sock.c revision c255a458055e459f65eb7b7f51dc5dbdd0caf1d8
1/*
2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
3 *		operating system.  INET is implemented using the  BSD Socket
4 *		interface as the means of communication with the user level.
5 *
6 *		Generic socket support routines. Memory allocators, socket lock/release
7 *		handler for protocols to use and generic option handler.
8 *
9 *
10 * Authors:	Ross Biro
11 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 *		Florian La Roche, <flla@stud.uni-sb.de>
13 *		Alan Cox, <A.Cox@swansea.ac.uk>
14 *
15 * Fixes:
16 *		Alan Cox	: 	Numerous verify_area() problems
17 *		Alan Cox	:	Connecting on a connecting socket
18 *					now returns an error for tcp.
19 *		Alan Cox	:	sock->protocol is set correctly.
20 *					and is not sometimes left as 0.
21 *		Alan Cox	:	connect handles icmp errors on a
22 *					connect properly. Unfortunately there
23 *					is a restart syscall nasty there. I
24 *					can't match BSD without hacking the C
25 *					library. Ideas urgently sought!
26 *		Alan Cox	:	Disallow bind() to addresses that are
27 *					not ours - especially broadcast ones!!
28 *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
29 *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
30 *					instead they leave that for the DESTROY timer.
31 *		Alan Cox	:	Clean up error flag in accept
32 *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
33 *					was buggy. Put a remove_sock() in the handler
34 *					for memory when we hit 0. Also altered the timer
35 *					code. The ACK stuff can wait and needs major
36 *					TCP layer surgery.
37 *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
38 *					and fixed timer/inet_bh race.
39 *		Alan Cox	:	Added zapped flag for TCP
40 *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
41 *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
43 *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
46 *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
47 *	Pauline Middelink	:	identd support
48 *		Alan Cox	:	Fixed connect() taking signals I think.
49 *		Alan Cox	:	SO_LINGER supported
50 *		Alan Cox	:	Error reporting fixes
51 *		Anonymous	:	inet_create tidied up (sk->reuse setting)
52 *		Alan Cox	:	inet sockets don't set sk->type!
53 *		Alan Cox	:	Split socket option code
54 *		Alan Cox	:	Callbacks
55 *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
56 *		Alex		:	Removed restriction on inet fioctl
57 *		Alan Cox	:	Splitting INET from NET core
58 *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
59 *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
60 *		Alan Cox	:	Split IP from generic code
61 *		Alan Cox	:	New kfree_skbmem()
62 *		Alan Cox	:	Make SO_DEBUG superuser only.
63 *		Alan Cox	:	Allow anyone to clear SO_DEBUG
64 *					(compatibility fix)
65 *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
66 *		Alan Cox	:	Allocator for a socket is settable.
67 *		Alan Cox	:	SO_ERROR includes soft errors.
68 *		Alan Cox	:	Allow NULL arguments on some SO_ opts
69 *		Alan Cox	: 	Generic socket allocation to make hooks
70 *					easier (suggested by Craig Metz).
71 *		Michael Pall	:	SO_ERROR returns positive errno again
72 *              Steve Whitehouse:       Added default destructor to free
73 *                                      protocol private data.
74 *              Steve Whitehouse:       Added various other default routines
75 *                                      common to several socket families.
76 *              Chris Evans     :       Call suser() check last on F_SETOWN
77 *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
79 *		Andi Kleen	:	Fix write_space callback
80 *		Chris Evans	:	Security fixes - signedness again
81 *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
82 *
83 * To Fix:
84 *
85 *
86 *		This program is free software; you can redistribute it and/or
87 *		modify it under the terms of the GNU General Public License
88 *		as published by the Free Software Foundation; either version
89 *		2 of the License, or (at your option) any later version.
90 */
91
92#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
93
94#include <linux/capability.h>
95#include <linux/errno.h>
96#include <linux/types.h>
97#include <linux/socket.h>
98#include <linux/in.h>
99#include <linux/kernel.h>
100#include <linux/module.h>
101#include <linux/proc_fs.h>
102#include <linux/seq_file.h>
103#include <linux/sched.h>
104#include <linux/timer.h>
105#include <linux/string.h>
106#include <linux/sockios.h>
107#include <linux/net.h>
108#include <linux/mm.h>
109#include <linux/slab.h>
110#include <linux/interrupt.h>
111#include <linux/poll.h>
112#include <linux/tcp.h>
113#include <linux/init.h>
114#include <linux/highmem.h>
115#include <linux/user_namespace.h>
116#include <linux/static_key.h>
117#include <linux/memcontrol.h>
118#include <linux/prefetch.h>
119
120#include <asm/uaccess.h>
121
122#include <linux/netdevice.h>
123#include <net/protocol.h>
124#include <linux/skbuff.h>
125#include <net/net_namespace.h>
126#include <net/request_sock.h>
127#include <net/sock.h>
128#include <linux/net_tstamp.h>
129#include <net/xfrm.h>
130#include <linux/ipsec.h>
131#include <net/cls_cgroup.h>
132#include <net/netprio_cgroup.h>
133
134#include <linux/filter.h>
135
136#include <trace/events/sock.h>
137
138#ifdef CONFIG_INET
139#include <net/tcp.h>
140#endif
141
142static DEFINE_MUTEX(proto_list_mutex);
143static LIST_HEAD(proto_list);
144
145#ifdef CONFIG_MEMCG_KMEM
146int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
147{
148	struct proto *proto;
149	int ret = 0;
150
151	mutex_lock(&proto_list_mutex);
152	list_for_each_entry(proto, &proto_list, node) {
153		if (proto->init_cgroup) {
154			ret = proto->init_cgroup(memcg, ss);
155			if (ret)
156				goto out;
157		}
158	}
159
160	mutex_unlock(&proto_list_mutex);
161	return ret;
162out:
163	list_for_each_entry_continue_reverse(proto, &proto_list, node)
164		if (proto->destroy_cgroup)
165			proto->destroy_cgroup(memcg);
166	mutex_unlock(&proto_list_mutex);
167	return ret;
168}
169
170void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
171{
172	struct proto *proto;
173
174	mutex_lock(&proto_list_mutex);
175	list_for_each_entry_reverse(proto, &proto_list, node)
176		if (proto->destroy_cgroup)
177			proto->destroy_cgroup(memcg);
178	mutex_unlock(&proto_list_mutex);
179}
180#endif
181
182/*
183 * Each address family might have different locking rules, so we have
184 * one slock key per address family:
185 */
186static struct lock_class_key af_family_keys[AF_MAX];
187static struct lock_class_key af_family_slock_keys[AF_MAX];
188
189struct static_key memcg_socket_limit_enabled;
190EXPORT_SYMBOL(memcg_socket_limit_enabled);
191
192/*
193 * Make lock validator output more readable. (we pre-construct these
194 * strings build-time, so that runtime initialization of socket
195 * locks is fast):
196 */
