allow NULL arguments on some SO_ opts
71 *		Alan Cox	: 	Generic socket allocation to make hooks
72 *					easier (suggested by Craig Metz).
73 *		Michael Pall	:	SO_ERROR returns positive errno again
74 *              Steve Whitehouse:       Added default destructor to free
75 *                                      protocol private data.
76 *              Steve Whitehouse:       Added various other default routines
77 *                                      common to several socket families.
78 *              Chris Evans     :       Call suser() check last on F_SETOWN
79 *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
80 *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
81 *		Andi Kleen	:	Fix write_space callback
82 *		Chris Evans	:	Security fixes - signedness again
83 *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
84 *
85 * To Fix:
86 *
87 *
88 *		This program is free software; you can redistribute it and/or
89 *		modify it under the terms of the GNU General Public License
90 *		as published by the Free Software Foundation; either version
91 *		2 of the License, or (at your option) any later version.
92 */
93
94#include <linux/capability.h>
95#include <linux/errno.h>
96#include <linux/types.h>
97#include <linux/socket.h>
98#include <linux/in.h>
99#include <linux/kernel.h>
100#include <linux/module.h>
101#include <linux/proc_fs.h>
102#include <linux/seq_file.h>
103#include <linux/sched.h>
104#include <linux/timer.h>
105#include <linux/string.h>
106#include <linux/sockios.h>
107#include <linux/net.h>
108#include <linux/mm.h>
109#include <linux/slab.h>
110#include <linux/interrupt.h>
111#include <linux/poll.h>
112#include <linux/tcp.h>
113#include <linux/init.h>
114#include <linux/highmem.h>
115
116#include <asm/uaccess.h>
117#include <asm/system.h>
118
119#include <linux/netdevice.h>
120#include <net/protocol.h>
121#include <linux/skbuff.h>
122#include <net/net_namespace.h>
123#include <net/request_sock.h>
124#include <net/sock.h>
125#include <net/xfrm.h>
126#include <linux/ipsec.h>
127
128#include <linux/filter.h>
129
130#ifdef CONFIG_INET
131#include <net/tcp.h>
132#endif
133
134/*
135 * Each address family might have different locking rules, so we have
136 * one slock key per address family:
137 */
138static struct lock_class_key af_family_keys[AF_MAX];
139static struct lock_class_key af_family_slock_keys[AF_MAX];
140
141#ifdef CONFIG_DEBUG_LOCK_ALLOC
142/*
143 * Make lock validator output more readable. (we pre-construct these
144 * strings build-time, so that runtime initialization of socket
145 * locks is fast):
146 */
147static const char *af_family_key_strings[AF_MAX+1] = {
148  "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX"     , "sk_lock-AF_INET"     ,
149  "sk_lock-AF_AX25"  , "sk_lock-AF_IPX"      , "sk_lock-AF_APPLETALK",
150  "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE"   , "sk_lock-AF_ATMPVC"   ,
151  "sk_lock-AF_X25"   , "sk_lock-AF_INET6"    , "sk_lock-AF_ROSE"     ,
152  "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI"  , "sk_lock-AF_SECURITY" ,
153  "sk_lock-AF_KEY"   , "sk_lock-AF_NETLINK"  , "sk_lock-AF_PACKET"   ,
154  "sk_lock-AF_ASH"   , "sk_lock-AF_ECONET"   , "sk_lock-AF_ATMSVC"   ,
155  "sk_lock-21"       , "sk_lock-AF_SNA"      , "sk_lock-AF_IRDA"     ,
156  "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE"  , "sk_lock-AF_LLC"      ,
157  "sk_lock-27"       , "sk_lock-28"          , "sk_lock-AF_CAN"      ,
158  "sk_lock-AF_TIPC"  , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV"        ,
159  "sk_lock-AF_RXRPC" , "sk_lock-AF_MAX"
160};
161static const char *af_family_slock_key_strings[AF_MAX+1] = {
162  "slock-AF_UNSPEC", "slock-AF_UNIX"     , "slock-AF_INET"     ,
163  "slock-AF_AX25"  , "slock-AF_IPX"      , "slock-AF_APPLETALK",
164  "slock-AF_NETROM", "slock-AF_BRIDGE"   , "slock-AF_ATMPVC"   ,
165  "slock-AF_X25"   , "slock-AF_INET6"    , "slock-AF_ROSE"     ,
166  "slock-AF_DECnet", "slock-AF_NETBEUI"  , "slock-AF_SECURITY" ,
167  "slock-AF_KEY"   , "slock-AF_NETLINK"  , "slock-AF_PACKET"   ,
168  "slock-AF_ASH"   , "slock-AF_ECONET"   , "slock-AF_ATMSVC"   ,
169  "slock-21"       , "slock-AF_SNA"      , "slock-AF_IRDA"     ,
170  "slock-AF_PPPOX" , "slock-AF_WANPIPE"  , "slock-AF_LLC"      ,
171  "slock-27"       , "slock-28"          , "slock-AF_CAN"      ,
172  "slock-AF_TIPC"  , "slock-AF_BLUETOOTH", "slock-AF_IUCV"     ,
173  "slock-AF_RXRPC" , "slock-AF_MAX"
174};
175static const char *af_family_clock_key_strings[AF_MAX+1] = {
176  "clock-AF_UNSPEC", "clock-AF_UNIX"     , "clock-AF_INET"     ,
177  "clock-AF_AX25"  , "clock-AF_IPX"      , "clock-AF_APPLETALK",
178  "clock-AF_NETROM", "clock-AF_BRIDGE"   , "clock-AF_ATMPVC"   ,
179  "clock-AF_X25"   , "clock-AF_INET6"    , "clock-AF_ROSE"     ,
180  "clock-AF_DECnet", "clock-AF_NETBEUI"  , "clock-AF_SECURITY" ,
181  "clock-AF_KEY"   , "clock-AF_NETLINK"  , "clock-AF_PACKET"   ,
182  "clock-AF_ASH"   , "clock-AF_ECONET"   , "clock-AF_ATMSVC"   ,
183  "clock-21"       , "clock-AF_SNA"      , "clock-AF_IRDA"     ,
184  "clock-AF_PPPOX" , "clock-AF_WANPIPE"  , "clock-AF_LLC"      ,
185  "clock-27"       , "clock-28"          , "clock-29"          ,
186  "clock-AF_TIPC"  , "clock-AF_BLUETOOTH", "clock-AF_IUCV"     ,
187  "clock-AF_RXRPC" , "clock-AF_MAX"
188};
189#endif
190
191/*
192 * sk_callback_lock locking rules are per-address-family,
193 * so split the lock classes by using a per-AF key:
194 */
195static struct lock_class_key af_callback_keys[AF_MAX];
196
197/* Take into consideration the size of the struct sk_buff overhead in the
198 * determination of these values, since that is non-constant across
199 * platforms.  This makes socket queueing behavior and performance
200 * not depend upon such differences.
201 */
202#define _SK_MEM_PACKETS		256
203#define _SK_MEM_OVERHEAD	(sizeof(struct sk_buff) + 256)
204#define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
205#define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
206
207/* Run time adjustable parameters. */
208__u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
209__u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
210__u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
211__u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
212
213/* Maximal space eaten by iovec or ancilliary data plus some space */
214int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
215
216static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
217{
218	struct timeval tv;
219
220	if (optlen < sizeof(tv))
221		return -EINVAL;
222	if (copy_from_user(&tv, optval, sizeof(tv)))
223		return -EFAULT;
224	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
225		return -EDOM;
226
227	if (tv.tv_sec < 0) {
228		static int warned __read_mostly;
229
230		*timeo_p = 0;
231		if (warned < 10 && net_ratelimit())
232			warned++;
233			printk(KERN_INFO "sock_set_timeout: `%s' (pid %d) "
234			       "tries to set negative timeout\n",
235				current->comm, task_pid_nr(current));
236		return 0;
237	}
238	*timeo_p = MAX_SCHEDULE_TIMEOUT;
239	if (tv.tv_sec == 0 && tv.tv_usec == 0)
240		return 0;
241	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
242		*timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
243	return 0;
244}
245
246static void sock_warn_obsolete_bsdism(const char *name)
247{
248	static int warned;
249	static char warncomm[TASK_COMM_LEN];
250	if (strcmp(warncomm, current->comm) && warned < 5) {
251		strcpy(warncomm,  current->comm);
252		printk(KERN_WARNING "process `%s' is using obsolete "
253		       "%s SO_BSDCOMPAT\n", warncomm, name);
254		warned++;
255	}
256}
257
258static void sock_disable_timestamp(struct sock *sk)
259{
260	if (sock_flag(sk, SOCK_TIMESTAMP)) {
261		sock_reset_flag(sk, SOCK_TIMESTAMP);
262		net_disable_timestamp();
263	}
264}
265
266
267int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
268{
269	int err = 0;
270	int skb_len;
271
272	/* Cast skb->rcvbuf to unsigned... It's pointless, but reduces
273	   number of warnings when compiling with -W --ANK
274	 */
275	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
276	    (unsigned)sk->sk_rcvbuf) {
277		err = -ENOMEM;
278		goto out;
279	}
280
281	err = sk_filter(sk, skb);
282	if (err)
283		goto out;
284
285	if (!sk_rmem_schedule(sk, skb->truesize)) {
286		err = -ENOBUFS;
287		goto out;
288	}
289
290	skb->dev = NULL;
291	skb_set_owner_r(skb, sk);
292
293	/* Cache the SKB length before we tack it onto the receive
294	 * queue.  Once it is added it no longer belongs to us and
295	 * may be freed by other threads of control pulling packets
296	 * from the queue.
