sock.c revision bbbb1a812de596958163779ae5b0806bc53a83f4
1/*
2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
3 *		operating system.  INET is implemented using the  BSD Socket
4 *		interface as the means of communication with the user level.
5 *
6 *		Generic socket support routines. Memory allocators, socket lock/release
7 *		handler for protocols to use and generic option handler.
8 *
9 *
10 * Version:	$Id: sock.c,v 1.117 2002/02/01 22:01:03 davem Exp $
11 *
12 * Authors:	Ross Biro
13 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
14 *		Florian La Roche, <flla@stud.uni-sb.de>
15 *		Alan Cox, <A.Cox@swansea.ac.uk>
16 *
17 * Fixes:
18 *		Alan Cox	: 	Numerous verify_area() problems
19 *		Alan Cox	:	Connecting on a connecting socket
20 *					now returns an error for tcp.
21 *		Alan Cox	:	sock->protocol is set correctly.
22 *					and is not sometimes left as 0.
23 *		Alan Cox	:	connect handles icmp errors on a
24 *					connect properly. Unfortunately there
25 *					is a restart syscall nasty there. I
26 *					can't match BSD without hacking the C
27 *					library. Ideas urgently sought!
28 *		Alan Cox	:	Disallow bind() to addresses that are
29 *					not ours - especially broadcast ones!!
30 *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
31 *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
32 *					instead they leave that for the DESTROY timer.
33 *		Alan Cox	:	Clean up error flag in accept
34 *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
35 *					was buggy. Put a remove_sock() in the handler
36 *					for memory when we hit 0. Also altered the timer
37 *					code. The ACK stuff can wait and needs major
38 *					TCP layer surgery.
39 *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
40 *					and fixed timer/inet_bh race.
41 *		Alan Cox	:	Added zapped flag for TCP
42 *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
43 *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
44 *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
45 *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
46 *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
47 *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
48 *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
49 *	Pauline Middelink	:	identd support
50 *		Alan Cox	:	Fixed connect() taking signals I think.
51 *		Alan Cox	:	SO_LINGER supported
52 *		Alan Cox	:	Error reporting fixes
53 *		Anonymous	:	inet_create tidied up (sk->reuse setting)
54 *		Alan Cox	:	inet sockets don't set sk->type!
55 *		Alan Cox	:	Split socket option code
56 *		Alan Cox	:	Callbacks
57 *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
58 *		Alex		:	Removed restriction on inet fioctl
59 *		Alan Cox	:	Splitting INET from NET core
60 *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
61 *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
62 *		Alan Cox	:	Split IP from generic code
63 *		Alan Cox	:	New kfree_skbmem()
64 *		Alan Cox	:	Make SO_DEBUG superuser only.
65 *		Alan Cox	:	Allow anyone to clear SO_DEBUG
66 *					(compatibility fix)
67 *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
68 *		Alan Cox	:	Allocator for a socket is settable.
69 *		Alan Cox	:	SO_ERROR includes soft errors.
70 *		Alan Cox	:	Allow NULL arguments on some SO_ opts
71 *		Alan Cox	: 	Generic socket allocation to make hooks
72 *					easier (suggested by Craig Metz).
73 *		Michael Pall	:	SO_ERROR returns positive errno again
74 *              Steve Whitehouse:       Added default destructor to free
75 *                                      protocol private data.
76 *              Steve Whitehouse:       Added various other default routines
77 *                                      common to several socket families.
78 *              Chris Evans     :       Call suser() check last on F_SETOWN
79 *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
80 *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
81 *		Andi Kleen	:	Fix write_space callback
82 *		Chris Evans	:	Security fixes - signedness again
83 *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
84 *
85 * To Fix:
86 *
87 *
88 *		This program is free software; you can redistribute it and/or
89 *		modify it under the terms of the GNU General Public License
90 *		as published by the Free Software Foundation; either version
91 *		2 of the License, or (at your option) any later version.
92 */
93
94#include <linux/capability.h>
95#include <linux/errno.h>
96#include <linux/types.h>
97#include <linux/socket.h>
98#include <linux/in.h>
99#include <linux/kernel.h>
100#include <linux/module.h>
101#include <linux/proc_fs.h>
102#include <linux/seq_file.h>
103#include <linux/sched.h>
104#include <linux/timer.h>
105#include <linux/string.h>
106#include <linux/sockios.h>
107#include <linux/net.h>
108#include <linux/mm.h>
109#include <linux/slab.h>
110#include <linux/interrupt.h>
111#include <linux/poll.h>
112#include <linux/tcp.h>
113#include <linux/init.h>
114#include <linux/highmem.h>
115
116#include <asm/uaccess.h>
117#include <asm/system.h>
118
119#include <linux/netdevice.h>
120#include <net/protocol.h>
121#include <linux/skbuff.h>
122#include <net/net_namespace.h>
123#include <net/request_sock.h>
124#include <net/sock.h>
125#include <net/xfrm.h>
126#include <linux/ipsec.h>
127
128#include <linux/filter.h>
129
130#ifdef CONFIG_INET
131#include <net/tcp.h>
132#endif
133
134/*
135 * Each address family might have different locking rules, so we have
136 * one slock key per address family:
137 */
138static struct lock_class_key af_family_keys[AF_MAX];
139static struct lock_class_key af_family_slock_keys[AF_MAX];
140
141#ifdef CONFIG_DEBUG_LOCK_ALLOC
142/*
143 * Make lock validator output more readable. (we pre-construct these
144 * strings build-time, so that runtime initialization of socket
145 * locks is fast):
146 */
147static const char *af_family_key_strings[AF_MAX+1] = {
148  "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX"     , "sk_lock-AF_INET"     ,
149  "sk_lock-AF_AX25"  , "sk_lock-AF_IPX"      , "sk_lock-AF_APPLETALK",
150  "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE"   , "sk_lock-AF_ATMPVC"   ,
151  "sk_lock-AF_X25"   , "sk_lock-AF_INET6"    , "sk_lock-AF_ROSE"     ,
152  "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI"  , "sk_lock-AF_SECURITY" ,
153  "sk_lock-AF_KEY"   , "sk_lock-AF_NETLINK"  , "sk_lock-AF_PACKET"   ,
154  "sk_lock-AF_ASH"   , "sk_lock-AF_ECONET"   , "sk_lock-AF_ATMSVC"   ,
155  "sk_lock-21"       , "sk_lock-AF_SNA"      , "sk_lock-AF_IRDA"     ,
156  "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE"  , "sk_lock-AF_LLC"      ,
157  "sk_lock-27"       , "sk_lock-28"          , "sk_lock-29"          ,
158  "sk_lock-AF_TIPC"  , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV"        ,
159  "sk_lock-AF_RXRPC" , "sk_lock-AF_MAX"
160};
161static const char *af_family_slock_key_strings[AF_MAX+1] = {
162  "slock-AF_UNSPEC", "slock-AF_UNIX"     , "slock-AF_INET"     ,
163  "slock-AF_AX25"  , "slock-AF_IPX"      , "slock-AF_APPLETALK",
164  "slock-AF_NETROM", "slock-AF_BRIDGE"   , "slock-AF_ATMPVC"   ,
165  "slock-AF_X25"   , "slock-AF_INET6"    , "slock-AF_ROSE"     ,
166  "slock-AF_DECnet", "slock-AF_NETBEUI"  , "slock-AF_SECURITY" ,
167  "slock-AF_KEY"   , "slock-AF_NETLINK"  , "slock-AF_PACKET"   ,
168  "slock-AF_ASH"   , "slock-AF_ECONET"   , "slock-AF_ATMSVC"   ,
169  "slock-21"       , "slock-AF_SNA"      , "slock-AF_IRDA"     ,
170  "slock-AF_PPPOX" , "slock-AF_WANPIPE"  , "slock-AF_LLC"      ,
171  "slock-27"       , "slock-28"          , "slock-29"          ,
172  "slock-AF_TIPC"  , "slock-AF_BLUETOOTH", "slock-AF_IUCV"     ,
173  "slock-AF_RXRPC" , "slock-AF_MAX"
174};
175static const char *af_family_clock_key_strings[AF_MAX+1] = {
176  "clock-AF_UNSPEC", "clock-AF_UNIX"     , "clock-AF_INET"     ,
177  "clock-AF_AX25"  , "clock-AF_IPX"      , "clock-AF_APPLETALK",
178  "clock-AF_NETROM", "clock-AF_BRIDGE"   , "clock-AF_ATMPVC"   ,
179  "clock-AF_X25"   , "clock-AF_INET6"    , "clock-AF_ROSE"     ,
180  "clock-AF_DECnet", "clock-AF_NETBEUI"  , "clock-AF_SECURITY" ,
181  "clock-AF_KEY"   , "clock-AF_NETLINK"  , "clock-AF_PACKET"   ,
182  "clock-AF_ASH"   , "clock-AF_ECONET"   , "clock-AF_ATMSVC"   ,
183  "clock-21"       , "clock-AF_SNA"      , "clock-AF_IRDA"     ,
184  "clock-AF_PPPOX" , "clock-AF_WANPIPE"  , "clock-AF_LLC"      ,
185  "clock-27"       , "clock-28"          , "clock-29"          ,
186  "clock-AF_TIPC"  , "clock-AF_BLUETOOTH", "clock-AF_IUCV"     ,
187  "clock-AF_RXRPC" , "clock-AF_MAX"
188};
189#endif
190
191/*
192 * sk_callback_lock locking rules are per-address-family,
193 * so split the lock classes by using a per-AF key:
194 */
195static struct lock_class_key af_callback_keys[AF_MAX];
196
197/* Take into consideration the size of the struct sk_buff overhead in the
198 * determination of these values, since that is non-constant across
199 * platforms.  This makes socket queueing behavior and performance
200 * not depend upon such differences.