197static const char *const af_family_key_strings[AF_MAX+1] = {
198  "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX"     , "sk_lock-AF_INET"     ,
199  "sk_lock-AF_AX25"  , "sk_lock-AF_IPX"      , "sk_lock-AF_APPLETALK",
200  "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE"   , "sk_lock-AF_ATMPVC"   ,
201  "sk_lock-AF_X25"   , "sk_lock-AF_INET6"    , "sk_lock-AF_ROSE"     ,
202  "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI"  , "sk_lock-AF_SECURITY" ,
203  "sk_lock-AF_KEY"   , "sk_lock-AF_NETLINK"  , "sk_lock-AF_PACKET"   ,
204  "sk_lock-AF_ASH"   , "sk_lock-AF_ECONET"   , "sk_lock-AF_ATMSVC"   ,
205  "sk_lock-AF_RDS"   , "sk_lock-AF_SNA"      , "sk_lock-AF_IRDA"     ,
206  "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE"  , "sk_lock-AF_LLC"      ,
207  "sk_lock-27"       , "sk_lock-28"          , "sk_lock-AF_CAN"      ,
208  "sk_lock-AF_TIPC"  , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV"        ,
209  "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN"     , "sk_lock-AF_PHONET"   ,
210  "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG"      ,
211  "sk_lock-AF_NFC"   , "sk_lock-AF_MAX"
212};
213static const char *const af_family_slock_key_strings[AF_MAX+1] = {
214  "slock-AF_UNSPEC", "slock-AF_UNIX"     , "slock-AF_INET"     ,
215  "slock-AF_AX25"  , "slock-AF_IPX"      , "slock-AF_APPLETALK",
216  "slock-AF_NETROM", "slock-AF_BRIDGE"   , "slock-AF_ATMPVC"   ,
217  "slock-AF_X25"   , "slock-AF_INET6"    , "slock-AF_ROSE"     ,
218  "slock-AF_DECnet", "slock-AF_NETBEUI"  , "slock-AF_SECURITY" ,
219  "slock-AF_KEY"   , "slock-AF_NETLINK"  , "slock-AF_PACKET"   ,
220  "slock-AF_ASH"   , "slock-AF_ECONET"   , "slock-AF_ATMSVC"   ,
221  "slock-AF_RDS"   , "slock-AF_SNA"      , "slock-AF_IRDA"     ,
222  "slock-AF_PPPOX" , "slock-AF_WANPIPE"  , "slock-AF_LLC"      ,
223  "slock-27"       , "slock-28"          , "slock-AF_CAN"      ,
224  "slock-AF_TIPC"  , "slock-AF_BLUETOOTH", "slock-AF_IUCV"     ,
225  "slock-AF_RXRPC" , "slock-AF_ISDN"     , "slock-AF_PHONET"   ,
226  "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG"      ,
227  "slock-AF_NFC"   , "slock-AF_MAX"
228};
229static const char *const af_family_clock_key_strings[AF_MAX+1] = {
230  "clock-AF_UNSPEC", "clock-AF_UNIX"     , "clock-AF_INET"     ,
231  "clock-AF_AX25"  , "clock-AF_IPX"      , "clock-AF_APPLETALK",
232  "clock-AF_NETROM", "clock-AF_BRIDGE"   , "clock-AF_ATMPVC"   ,
233  "clock-AF_X25"   , "clock-AF_INET6"    , "clock-AF_ROSE"     ,
234  "clock-AF_DECnet", "clock-AF_NETBEUI"  , "clock-AF_SECURITY" ,
235  "clock-AF_KEY"   , "clock-AF_NETLINK"  , "clock-AF_PACKET"   ,
236  "clock-AF_ASH"   , "clock-AF_ECONET"   , "clock-AF_ATMSVC"   ,
237  "clock-AF_RDS"   , "clock-AF_SNA"      , "clock-AF_IRDA"     ,
238  "clock-AF_PPPOX" , "clock-AF_WANPIPE"  , "clock-AF_LLC"      ,
239  "clock-27"       , "clock-28"          , "clock-AF_CAN"      ,
240  "clock-AF_TIPC"  , "clock-AF_BLUETOOTH", "clock-AF_IUCV"     ,
241  "clock-AF_RXRPC" , "clock-AF_ISDN"     , "clock-AF_PHONET"   ,
242  "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG"      ,
243  "clock-AF_NFC"   , "clock-AF_MAX"
244};
245
246/*
247 * sk_callback_lock locking rules are per-address-family,
248 * so split the lock classes by using a per-AF key:
249 */
250static struct lock_class_key af_callback_keys[AF_MAX];
251
252/* Take into consideration the size of the struct sk_buff overhead in the
253 * determination of these values, since that is non-constant across
254 * platforms.  This makes socket queueing behavior and performance
255 * not depend upon such differences.
256 */
257#define _SK_MEM_PACKETS		256
258#define _SK_MEM_OVERHEAD	SKB_TRUESIZE(256)
259#define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
260#define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
261
262/* Run time adjustable parameters. */
263__u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
264EXPORT_SYMBOL(sysctl_wmem_max);
265__u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
266EXPORT_SYMBOL(sysctl_rmem_max);
267__u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
268__u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
269
270/* Maximal space eaten by iovec or ancillary data plus some space */
271int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
272EXPORT_SYMBOL(sysctl_optmem_max);
273
274#if defined(CONFIG_CGROUPS)
275#if !defined(CONFIG_NET_CLS_CGROUP)
276int net_cls_subsys_id = -1;
277EXPORT_SYMBOL_GPL(net_cls_subsys_id);
278#endif
279#if !defined(CONFIG_NETPRIO_CGROUP)
280int net_prio_subsys_id = -1;
281EXPORT_SYMBOL_GPL(net_prio_subsys_id);
282#endif
283#endif
284
285static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
286{
287	struct timeval tv;
288
289	if (optlen < sizeof(tv))
290		return -EINVAL;
291	if (copy_from_user(&tv, optval, sizeof(tv)))
292		return -EFAULT;
293	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
294		return -EDOM;
295
296	if (tv.tv_sec < 0) {
297		static int warned __read_mostly;
298
299		*timeo_p = 0;
300		if (warned < 10 && net_ratelimit()) {
301			warned++;
302			pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
303				__func__, current->comm, task_pid_nr(current));
304		}
305		return 0;
306	}
307	*timeo_p = MAX_SCHEDULE_TIMEOUT;
308	if (tv.tv_sec == 0 && tv.tv_usec == 0)
309		return 0;
310	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
311		*timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
312	return 0;
313}
314
315static void sock_warn_obsolete_bsdism(const char *name)
316{
317	static int warned;
318	static char warncomm[TASK_COMM_LEN];
319	if (strcmp(warncomm, current->comm) && warned < 5) {
320		strcpy(warncomm,  current->comm);
321		pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
322			warncomm, name);
323		warned++;
324	}
325}
326
327#define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
328
329static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
330{
331	if (sk->sk_flags & flags) {
332		sk->sk_flags &= ~flags;
333		if (!(sk->sk_flags & SK_FLAGS_TIMESTAMP))
334			net_disable_timestamp();
335	}
336}
337
338
339int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
340{
341	int err;
342	int skb_len;
343	unsigned long flags;
344	struct sk_buff_head *list = &sk->sk_receive_queue;
345
346	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
347		atomic_inc(&sk->sk_drops);
348		trace_sock_rcvqueue_full(sk, skb);
349		return -ENOMEM;
350	}
351
352	err = sk_filter(sk, skb);
353	if (err)
354		return err;
355
356	if (!sk_rmem_schedule(sk, skb->truesize)) {
357		atomic_inc(&sk->sk_drops);
358		return -ENOBUFS;
359	}
360
361	skb->dev = NULL;
362	skb_set_owner_r(skb, sk);
363
364	/* Cache the SKB length before we tack it onto the receive
365	 * queue.  Once it is added it no longer belongs to us and
366	 * may be freed by other threads of control pulling packets
367	 * from the queue.