297	 */
298	skb_len = skb->len;
299
300	skb_queue_tail(&sk->sk_receive_queue, skb);
301
302	if (!sock_flag(sk, SOCK_DEAD))
303		sk->sk_data_ready(sk, skb_len);
304out:
305	return err;
306}
307EXPORT_SYMBOL(sock_queue_rcv_skb);
308
309int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
310{
311	int rc = NET_RX_SUCCESS;
312
313	if (sk_filter(sk, skb))
314		goto discard_and_relse;
315
316	skb->dev = NULL;
317
318	if (nested)
319		bh_lock_sock_nested(sk);
320	else
321		bh_lock_sock(sk);
322	if (!sock_owned_by_user(sk)) {
323		/*
324		 * trylock + unlock semantics:
325		 */
326		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
327
328		rc = sk->sk_backlog_rcv(sk, skb);
329
330		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
331	} else
332		sk_add_backlog(sk, skb);
333	bh_unlock_sock(sk);
334out:
335	sock_put(sk);
336	return rc;
337discard_and_relse:
338	kfree_skb(skb);
339	goto out;
340}
341EXPORT_SYMBOL(sk_receive_skb);
342
343struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
344{
345	struct dst_entry *dst = sk->sk_dst_cache;
346
347	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
348		sk->sk_dst_cache = NULL;
349		dst_release(dst);
350		return NULL;
351	}
352
353	return dst;
354}
355EXPORT_SYMBOL(__sk_dst_check);
356
357struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
358{
359	struct dst_entry *dst = sk_dst_get(sk);
360
361	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
362		sk_dst_reset(sk);
363		dst_release(dst);
364		return NULL;
365	}
366
367	return dst;
368}
369EXPORT_SYMBOL(sk_dst_check);
370
371static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
372{
373	int ret = -ENOPROTOOPT;
374#ifdef CONFIG_NETDEVICES
375	struct net *net = sk->sk_net;
376	char devname[IFNAMSIZ];
377	int index;
378
379	/* Sorry... */
380	ret = -EPERM;
381	if (!capable(CAP_NET_RAW))
382		goto out;
383
384	ret = -EINVAL;
385	if (optlen < 0)
386		goto out;
387
388	/* Bind this socket to a particular device like "eth0",
389	 * as specified in the passed interface name. If the
390	 * name is "" or the option length is zero the socket
391	 * is not bound.
392	 */
393	if (optlen > IFNAMSIZ - 1)
394		optlen = IFNAMSIZ - 1;
395	memset(devname, 0, sizeof(devname));
396
397	ret = -EFAULT;
398	if (copy_from_user(devname, optval, optlen))
399		goto out;
400
401	if (devname[0] == '\0') {
402		index = 0;
403	} else {
404		struct net_device *dev = dev_get_by_name(net, devname);
405
406		ret = -ENODEV;
407		if (!dev)
408			goto out;
409
410		index = dev->ifindex;
411		dev_put(dev);
412	}
413
414	lock_sock(sk);
415	sk->sk_bound_dev_if = index;
416	sk_dst_reset(sk);
417	release_sock(sk);
418
419	ret = 0;
420
421out:
422#endif
423
424	return ret;
425}
426
427static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
428{
429	if (valbool)
430		sock_set_flag(sk, bit);
431	else
432		sock_reset_flag(sk, bit);
433}
434
435/*
436 *	This is meant for all protocols to use and covers goings on
437 *	at the socket level. Everything here is generic.
438 */
439
440int sock_setsockopt(struct socket *sock, int level, int optname,
441		    char __user *optval, int optlen)
442{
443	struct sock *sk=sock->sk;
444	int val;
445	int valbool;
446	struct linger ling;
447	int ret = 0;
448
449	/*
450	 *	Options without arguments
451	 */
452
453#ifdef SO_DONTLINGER		/* Compatibility item... */
454	if (optname == SO_DONTLINGER) {
455		lock_sock(sk);
456		sock_reset_flag(sk, SOCK_LINGER);
457		release_sock(sk);
458		return 0;
459	}
460#endif
461
462	if (optname == SO_BINDTODEVICE)
463		return sock_bindtodevice(sk, optval, optlen);
464
465	if (optlen < sizeof(int))
466		return -EINVAL;
467
468	if (get_user(val, (int __user *)optval))
469		return -EFAULT;
470
471	valbool = val?1:0;
472
473	lock_sock(sk);
474
475	switch(optname) {
476	case SO_DEBUG:
477		if (val && !capable(CAP_NET_ADMIN)) {
478			ret = -EACCES;
479		} else
480			sock_valbool_flag(sk, SOCK_DBG, valbool);
481		break;
482	case SO_REUSEADDR:
483		sk->sk_reuse = valbool;
484		break;
485	case SO_TYPE:
486	case SO_ERROR:
487		ret = -ENOPROTOOPT;
488		break;
489	case SO_DONTROUTE:
490		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
491		break;
492	case SO_BROADCAST:
493		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
494		break;
495	case SO_SNDBUF:
496		/* Don't error on this BSD doesn't and if you think
497		   about it this is right. Otherwise apps have to
498		   play 'guess the biggest size' games. RCVBUF/SNDBUF
499		   are treated in BSD as hints */
500
501		if (val > sysctl_wmem_max)
502			val = sysctl_wmem_max;
503set_sndbuf:
504		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
505		if ((val * 2) < SOCK_MIN_SNDBUF)
506			sk->sk_sndbuf = SOCK_MIN_SNDBUF;
507		else
508			sk->sk_sndbuf = val * 2;
509
510		/*
511		 *	Wake up sending tasks if we
512		 *	upped the value.
513		 */
514		sk->sk_write_space(sk);
515		break;
516
517	case SO_SNDBUFFORCE:
518		if (!capable(CAP_NET_ADMIN)) {
519			ret = -EPERM;
520			break;
521		}
522		goto set_sndbuf;
523
524	case SO_RCVBUF:
525		/* Don't error on this BSD doesn't and if you think
526		   about it this is right. Otherwise apps have to
527		   play 'guess the biggest size' games. RCVBUF/SNDBUF
528		   are treated in BSD as hints */
529
530		if (val > sysctl_rmem_max)
531			val = sysctl_rmem_max;
532set_rcvbuf:
533		sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
534		/*
535		 * We double it on the way in to account for
536		 * "struct sk_buff" etc. overhead.   Applications
537		 * assume that the SO_RCVBUF setting they make will
538		 * allow that much actual data to be received on that
539		 * socket.
540		 *
541		 * Applications are unaware that "struct sk_buff" and
542		 * other overheads allocate from the receive buffer
543		 * during socket buffer allocation.
544		 *
545		 * And after considering the possible alternatives,
546		 * returning the value we actually used in getsockopt
547		 * is the most desirable behavior.