201 */
202#define _SK_MEM_PACKETS		256
203#define _SK_MEM_OVERHEAD	(sizeof(struct sk_buff) + 256)
204#define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
205#define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
206
207/* Run time adjustable parameters. */
208__u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
209__u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
210__u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
211__u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
212
213/* Maximal space eaten by iovec or ancilliary data plus some space */
214int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
215
216static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
217{
218	struct timeval tv;
219
220	if (optlen < sizeof(tv))
221		return -EINVAL;
222	if (copy_from_user(&tv, optval, sizeof(tv)))
223		return -EFAULT;
224	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
225		return -EDOM;
226
227	if (tv.tv_sec < 0) {
228		static int warned __read_mostly;
229
230		*timeo_p = 0;
231		if (warned < 10 && net_ratelimit())
232			warned++;
233			printk(KERN_INFO "sock_set_timeout: `%s' (pid %d) "
234			       "tries to set negative timeout\n",
235				current->comm, task_pid_nr(current));
236		return 0;
237	}
238	*timeo_p = MAX_SCHEDULE_TIMEOUT;
239	if (tv.tv_sec == 0 && tv.tv_usec == 0)
240		return 0;
241	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
242		*timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
243	return 0;
244}
245
246static void sock_warn_obsolete_bsdism(const char *name)
247{
248	static int warned;
249	static char warncomm[TASK_COMM_LEN];
250	if (strcmp(warncomm, current->comm) && warned < 5) {
251		strcpy(warncomm,  current->comm);
252		printk(KERN_WARNING "process `%s' is using obsolete "
253		       "%s SO_BSDCOMPAT\n", warncomm, name);
254		warned++;
255	}
256}
257
258static void sock_disable_timestamp(struct sock *sk)
259{
260	if (sock_flag(sk, SOCK_TIMESTAMP)) {
261		sock_reset_flag(sk, SOCK_TIMESTAMP);
262		net_disable_timestamp();
263	}
264}
265
266
267int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
268{
269	int err = 0;
270	int skb_len;
271
272	/* Cast skb->rcvbuf to unsigned... It's pointless, but reduces
273	   number of warnings when compiling with -W --ANK
274	 */
275	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
276	    (unsigned)sk->sk_rcvbuf) {
277		err = -ENOMEM;
278		goto out;
279	}
280
281	err = sk_filter(sk, skb);
282	if (err)
283		goto out;
284
285	skb->dev = NULL;
286	skb_set_owner_r(skb, sk);
287
288	/* Cache the SKB length before we tack it onto the receive
289	 * queue.  Once it is added it no longer belongs to us and
290	 * may be freed by other threads of control pulling packets
291	 * from the queue.
292	 */
293	skb_len = skb->len;
294
295	skb_queue_tail(&sk->sk_receive_queue, skb);
296
297	if (!sock_flag(sk, SOCK_DEAD))
298		sk->sk_data_ready(sk, skb_len);
299out:
300	return err;
301}
302EXPORT_SYMBOL(sock_queue_rcv_skb);
303
304int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
305{
306	int rc = NET_RX_SUCCESS;
307
308	if (sk_filter(sk, skb))
309		goto discard_and_relse;
310
311	skb->dev = NULL;
312
313	if (nested)
314		bh_lock_sock_nested(sk);
315	else
316		bh_lock_sock(sk);
317	if (!sock_owned_by_user(sk)) {
318		/*
319		 * trylock + unlock semantics:
320		 */
321		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
322
323		rc = sk->sk_backlog_rcv(sk, skb);
324
325		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
326	} else
327		sk_add_backlog(sk, skb);
328	bh_unlock_sock(sk);
329out:
330	sock_put(sk);
331	return rc;
332discard_and_relse:
333	kfree_skb(skb);
334	goto out;
335}
336EXPORT_SYMBOL(sk_receive_skb);
337
338struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
339{
340	struct dst_entry *dst = sk->sk_dst_cache;
341
342	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
343		sk->sk_dst_cache = NULL;
344		dst_release(dst);
345		return NULL;
346	}
347
348	return dst;
349}
350EXPORT_SYMBOL(__sk_dst_check);
351
352struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
353{
354	struct dst_entry *dst = sk_dst_get(sk);
355
356	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
357		sk_dst_reset(sk);
358		dst_release(dst);
359		return NULL;
360	}
361
362	return dst;
363}
364EXPORT_SYMBOL(sk_dst_check);
365
366static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
367{
368	int ret = -ENOPROTOOPT;
369#ifdef CONFIG_NETDEVICES
370	struct net *net = sk->sk_net;
371	char devname[IFNAMSIZ];
372	int index;
373
374	/* Sorry... */
375	ret = -EPERM;
376	if (!capable(CAP_NET_RAW))
377		goto out;
378
379	ret = -EINVAL;
380	if (optlen < 0)
381		goto out;
382
383	/* Bind this socket to a particular device like "eth0",
384	 * as specified in the passed interface name. If the
385	 * name is "" or the option length is zero the socket
386	 * is not bound.
387	 */
388	if (optlen > IFNAMSIZ - 1)
389		optlen = IFNAMSIZ - 1;
390	memset(devname, 0, sizeof(devname));
391
392	ret = -EFAULT;
393	if (copy_from_user(devname, optval, optlen))
394		goto out;
395
396	if (devname[0] == '\0') {
397		index = 0;
398	} else {
399		struct net_device *dev = dev_get_by_name(net, devname);
400
401		ret = -ENODEV;
402		if (!dev)
403			goto out;
404
405		index = dev->ifindex;
406		dev_put(dev);
407	}
408
409	lock_sock(sk);
410	sk->sk_bound_dev_if = index;
411	sk_dst_reset(sk);
412	release_sock(sk);
413
414	ret = 0;
415
416out:
417#endif
418
419	return ret;
420}
421
422/*
423 *	This is meant for all protocols to use and covers goings on
424 *	at the socket level. Everything here is generic.