368	 */
369	skb_len = skb->len;
370
371	/* we escape from rcu protected region, make sure we dont leak
372	 * a norefcounted dst
373	 */
374	skb_dst_force(skb);
375
376	spin_lock_irqsave(&list->lock, flags);
377	skb->dropcount = atomic_read(&sk->sk_drops);
378	__skb_queue_tail(list, skb);
379	spin_unlock_irqrestore(&list->lock, flags);
380
381	if (!sock_flag(sk, SOCK_DEAD))
382		sk->sk_data_ready(sk, skb_len);
383	return 0;
384}
385EXPORT_SYMBOL(sock_queue_rcv_skb);
386
387int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
388{
389	int rc = NET_RX_SUCCESS;
390
391	if (sk_filter(sk, skb))
392		goto discard_and_relse;
393
394	skb->dev = NULL;
395
396	if (sk_rcvqueues_full(sk, skb, sk->sk_rcvbuf)) {
397		atomic_inc(&sk->sk_drops);
398		goto discard_and_relse;
399	}
400	if (nested)
401		bh_lock_sock_nested(sk);
402	else
403		bh_lock_sock(sk);
404	if (!sock_owned_by_user(sk)) {
405		/*
406		 * trylock + unlock semantics:
407		 */
408		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
409
410		rc = sk_backlog_rcv(sk, skb);
411
412		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
413	} else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
414		bh_unlock_sock(sk);
415		atomic_inc(&sk->sk_drops);
416		goto discard_and_relse;
417	}
418
419	bh_unlock_sock(sk);
420out:
421	sock_put(sk);
422	return rc;
423discard_and_relse:
424	kfree_skb(skb);
425	goto out;
426}
427EXPORT_SYMBOL(sk_receive_skb);
428
429void sk_reset_txq(struct sock *sk)
430{
431	sk_tx_queue_clear(sk);
432}
433EXPORT_SYMBOL(sk_reset_txq);
434
435struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
436{
437	struct dst_entry *dst = __sk_dst_get(sk);
438
439	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
440		sk_tx_queue_clear(sk);
441		RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
442		dst_release(dst);
443		return NULL;
444	}
445
446	return dst;
447}
448EXPORT_SYMBOL(__sk_dst_check);
449
450struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
451{
452	struct dst_entry *dst = sk_dst_get(sk);
453
454	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
455		sk_dst_reset(sk);
456		dst_release(dst);
457		return NULL;
458	}
459
460	return dst;
461}
462EXPORT_SYMBOL(sk_dst_check);
463
464static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
465{
466	int ret = -ENOPROTOOPT;
467#ifdef CONFIG_NETDEVICES
468	struct net *net = sock_net(sk);
469	char devname[IFNAMSIZ];
470	int index;
471
472	/* Sorry... */
473	ret = -EPERM;
474	if (!capable(CAP_NET_RAW))
475		goto out;
476
477	ret = -EINVAL;
478	if (optlen < 0)
479		goto out;
480
481	/* Bind this socket to a particular device like "eth0",
482	 * as specified in the passed interface name. If the
483	 * name is "" or the option length is zero the socket
484	 * is not bound.
485	 */
486	if (optlen > IFNAMSIZ - 1)
487		optlen = IFNAMSIZ - 1;
488	memset(devname, 0, sizeof(devname));
489
490	ret = -EFAULT;
491	if (copy_from_user(devname, optval, optlen))
492		goto out;
493
494	index = 0;
495	if (devname[0] != '\0') {
496		struct net_device *dev;
497
498		rcu_read_lock();
499		dev = dev_get_by_name_rcu(net, devname);
500		if (dev)
501			index = dev->ifindex;
502		rcu_read_unlock();
503		ret = -ENODEV;
504		if (!dev)
505			goto out;
506	}
507
508	lock_sock(sk);
509	sk->sk_bound_dev_if = index;
510	sk_dst_reset(sk);
511	release_sock(sk);
512
513	ret = 0;
514
515out:
516#endif
517
518	return ret;
519}
520
521static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
522{
523	if (valbool)
524		sock_set_flag(sk, bit);
525	else
526		sock_reset_flag(sk, bit);
527}
528
529/*
530 *	This is meant for all protocols to use and covers goings on
531 *	at the socket level. Everything here is generic.