548		 */
549		if ((val * 2) < SOCK_MIN_RCVBUF)
550			sk->sk_rcvbuf = SOCK_MIN_RCVBUF;
551		else
552			sk->sk_rcvbuf = val * 2;
553		break;
554
555	case SO_RCVBUFFORCE:
556		if (!capable(CAP_NET_ADMIN)) {
557			ret = -EPERM;
558			break;
559		}
560		goto set_rcvbuf;
561
562	case SO_KEEPALIVE:
563#ifdef CONFIG_INET
564		if (sk->sk_protocol == IPPROTO_TCP)
565			tcp_set_keepalive(sk, valbool);
566#endif
567		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
568		break;
569
570	case SO_OOBINLINE:
571		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
572		break;
573
574	case SO_NO_CHECK:
575		sk->sk_no_check = valbool;
576		break;
577
578	case SO_PRIORITY:
579		if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
580			sk->sk_priority = val;
581		else
582			ret = -EPERM;
583		break;
584
585	case SO_LINGER:
586		if (optlen < sizeof(ling)) {
587			ret = -EINVAL;	/* 1003.1g */
588			break;
589		}
590		if (copy_from_user(&ling,optval,sizeof(ling))) {
591			ret = -EFAULT;
592			break;
593		}
594		if (!ling.l_onoff)
595			sock_reset_flag(sk, SOCK_LINGER);
596		else {
597#if (BITS_PER_LONG == 32)
598			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
599				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
600			else
601#endif
602				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
603			sock_set_flag(sk, SOCK_LINGER);
604		}
605		break;
606
607	case SO_BSDCOMPAT:
608		sock_warn_obsolete_bsdism("setsockopt");
609		break;
610
611	case SO_PASSCRED:
612		if (valbool)
613			set_bit(SOCK_PASSCRED, &sock->flags);
614		else
615			clear_bit(SOCK_PASSCRED, &sock->flags);
616		break;
617
618	case SO_TIMESTAMP:
619	case SO_TIMESTAMPNS:
620		if (valbool)  {
621			if (optname == SO_TIMESTAMP)
622				sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
623			else
624				sock_set_flag(sk, SOCK_RCVTSTAMPNS);
625			sock_set_flag(sk, SOCK_RCVTSTAMP);
626			sock_enable_timestamp(sk);
627		} else {
628			sock_reset_flag(sk, SOCK_RCVTSTAMP);
629			sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
630		}
631		break;
632
633	case SO_RCVLOWAT:
634		if (val < 0)
635			val = INT_MAX;
636		sk->sk_rcvlowat = val ? : 1;
637		break;
638
639	case SO_RCVTIMEO:
640		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
641		break;
642
643	case SO_SNDTIMEO:
644		ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
645		break;
646
647	case SO_ATTACH_FILTER:
648		ret = -EINVAL;
649		if (optlen == sizeof(struct sock_fprog)) {
650			struct sock_fprog fprog;
651
652			ret = -EFAULT;
653			if (copy_from_user(&fprog, optval, sizeof(fprog)))
654				break;
655
656			ret = sk_attach_filter(&fprog, sk);
657		}
658		break;
659
660	case SO_DETACH_FILTER:
661		ret = sk_detach_filter(sk);
662		break;
663
664	case SO_PASSSEC:
665		if (valbool)
666			set_bit(SOCK_PASSSEC, &sock->flags);
667		else
668			clear_bit(SOCK_PASSSEC, &sock->flags);
669		break;
670	case SO_MARK:
671		if (!capable(CAP_NET_ADMIN))
672			ret = -EPERM;
673		else {
674			sk->sk_mark = val;
675		}
676		break;
677
678		/* We implement the SO_SNDLOWAT etc to
679		   not be settable (1003.1g 5.3) */
680	default:
681		ret = -ENOPROTOOPT;
682		break;
683	}
684	release_sock(sk);
685	return ret;
686}
687
688
689int sock_getsockopt(struct socket *sock, int level, int optname,
690		    char __user *optval, int __user *optlen)
691{
692	struct sock *sk = sock->sk;
693
694	union {
695		int val;
696		struct linger ling;
697		struct timeval tm;
698	} v;
699
700	unsigned int lv = sizeof(int);
701	int len;
702
703	if (get_user(len, optlen))
704		return -EFAULT;
705	if (len < 0)
706		return -EINVAL;
707
708	switch(optname) {
709	case SO_DEBUG:
710		v.val = sock_flag(sk, SOCK_DBG);
711		break;
712
713	case SO_DONTROUTE:
714		v.val = sock_flag(sk, SOCK_LOCALROUTE);
715		break;
716
717	case SO_BROADCAST:
718		v.val = !!sock_flag(sk, SOCK_BROADCAST);
719		break;
720
721	case SO_SNDBUF:
722		v.val = sk->sk_sndbuf;
723		break;
724
725	case SO_RCVBUF:
726		v.val = sk->sk_rcvbuf;
727		break;
728
729	case SO_REUSEADDR:
730		v.val = sk->sk_reuse;
731		break;
732
733	case SO_KEEPALIVE:
734		v.val = !!sock_flag(sk, SOCK_KEEPOPEN);
735		break;
736
737	case SO_TYPE:
738		v.val = sk->sk_type;
739		break;
740
741	case SO_ERROR:
742		v.val = -sock_error(sk);
743		if (v.val==0)
744			v.val = xchg(&sk->sk_err_soft, 0);
745		break;
746
747	case SO_OOBINLINE:
748		v.val = !!sock_flag(sk, SOCK_URGINLINE);
749		break;
750
751	case SO_NO_CHECK:
752		v.val = sk->sk_no_check;
753		break;
754
755	case SO_PRIORITY:
756		v.val = sk->sk_priority;
757		break;
758
759	case SO_LINGER:
760		lv		= sizeof(v.ling);
761		v.ling.l_onoff	= !!sock_flag(sk, SOCK_LINGER);
762		v.ling.l_linger	= sk->sk_lingertime / HZ;
763		break;
764
765	case SO_BSDCOMPAT:
766		sock_warn_obsolete_bsdism("getsockopt");
767		break;
768
769	case SO_TIMESTAMP:
770		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
771				!sock_flag(sk, SOCK_RCVTSTAMPNS);
772		break;
773
774	case SO_TIMESTAMPNS:
775		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
776		break;
777
778	case SO_RCVTIMEO:
779		lv=sizeof(struct timeval);
780		if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
781			v.tm.tv_sec = 0;
782			v.tm.tv_usec = 0;
783		} else {
784			v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
785			v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
786		}
787		break;
788
789	case SO_SNDTIMEO:
790		lv=sizeof(struct timeval);
791		if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
792			v.tm.tv_sec = 0;
793			v.tm.tv_usec = 0;
794		} else {
795			v.tm.tv_sec = sk->sk_sndtimeo / HZ;
796			v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
797		}
798		break;
799
800	case SO_RCVLOWAT:
801		v.val = sk->sk_rcvlowat;
802		break;
803
804	case SO_SNDLOWAT:
805		v.val=1;
806		break;
807
808	case SO_PASSCRED:
809		v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0;
810		break;
811
812	case SO_PEERCRED:
813		if (len > sizeof(sk->sk_peercred))
814			len = sizeof(sk->sk_peercred);
815		if (copy_to_user(optval, &sk->sk_peercred, len))
816			return -EFAULT;
817		goto lenout;
818
819	case SO_PEERNAME:
820	{
821		char address[128];
822
823		if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
824			return -ENOTCONN;
825		if (lv < len)
826			return -EINVAL;
827		if (copy_to_user(optval, address, len))
828			return -EFAULT;
829		goto lenout;
830	}
831
832	/* Dubious BSD thing... Probably nobody even uses it, but
833	 * the UNIX standard wants it for whatever reason... -DaveM
834	 */
835	case SO_ACCEPTCONN:
836		v.val = sk->sk_state == TCP_LISTEN;
837		break;
838
839	case SO_PASSSEC:
840		v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0;
841		break;
842
843	case SO_PEERSEC:
844		return security_socket_getpeersec_stream(sock, optval, optlen, len);
845
846	case SO_MARK:
847		v.val = sk->sk_mark;
848		break;
849
850	default:
851		return -ENOPROTOOPT;
852	}
853
854	if (len > lv)
855		len = lv;
856	if (copy_to_user(optval, &v, len))
857		return -EFAULT;
858lenout:
859	if (put_user(len, optlen))
860		return -EFAULT;
861	return 0;
862}
863
864/*
865 * Initialize an sk_lock.
866 *
867 * (We also register the sk_lock with the lock validator.)