425 */
426
427int sock_setsockopt(struct socket *sock, int level, int optname,
428		    char __user *optval, int optlen)
429{
430	struct sock *sk=sock->sk;
431	int val;
432	int valbool;
433	struct linger ling;
434	int ret = 0;
435
436	/*
437	 *	Options without arguments
438	 */
439
440#ifdef SO_DONTLINGER		/* Compatibility item... */
441	if (optname == SO_DONTLINGER) {
442		lock_sock(sk);
443		sock_reset_flag(sk, SOCK_LINGER);
444		release_sock(sk);
445		return 0;
446	}
447#endif
448
449	if (optname == SO_BINDTODEVICE)
450		return sock_bindtodevice(sk, optval, optlen);
451
452	if (optlen < sizeof(int))
453		return -EINVAL;
454
455	if (get_user(val, (int __user *)optval))
456		return -EFAULT;
457
458	valbool = val?1:0;
459
460	lock_sock(sk);
461
462	switch(optname) {
463	case SO_DEBUG:
464		if (val && !capable(CAP_NET_ADMIN)) {
465			ret = -EACCES;
466		}
467		else if (valbool)
468			sock_set_flag(sk, SOCK_DBG);
469		else
470			sock_reset_flag(sk, SOCK_DBG);
471		break;
472	case SO_REUSEADDR:
473		sk->sk_reuse = valbool;
474		break;
475	case SO_TYPE:
476	case SO_ERROR:
477		ret = -ENOPROTOOPT;
478		break;
479	case SO_DONTROUTE:
480		if (valbool)
481			sock_set_flag(sk, SOCK_LOCALROUTE);
482		else
483			sock_reset_flag(sk, SOCK_LOCALROUTE);
484		break;
485	case SO_BROADCAST:
486		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
487		break;
488	case SO_SNDBUF:
489		/* Don't error on this BSD doesn't and if you think
490		   about it this is right. Otherwise apps have to
491		   play 'guess the biggest size' games. RCVBUF/SNDBUF
492		   are treated in BSD as hints */
493
494		if (val > sysctl_wmem_max)
495			val = sysctl_wmem_max;
496set_sndbuf:
497		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
498		if ((val * 2) < SOCK_MIN_SNDBUF)
499			sk->sk_sndbuf = SOCK_MIN_SNDBUF;
500		else
501			sk->sk_sndbuf = val * 2;
502
503		/*
504		 *	Wake up sending tasks if we
505		 *	upped the value.
506		 */
507		sk->sk_write_space(sk);
508		break;
509
510	case SO_SNDBUFFORCE:
511		if (!capable(CAP_NET_ADMIN)) {
512			ret = -EPERM;
513			break;
514		}
515		goto set_sndbuf;
516
517	case SO_RCVBUF:
518		/* Don't error on this BSD doesn't and if you think
519		   about it this is right. Otherwise apps have to
520		   play 'guess the biggest size' games. RCVBUF/SNDBUF
521		   are treated in BSD as hints */
522
523		if (val > sysctl_rmem_max)
524			val = sysctl_rmem_max;
525set_rcvbuf:
526		sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
527		/*
528		 * We double it on the way in to account for
529		 * "struct sk_buff" etc. overhead.   Applications
530		 * assume that the SO_RCVBUF setting they make will
531		 * allow that much actual data to be received on that
532		 * socket.
533		 *
534		 * Applications are unaware that "struct sk_buff" and
535		 * other overheads allocate from the receive buffer
536		 * during socket buffer allocation.
537		 *
538		 * And after considering the possible alternatives,
539		 * returning the value we actually used in getsockopt
540		 * is the most desirable behavior.
541		 */
542		if ((val * 2) < SOCK_MIN_RCVBUF)
543			sk->sk_rcvbuf = SOCK_MIN_RCVBUF;
544		else
545			sk->sk_rcvbuf = val * 2;
546		break;
547
548	case SO_RCVBUFFORCE:
549		if (!capable(CAP_NET_ADMIN)) {
550			ret = -EPERM;
551			break;
552		}
553		goto set_rcvbuf;
554
555	case SO_KEEPALIVE:
556#ifdef CONFIG_INET
557		if (sk->sk_protocol == IPPROTO_TCP)
558			tcp_set_keepalive(sk, valbool);
559#endif
560		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
561		break;
562
563	case SO_OOBINLINE:
564		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
565		break;
566
567	case SO_NO_CHECK:
568		sk->sk_no_check = valbool;
569		break;
570
571	case SO_PRIORITY:
572		if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
573			sk->sk_priority = val;
574		else
575			ret = -EPERM;
576		break;
577
578	case SO_LINGER:
579		if (optlen < sizeof(ling)) {
580			ret = -EINVAL;	/* 1003.1g */
581			break;
582		}
583		if (copy_from_user(&ling,optval,sizeof(ling))) {
584			ret = -EFAULT;
585			break;
586		}
587		if (!ling.l_onoff)
588			sock_reset_flag(sk, SOCK_LINGER);
589		else {
590#if (BITS_PER_LONG == 32)
591			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
592				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
593			else
594#endif
595				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
596			sock_set_flag(sk, SOCK_LINGER);
597		}
598		break;
599
600	case SO_BSDCOMPAT:
601		sock_warn_obsolete_bsdism("setsockopt");
602		break;
603
604	case SO_PASSCRED:
605		if (valbool)
606			set_bit(SOCK_PASSCRED, &sock->flags);
607		else
608			clear_bit(SOCK_PASSCRED, &sock->flags);
609		break;
610
611	case SO_TIMESTAMP:
612	case SO_TIMESTAMPNS:
613		if (valbool)  {
614			if (optname == SO_TIMESTAMP)
615				sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
616			else
617				sock_set_flag(sk, SOCK_RCVTSTAMPNS);
618			sock_set_flag(sk, SOCK_RCVTSTAMP);
619			sock_enable_timestamp(sk);
620		} else {
621			sock_reset_flag(sk, SOCK_RCVTSTAMP);
622			sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
623		}
624		break;
625
626	case SO_RCVLOWAT:
627		if (val < 0)
628			val = INT_MAX;
629		sk->sk_rcvlowat = val ? : 1;
630		break;
631
632	case SO_RCVTIMEO:
633		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
634		break;
635
636	case SO_SNDTIMEO:
637		ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
638		break;
639
640	case SO_ATTACH_FILTER:
641		ret = -EINVAL;
642		if (optlen == sizeof(struct sock_fprog)) {
643			struct sock_fprog fprog;
644
645			ret = -EFAULT;
646			if (copy_from_user(&fprog, optval, sizeof(fprog)))
647				break;
648
649			ret = sk_attach_filter(&fprog, sk);
650		}
651		break;
652
653	case SO_DETACH_FILTER:
654		ret = sk_detach_filter(sk);
655		break;
656
657	case SO_PASSSEC:
658		if (valbool)
659			set_bit(SOCK_PASSSEC, &sock->flags);
660		else
661			clear_bit(SOCK_PASSSEC, &sock->flags);
662		break;
663
664		/* We implement the SO_SNDLOWAT etc to
665		   not be settable (1003.1g 5.3) */
666	default:
667		ret = -ENOPROTOOPT;
668		break;
669	}
670	release_sock(sk);
671	return ret;
672}
673
674
675int sock_getsockopt(struct socket *sock, int level, int optname,
676		    char __user *optval, int __user *optlen)
677{
678	struct sock *sk = sock->sk;
679
680	union {
681		int val;
682		struct linger ling;
683		struct timeval tm;
684	} v;
685
686	unsigned int lv = sizeof(int);
687	int len;
688
689	if (get_user(len, optlen))
690		return -EFAULT;
691	if (len < 0)
692		return -EINVAL;
693
694	switch(optname) {
695	case SO_DEBUG:
696		v.val = sock_flag(sk, SOCK_DBG);
697		break;
698
699	case SO_DONTROUTE:
700		v.val = sock_flag(sk, SOCK_LOCALROUTE);
701		break;
702
703	case SO_BROADCAST:
704		v.val = !!sock_flag(sk, SOCK_BROADCAST);
705		break;
706
707	case SO_SNDBUF:
708		v.val = sk->sk_sndbuf;
709		break;
710
711	case SO_RCVBUF:
712		v.val = sk->sk_rcvbuf;
713		break;
714
715	case SO_REUSEADDR:
716		v.val = sk->sk_reuse;
717		break;
718
719	case SO_KEEPALIVE:
720		v.val = !!sock_flag(sk, SOCK_KEEPOPEN);
721		break;
722
723	case SO_TYPE:
724		v.val = sk->sk_type;
725		break;
726
727	case SO_ERROR:
728		v.val = -sock_error(sk);
729		if (v.val==0)
730			v.val = xchg(&sk->sk_err_soft, 0);
731		break;
732
733	case SO_OOBINLINE:
734		v.val = !!sock_flag(sk, SOCK_URGINLINE);
735		break;
736
737	case SO_NO_CHECK:
738		v.val = sk->sk_no_check;
739		break;
740
741	case SO_PRIORITY:
742		v.val = sk->sk_priority;
743		break;
744
745	case SO_LINGER:
746		lv		= sizeof(v.ling);
747		v.ling.l_onoff	= !!sock_flag(sk, SOCK_LINGER);
748		v.ling.l_linger	= sk->sk_lingertime / HZ;
749		break;
750
751	case SO_BSDCOMPAT:
752		sock_warn_obsolete_bsdism("getsockopt");
753		break;
754
755	case SO_TIMESTAMP:
756		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
757				!sock_flag(sk, SOCK_RCVTSTAMPNS);
758		break;
759
760	case SO_TIMESTAMPNS:
761		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
762		break;
763
764	case SO_RCVTIMEO:
765		lv=sizeof(struct timeval);
766		if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
767			v.tm.tv_sec = 0;
768			v.tm.tv_usec = 0;
769		} else {
770			v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
771			v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
772		}
773		break;
774
775	case SO_SNDTIMEO:
776		lv=sizeof(struct timeval);
777		if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
778			v.tm.tv_sec = 0;
779			v.tm.tv_usec = 0;
780		} else {
781			v.tm.tv_sec = sk->sk_sndtimeo / HZ;
782			v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
783		}
784		break;
785
786	case SO_RCVLOWAT:
787		v.val = sk->sk_rcvlowat;
788		break;
789
790	case SO_SNDLOWAT:
791		v.val=1;
792		break;
793
794	case SO_PASSCRED:
795		v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0;
796		break;
797
798	case SO_PEERCRED:
799		if (len > sizeof(sk->sk_peercred))
800			len = sizeof(sk->sk_peercred);
801		if (copy_to_user(optval, &sk->sk_peercred, len))
802			return -EFAULT;
803		goto lenout;
804
805	case SO_PEERNAME:
806	{
807		char address[128];
808
809		if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
810			return -ENOTCONN;
811		if (lv < len)
812			return -EINVAL;
813		if (copy_to_user(optval, address, len))
814			return -EFAULT;
815		goto lenout;
816	}
817
818	/* Dubious BSD thing... Probably nobody even uses it, but
819	 * the UNIX standard wants it for whatever reason... -DaveM
820	 */
821	case SO_ACCEPTCONN:
822		v.val = sk->sk_state == TCP_LISTEN;
823		break;
824
825	case SO_PASSSEC:
826		v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0;
827		break;
828
829	case SO_PEERSEC:
830		return security_socket_getpeersec_stream(sock, optval, optlen, len);
831
832	default:
833		return -ENOPROTOOPT;
834	}
835
836	if (len > lv)
837		len = lv;
838	if (copy_to_user(optval, &v, len))
839		return -EFAULT;
840lenout:
841	if (put_user(len, optlen))
842		return -EFAULT;
843	return 0;
844}
845
846/*
847 * Initialize an sk_lock.
848 *
849 * (We also register the sk_lock with the lock validator.)
850 */
851static inline void sock_lock_init(struct sock *sk)
852{
853	sock_lock_init_class_and_name(sk,
854			af_family_slock_key_strings[sk->sk_family],
855			af_family_slock_keys + sk->sk_family,
856			af_family_key_strings[sk->sk_family],
857			af_family_keys + sk->sk_family);
858}
859
860/**
861 *	sk_alloc - All socket objects are allocated here
862 *	@net: the applicable net namespace
863 *	@family: protocol family
864 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
865 *	@prot: struct proto associated with this new sock instance
866 *	@zero_it: if we should zero the newly allocated sock
867 */
868struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
869		      struct proto *prot, int zero_it)
870{
871	struct sock *sk = NULL;
872	struct kmem_cache *slab = prot->slab;
873
874	if (slab != NULL)
875		sk = kmem_cache_alloc(slab, priority);
876	else
877		sk = kmalloc(prot->obj_size, priority);
878
879	if (sk) {
880		if (zero_it) {
881			memset(sk, 0, prot->obj_size);
882			sk->sk_family = family;
883			/*
884			 * See comment in struct sock definition to understand
885			 * why we need sk_prot_creator -acme
886			 */
887			sk->sk_prot = sk->sk_prot_creator = prot;
888			sock_lock_init(sk);
889			sk->sk_net = get_net(net);
890		}
891
892		if (security_sk_alloc(sk, family, priority))
893			goto out_free;
894
895		if (!try_module_get(prot->owner))
896			goto out_free;
897	}
898	return sk;
899
900out_free:
901	if (slab != NULL)
902		kmem_cache_free(slab, sk);
903	else
904		kfree(sk);
905	return NULL;
906}
907
908void sk_free(struct sock *sk)
909{
910	struct sk_filter *filter;
911	struct module *owner = sk->sk_prot_creator->owner;
912
913	if (sk->sk_destruct)
914		sk->sk_destruct(sk);
915
916	filter = rcu_dereference(sk->sk_filter);
917	if (filter) {
918		sk_filter_uncharge(sk, filter);
919		rcu_assign_pointer(sk->sk_filter, NULL);
920	}
921
922	sock_disable_timestamp(sk);
923
924	if (atomic_read(&sk->sk_omem_alloc))
925		printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n",
926		       __FUNCTION__, atomic_read(&sk->sk_omem_alloc));
927
928	security_sk_free(sk);
929	put_net(sk->sk_net);
930	if (sk->sk_prot_creator->slab != NULL)
931		kmem_cache_free(sk->sk_prot_creator->slab, sk);
932	else
933		kfree(sk);
934	module_put(owner);
935}
936
937struct sock *sk_clone(const struct sock *sk, const gfp_t priority)
938{
939	struct sock *newsk = sk_alloc(sk->sk_net, sk->sk_family, priority, sk->sk_prot, 0);
940
941	if (newsk != NULL) {
942		struct sk_filter *filter;
943
944		sock_copy(newsk, sk);
945
946		/* SANITY */
947		sk_node_init(&newsk->sk_node);
948		sock_lock_init(newsk);
949		bh_lock_sock(newsk);
950		newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
951
952		atomic_set(&newsk->sk_rmem_alloc, 0);
953		atomic_set(&newsk->sk_wmem_alloc, 0);
954		atomic_set(&newsk->sk_omem_alloc, 0);
955		skb_queue_head_init(&newsk->sk_receive_queue);
956		skb_queue_head_init(&newsk->sk_write_queue);
957#ifdef CONFIG_NET_DMA
958		skb_queue_head_init(&newsk->sk_async_wait_queue);
959#endif
960
961		rwlock_init(&newsk->sk_dst_lock);
962		rwlock_init(&newsk->sk_callback_lock);
963		lockdep_set_class_and_name(&newsk->sk_callback_lock,
964				af_callback_keys + newsk->sk_family,
965				af_family_clock_key_strings[newsk->sk_family]);
966
967		newsk->sk_dst_cache	= NULL;
968		newsk->sk_wmem_queued	= 0;
969		newsk->sk_forward_alloc = 0;
970		newsk->sk_send_head	= NULL;
971		newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
972
973		sock_reset_flag(newsk, SOCK_DONE);
974		skb_queue_head_init(&newsk->sk_error_queue);
975
976		filter = newsk->sk_filter;
977		if (filter != NULL)
978			sk_filter_charge(newsk, filter);
979
980		if (unlikely(xfrm_sk_clone_policy(newsk))) {
981			/* It is still raw copy of parent, so invalidate
982			 * destructor and make plain sk_free() */
983			newsk->sk_destruct = NULL;
984			sk_free(newsk);
985			newsk = NULL;
986			goto out;
987		}
988
989		newsk->sk_err	   = 0;
990		newsk->sk_priority = 0;
991		atomic_set(&newsk->sk_refcnt, 2);
992
993		/*
994		 * Increment the counter in the same struct proto as the master
995		 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
996		 * is the same as sk->sk_prot->socks, as this field was copied
997		 * with memcpy).