532 */
533
534int sock_setsockopt(struct socket *sock, int level, int optname,
535		    char __user *optval, unsigned int optlen)
536{
537	struct sock *sk = sock->sk;
538	int val;
539	int valbool;
540	struct linger ling;
541	int ret = 0;
542
543	/*
544	 *	Options without arguments
545	 */
546
547	if (optname == SO_BINDTODEVICE)
548		return sock_bindtodevice(sk, optval, optlen);
549
550	if (optlen < sizeof(int))
551		return -EINVAL;
552
553	if (get_user(val, (int __user *)optval))
554		return -EFAULT;
555
556	valbool = val ? 1 : 0;
557
558	lock_sock(sk);
559
560	switch (optname) {
561	case SO_DEBUG:
562		if (val && !capable(CAP_NET_ADMIN))
563			ret = -EACCES;
564		else
565			sock_valbool_flag(sk, SOCK_DBG, valbool);
566		break;
567	case SO_REUSEADDR:
568		sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
569		break;
570	case SO_TYPE:
571	case SO_PROTOCOL:
572	case SO_DOMAIN:
573	case SO_ERROR:
574		ret = -ENOPROTOOPT;
575		break;
576	case SO_DONTROUTE:
577		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
578		break;
579	case SO_BROADCAST:
580		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
581		break;
582	case SO_SNDBUF:
583		/* Don't error on this BSD doesn't and if you think
584		 * about it this is right. Otherwise apps have to
585		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
586		 * are treated in BSD as hints
587		 */
588		val = min_t(u32, val, sysctl_wmem_max);
589set_sndbuf:
590		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
591		sk->sk_sndbuf = max_t(u32, val * 2, SOCK_MIN_SNDBUF);
592		/* Wake up sending tasks if we upped the value. */
593		sk->sk_write_space(sk);
594		break;
595
596	case SO_SNDBUFFORCE:
597		if (!capable(CAP_NET_ADMIN)) {
598			ret = -EPERM;
599			break;
600		}
601		goto set_sndbuf;
602
603	case SO_RCVBUF:
604		/* Don't error on this BSD doesn't and if you think
605		 * about it this is right. Otherwise apps have to
606		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
607		 * are treated in BSD as hints
608		 */
609		val = min_t(u32, val, sysctl_rmem_max);
610set_rcvbuf:
611		sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
612		/*
613		 * We double it on the way in to account for
614		 * "struct sk_buff" etc. overhead.   Applications
615		 * assume that the SO_RCVBUF setting they make will
616		 * allow that much actual data to be received on that
617		 * socket.
618		 *
619		 * Applications are unaware that "struct sk_buff" and
620		 * other overheads allocate from the receive buffer
621		 * during socket buffer allocation.
622		 *
623		 * And after considering the possible alternatives,
624		 * returning the value we actually used in getsockopt
625		 * is the most desirable behavior.
626		 */
627		sk->sk_rcvbuf = max_t(u32, val * 2, SOCK_MIN_RCVBUF);
628		break;
629
630	case SO_RCVBUFFORCE:
631		if (!capable(CAP_NET_ADMIN)) {
632			ret = -EPERM;
633			break;
634		}
635		goto set_rcvbuf;
636
637	case SO_KEEPALIVE:
638#ifdef CONFIG_INET
639		if (sk->sk_protocol == IPPROTO_TCP)
640			tcp_set_keepalive(sk, valbool);
641#endif
642		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
643		break;
644
645	case SO_OOBINLINE:
646		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
647		break;
648
649	case SO_NO_CHECK:
650		sk->sk_no_check = valbool;
651		break;
652
653	case SO_PRIORITY:
654		if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
655			sk->sk_priority = val;
656		else
657			ret = -EPERM;
658		break;
659
660	case SO_LINGER:
661		if (optlen < sizeof(ling)) {
662			ret = -EINVAL;	/* 1003.1g */
663			break;
664		}
665		if (copy_from_user(&ling, optval, sizeof(ling))) {
666			ret = -EFAULT;
667			break;
668		}
669		if (!ling.l_onoff)
670			sock_reset_flag(sk, SOCK_LINGER);
671		else {
672#if (BITS_PER_LONG == 32)
673			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
674				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
675			else
676#endif
677				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
678			sock_set_flag(sk, SOCK_LINGER);
679		}
680		break;
681
682	case SO_BSDCOMPAT:
683		sock_warn_obsolete_bsdism("setsockopt");
684		break;
685
686	case SO_PASSCRED:
687		if (valbool)
688			set_bit(SOCK_PASSCRED, &sock->flags);
689		else
690			clear_bit(SOCK_PASSCRED, &sock->flags);
691		break;
692
693	case SO_TIMESTAMP:
694	case SO_TIMESTAMPNS:
695		if (valbool)  {
696			if (optname == SO_TIMESTAMP)
697				sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
698			else
699				sock_set_flag(sk, SOCK_RCVTSTAMPNS);
700			sock_set_flag(sk, SOCK_RCVTSTAMP);
701			sock_enable_timestamp(sk, SOCK_TIMESTAMP);
702		} else {
703			sock_reset_flag(sk, SOCK_RCVTSTAMP);
704			sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
705		}
706		break;
707
708	case SO_TIMESTAMPING:
709		if (val & ~SOF_TIMESTAMPING_MASK) {
710			ret = -EINVAL;
711			break;
712		}
713		sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE,
714				  val & SOF_TIMESTAMPING_TX_HARDWARE);
715		sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE,
716				  val & SOF_TIMESTAMPING_TX_SOFTWARE);
717		sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE,
718				  val & SOF_TIMESTAMPING_RX_HARDWARE);
719		if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
720			sock_enable_timestamp(sk,
721					      SOCK_TIMESTAMPING_RX_SOFTWARE);
722		else
723			sock_disable_timestamp(sk,
724					       (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
725		sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE,
726				  val & SOF_TIMESTAMPING_SOFTWARE);
727		sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE,
728				  val & SOF_TIMESTAMPING_SYS_HARDWARE);
729		sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE,
730				  val & SOF_TIMESTAMPING_RAW_HARDWARE);
731		break;
732
733	case SO_RCVLOWAT:
734		if (val < 0)
735			val = INT_MAX;
736		sk->sk_rcvlowat = val ? : 1;
737		break;
738
739	case SO_RCVTIMEO:
740		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
741		break;
742
743	case SO_SNDTIMEO:
744		ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
745		break;
746
747	case SO_ATTACH_FILTER:
748		ret = -EINVAL;
749		if (optlen == sizeof(struct sock_fprog)) {
750			struct sock_fprog fprog;
751
752			ret = -EFAULT;
753			if (copy_from_user(&fprog, optval, sizeof(fprog)))
754				break;
755
756			ret = sk_attach_filter(&fprog, sk);
757		}
758		break;
759
760	case SO_DETACH_FILTER:
761		ret = sk_detach_filter(sk);
762		break;
763
764	case SO_PASSSEC:
765		if (valbool)
766			set_bit(SOCK_PASSSEC, &sock->flags);
767		else
768			clear_bit(SOCK_PASSSEC, &sock->flags);