868 */
869static inline void sock_lock_init(struct sock *sk)
870{
871	sock_lock_init_class_and_name(sk,
872			af_family_slock_key_strings[sk->sk_family],
873			af_family_slock_keys + sk->sk_family,
874			af_family_key_strings[sk->sk_family],
875			af_family_keys + sk->sk_family);
876}
877
878static void sock_copy(struct sock *nsk, const struct sock *osk)
879{
880#ifdef CONFIG_SECURITY_NETWORK
881	void *sptr = nsk->sk_security;
882#endif
883
884	memcpy(nsk, osk, osk->sk_prot->obj_size);
885#ifdef CONFIG_SECURITY_NETWORK
886	nsk->sk_security = sptr;
887	security_sk_clone(osk, nsk);
888#endif
889}
890
891static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
892		int family)
893{
894	struct sock *sk;
895	struct kmem_cache *slab;
896
897	slab = prot->slab;
898	if (slab != NULL)
899		sk = kmem_cache_alloc(slab, priority);
900	else
901		sk = kmalloc(prot->obj_size, priority);
902
903	if (sk != NULL) {
904		if (security_sk_alloc(sk, family, priority))
905			goto out_free;
906
907		if (!try_module_get(prot->owner))
908			goto out_free_sec;
909	}
910
911	return sk;
912
913out_free_sec:
914	security_sk_free(sk);
915out_free:
916	if (slab != NULL)
917		kmem_cache_free(slab, sk);
918	else
919		kfree(sk);
920	return NULL;
921}
922
923static void sk_prot_free(struct proto *prot, struct sock *sk)
924{
925	struct kmem_cache *slab;
926	struct module *owner;
927
928	owner = prot->owner;
929	slab = prot->slab;
930
931	security_sk_free(sk);
932	if (slab != NULL)
933		kmem_cache_free(slab, sk);
934	else
935		kfree(sk);
936	module_put(owner);
937}
938
939/**
940 *	sk_alloc - All socket objects are allocated here
941 *	@net: the applicable net namespace
942 *	@family: protocol family
943 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
944 *	@prot: struct proto associated with this new sock instance
945 *	@zero_it: if we should zero the newly allocated sock
946 */
947struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
948		      struct proto *prot)
949{
950	struct sock *sk;
951
952	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
953	if (sk) {
954		sk->sk_family = family;
955		/*
956		 * See comment in struct sock definition to understand
957		 * why we need sk_prot_creator -acme
958		 */
959		sk->sk_prot = sk->sk_prot_creator = prot;
960		sock_lock_init(sk);
961		sk->sk_net = get_net(net);
962	}
963
964	return sk;
965}
966
967void sk_free(struct sock *sk)
968{
969	struct sk_filter *filter;
970
971	if (sk->sk_destruct)
972		sk->sk_destruct(sk);
973
974	filter = rcu_dereference(sk->sk_filter);
975	if (filter) {
976		sk_filter_uncharge(sk, filter);
977		rcu_assign_pointer(sk->sk_filter, NULL);
978	}
979
980	sock_disable_timestamp(sk);
981
982	if (atomic_read(&sk->sk_omem_alloc))
983		printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n",
984		       __FUNCTION__, atomic_read(&sk->sk_omem_alloc));
985
986	put_net(sk->sk_net);
987	sk_prot_free(sk->sk_prot_creator, sk);
988}
989
990struct sock *sk_clone(const struct sock *sk, const gfp_t priority)
991{
992	struct sock *newsk;
993
994	newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
995	if (newsk != NULL) {
996		struct sk_filter *filter;
997
998		sock_copy(newsk, sk);
999
1000		/* SANITY */
1001		get_net(newsk->sk_net);
1002		sk_node_init(&newsk->sk_node);
1003		sock_lock_init(newsk);
1004		bh_lock_sock(newsk);
1005		newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
1006
1007		atomic_set(&newsk->sk_rmem_alloc, 0);
1008		atomic_set(&newsk->sk_wmem_alloc, 0);
1009		atomic_set(&newsk->sk_omem_alloc, 0);
1010		skb_queue_head_init(&newsk->sk_receive_queue);
1011		skb_queue_head_init(&newsk->sk_write_queue);
1012#ifdef CONFIG_NET_DMA
1013		skb_queue_head_init(&newsk->sk_async_wait_queue);
1014#endif
1015
1016		rwlock_init(&newsk->sk_dst_lock);
1017		rwlock_init(&newsk->sk_callback_lock);
1018		lockdep_set_class_and_name(&newsk->sk_callback_lock,
1019				af_callback_keys + newsk->sk_family,
1020				af_family_clock_key_strings[newsk->sk_family]);
1021
1022		newsk->sk_dst_cache	= NULL;
1023		newsk->sk_wmem_queued	= 0;
1024		newsk->sk_forward_alloc = 0;
1025		newsk->sk_send_head	= NULL;
1026		newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1027
1028		sock_reset_flag(newsk, SOCK_DONE);
1029		skb_queue_head_init(&newsk->sk_error_queue);
1030
1031		filter = newsk->sk_filter;
1032		if (filter != NULL)
1033			sk_filter_charge(newsk, filter);
1034
1035		if (unlikely(xfrm_sk_clone_policy(newsk))) {
1036			/* It is still raw copy of parent, so invalidate
1037			 * destructor and make plain sk_free() */
1038			newsk->sk_destruct = NULL;
1039			sk_free(newsk);
1040			newsk = NULL;
1041			goto out;
1042		}
1043
1044		newsk->sk_err	   = 0;
1045		newsk->sk_priority = 0;
1046		atomic_set(&newsk->sk_refcnt, 2);
1047
1048		/*
1049		 * Increment the counter in the same struct proto as the master
1050		 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1051		 * is the same as sk->sk_prot->socks, as this field was copied
1052		 * with memcpy).
1053		 *
1054		 * This _changes_ the previous behaviour, where
1055		 * tcp_create_openreq_child always was incrementing the
1056		 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1057		 * to be taken into account in all callers. -acme
1058		 */
1059		sk_refcnt_debug_inc(newsk);
1060		newsk->sk_socket = NULL;
1061		newsk->sk_sleep	 = NULL;
1062
1063		if (newsk->sk_prot->sockets_allocated)
1064			atomic_inc(newsk->sk_prot->sockets_allocated);
1065	}
1066out:
1067	return newsk;
1068}
1069
1070EXPORT_SYMBOL_GPL(sk_clone);
1071
1072void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1073{
1074	__sk_dst_set(sk, dst);
1075	sk->sk_route_caps = dst->dev->features;
1076	if (sk->sk_route_caps & NETIF_F_GSO)
1077		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1078	if (sk_can_gso(sk)) {
1079		if (dst->header_len)
1080			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1081		else
1082			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1083	}
1084}
1085EXPORT_SYMBOL_GPL(sk_setup_caps);
1086
1087void __init sk_init(void)
1088{
1089	if (num_physpages <= 4096) {
1090		sysctl_wmem_max = 32767;
1091		sysctl_rmem_max = 32767;
1092		sysctl_wmem_default = 32767;
1093		sysctl_rmem_default = 32767;
1094	} else if (num_physpages >= 131072) {
1095		sysctl_wmem_max = 131071;
1096		sysctl_rmem_max = 131071;
1097	}
1098}
1099
1100/*
1101 *	Simple resource managers for sockets.
1102 */
1103
1104
1105/*
1106 * Write buffer destructor automatically called from kfree_skb.
1107 */
1108void sock_wfree(struct sk_buff *skb)
1109{
1110	struct sock *sk = skb->sk;
1111
1112	/* In case it might be waiting for more memory. */
1113	atomic_sub(skb->truesize, &sk->sk_wmem_alloc);
1114	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE))
1115		sk->sk_write_space(sk);
1116	sock_put(sk);
1117}
1118
1119/*
1120 * Read buffer destructor automatically called from kfree_skb.
1121 */
1122void sock_rfree(struct sk_buff *skb)
1123{
1124	struct sock *sk = skb->sk;
1125
1126	skb_truesize_check(skb);
1127	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1128	sk_mem_uncharge(skb->sk, skb->truesize);
1129}
1130
1131
1132int sock_i_uid(struct sock *sk)
1133{
1134	int uid;
1135
1136	read_lock(&sk->sk_callback_lock);
1137	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1138	read_unlock(&sk->sk_callback_lock);
1139	return uid;
1140}
1141
1142unsigned long sock_i_ino(struct sock *sk)
1143{
1144	unsigned long ino;
1145
1146	read_lock(&sk->sk_callback_lock);
1147	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1148	read_unlock(&sk->sk_callback_lock);
1149	return ino;
1150}
1151
1152/*
1153 * Allocate a skb from the socket's send buffer.