998		 *
999		 * This _changes_ the previous behaviour, where
1000		 * tcp_create_openreq_child always was incrementing the
1001		 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1002		 * to be taken into account in all callers. -acme
1003		 */
1004		sk_refcnt_debug_inc(newsk);
1005		newsk->sk_socket = NULL;
1006		newsk->sk_sleep	 = NULL;
1007
1008		if (newsk->sk_prot->sockets_allocated)
1009			atomic_inc(newsk->sk_prot->sockets_allocated);
1010	}
1011out:
1012	return newsk;
1013}
1014
1015EXPORT_SYMBOL_GPL(sk_clone);
1016
1017void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1018{
1019	__sk_dst_set(sk, dst);
1020	sk->sk_route_caps = dst->dev->features;
1021	if (sk->sk_route_caps & NETIF_F_GSO)
1022		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1023	if (sk_can_gso(sk)) {
1024		if (dst->header_len)
1025			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1026		else
1027			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1028	}
1029}
1030EXPORT_SYMBOL_GPL(sk_setup_caps);
1031
1032void __init sk_init(void)
1033{
1034	if (num_physpages <= 4096) {
1035		sysctl_wmem_max = 32767;
1036		sysctl_rmem_max = 32767;
1037		sysctl_wmem_default = 32767;
1038		sysctl_rmem_default = 32767;
1039	} else if (num_physpages >= 131072) {
1040		sysctl_wmem_max = 131071;
1041		sysctl_rmem_max = 131071;
1042	}
1043}
1044
1045/*
1046 *	Simple resource managers for sockets.
1047 */
1048
1049
1050/*
1051 * Write buffer destructor automatically called from kfree_skb.
1052 */
1053void sock_wfree(struct sk_buff *skb)
1054{
1055	struct sock *sk = skb->sk;
1056
1057	/* In case it might be waiting for more memory. */
1058	atomic_sub(skb->truesize, &sk->sk_wmem_alloc);
1059	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE))
1060		sk->sk_write_space(sk);
1061	sock_put(sk);
1062}
1063
1064/*
1065 * Read buffer destructor automatically called from kfree_skb.
1066 */
1067void sock_rfree(struct sk_buff *skb)
1068{
1069	struct sock *sk = skb->sk;
1070
1071	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1072}
1073
1074
1075int sock_i_uid(struct sock *sk)
1076{
1077	int uid;
1078
1079	read_lock(&sk->sk_callback_lock);
1080	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1081	read_unlock(&sk->sk_callback_lock);
1082	return uid;
1083}
1084
1085unsigned long sock_i_ino(struct sock *sk)
1086{
1087	unsigned long ino;
1088
1089	read_lock(&sk->sk_callback_lock);
1090	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1091	read_unlock(&sk->sk_callback_lock);
1092	return ino;
1093}
1094
1095/*
1096 * Allocate a skb from the socket's send buffer.
1097 */
1098struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1099			     gfp_t priority)
1100{
1101	if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1102		struct sk_buff * skb = alloc_skb(size, priority);
1103		if (skb) {
1104			skb_set_owner_w(skb, sk);
1105			return skb;
1106		}
1107	}
1108	return NULL;
1109}
1110
1111/*
1112 * Allocate a skb from the socket's receive buffer.
1113 */
1114struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1115			     gfp_t priority)
1116{
1117	if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1118		struct sk_buff *skb = alloc_skb(size, priority);
1119		if (skb) {
1120			skb_set_owner_r(skb, sk);
1121			return skb;
1122		}
1123	}
1124	return NULL;
1125}
1126
1127/*
1128 * Allocate a memory block from the socket's option memory buffer.
1129 */
1130void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1131{
1132	if ((unsigned)size <= sysctl_optmem_max &&
1133	    atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1134		void *mem;
1135		/* First do the add, to avoid the race if kmalloc
1136		 * might sleep.
1137		 */
1138		atomic_add(size, &sk->sk_omem_alloc);
1139		mem = kmalloc(size, priority);
1140		if (mem)
1141			return mem;
1142		atomic_sub(size, &sk->sk_omem_alloc);
1143	}
1144	return NULL;
1145}
1146
1147/*
1148 * Free an option memory block.
1149 */
1150void sock_kfree_s(struct sock *sk, void *mem, int size)
1151{
1152	kfree(mem);
1153	atomic_sub(size, &sk->sk_omem_alloc);
1154}
1155
1156/* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1157   I think, these locks should be removed for datagram sockets.
1158 */
1159static long sock_wait_for_wmem(struct sock * sk, long timeo)
1160{
1161	DEFINE_WAIT(wait);
1162
1163	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1164	for (;;) {
1165		if (!timeo)
1166			break;
1167		if (signal_pending(current))
1168			break;
1169		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1170		prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1171		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1172			break;
1173		if (sk->sk_shutdown & SEND_SHUTDOWN)
1174			break;
1175		if (sk->sk_err)
1176			break;
1177		timeo = schedule_timeout(timeo);
1178	}
1179	finish_wait(sk->sk_sleep, &wait);
1180	return timeo;
1181}
1182
1183
1184/*
1185 *	Generic send/receive buffer handlers
1186 */
1187
1188static struct sk_buff *sock_alloc_send_pskb(struct sock *sk,
1189					    unsigned long header_len,
1190					    unsigned long data_len,
1191					    int noblock, int *errcode)
1192{
1193	struct sk_buff *skb;
1194	gfp_t gfp_mask;
1195	long timeo;
1196	int err;
1197
1198	gfp_mask = sk->sk_allocation;
1199	if (gfp_mask & __GFP_WAIT)
1200		gfp_mask |= __GFP_REPEAT;
1201
1202	timeo = sock_sndtimeo(sk, noblock);
1203	while (1) {
1204		err = sock_error(sk);
1205		if (err != 0)
1206			goto failure;
1207
1208		err = -EPIPE;
1209		if (sk->sk_shutdown & SEND_SHUTDOWN)
1210			goto failure;
1211
1212		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1213			skb = alloc_skb(header_len, gfp_mask);
1214			if (skb) {
1215				int npages;
1216				int i;
1217
1218				/* No pages, we're done... */
1219				if (!data_len)
1220					break;
1221
1222				npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1223				skb->truesize += data_len;
1224				skb_shinfo(skb)->nr_frags = npages;
1225				for (i = 0; i < npages; i++) {
1226					struct page *page;
1227					skb_frag_t *frag;
1228
1229					page = alloc_pages(sk->sk_allocation, 0);
1230					if (!page) {
1231						err = -ENOBUFS;
1232						skb_shinfo(skb)->nr_frags = i;
1233						kfree_skb(skb);
1234						goto failure;
1235					}
1236
1237					frag = &skb_shinfo(skb)->frags[i];
1238					frag->page = page;
1239					frag->page_offset = 0;
1240					frag->size = (data_len >= PAGE_SIZE ?
1241						      PAGE_SIZE :
1242						      data_len);
1243					data_len -= PAGE_SIZE;
1244				}
1245
1246				/* Full success... */
1247				break;
1248			}
1249			err = -ENOBUFS;
1250			goto failure;
1251		}
1252		set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1253		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1254		err = -EAGAIN;
1255		if (!timeo)
1256			goto failure;
1257		if (signal_pending(current))
1258			goto interrupted;
1259		timeo = sock_wait_for_wmem(sk, timeo);
1260	}
1261
1262	skb_set_owner_w(skb, sk);
1263	return skb;
1264
1265interrupted:
1266	err = sock_intr_errno(timeo);
1267failure:
1268	*errcode = err;
1269	return NULL;
1270}
1271
1272struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1273				    int noblock, int *errcode)
1274{
1275	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1276}
1277
1278static void __lock_sock(struct sock *sk)
1279{
1280	DEFINE_WAIT(wait);
1281
1282	for (;;) {
1283		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1284					TASK_UNINTERRUPTIBLE);
1285		spin_unlock_bh(&sk->sk_lock.slock);
1286		schedule();
1287		spin_lock_bh(&sk->sk_lock.slock);
1288		if (!sock_owned_by_user(sk))
1289			break;
1290	}
1291	finish_wait(&sk->sk_lock.wq, &wait);
1292}
1293
1294static void __release_sock(struct sock *sk)
1295{
1296	struct sk_buff *skb = sk->sk_backlog.head;
1297
1298	do {
1299		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1300		bh_unlock_sock(sk);
1301
1302		do {
1303			struct sk_buff *next = skb->next;
1304
1305			skb->next = NULL;
1306			sk->sk_backlog_rcv(sk, skb);
1307
1308			/*
1309			 * We are in process context here with softirqs
1310			 * disabled, use cond_resched_softirq() to preempt.