769		break;
770	case SO_MARK:
771		if (!capable(CAP_NET_ADMIN))
772			ret = -EPERM;
773		else
774			sk->sk_mark = val;
775		break;
776
777		/* We implement the SO_SNDLOWAT etc to
778		   not be settable (1003.1g 5.3) */
779	case SO_RXQ_OVFL:
780		sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
781		break;
782
783	case SO_WIFI_STATUS:
784		sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
785		break;
786
787	case SO_PEEK_OFF:
788		if (sock->ops->set_peek_off)
789			sock->ops->set_peek_off(sk, val);
790		else
791			ret = -EOPNOTSUPP;
792		break;
793
794	case SO_NOFCS:
795		sock_valbool_flag(sk, SOCK_NOFCS, valbool);
796		break;
797
798	default:
799		ret = -ENOPROTOOPT;
800		break;
801	}
802	release_sock(sk);
803	return ret;
804}
805EXPORT_SYMBOL(sock_setsockopt);
806
807
808void cred_to_ucred(struct pid *pid, const struct cred *cred,
809		   struct ucred *ucred)
810{
811	ucred->pid = pid_vnr(pid);
812	ucred->uid = ucred->gid = -1;
813	if (cred) {
814		struct user_namespace *current_ns = current_user_ns();
815
816		ucred->uid = from_kuid(current_ns, cred->euid);
817		ucred->gid = from_kgid(current_ns, cred->egid);
818	}
819}
820EXPORT_SYMBOL_GPL(cred_to_ucred);
821
822int sock_getsockopt(struct socket *sock, int level, int optname,
823		    char __user *optval, int __user *optlen)
824{
825	struct sock *sk = sock->sk;
826
827	union {
828		int val;
829		struct linger ling;
830		struct timeval tm;
831	} v;
832
833	int lv = sizeof(int);
834	int len;
835
836	if (get_user(len, optlen))
837		return -EFAULT;
838	if (len < 0)
839		return -EINVAL;
840
841	memset(&v, 0, sizeof(v));
842
843	switch (optname) {
844	case SO_DEBUG:
845		v.val = sock_flag(sk, SOCK_DBG);
846		break;
847
848	case SO_DONTROUTE:
849		v.val = sock_flag(sk, SOCK_LOCALROUTE);
850		break;
851
852	case SO_BROADCAST:
853		v.val = sock_flag(sk, SOCK_BROADCAST);
854		break;
855
856	case SO_SNDBUF:
857		v.val = sk->sk_sndbuf;
858		break;
859
860	case SO_RCVBUF:
861		v.val = sk->sk_rcvbuf;
862		break;
863
864	case SO_REUSEADDR:
865		v.val = sk->sk_reuse;
866		break;
867
868	case SO_KEEPALIVE:
869		v.val = sock_flag(sk, SOCK_KEEPOPEN);
870		break;
871
872	case SO_TYPE:
873		v.val = sk->sk_type;
874		break;
875
876	case SO_PROTOCOL:
877		v.val = sk->sk_protocol;
878		break;
879
880	case SO_DOMAIN:
881		v.val = sk->sk_family;
882		break;
883
884	case SO_ERROR:
885		v.val = -sock_error(sk);
886		if (v.val == 0)
887			v.val = xchg(&sk->sk_err_soft, 0);
888		break;
889
890	case SO_OOBINLINE:
891		v.val = sock_flag(sk, SOCK_URGINLINE);
892		break;
893
894	case SO_NO_CHECK:
895		v.val = sk->sk_no_check;
896		break;
897
898	case SO_PRIORITY:
899		v.val = sk->sk_priority;
900		break;
901
902	case SO_LINGER:
903		lv		= sizeof(v.ling);
904		v.ling.l_onoff	= sock_flag(sk, SOCK_LINGER);
905		v.ling.l_linger	= sk->sk_lingertime / HZ;
906		break;
907
908	case SO_BSDCOMPAT:
909		sock_warn_obsolete_bsdism("getsockopt");
910		break;
911
912	case SO_TIMESTAMP:
913		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
914				!sock_flag(sk, SOCK_RCVTSTAMPNS);
915		break;
916
917	case SO_TIMESTAMPNS:
918		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
919		break;
920
921	case SO_TIMESTAMPING:
922		v.val = 0;
923		if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
924			v.val |= SOF_TIMESTAMPING_TX_HARDWARE;
925		if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
926			v.val |= SOF_TIMESTAMPING_TX_SOFTWARE;
927		if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE))
928			v.val |= SOF_TIMESTAMPING_RX_HARDWARE;
929		if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE))
930			v.val |= SOF_TIMESTAMPING_RX_SOFTWARE;
931		if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE))
932			v.val |= SOF_TIMESTAMPING_SOFTWARE;
933		if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))
934			v.val |= SOF_TIMESTAMPING_SYS_HARDWARE;
935		if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE))
936			v.val |= SOF_TIMESTAMPING_RAW_HARDWARE;
937		break;
938
939	case SO_RCVTIMEO:
940		lv = sizeof(struct timeval);
941		if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
942			v.tm.tv_sec = 0;
943			v.tm.tv_usec = 0;
944		} else {
945			v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
946			v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
947		}
948		break;
949
950	case SO_SNDTIMEO:
951		lv = sizeof(struct timeval);
952		if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
953			v.tm.tv_sec = 0;
954			v.tm.tv_usec = 0;
955		} else {
956			v.tm.tv_sec = sk->sk_sndtimeo / HZ;
957			v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
958		}
959		break;
960
961	case SO_RCVLOWAT:
962		v.val = sk->sk_rcvlowat;
963		break;
964
965	case SO_SNDLOWAT:
966		v.val = 1;
967		break;
968
969	case SO_PASSCRED:
970		v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
971		break;
972
973	case SO_PEERCRED:
974	{
975		struct ucred peercred;
976		if (len > sizeof(peercred))
977			len = sizeof(peercred);
978		cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
979		if (copy_to_user(optval, &peercred, len))
980			return -EFAULT;
981		goto lenout;
982	}
983
984	case SO_PEERNAME:
985	{
986		char address[128];
987
988		if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
989			return -ENOTCONN;
990		if (lv < len)
991			return -EINVAL;
992		if (copy_to_user(optval, address, len))
993			return -EFAULT;
994		goto lenout;
995	}
996
997	/* Dubious BSD thing... Probably nobody even uses it, but
998	 * the UNIX standard wants it for whatever reason... -DaveM
999	 */
1000	case SO_ACCEPTCONN:
1001		v.val = sk->sk_state == TCP_LISTEN;
1002		break;
1003
1004	case SO_PASSSEC:
1005		v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1006		break;
1007
1008	case SO_PEERSEC:
1009		return security_socket_getpeersec_stream(sock, optval, optlen, len);
1010
1011	case SO_MARK:
1012		v.val = sk->sk_mark;
1013		break;
1014
1015	case SO_RXQ_OVFL:
1016		v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1017		break;
1018
1019	case SO_WIFI_STATUS:
1020		v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1021		break;
1022
1023	case SO_PEEK_OFF:
1024		if (!sock->ops->set_peek_off)
1025			return -EOPNOTSUPP;
1026
1027		v.val = sk->sk_peek_off;
1028		break;
1029	case SO_NOFCS:
1030		v.val = sock_flag(sk, SOCK_NOFCS);
1031		break;
1032	default:
1033		return -ENOPROTOOPT;
1034	}
1035
1036	if (len > lv)
1037		len = lv;
1038	if (copy_to_user(optval, &v, len))
1039		return -EFAULT;
1040lenout:
1041	if (put_user(len, optlen))
1042		return -EFAULT;
1043	return 0;
1044}
1045
1046/*
1047 * Initialize an sk_lock.