1154 */
1155struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1156			     gfp_t priority)
1157{
1158	if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1159		struct sk_buff * skb = alloc_skb(size, priority);
1160		if (skb) {
1161			skb_set_owner_w(skb, sk);
1162			return skb;
1163		}
1164	}
1165	return NULL;
1166}
1167
1168/*
1169 * Allocate a skb from the socket's receive buffer.
1170 */
1171struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1172			     gfp_t priority)
1173{
1174	if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1175		struct sk_buff *skb = alloc_skb(size, priority);
1176		if (skb) {
1177			skb_set_owner_r(skb, sk);
1178			return skb;
1179		}
1180	}
1181	return NULL;
1182}
1183
1184/*
1185 * Allocate a memory block from the socket's option memory buffer.
1186 */
1187void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1188{
1189	if ((unsigned)size <= sysctl_optmem_max &&
1190	    atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1191		void *mem;
1192		/* First do the add, to avoid the race if kmalloc
1193		 * might sleep.
1194		 */
1195		atomic_add(size, &sk->sk_omem_alloc);
1196		mem = kmalloc(size, priority);
1197		if (mem)
1198			return mem;
1199		atomic_sub(size, &sk->sk_omem_alloc);
1200	}
1201	return NULL;
1202}
1203
1204/*
1205 * Free an option memory block.
1206 */
1207void sock_kfree_s(struct sock *sk, void *mem, int size)
1208{
1209	kfree(mem);
1210	atomic_sub(size, &sk->sk_omem_alloc);
1211}
1212
1213/* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1214   I think, these locks should be removed for datagram sockets.
1215 */
1216static long sock_wait_for_wmem(struct sock * sk, long timeo)
1217{
1218	DEFINE_WAIT(wait);
1219
1220	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1221	for (;;) {
1222		if (!timeo)
1223			break;
1224		if (signal_pending(current))
1225			break;
1226		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1227		prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1228		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1229			break;
1230		if (sk->sk_shutdown & SEND_SHUTDOWN)
1231			break;
1232		if (sk->sk_err)
1233			break;
1234		timeo = schedule_timeout(timeo);
1235	}
1236	finish_wait(sk->sk_sleep, &wait);
1237	return timeo;
1238}
1239
1240
1241/*
1242 *	Generic send/receive buffer handlers
1243 */
1244
1245static struct sk_buff *sock_alloc_send_pskb(struct sock *sk,
1246					    unsigned long header_len,
1247					    unsigned long data_len,
1248					    int noblock, int *errcode)
1249{
1250	struct sk_buff *skb;
1251	gfp_t gfp_mask;
1252	long timeo;
1253	int err;
1254
1255	gfp_mask = sk->sk_allocation;
1256	if (gfp_mask & __GFP_WAIT)
1257		gfp_mask |= __GFP_REPEAT;
1258
1259	timeo = sock_sndtimeo(sk, noblock);
1260	while (1) {
1261		err = sock_error(sk);
1262		if (err != 0)
1263			goto failure;
1264
1265		err = -EPIPE;
1266		if (sk->sk_shutdown & SEND_SHUTDOWN)
1267			goto failure;
1268
1269		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1270			skb = alloc_skb(header_len, gfp_mask);
1271			if (skb) {
1272				int npages;
1273				int i;
1274
1275				/* No pages, we're done... */
1276				if (!data_len)
1277					break;
1278
1279				npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1280				skb->truesize += data_len;
1281				skb_shinfo(skb)->nr_frags = npages;
1282				for (i = 0; i < npages; i++) {
1283					struct page *page;
1284					skb_frag_t *frag;
1285
1286					page = alloc_pages(sk->sk_allocation, 0);
1287					if (!page) {
1288						err = -ENOBUFS;
1289						skb_shinfo(skb)->nr_frags = i;
1290						kfree_skb(skb);
1291						goto failure;
1292					}
1293
1294					frag = &skb_shinfo(skb)->frags[i];
1295					frag->page = page;
1296					frag->page_offset = 0;
1297					frag->size = (data_len >= PAGE_SIZE ?
1298						      PAGE_SIZE :
1299						      data_len);
1300					data_len -= PAGE_SIZE;
1301				}
1302
1303				/* Full success... */
1304				break;
1305			}
1306			err = -ENOBUFS;
1307			goto failure;
1308		}
1309		set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1310		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1311		err = -EAGAIN;
1312		if (!timeo)
1313			goto failure;
1314		if (signal_pending(current))
1315			goto interrupted;
1316		timeo = sock_wait_for_wmem(sk, timeo);
1317	}
1318
1319	skb_set_owner_w(skb, sk);
1320	return skb;
1321
1322interrupted:
1323	err = sock_intr_errno(timeo);
1324failure:
1325	*errcode = err;
1326	return NULL;
1327}
1328
1329struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1330				    int noblock, int *errcode)
1331{
1332	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1333}
1334
1335static void __lock_sock(struct sock *sk)
1336{
1337	DEFINE_WAIT(wait);
1338
1339	for (;;) {
1340		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1341					TASK_UNINTERRUPTIBLE);
1342		spin_unlock_bh(&sk->sk_lock.slock);
1343		schedule();
1344		spin_lock_bh(&sk->sk_lock.slock);
1345		if (!sock_owned_by_user(sk))
1346			break;
1347	}
1348	finish_wait(&sk->sk_lock.wq, &wait);
1349}
1350
1351static void __release_sock(struct sock *sk)
1352{
1353	struct sk_buff *skb = sk->sk_backlog.head;
1354
1355	do {
1356		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1357		bh_unlock_sock(sk);
1358
1359		do {
1360			struct sk_buff *next = skb->next;
1361
1362			skb->next = NULL;
1363			sk->sk_backlog_rcv(sk, skb);
1364
1365			/*
1366			 * We are in process context here with softirqs
1367			 * disabled, use cond_resched_softirq() to preempt.
1368			 * This is safe to do because we've taken the backlog
1369			 * queue private:
1370			 */
1371			cond_resched_softirq();
1372
1373			skb = next;
1374		} while (skb != NULL);
1375
1376		bh_lock_sock(sk);
1377	} while ((skb = sk->sk_backlog.head) != NULL);
1378}
1379
1380/**
1381 * sk_wait_data - wait for data to arrive at sk_receive_queue
1382 * @sk:    sock to wait on
1383 * @timeo: for how long
1384 *
1385 * Now socket state including sk->sk_err is changed only under lock,
1386 * hence we may omit checks after joining wait queue.
1387 * We check receive queue before schedule() only as optimization;
1388 * it is very likely that release_sock() added new data.
1389 */
1390int sk_wait_data(struct sock *sk, long *timeo)
1391{
1392	int rc;
1393	DEFINE_WAIT(wait);
1394
1395	prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1396	set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1397	rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1398	clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1399	finish_wait(sk->sk_sleep, &wait);
1400	return rc;
1401}
1402
1403EXPORT_SYMBOL(sk_wait_data);
1404
1405/**
1406 *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1407 *	@sk: socket
1408 *	@size: memory size to allocate
1409 *	@kind: allocation type
1410 *
1411 *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1412 *	rmem allocation. This function assumes that protocols which have
1413 *	memory_pressure use sk_wmem_queued as write buffer accounting.