1311			 * This is safe to do because we've taken the backlog
1312			 * queue private:
1313			 */
1314			cond_resched_softirq();
1315
1316			skb = next;
1317		} while (skb != NULL);
1318
1319		bh_lock_sock(sk);
1320	} while ((skb = sk->sk_backlog.head) != NULL);
1321}
1322
1323/**
1324 * sk_wait_data - wait for data to arrive at sk_receive_queue
1325 * @sk:    sock to wait on
1326 * @timeo: for how long
1327 *
1328 * Now socket state including sk->sk_err is changed only under lock,
1329 * hence we may omit checks after joining wait queue.
1330 * We check receive queue before schedule() only as optimization;
1331 * it is very likely that release_sock() added new data.
1332 */
1333int sk_wait_data(struct sock *sk, long *timeo)
1334{
1335	int rc;
1336	DEFINE_WAIT(wait);
1337
1338	prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1339	set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1340	rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1341	clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1342	finish_wait(sk->sk_sleep, &wait);
1343	return rc;
1344}
1345
1346EXPORT_SYMBOL(sk_wait_data);
1347
1348/*
1349 * Set of default routines for initialising struct proto_ops when
1350 * the protocol does not support a particular function. In certain
1351 * cases where it makes no sense for a protocol to have a "do nothing"
1352 * function, some default processing is provided.
1353 */
1354
1355int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1356{
1357	return -EOPNOTSUPP;
1358}
1359
1360int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1361		    int len, int flags)
1362{
1363	return -EOPNOTSUPP;
1364}
1365
1366int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1367{
1368	return -EOPNOTSUPP;
1369}
1370
1371int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1372{
1373	return -EOPNOTSUPP;
1374}
1375
1376int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1377		    int *len, int peer)
1378{
1379	return -EOPNOTSUPP;
1380}
1381
1382unsigned int sock_no_poll(struct file * file, struct socket *sock, poll_table *pt)
1383{
1384	return 0;
1385}
1386
1387int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1388{
1389	return -EOPNOTSUPP;
1390}
1391
1392int sock_no_listen(struct socket *sock, int backlog)
1393{
1394	return -EOPNOTSUPP;
1395}
1396
1397int sock_no_shutdown(struct socket *sock, int how)
1398{
1399	return -EOPNOTSUPP;
1400}
1401
1402int sock_no_setsockopt(struct socket *sock, int level, int optname,
1403		    char __user *optval, int optlen)
1404{
1405	return -EOPNOTSUPP;
1406}
1407
1408int sock_no_getsockopt(struct socket *sock, int level, int optname,
1409		    char __user *optval, int __user *optlen)
1410{
1411	return -EOPNOTSUPP;
1412}
1413
1414int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1415		    size_t len)
1416{
1417	return -EOPNOTSUPP;
1418}
1419
1420int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1421		    size_t len, int flags)
1422{
1423	return -EOPNOTSUPP;
1424}
1425
1426int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
1427{
1428	/* Mirror missing mmap method error code */
1429	return -ENODEV;
1430}
1431
1432ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
1433{
1434	ssize_t res;
1435	struct msghdr msg = {.msg_flags = flags};
1436	struct kvec iov;
1437	char *kaddr = kmap(page);
1438	iov.iov_base = kaddr + offset;
1439	iov.iov_len = size;
1440	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
1441	kunmap(page);
1442	return res;
1443}
1444
1445/*
1446 *	Default Socket Callbacks
1447 */
1448
1449static void sock_def_wakeup(struct sock *sk)
1450{
1451	read_lock(&sk->sk_callback_lock);
1452	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1453		wake_up_interruptible_all(sk->sk_sleep);
1454	read_unlock(&sk->sk_callback_lock);
1455}
1456
1457static void sock_def_error_report(struct sock *sk)
1458{
1459	read_lock(&sk->sk_callback_lock);
1460	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1461		wake_up_interruptible(sk->sk_sleep);
1462	sk_wake_async(sk,0,POLL_ERR);
1463	read_unlock(&sk->sk_callback_lock);
1464}
1465
1466static void sock_def_readable(struct sock *sk, int len)
1467{
1468	read_lock(&sk->sk_callback_lock);
1469	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1470		wake_up_interruptible(sk->sk_sleep);
1471	sk_wake_async(sk,1,POLL_IN);
1472	read_unlock(&sk->sk_callback_lock);
1473}
1474
1475static void sock_def_write_space(struct sock *sk)
1476{
1477	read_lock(&sk->sk_callback_lock);
1478
1479	/* Do not wake up a writer until he can make "significant"
1480	 * progress.  --DaveM
1481	 */
1482	if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
1483		if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1484			wake_up_interruptible(sk->sk_sleep);
1485
1486		/* Should agree with poll, otherwise some programs break */
1487		if (sock_writeable(sk))
1488			sk_wake_async(sk, 2, POLL_OUT);
1489	}
1490
1491	read_unlock(&sk->sk_callback_lock);
1492}
1493
1494static void sock_def_destruct(struct sock *sk)
1495{
1496	kfree(sk->sk_protinfo);
1497}
1498
1499void sk_send_sigurg(struct sock *sk)
1500{
1501	if (sk->sk_socket && sk->sk_socket->file)
1502		if (send_sigurg(&sk->sk_socket->file->f_owner))
1503			sk_wake_async(sk, 3, POLL_PRI);
1504}
1505
1506void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1507		    unsigned long expires)
1508{
1509	if (!mod_timer(timer, expires))
1510		sock_hold(sk);
1511}
1512
1513EXPORT_SYMBOL(sk_reset_timer);
1514
1515void sk_stop_timer(struct sock *sk, struct timer_list* timer)
1516{
1517	if (timer_pending(timer) && del_timer(timer))
1518		__sock_put(sk);
1519}
1520
1521EXPORT_SYMBOL(sk_stop_timer);
1522
1523void sock_init_data(struct socket *sock, struct sock *sk)
1524{
1525	skb_queue_head_init(&sk->sk_receive_queue);
1526	skb_queue_head_init(&sk->sk_write_queue);
1527	skb_queue_head_init(&sk->sk_error_queue);
1528#ifdef CONFIG_NET_DMA
1529	skb_queue_head_init(&sk->sk_async_wait_queue);
1530#endif
1531
1532	sk->sk_send_head	=	NULL;
1533
1534	init_timer(&sk->sk_timer);
1535
1536	sk->sk_allocation	=	GFP_KERNEL;
1537	sk->sk_rcvbuf		=	sysctl_rmem_default;
1538	sk->sk_sndbuf		=	sysctl_wmem_default;
1539	sk->sk_state		=	TCP_CLOSE;
1540	sk->sk_socket		=	sock;
1541
1542	sock_set_flag(sk, SOCK_ZAPPED);
1543
1544	if (sock) {
1545		sk->sk_type	=	sock->type;