1048 *
1049 * (We also register the sk_lock with the lock validator.)
1050 */
1051static inline void sock_lock_init(struct sock *sk)
1052{
1053	sock_lock_init_class_and_name(sk,
1054			af_family_slock_key_strings[sk->sk_family],
1055			af_family_slock_keys + sk->sk_family,
1056			af_family_key_strings[sk->sk_family],
1057			af_family_keys + sk->sk_family);
1058}
1059
1060/*
1061 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1062 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1063 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1064 */
1065static void sock_copy(struct sock *nsk, const struct sock *osk)
1066{
1067#ifdef CONFIG_SECURITY_NETWORK
1068	void *sptr = nsk->sk_security;
1069#endif
1070	memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1071
1072	memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1073	       osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1074
1075#ifdef CONFIG_SECURITY_NETWORK
1076	nsk->sk_security = sptr;
1077	security_sk_clone(osk, nsk);
1078#endif
1079}
1080
1081/*
1082 * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
1083 * un-modified. Special care is taken when initializing object to zero.
1084 */
1085static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1086{
1087	if (offsetof(struct sock, sk_node.next) != 0)
1088		memset(sk, 0, offsetof(struct sock, sk_node.next));
1089	memset(&sk->sk_node.pprev, 0,
1090	       size - offsetof(struct sock, sk_node.pprev));
1091}
1092
1093void sk_prot_clear_portaddr_nulls(struct sock *sk, int size)
1094{
1095	unsigned long nulls1, nulls2;
1096
1097	nulls1 = offsetof(struct sock, __sk_common.skc_node.next);
1098	nulls2 = offsetof(struct sock, __sk_common.skc_portaddr_node.next);
1099	if (nulls1 > nulls2)
1100		swap(nulls1, nulls2);
1101
1102	if (nulls1 != 0)
1103		memset((char *)sk, 0, nulls1);
1104	memset((char *)sk + nulls1 + sizeof(void *), 0,
1105	       nulls2 - nulls1 - sizeof(void *));
1106	memset((char *)sk + nulls2 + sizeof(void *), 0,
1107	       size - nulls2 - sizeof(void *));
1108}
1109EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls);
1110
1111static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1112		int family)
1113{
1114	struct sock *sk;
1115	struct kmem_cache *slab;
1116
1117	slab = prot->slab;
1118	if (slab != NULL) {
1119		sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1120		if (!sk)
1121			return sk;
1122		if (priority & __GFP_ZERO) {
1123			if (prot->clear_sk)
1124				prot->clear_sk(sk, prot->obj_size);
1125			else
1126				sk_prot_clear_nulls(sk, prot->obj_size);
1127		}
1128	} else
1129		sk = kmalloc(prot->obj_size, priority);
1130
1131	if (sk != NULL) {
1132		kmemcheck_annotate_bitfield(sk, flags);
1133
1134		if (security_sk_alloc(sk, family, priority))
1135			goto out_free;
1136
1137		if (!try_module_get(prot->owner))
1138			goto out_free_sec;
1139		sk_tx_queue_clear(sk);
1140	}
1141
1142	return sk;
1143
1144out_free_sec:
1145	security_sk_free(sk);
1146out_free:
1147	if (slab != NULL)
1148		kmem_cache_free(slab, sk);
1149	else
1150		kfree(sk);
1151	return NULL;
1152}
1153
1154static void sk_prot_free(struct proto *prot, struct sock *sk)
1155{
1156	struct kmem_cache *slab;
1157	struct module *owner;
1158
1159	owner = prot->owner;
1160	slab = prot->slab;
1161
1162	security_sk_free(sk);
1163	if (slab != NULL)
1164		kmem_cache_free(slab, sk);
1165	else
1166		kfree(sk);
1167	module_put(owner);
1168}
1169
1170#ifdef CONFIG_CGROUPS
1171void sock_update_classid(struct sock *sk)
1172{
1173	u32 classid;
1174
1175	rcu_read_lock();  /* doing current task, which cannot vanish. */
1176	classid = task_cls_classid(current);
1177	rcu_read_unlock();
1178	if (classid && classid != sk->sk_classid)
1179		sk->sk_classid = classid;
1180}
1181EXPORT_SYMBOL(sock_update_classid);
1182
1183void sock_update_netprioidx(struct sock *sk, struct task_struct *task)
1184{
1185	if (in_interrupt())
1186		return;
1187
1188	sk->sk_cgrp_prioidx = task_netprioidx(task);
1189}
1190EXPORT_SYMBOL_GPL(sock_update_netprioidx);
1191#endif
1192
1193/**
1194 *	sk_alloc - All socket objects are allocated here
1195 *	@net: the applicable net namespace
1196 *	@family: protocol family
1197 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1198 *	@prot: struct proto associated with this new sock instance
1199 */
1200struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1201		      struct proto *prot)
1202{
1203	struct sock *sk;
1204
1205	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1206	if (sk) {
1207		sk->sk_family = family;
1208		/*
1209		 * See comment in struct sock definition to understand
1210		 * why we need sk_prot_creator -acme
1211		 */
1212		sk->sk_prot = sk->sk_prot_creator = prot;
1213		sock_lock_init(sk);
1214		sock_net_set(sk, get_net(net));
1215		atomic_set(&sk->sk_wmem_alloc, 1);
1216
1217		sock_update_classid(sk);
1218		sock_update_netprioidx(sk, current);
1219	}
1220
1221	return sk;
1222}
1223EXPORT_SYMBOL(sk_alloc);
1224
1225static void __sk_free(struct sock *sk)
1226{
1227	struct sk_filter *filter;
1228
1229	if (sk->sk_destruct)
1230		sk->sk_destruct(sk);
1231
1232	filter = rcu_dereference_check(sk->sk_filter,
1233				       atomic_read(&sk->sk_wmem_alloc) == 0);
1234	if (filter) {
1235		sk_filter_uncharge(sk, filter);
1236		RCU_INIT_POINTER(sk->sk_filter, NULL);
1237	}
1238
1239	sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1240
1241	if (atomic_read(&sk->sk_omem_alloc))
1242		pr_debug("%s: optmem leakage (%d bytes) detected\n",
1243			 __func__, atomic_read(&sk->sk_omem_alloc));
1244
1245	if (sk->sk_peer_cred)
1246		put_cred(sk->sk_peer_cred);
1247	put_pid(sk->sk_peer_pid);
1248	put_net(sock_net(sk));
1249	sk_prot_free(sk->sk_prot_creator, sk);
1250}
1251
1252void sk_free(struct sock *sk)
1253{
1254	/*
1255	 * We subtract one from sk_wmem_alloc and can know if
1256	 * some packets are still in some tx queue.