1414 */
1415int __sk_mem_schedule(struct sock *sk, int size, int kind)
1416{
1417	struct proto *prot = sk->sk_prot;
1418	int amt = sk_mem_pages(size);
1419	int allocated;
1420
1421	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
1422	allocated = atomic_add_return(amt, prot->memory_allocated);
1423
1424	/* Under limit. */
1425	if (allocated <= prot->sysctl_mem[0]) {
1426		if (prot->memory_pressure && *prot->memory_pressure)
1427			*prot->memory_pressure = 0;
1428		return 1;
1429	}
1430
1431	/* Under pressure. */
1432	if (allocated > prot->sysctl_mem[1])
1433		if (prot->enter_memory_pressure)
1434			prot->enter_memory_pressure();
1435
1436	/* Over hard limit. */
1437	if (allocated > prot->sysctl_mem[2])
1438		goto suppress_allocation;
1439
1440	/* guarantee minimum buffer size under pressure */
1441	if (kind == SK_MEM_RECV) {
1442		if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
1443			return 1;
1444	} else { /* SK_MEM_SEND */
1445		if (sk->sk_type == SOCK_STREAM) {
1446			if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
1447				return 1;
1448		} else if (atomic_read(&sk->sk_wmem_alloc) <
1449			   prot->sysctl_wmem[0])
1450				return 1;
1451	}
1452
1453	if (prot->memory_pressure) {
1454		if (!*prot->memory_pressure ||
1455		    prot->sysctl_mem[2] > atomic_read(prot->sockets_allocated) *
1456		    sk_mem_pages(sk->sk_wmem_queued +
1457				 atomic_read(&sk->sk_rmem_alloc) +
1458				 sk->sk_forward_alloc))
1459			return 1;
1460	}
1461
1462suppress_allocation:
1463
1464	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
1465		sk_stream_moderate_sndbuf(sk);
1466
1467		/* Fail only if socket is _under_ its sndbuf.
1468		 * In this case we cannot block, so that we have to fail.
1469		 */
1470		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
1471			return 1;
1472	}
1473
1474	/* Alas. Undo changes. */
1475	sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
1476	atomic_sub(amt, prot->memory_allocated);
1477	return 0;
1478}
1479
1480EXPORT_SYMBOL(__sk_mem_schedule);
1481
1482/**
1483 *	__sk_reclaim - reclaim memory_allocated
1484 *	@sk: socket
1485 */
1486void __sk_mem_reclaim(struct sock *sk)
1487{
1488	struct proto *prot = sk->sk_prot;
1489
1490	atomic_sub(sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT,
1491		   prot->memory_allocated);
1492	sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
1493
1494	if (prot->memory_pressure && *prot->memory_pressure &&
1495	    (atomic_read(prot->memory_allocated) < prot->sysctl_mem[0]))
1496		*prot->memory_pressure = 0;
1497}
1498
1499EXPORT_SYMBOL(__sk_mem_reclaim);
1500
1501
1502/*
1503 * Set of default routines for initialising struct proto_ops when
1504 * the protocol does not support a particular function. In certain
1505 * cases where it makes no sense for a protocol to have a "do nothing"
1506 * function, some default processing is provided.
1507 */
1508
1509int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1510{
1511	return -EOPNOTSUPP;
1512}
1513
1514int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1515		    int len, int flags)
1516{
1517	return -EOPNOTSUPP;
1518}
1519
1520int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1521{
1522	return -EOPNOTSUPP;
1523}
1524
1525int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1526{
1527	return -EOPNOTSUPP;
1528}
1529
1530int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1531		    int *len, int peer)
1532{
1533	return -EOPNOTSUPP;
1534}
1535
1536unsigned int sock_no_poll(struct file * file, struct socket *sock, poll_table *pt)
1537{
1538	return 0;
1539}
1540
1541int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1542{
1543	return -EOPNOTSUPP;
1544}
1545
1546int sock_no_listen(struct socket *sock, int backlog)
1547{
1548	return -EOPNOTSUPP;
1549}
1550
1551int sock_no_shutdown(struct socket *sock, int how)
1552{
1553	return -EOPNOTSUPP;
1554}
1555
1556int sock_no_setsockopt(struct socket *sock, int level, int optname,
1557		    char __user *optval, int optlen)
1558{
1559	return -EOPNOTSUPP;
1560}
1561
1562int sock_no_getsockopt(struct socket *sock, int level, int optname,
1563		    char __user *optval, int __user *optlen)
1564{
1565	return -EOPNOTSUPP;
1566}
1567
1568int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1569		    size_t len)
1570{
1571	return -EOPNOTSUPP;
1572}
1573
1574int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1575		    size_t len, int flags)
1576{
1577	return -EOPNOTSUPP;
1578}
1579
1580int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
1581{
1582	/* Mirror missing mmap method error code */
1583	return -ENODEV;
1584}
1585
1586ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
1587{
1588	ssize_t res;
1589	struct msghdr msg = {.msg_flags = flags};
1590	struct kvec iov;
1591	char *kaddr = kmap(page);
1592	iov.iov_base = kaddr + offset;
1593	iov.iov_len = size;
1594	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
1595	kunmap(page);
1596	return res;
1597}
1598
1599/*
1600 *	Default Socket Callbacks
1601 */
1602
1603static void sock_def_wakeup(struct sock *sk)
1604{
1605	read_lock(&sk->sk_callback_lock);
1606	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1607		wake_up_interruptible_all(sk->sk_sleep);
1608	read_unlock(&sk->sk_callback_lock);
1609}
1610
1611static void sock_def_error_report(struct sock *sk)
1612{
1613	read_lock(&sk->sk_callback_lock);
1614	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1615		wake_up_interruptible(sk->sk_sleep);
1616	sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
1617	read_unlock(&sk->sk_callback_lock);
1618}
1619
1620static void sock_def_readable(struct sock *sk, int len)
1621{
1622	read_lock(&sk->sk_callback_lock);
1623	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1624		wake_up_interruptible(sk->sk_sleep);
1625	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
1626	read_unlock(&sk->sk_callback_lock);
1627}
1628
1629static void sock_def_write_space(struct sock *sk)
1630{
1631	read_lock(&sk->sk_callback_lock);
1632
1633	/* Do not wake up a writer until he can make "significant"
1634	 * progress.  --DaveM
1635	 */
1636	if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
1637		if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1638			wake_up_interruptible(sk->sk_sleep);
1639
1640		/* Should agree with poll, otherwise some programs break */
1641		if (sock_writeable(sk))
1642			sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
1643	}
1644
1645	read_unlock(&sk->sk_callback_lock);
1646}
1647
1648static void sock_def_destruct(struct sock *sk)
1649{
1650	kfree(sk->sk_protinfo);
1651}
1652
1653void sk_send_sigurg(struct sock *sk)
1654{
1655	if (sk->sk_socket && sk->sk_socket->file)
1656		if (send_sigurg(&sk->sk_socket->file->f_owner))
1657			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
1658}
1659
1660void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1661		    unsigned long expires)
1662{
1663	if (!mod_timer(timer, expires))
1664		sock_hold(sk);
1665}
1666
1667EXPORT_SYMBOL(sk_reset_timer);
1668
1669void sk_stop_timer(struct sock *sk, struct timer_list* timer)
1670{