1546		sk->sk_sleep	=	&sock->wait;
1547		sock->sk	=	sk;
1548	} else
1549		sk->sk_sleep	=	NULL;
1550
1551	rwlock_init(&sk->sk_dst_lock);
1552	rwlock_init(&sk->sk_callback_lock);
1553	lockdep_set_class_and_name(&sk->sk_callback_lock,
1554			af_callback_keys + sk->sk_family,
1555			af_family_clock_key_strings[sk->sk_family]);
1556
1557	sk->sk_state_change	=	sock_def_wakeup;
1558	sk->sk_data_ready	=	sock_def_readable;
1559	sk->sk_write_space	=	sock_def_write_space;
1560	sk->sk_error_report	=	sock_def_error_report;
1561	sk->sk_destruct		=	sock_def_destruct;
1562
1563	sk->sk_sndmsg_page	=	NULL;
1564	sk->sk_sndmsg_off	=	0;
1565
1566	sk->sk_peercred.pid 	=	0;
1567	sk->sk_peercred.uid	=	-1;
1568	sk->sk_peercred.gid	=	-1;
1569	sk->sk_write_pending	=	0;
1570	sk->sk_rcvlowat		=	1;
1571	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
1572	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
1573
1574	sk->sk_stamp = ktime_set(-1L, -1L);
1575
1576	atomic_set(&sk->sk_refcnt, 1);
1577}
1578
1579void fastcall lock_sock_nested(struct sock *sk, int subclass)
1580{
1581	might_sleep();
1582	spin_lock_bh(&sk->sk_lock.slock);
1583	if (sk->sk_lock.owned)
1584		__lock_sock(sk);
1585	sk->sk_lock.owned = 1;
1586	spin_unlock(&sk->sk_lock.slock);
1587	/*
1588	 * The sk_lock has mutex_lock() semantics here:
1589	 */
1590	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
1591	local_bh_enable();
1592}
1593
1594EXPORT_SYMBOL(lock_sock_nested);
1595
1596void fastcall release_sock(struct sock *sk)
1597{
1598	/*
1599	 * The sk_lock has mutex_unlock() semantics:
1600	 */
1601	mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1602
1603	spin_lock_bh(&sk->sk_lock.slock);
1604	if (sk->sk_backlog.tail)
1605		__release_sock(sk);
1606	sk->sk_lock.owned = 0;
1607	if (waitqueue_active(&sk->sk_lock.wq))
1608		wake_up(&sk->sk_lock.wq);
1609	spin_unlock_bh(&sk->sk_lock.slock);
1610}
1611EXPORT_SYMBOL(release_sock);
1612
1613int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
1614{
1615	struct timeval tv;
1616	if (!sock_flag(sk, SOCK_TIMESTAMP))
1617		sock_enable_timestamp(sk);
1618	tv = ktime_to_timeval(sk->sk_stamp);
1619	if (tv.tv_sec == -1)
1620		return -ENOENT;
1621	if (tv.tv_sec == 0) {
1622		sk->sk_stamp = ktime_get_real();
1623		tv = ktime_to_timeval(sk->sk_stamp);
1624	}
1625	return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
1626}
1627EXPORT_SYMBOL(sock_get_timestamp);
1628
1629int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
1630{
1631	struct timespec ts;
1632	if (!sock_flag(sk, SOCK_TIMESTAMP))
1633		sock_enable_timestamp(sk);
1634	ts = ktime_to_timespec(sk->sk_stamp);
1635	if (ts.tv_sec == -1)
1636		return -ENOENT;
1637	if (ts.tv_sec == 0) {
1638		sk->sk_stamp = ktime_get_real();
1639		ts = ktime_to_timespec(sk->sk_stamp);
1640	}
1641	return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
1642}
1643EXPORT_SYMBOL(sock_get_timestampns);
1644
1645void sock_enable_timestamp(struct sock *sk)
1646{
1647	if (!sock_flag(sk, SOCK_TIMESTAMP)) {
1648		sock_set_flag(sk, SOCK_TIMESTAMP);
1649		net_enable_timestamp();
1650	}
1651}
1652
1653/*
1654 *	Get a socket option on an socket.
1655 *
1656 *	FIX: POSIX 1003.1g is very ambiguous here. It states that
1657 *	asynchronous errors should be reported by getsockopt. We assume
1658 *	this means if you specify SO_ERROR (otherwise whats the point of it).
1659 */
1660int sock_common_getsockopt(struct socket *sock, int level, int optname,
1661			   char __user *optval, int __user *optlen)
1662{
1663	struct sock *sk = sock->sk;
1664
1665	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1666}
1667
1668EXPORT_SYMBOL(sock_common_getsockopt);
1669
1670#ifdef CONFIG_COMPAT
1671int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
1672				  char __user *optval, int __user *optlen)
1673{
1674	struct sock *sk = sock->sk;
1675
1676	if (sk->sk_prot->compat_getsockopt != NULL)
1677		return sk->sk_prot->compat_getsockopt(sk, level, optname,
1678						      optval, optlen);
1679	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1680}
1681EXPORT_SYMBOL(compat_sock_common_getsockopt);
1682#endif
1683
1684int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1685			struct msghdr *msg, size_t size, int flags)
1686{
1687	struct sock *sk = sock->sk;
1688	int addr_len = 0;
1689	int err;
1690
1691	err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
1692				   flags & ~MSG_DONTWAIT, &addr_len);
1693	if (err >= 0)
1694		msg->msg_namelen = addr_len;
1695	return err;
1696}
1697
1698EXPORT_SYMBOL(sock_common_recvmsg);
1699
1700/*
1701 *	Set socket options on an inet socket.
1702 */
1703int sock_common_setsockopt(struct socket *sock, int level, int optname,
1704			   char __user *optval, int optlen)
1705{
1706	struct sock *sk = sock->sk;
1707
1708	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
1709}
1710
1711EXPORT_SYMBOL(sock_common_setsockopt);
1712
1713#ifdef CONFIG_COMPAT
1714int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
1715				  char __user *optval, int optlen)
1716{
1717	struct sock *sk = sock->sk;
1718
1719	if (sk->sk_prot->compat_setsockopt != NULL)
1720		return sk->sk_prot->compat_setsockopt(sk, level, optname,
1721						      optval, optlen);
1722	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
1723}
1724EXPORT_SYMBOL(compat_sock_common_setsockopt);
1725#endif
1726
1727void sk_common_release(struct sock *sk)
1728{
1729	if (sk->sk_prot->destroy)
1730		sk->sk_prot->destroy(sk);
1731
1732	/*
1733	 * Observation: when sock_common_release is called, processes have
1734	 * no access to socket. But net still has.
1735	 * Step one, detach it from networking:
1736	 *
1737	 * A. Remove from hash tables.
1738	 */
1739
1740	sk->sk_prot->unhash(sk);
1741
1742	/*
1743	 * In this point socket cannot receive new packets, but it is possible
1744	 * that some packets are in flight because some CPU runs receiver and
1745	 * did hash table lookup before we unhashed socket. They will achieve
1746	 * receive queue and will be purged by socket destructor.
1747	 *
1748	 * Also we still have packets pending on receive queue and probably,
1749	 * our own packets waiting in device queues. sock_destroy will drain
1750	 * receive queue, but transmitted packets will delay socket destruction
1751	 * until the last reference will be released.