1257	 * If not null, sock_wfree() will call __sk_free(sk) later
1258	 */
1259	if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1260		__sk_free(sk);
1261}
1262EXPORT_SYMBOL(sk_free);
1263
1264/*
1265 * Last sock_put should drop reference to sk->sk_net. It has already
1266 * been dropped in sk_change_net. Taking reference to stopping namespace
1267 * is not an option.
1268 * Take reference to a socket to remove it from hash _alive_ and after that
1269 * destroy it in the context of init_net.
1270 */
1271void sk_release_kernel(struct sock *sk)
1272{
1273	if (sk == NULL || sk->sk_socket == NULL)
1274		return;
1275
1276	sock_hold(sk);
1277	sock_release(sk->sk_socket);
1278	release_net(sock_net(sk));
1279	sock_net_set(sk, get_net(&init_net));
1280	sock_put(sk);
1281}
1282EXPORT_SYMBOL(sk_release_kernel);
1283
1284static void sk_update_clone(const struct sock *sk, struct sock *newsk)
1285{
1286	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1287		sock_update_memcg(newsk);
1288}
1289
1290/**
1291 *	sk_clone_lock - clone a socket, and lock its clone
1292 *	@sk: the socket to clone
1293 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1294 *
1295 *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1296 */
1297struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1298{
1299	struct sock *newsk;
1300
1301	newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1302	if (newsk != NULL) {
1303		struct sk_filter *filter;
1304
1305		sock_copy(newsk, sk);
1306
1307		/* SANITY */
1308		get_net(sock_net(newsk));
1309		sk_node_init(&newsk->sk_node);
1310		sock_lock_init(newsk);
1311		bh_lock_sock(newsk);
1312		newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
1313		newsk->sk_backlog.len = 0;
1314
1315		atomic_set(&newsk->sk_rmem_alloc, 0);
1316		/*
1317		 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1318		 */
1319		atomic_set(&newsk->sk_wmem_alloc, 1);
1320		atomic_set(&newsk->sk_omem_alloc, 0);
1321		skb_queue_head_init(&newsk->sk_receive_queue);
1322		skb_queue_head_init(&newsk->sk_write_queue);
1323#ifdef CONFIG_NET_DMA
1324		skb_queue_head_init(&newsk->sk_async_wait_queue);
1325#endif
1326
1327		spin_lock_init(&newsk->sk_dst_lock);
1328		rwlock_init(&newsk->sk_callback_lock);
1329		lockdep_set_class_and_name(&newsk->sk_callback_lock,
1330				af_callback_keys + newsk->sk_family,
1331				af_family_clock_key_strings[newsk->sk_family]);
1332
1333		newsk->sk_dst_cache	= NULL;
1334		newsk->sk_wmem_queued	= 0;
1335		newsk->sk_forward_alloc = 0;
1336		newsk->sk_send_head	= NULL;
1337		newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1338
1339		sock_reset_flag(newsk, SOCK_DONE);
1340		skb_queue_head_init(&newsk->sk_error_queue);
1341
1342		filter = rcu_dereference_protected(newsk->sk_filter, 1);
1343		if (filter != NULL)
1344			sk_filter_charge(newsk, filter);
1345
1346		if (unlikely(xfrm_sk_clone_policy(newsk))) {
1347			/* It is still raw copy of parent, so invalidate
1348			 * destructor and make plain sk_free() */
1349			newsk->sk_destruct = NULL;
1350			bh_unlock_sock(newsk);
1351			sk_free(newsk);
1352			newsk = NULL;
1353			goto out;
1354		}
1355
1356		newsk->sk_err	   = 0;
1357		newsk->sk_priority = 0;
1358		/*
1359		 * Before updating sk_refcnt, we must commit prior changes to memory
1360		 * (Documentation/RCU/rculist_nulls.txt for details)
1361		 */
1362		smp_wmb();
1363		atomic_set(&newsk->sk_refcnt, 2);
1364
1365		/*
1366		 * Increment the counter in the same struct proto as the master
1367		 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1368		 * is the same as sk->sk_prot->socks, as this field was copied
1369		 * with memcpy).
1370		 *
1371		 * This _changes_ the previous behaviour, where
1372		 * tcp_create_openreq_child always was incrementing the
1373		 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1374		 * to be taken into account in all callers. -acme
1375		 */
1376		sk_refcnt_debug_inc(newsk);
1377		sk_set_socket(newsk, NULL);
1378		newsk->sk_wq = NULL;
1379
1380		sk_update_clone(sk, newsk);
1381
1382		if (newsk->sk_prot->sockets_allocated)
1383			sk_sockets_allocated_inc(newsk);
1384
1385		if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1386			net_enable_timestamp();
1387	}
1388out:
1389	return newsk;
1390}
1391EXPORT_SYMBOL_GPL(sk_clone_lock);
1392
1393void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1394{
1395	__sk_dst_set(sk, dst);
1396	sk->sk_route_caps = dst->dev->features;
1397	if (sk->sk_route_caps & NETIF_F_GSO)
1398		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1399	sk->sk_route_caps &= ~sk->sk_route_nocaps;
1400	if (sk_can_gso(sk)) {
1401		if (dst->header_len) {
1402			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1403		} else {
1404			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1405			sk->sk_gso_max_size = dst->dev->gso_max_size;
1406		}
1407	}
1408}
1409EXPORT_SYMBOL_GPL(sk_setup_caps);
1410
1411void __init sk_init(void)
1412{
1413	if (totalram_pages <= 4096) {
1414		sysctl_wmem_max = 32767;
1415		sysctl_rmem_max = 32767;
1416		sysctl_wmem_default = 32767;
1417		sysctl_rmem_default = 32767;
1418	} else if (totalram_pages >= 131072) {
1419		sysctl_wmem_max = 131071;
1420		sysctl_rmem_max = 131071;
1421	}
1422}
1423
1424/*
1425 *	Simple resource managers for sockets.