1671	if (timer_pending(timer) && del_timer(timer))
1672		__sock_put(sk);
1673}
1674
1675EXPORT_SYMBOL(sk_stop_timer);
1676
1677void sock_init_data(struct socket *sock, struct sock *sk)
1678{
1679	skb_queue_head_init(&sk->sk_receive_queue);
1680	skb_queue_head_init(&sk->sk_write_queue);
1681	skb_queue_head_init(&sk->sk_error_queue);
1682#ifdef CONFIG_NET_DMA
1683	skb_queue_head_init(&sk->sk_async_wait_queue);
1684#endif
1685
1686	sk->sk_send_head	=	NULL;
1687
1688	init_timer(&sk->sk_timer);
1689
1690	sk->sk_allocation	=	GFP_KERNEL;
1691	sk->sk_rcvbuf		=	sysctl_rmem_default;
1692	sk->sk_sndbuf		=	sysctl_wmem_default;
1693	sk->sk_state		=	TCP_CLOSE;
1694	sk->sk_socket		=	sock;
1695
1696	sock_set_flag(sk, SOCK_ZAPPED);
1697
1698	if (sock) {
1699		sk->sk_type	=	sock->type;
1700		sk->sk_sleep	=	&sock->wait;
1701		sock->sk	=	sk;
1702	} else
1703		sk->sk_sleep	=	NULL;
1704
1705	rwlock_init(&sk->sk_dst_lock);
1706	rwlock_init(&sk->sk_callback_lock);
1707	lockdep_set_class_and_name(&sk->sk_callback_lock,
1708			af_callback_keys + sk->sk_family,
1709			af_family_clock_key_strings[sk->sk_family]);
1710
1711	sk->sk_state_change	=	sock_def_wakeup;
1712	sk->sk_data_ready	=	sock_def_readable;
1713	sk->sk_write_space	=	sock_def_write_space;
1714	sk->sk_error_report	=	sock_def_error_report;
1715	sk->sk_destruct		=	sock_def_destruct;
1716
1717	sk->sk_sndmsg_page	=	NULL;
1718	sk->sk_sndmsg_off	=	0;
1719
1720	sk->sk_peercred.pid 	=	0;
1721	sk->sk_peercred.uid	=	-1;
1722	sk->sk_peercred.gid	=	-1;
1723	sk->sk_write_pending	=	0;
1724	sk->sk_rcvlowat		=	1;
1725	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
1726	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
1727
1728	sk->sk_stamp = ktime_set(-1L, -1L);
1729
1730	atomic_set(&sk->sk_refcnt, 1);
1731	atomic_set(&sk->sk_drops, 0);
1732}
1733
1734void lock_sock_nested(struct sock *sk, int subclass)
1735{
1736	might_sleep();
1737	spin_lock_bh(&sk->sk_lock.slock);
1738	if (sk->sk_lock.owned)
1739		__lock_sock(sk);
1740	sk->sk_lock.owned = 1;
1741	spin_unlock(&sk->sk_lock.slock);
1742	/*
1743	 * The sk_lock has mutex_lock() semantics here:
1744	 */
1745	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
1746	local_bh_enable();
1747}
1748
1749EXPORT_SYMBOL(lock_sock_nested);
1750
1751void release_sock(struct sock *sk)
1752{
1753	/*
1754	 * The sk_lock has mutex_unlock() semantics:
1755	 */
1756	mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1757
1758	spin_lock_bh(&sk->sk_lock.slock);
1759	if (sk->sk_backlog.tail)
1760		__release_sock(sk);
1761	sk->sk_lock.owned = 0;
1762	if (waitqueue_active(&sk->sk_lock.wq))
1763		wake_up(&sk->sk_lock.wq);
1764	spin_unlock_bh(&sk->sk_lock.slock);
1765}
1766EXPORT_SYMBOL(release_sock);
1767
1768int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
1769{
1770	struct timeval tv;
1771	if (!sock_flag(sk, SOCK_TIMESTAMP))
1772		sock_enable_timestamp(sk);
1773	tv = ktime_to_timeval(sk->sk_stamp);
1774	if (tv.tv_sec == -1)
1775		return -ENOENT;
1776	if (tv.tv_sec == 0) {
1777		sk->sk_stamp = ktime_get_real();
1778		tv = ktime_to_timeval(sk->sk_stamp);
1779	}
1780	return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
1781}
1782EXPORT_SYMBOL(sock_get_timestamp);
1783
1784int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
1785{
1786	struct timespec ts;
1787	if (!sock_flag(sk, SOCK_TIMESTAMP))
1788		sock_enable_timestamp(sk);
1789	ts = ktime_to_timespec(sk->sk_stamp);
1790	if (ts.tv_sec == -1)
1791		return -ENOENT;
1792	if (ts.tv_sec == 0) {
1793		sk->sk_stamp = ktime_get_real();
1794		ts = ktime_to_timespec(sk->sk_stamp);
1795	}
1796	return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
1797}
1798EXPORT_SYMBOL(sock_get_timestampns);
1799
1800void sock_enable_timestamp(struct sock *sk)
1801{
1802	if (!sock_flag(sk, SOCK_TIMESTAMP)) {
1803		sock_set_flag(sk, SOCK_TIMESTAMP);
1804		net_enable_timestamp();
1805	}
1806}
1807
1808/*
1809 *	Get a socket option on an socket.
1810 *
1811 *	FIX: POSIX 1003.1g is very ambiguous here. It states that
1812 *	asynchronous errors should be reported by getsockopt. We assume
1813 *	this means if you specify SO_ERROR (otherwise whats the point of it).
1814 */
1815int sock_common_getsockopt(struct socket *sock, int level, int optname,
1816			   char __user *optval, int __user *optlen)
1817{
1818	struct sock *sk = sock->sk;
1819
1820	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1821}
1822
1823EXPORT_SYMBOL(sock_common_getsockopt);
1824
1825#ifdef CONFIG_COMPAT
1826int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
1827				  char __user *optval, int __user *optlen)
1828{
1829	struct sock *sk = sock->sk;
1830
1831	if (sk->sk_prot->compat_getsockopt != NULL)
1832		return sk->sk_prot->compat_getsockopt(sk, level, optname,
1833						      optval, optlen);
1834	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1835}
1836EXPORT_SYMBOL(compat_sock_common_getsockopt);
1837#endif
1838
1839int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1840			struct msghdr *msg, size_t size, int flags)
1841{
1842	struct sock *sk = sock->sk;
1843	int addr_len = 0;
1844	int err;
1845
1846	err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
1847				   flags & ~MSG_DONTWAIT, &addr_len);
1848	if (err >= 0)
1849		msg->msg_namelen = addr_len;
1850	return err;
1851}
1852
1853EXPORT_SYMBOL(sock_common_recvmsg);
1854
1855/*
1856 *	Set socket options on an inet socket.
1857 */
1858int sock_common_setsockopt(struct socket *sock, int level, int optname,
1859			   char __user *optval, int optlen)
1860{
1861	struct sock *sk = sock->sk;
1862
1863	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
1864}
1865
1866EXPORT_SYMBOL(sock_common_setsockopt);
1867
1868#ifdef CONFIG_COMPAT
1869int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
1870				  char __user *optval, int optlen)
1871{
1872	struct sock *sk = sock->sk;
1873
1874	if (sk->sk_prot->compat_setsockopt != NULL)
1875		return sk->sk_prot->compat_setsockopt(sk, level, optname,
1876						      optval, optlen);
1877	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
1878}
1879EXPORT_SYMBOL(compat_sock_common_setsockopt);
1880#endif
1881
1882void sk_common_release(struct sock *sk)
1883{
1884	if (sk->sk_prot->destroy)
1885		sk->sk_prot->destroy(sk);
1886
1887	/*
1888	 * Observation: when sock_common_release is called, processes have
1889	 * no access to socket. But net still has.
1890	 * Step one, detach it from networking:
1891	 *
1892	 * A. Remove from hash tables.
1893	 */
1894
1895	sk->sk_prot->unhash(sk);
1896
1897	/*
1898	 * In this point socket cannot receive new packets, but it is possible
1899	 * that some packets are in flight because some CPU runs receiver and
1900	 * did hash table lookup before we unhashed socket. They will achieve
1901	 * receive queue and will be purged by socket destructor.
1902	 *
1903	 * Also we still have packets pending on receive queue and probably,
1904	 * our own packets waiting in device queues. sock_destroy will drain
1905	 * receive queue, but transmitted packets will delay socket destruction
1906	 * until the last reference will be released.