1752	 */
1753
1754	sock_orphan(sk);
1755
1756	xfrm_sk_free_policy(sk);
1757
1758	sk_refcnt_debug_release(sk);
1759	sock_put(sk);
1760}
1761
1762EXPORT_SYMBOL(sk_common_release);
1763
1764static DEFINE_RWLOCK(proto_list_lock);
1765static LIST_HEAD(proto_list);
1766
1767int proto_register(struct proto *prot, int alloc_slab)
1768{
1769	char *request_sock_slab_name = NULL;
1770	char *timewait_sock_slab_name;
1771	int rc = -ENOBUFS;
1772
1773	if (alloc_slab) {
1774		prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
1775					       SLAB_HWCACHE_ALIGN, NULL);
1776
1777		if (prot->slab == NULL) {
1778			printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n",
1779			       prot->name);
1780			goto out;
1781		}
1782
1783		if (prot->rsk_prot != NULL) {
1784			static const char mask[] = "request_sock_%s";
1785
1786			request_sock_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
1787			if (request_sock_slab_name == NULL)
1788				goto out_free_sock_slab;
1789
1790			sprintf(request_sock_slab_name, mask, prot->name);
1791			prot->rsk_prot->slab = kmem_cache_create(request_sock_slab_name,
1792								 prot->rsk_prot->obj_size, 0,
1793								 SLAB_HWCACHE_ALIGN, NULL);
1794
1795			if (prot->rsk_prot->slab == NULL) {
1796				printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n",
1797				       prot->name);
1798				goto out_free_request_sock_slab_name;
1799			}
1800		}
1801
1802		if (prot->twsk_prot != NULL) {
1803			static const char mask[] = "tw_sock_%s";
1804
1805			timewait_sock_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
1806
1807			if (timewait_sock_slab_name == NULL)
1808				goto out_free_request_sock_slab;
1809
1810			sprintf(timewait_sock_slab_name, mask, prot->name);
1811			prot->twsk_prot->twsk_slab =
1812				kmem_cache_create(timewait_sock_slab_name,
1813						  prot->twsk_prot->twsk_obj_size,
1814						  0, SLAB_HWCACHE_ALIGN,
1815						  NULL);
1816			if (prot->twsk_prot->twsk_slab == NULL)
1817				goto out_free_timewait_sock_slab_name;
1818		}
1819	}
1820
1821	write_lock(&proto_list_lock);
1822	list_add(&prot->node, &proto_list);
1823	write_unlock(&proto_list_lock);
1824	rc = 0;
1825out:
1826	return rc;
1827out_free_timewait_sock_slab_name:
1828	kfree(timewait_sock_slab_name);
1829out_free_request_sock_slab:
1830	if (prot->rsk_prot && prot->rsk_prot->slab) {
1831		kmem_cache_destroy(prot->rsk_prot->slab);
1832		prot->rsk_prot->slab = NULL;
1833	}
1834out_free_request_sock_slab_name:
1835	kfree(request_sock_slab_name);
1836out_free_sock_slab:
1837	kmem_cache_destroy(prot->slab);
1838	prot->slab = NULL;
1839	goto out;
1840}
1841
1842EXPORT_SYMBOL(proto_register);
1843
1844void proto_unregister(struct proto *prot)
1845{
1846	write_lock(&proto_list_lock);
1847	list_del(&prot->node);
1848	write_unlock(&proto_list_lock);
1849
1850	if (prot->slab != NULL) {
1851		kmem_cache_destroy(prot->slab);
1852		prot->slab = NULL;
1853	}
1854
1855	if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
1856		const char *name = kmem_cache_name(prot->rsk_prot->slab);
1857
1858		kmem_cache_destroy(prot->rsk_prot->slab);
1859		kfree(name);
1860		prot->rsk_prot->slab = NULL;
1861	}
1862
1863	if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
1864		const char *name = kmem_cache_name(prot->twsk_prot->twsk_slab);
1865
1866		kmem_cache_destroy(prot->twsk_prot->twsk_slab);
1867		kfree(name);
1868		prot->twsk_prot->twsk_slab = NULL;
1869	}
1870}
1871
1872EXPORT_SYMBOL(proto_unregister);
1873
1874#ifdef CONFIG_PROC_FS
1875static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
1876{
1877	read_lock(&proto_list_lock);
1878	return seq_list_start_head(&proto_list, *pos);
1879}
1880
1881static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1882{
1883	return seq_list_next(v, &proto_list, pos);
1884}
1885
1886static void proto_seq_stop(struct seq_file *seq, void *v)
1887{
1888	read_unlock(&proto_list_lock);
1889}
1890
1891static char proto_method_implemented(const void *method)
1892{
1893	return method == NULL ? 'n' : 'y';
1894}
1895
1896static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
1897{
1898	seq_printf(seq, "%-9s %4u %6d  %6d   %-3s %6u   %-3s  %-10s "
1899			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
1900		   proto->name,
1901		   proto->obj_size,
1902		   proto->sockets_allocated != NULL ? atomic_read(proto->sockets_allocated) : -1,
1903		   proto->memory_allocated != NULL ? atomic_read(proto->memory_allocated) : -1,
1904		   proto->memory_pressure != NULL ? *proto->memory_pressure ? "yes" : "no" : "NI",
1905		   proto->max_header,
1906		   proto->slab == NULL ? "no" : "yes",
1907		   module_name(proto->owner),
1908		   proto_method_implemented(proto->close),
1909		   proto_method_implemented(proto->connect),
1910		   proto_method_implemented(proto->disconnect),
1911		   proto_method_implemented(proto->accept),
1912		   proto_method_implemented(proto->ioctl),
1913		   proto_method_implemented(proto->init),
1914		   proto_method_implemented(proto->destroy),
1915		   proto_method_implemented(proto->shutdown),
1916		   proto_method_implemented(proto->setsockopt),
1917		   proto_method_implemented(proto->getsockopt),
1918		   proto_method_implemented(proto->sendmsg),
1919		   proto_method_implemented(proto->recvmsg),
1920		   proto_method_implemented(proto->sendpage),
1921		   proto_method_implemented(proto->bind),
1922		   proto_method_implemented(proto->backlog_rcv),
1923		   proto_method_implemented(proto->hash),
1924		   proto_method_implemented(proto->unhash),
1925		   proto_method_implemented(proto->get_port),
1926		   proto_method_implemented(proto->enter_memory_pressure));
1927}
1928
1929static int proto_seq_show(struct seq_file *seq, void *v)
1930{
1931	if (v == &proto_list)
1932		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
1933			   "protocol",
1934			   "size",
1935			   "sockets",
1936			   "memory",
1937			   "press",
1938			   "maxhdr",
1939			   "slab",
1940			   "module",
1941			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
1942	else
1943		proto_seq_printf(seq, list_entry(v, struct proto, node));
1944	return 0;
1945}
1946
1947static const struct seq_operations proto_seq_ops = {
1948	.start  = proto_seq_start,
1949	.next   = proto_seq_next,
1950	.stop   = proto_seq_stop,
1951	.show   = proto_seq_show,
1952};
1953
1954static int proto_seq_open(struct inode *inode, struct file *file)
1955{
1956	return seq_open(file, &proto_seq_ops);
1957}
1958
1959static const struct file_operations proto_seq_fops = {
1960	.owner		= THIS_MODULE,
1961	.open		= proto_seq_open,
1962	.read		= seq_read,
1963	.llseek		= seq_lseek,
1964	.release	= seq_release,
1965};
1966
1967static int __init proto_init(void)
1968{
1969	/* register /proc/net/protocols */
1970	return proc_net_fops_create(&init_net, "protocols", S_IRUGO, &proto_seq_fops) == NULL ? -ENOBUFS : 0;
1971}
1972
1973subsys_initcall(proto_init);
1974
1975#endif /* PROC_FS */
1976
1977EXPORT_SYMBOL(sk_alloc);
1978EXPORT_SYMBOL(sk_free);
1979EXPORT_SYMBOL(sk_send_sigurg);
1980EXPORT_SYMBOL(sock_alloc_send_skb);
1981EXPORT_SYMBOL(sock_init_data);
1982EXPORT_SYMBOL(sock_kfree_s);
1983EXPORT_SYMBOL(sock_kmalloc);
1984EXPORT_SYMBOL(sock_no_accept);
1985EXPORT_SYMBOL(sock_no_bind);
1986EXPORT_SYMBOL(sock_no_connect);
1987EXPORT_SYMBOL(sock_no_getname);
1988EXPORT_SYMBOL(sock_no_getsockopt);
1989EXPORT_SYMBOL(sock_no_ioctl);
1990EXPORT_SYMBOL(sock_no_listen);
1991EXPORT_SYMBOL(sock_no_mmap);
1992EXPORT_SYMBOL(sock_no_poll);
1993EXPORT_SYMBOL(sock_no_recvmsg);
1994EXPORT_SYMBOL(sock_no_sendmsg);
1995EXPORT_SYMBOL(sock_no_sendpage);
1996EXPORT_SYMBOL(sock_no_setsockopt);
1997EXPORT_SYMBOL(sock_no_shutdown);
1998EXPORT_SYMBOL(sock_no_socketpair);
1999EXPORT_SYMBOL(sock_rfree);
2000EXPORT_SYMBOL(sock_setsockopt);
2001EXPORT_SYMBOL(sock_wfree);
2002EXPORT_SYMBOL(sock_wmalloc);
2003EXPORT_SYMBOL(sock_i_uid);
2004EXPORT_SYMBOL(sock_i_ino);
2005EXPORT_SYMBOL(sysctl_optmem_max);
2006#ifdef CONFIG_SYSCTL
2007EXPORT_SYMBOL(sysctl_rmem_max);
2008EXPORT_SYMBOL(sysctl_wmem_max);
2009#endif
2010