1907	 */
1908
1909	sock_orphan(sk);
1910
1911	xfrm_sk_free_policy(sk);
1912
1913	sk_refcnt_debug_release(sk);
1914	sock_put(sk);
1915}
1916
1917EXPORT_SYMBOL(sk_common_release);
1918
1919static DEFINE_RWLOCK(proto_list_lock);
1920static LIST_HEAD(proto_list);
1921
1922int proto_register(struct proto *prot, int alloc_slab)
1923{
1924	char *request_sock_slab_name = NULL;
1925	char *timewait_sock_slab_name;
1926
1927	if (sock_prot_inuse_init(prot) != 0) {
1928		printk(KERN_CRIT "%s: Can't alloc inuse counters!\n", prot->name);
1929		goto out;
1930	}
1931
1932	if (alloc_slab) {
1933		prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
1934					       SLAB_HWCACHE_ALIGN, NULL);
1935
1936		if (prot->slab == NULL) {
1937			printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n",
1938			       prot->name);
1939			goto out_free_inuse;
1940		}
1941
1942		if (prot->rsk_prot != NULL) {
1943			static const char mask[] = "request_sock_%s";
1944
1945			request_sock_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
1946			if (request_sock_slab_name == NULL)
1947				goto out_free_sock_slab;
1948
1949			sprintf(request_sock_slab_name, mask, prot->name);
1950			prot->rsk_prot->slab = kmem_cache_create(request_sock_slab_name,
1951								 prot->rsk_prot->obj_size, 0,
1952								 SLAB_HWCACHE_ALIGN, NULL);
1953
1954			if (prot->rsk_prot->slab == NULL) {
1955				printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n",
1956				       prot->name);
1957				goto out_free_request_sock_slab_name;
1958			}
1959		}
1960
1961		if (prot->twsk_prot != NULL) {
1962			static const char mask[] = "tw_sock_%s";
1963
1964			timewait_sock_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
1965
1966			if (timewait_sock_slab_name == NULL)
1967				goto out_free_request_sock_slab;
1968
1969			sprintf(timewait_sock_slab_name, mask, prot->name);
1970			prot->twsk_prot->twsk_slab =
1971				kmem_cache_create(timewait_sock_slab_name,
1972						  prot->twsk_prot->twsk_obj_size,
1973						  0, SLAB_HWCACHE_ALIGN,
1974						  NULL);
1975			if (prot->twsk_prot->twsk_slab == NULL)
1976				goto out_free_timewait_sock_slab_name;
1977		}
1978	}
1979
1980	write_lock(&proto_list_lock);
1981	list_add(&prot->node, &proto_list);
1982	write_unlock(&proto_list_lock);
1983	return 0;
1984
1985out_free_timewait_sock_slab_name:
1986	kfree(timewait_sock_slab_name);
1987out_free_request_sock_slab:
1988	if (prot->rsk_prot && prot->rsk_prot->slab) {
1989		kmem_cache_destroy(prot->rsk_prot->slab);
1990		prot->rsk_prot->slab = NULL;
1991	}
1992out_free_request_sock_slab_name:
1993	kfree(request_sock_slab_name);
1994out_free_sock_slab:
1995	kmem_cache_destroy(prot->slab);
1996	prot->slab = NULL;
1997out_free_inuse:
1998	sock_prot_inuse_free(prot);
1999out:
2000	return -ENOBUFS;
2001}
2002
2003EXPORT_SYMBOL(proto_register);
2004
2005void proto_unregister(struct proto *prot)
2006{
2007	write_lock(&proto_list_lock);
2008	list_del(&prot->node);
2009	write_unlock(&proto_list_lock);
2010
2011	sock_prot_inuse_free(prot);
2012
2013	if (prot->slab != NULL) {
2014		kmem_cache_destroy(prot->slab);
2015		prot->slab = NULL;
2016	}
2017
2018	if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2019		const char *name = kmem_cache_name(prot->rsk_prot->slab);
2020
2021		kmem_cache_destroy(prot->rsk_prot->slab);
2022		kfree(name);
2023		prot->rsk_prot->slab = NULL;
2024	}
2025
2026	if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2027		const char *name = kmem_cache_name(prot->twsk_prot->twsk_slab);
2028
2029		kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2030		kfree(name);
2031		prot->twsk_prot->twsk_slab = NULL;
2032	}
2033}
2034
2035EXPORT_SYMBOL(proto_unregister);
2036
2037#ifdef CONFIG_PROC_FS
2038static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2039	__acquires(proto_list_lock)
2040{
2041	read_lock(&proto_list_lock);
2042	return seq_list_start_head(&proto_list, *pos);
2043}
2044
2045static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2046{
2047	return seq_list_next(v, &proto_list, pos);
2048}
2049
2050static void proto_seq_stop(struct seq_file *seq, void *v)
2051	__releases(proto_list_lock)
2052{
2053	read_unlock(&proto_list_lock);
2054}
2055
2056static char proto_method_implemented(const void *method)
2057{
2058	return method == NULL ? 'n' : 'y';
2059}
2060
2061static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2062{
2063	seq_printf(seq, "%-9s %4u %6d  %6d   %-3s %6u   %-3s  %-10s "
2064			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2065		   proto->name,
2066		   proto->obj_size,
2067		   proto->sockets_allocated != NULL ? atomic_read(proto->sockets_allocated) : -1,
2068		   proto->memory_allocated != NULL ? atomic_read(proto->memory_allocated) : -1,
2069		   proto->memory_pressure != NULL ? *proto->memory_pressure ? "yes" : "no" : "NI",
2070		   proto->max_header,
2071		   proto->slab == NULL ? "no" : "yes",
2072		   module_name(proto->owner),
2073		   proto_method_implemented(proto->close),
2074		   proto_method_implemented(proto->connect),
2075		   proto_method_implemented(proto->disconnect),
2076		   proto_method_implemented(proto->accept),
2077		   proto_method_implemented(proto->ioctl),
2078		   proto_method_implemented(proto->init),
2079		   proto_method_implemented(proto->destroy),
2080		   proto_method_implemented(proto->shutdown),
2081		   proto_method_implemented(proto->setsockopt),
2082		   proto_method_implemented(proto->getsockopt),
2083		   proto_method_implemented(proto->sendmsg),
2084		   proto_method_implemented(proto->recvmsg),
2085		   proto_method_implemented(proto->sendpage),
2086		   proto_method_implemented(proto->bind),
2087		   proto_method_implemented(proto->backlog_rcv),
2088		   proto_method_implemented(proto->hash),
2089		   proto_method_implemented(proto->unhash),
2090		   proto_method_implemented(proto->get_port),
2091		   proto_method_implemented(proto->enter_memory_pressure));
2092}
2093
2094static int proto_seq_show(struct seq_file *seq, void *v)
2095{
2096	if (v == &proto_list)
2097		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2098			   "protocol",
2099			   "size",
2100			   "sockets",
2101			   "memory",
2102			   "press",
2103			   "maxhdr",
2104			   "slab",
2105			   "module",
2106			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2107	else
2108		proto_seq_printf(seq, list_entry(v, struct proto, node));
2109	return 0;
2110}
2111
2112static const struct seq_operations proto_seq_ops = {
2113	.start  = proto_seq_start,
2114	.next   = proto_seq_next,
2115	.stop   = proto_seq_stop,
2116	.show   = proto_seq_show,
2117};
2118
2119static int proto_seq_open(struct inode *inode, struct file *file)
2120{
2121	return seq_open(file, &proto_seq_ops);
2122}
2123
2124static const struct file_operations proto_seq_fops = {
2125	.owner		= THIS_MODULE,
2126	.open		= proto_seq_open,
2127	.read		= seq_read,
2128	.llseek		= seq_lseek,
2129	.release	= seq_release,
2130};
2131
2132static int __init proto_init(void)
2133{
2134	/* register /proc/net/protocols */
2135	return proc_net_fops_create(&init_net, "protocols", S_IRUGO, &proto_seq_fops) == NULL ? -ENOBUFS : 0;
2136}
2137
2138subsys_initcall(proto_init);
2139
2140#endif /* PROC_FS */
2141
2142EXPORT_SYMBOL(sk_alloc);
2143EXPORT_SYMBOL(sk_free);
2144EXPORT_SYMBOL(sk_send_sigurg);
2145EXPORT_SYMBOL(sock_alloc_send_skb);
2146EXPORT_SYMBOL(sock_init_data);
2147EXPORT_SYMBOL(sock_kfree_s);
2148EXPORT_SYMBOL(sock_kmalloc);
2149EXPORT_SYMBOL(sock_no_accept);
2150EXPORT_SYMBOL(sock_no_bind);
2151EXPORT_SYMBOL(sock_no_connect);
2152EXPORT_SYMBOL(sock_no_getname);
2153EXPORT_SYMBOL(sock_no_getsockopt);
2154EXPORT_SYMBOL(sock_no_ioctl);
2155EXPORT_SYMBOL(sock_no_listen);
2156EXPORT_SYMBOL(sock_no_mmap);
2157EXPORT_SYMBOL(sock_no_poll);
2158EXPORT_SYMBOL(sock_no_recvmsg);
2159EXPORT_SYMBOL(sock_no_sendmsg);
2160EXPORT_SYMBOL(sock_no_sendpage);
2161EXPORT_SYMBOL(sock_no_setsockopt);
2162EXPORT_SYMBOL(sock_no_shutdown);
2163EXPORT_SYMBOL(sock_no_socketpair);
2164EXPORT_SYMBOL(sock_rfree);
2165EXPORT_SYMBOL(sock_setsockopt);
2166EXPORT_SYMBOL(sock_wfree);
2167EXPORT_SYMBOL(sock_wmalloc);
2168EXPORT_SYMBOL(sock_i_uid);
2169EXPORT_SYMBOL(sock_i_ino);
2170EXPORT_SYMBOL(sysctl_optmem_max);
2171