1426 */
1427
1428
1429/*
1430 * Write buffer destructor automatically called from kfree_skb.
1431 */
1432void sock_wfree(struct sk_buff *skb)
1433{
1434	struct sock *sk = skb->sk;
1435	unsigned int len = skb->truesize;
1436
1437	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1438		/*
1439		 * Keep a reference on sk_wmem_alloc, this will be released
1440		 * after sk_write_space() call
1441		 */
1442		atomic_sub(len - 1, &sk->sk_wmem_alloc);
1443		sk->sk_write_space(sk);
1444		len = 1;
1445	}
1446	/*
1447	 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1448	 * could not do because of in-flight packets
1449	 */
1450	if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1451		__sk_free(sk);
1452}
1453EXPORT_SYMBOL(sock_wfree);
1454
1455/*
1456 * Read buffer destructor automatically called from kfree_skb.
1457 */
1458void sock_rfree(struct sk_buff *skb)
1459{
1460	struct sock *sk = skb->sk;
1461	unsigned int len = skb->truesize;
1462
1463	atomic_sub(len, &sk->sk_rmem_alloc);
1464	sk_mem_uncharge(sk, len);
1465}
1466EXPORT_SYMBOL(sock_rfree);
1467
1468void sock_edemux(struct sk_buff *skb)
1469{
1470	sock_put(skb->sk);
1471}
1472EXPORT_SYMBOL(sock_edemux);
1473
1474int sock_i_uid(struct sock *sk)
1475{
1476	int uid;
1477
1478	read_lock_bh(&sk->sk_callback_lock);
1479	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1480	read_unlock_bh(&sk->sk_callback_lock);
1481	return uid;
1482}
1483EXPORT_SYMBOL(sock_i_uid);
1484
1485unsigned long sock_i_ino(struct sock *sk)
1486{
1487	unsigned long ino;
1488
1489	read_lock_bh(&sk->sk_callback_lock);
1490	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1491	read_unlock_bh(&sk->sk_callback_lock);
1492	return ino;
1493}
1494EXPORT_SYMBOL(sock_i_ino);
1495
1496/*
1497 * Allocate a skb from the socket's send buffer.
1498 */
1499struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1500			     gfp_t priority)
1501{
1502	if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1503		struct sk_buff *skb = alloc_skb(size, priority);
1504		if (skb) {
1505			skb_set_owner_w(skb, sk);
1506			return skb;
1507		}
1508	}
1509	return NULL;
1510}
1511EXPORT_SYMBOL(sock_wmalloc);
1512
1513/*
1514 * Allocate a skb from the socket's receive buffer.
1515 */
1516struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1517			     gfp_t priority)
1518{
1519	if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1520		struct sk_buff *skb = alloc_skb(size, priority);
1521		if (skb) {
1522			skb_set_owner_r(skb, sk);
1523			return skb;
1524		}
1525	}
1526	return NULL;
1527}
1528
1529/*
1530 * Allocate a memory block from the socket's option memory buffer.
1531 */
1532void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1533{
1534	if ((unsigned int)size <= sysctl_optmem_max &&
1535	    atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1536		void *mem;
1537		/* First do the add, to avoid the race if kmalloc
1538		 * might sleep.
1539		 */
1540		atomic_add(size, &sk->sk_omem_alloc);
1541		mem = kmalloc(size, priority);
1542		if (mem)
1543			return mem;
1544		atomic_sub(size, &sk->sk_omem_alloc);
1545	}
1546	return NULL;
1547}
1548EXPORT_SYMBOL(sock_kmalloc);
1549
1550/*
1551 * Free an option memory block.
1552 */
1553void sock_kfree_s(struct sock *sk, void *mem, int size)
1554{
1555	kfree(mem);
1556	atomic_sub(size, &sk->sk_omem_alloc);
1557}
1558EXPORT_SYMBOL(sock_kfree_s);
1559
1560/* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1561   I think, these locks should be removed for datagram sockets.
1562 */
1563static long sock_wait_for_wmem(struct sock *sk, long timeo)
1564{
1565	DEFINE_WAIT(wait);
1566
1567	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1568	for (;;) {
1569		if (!timeo)
1570			break;
1571		if (signal_pending(current))
1572			break;
1573		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1574		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1575		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1576			break;
1577		if (sk->sk_shutdown & SEND_SHUTDOWN)
1578			break;
1579		if (sk->sk_err)
1580			break;
1581		timeo = schedule_timeout(timeo);
1582	}
1583	finish_wait(sk_sleep(sk), &wait);
1584	return timeo;
1585}
1586
1587
1588/*
1589 *	Generic send/receive buffer handlers
1590 */
1591
1592struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1593				     unsigned long data_len, int noblock,
1594				     int *errcode)
1595{
1596	struct sk_buff *skb;
1597	gfp_t gfp_mask;
1598	long timeo;
1599	int err;
1600	int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1601
1602	err = -EMSGSIZE;
1603	if (npages > MAX_SKB_FRAGS)
1604		goto failure;
1605
1606	gfp_mask = sk->sk_allocation;
1607	if (gfp_mask & __GFP_WAIT)
1608		gfp_mask |= __GFP_REPEAT;
1609
1610	timeo = sock_sndtimeo(sk, noblock);
1611	while (1) {
1612		err = sock_error(sk);
1613		if (err != 0)
1614			goto failure;
1615
1616		err = -EPIPE;
1617		if (sk->sk_shutdown & SEND_SHUTDOWN)
1618			goto failure;
1619
1620		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1621			skb = alloc_skb(header_len, gfp_mask);
1622			if (skb) {
1623				int i;
1624
1625				/* No pages, we're done... */
1626				if (!data_len)
1627					break;
1628
1629				skb->truesize += data_len;
1630				skb_shinfo(skb)->nr_frags = npages;
1631				for (i = 0; i < npages; i++) {
1632					struct page *page;
1633
1634					page = alloc_pages(sk->sk_allocation, 0);
1635					if (!page) {
1636						err = -ENOBUFS;
1637						skb_shinfo(skb)->nr_frags = i;
1638						kfree_skb(skb);
1639						goto failure;
1640					}
1641
1642					__skb_fill_page_desc(skb, i,
1643							page, 0,
1644							(data_len >= PAGE_SIZE ?
1645							 PAGE_SIZE :
1646							 data_len));
1647					data_len -= PAGE_SIZE;
1648				}
1649
1650				/* Full success... */
1651				break;
1652			}
1653			err = -ENOBUFS;
1654			goto failure;
1655		}
1656		set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1657		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1658		err = -EAGAIN;
1659		if (!timeo)
1660			goto failure;
1661		if (signal_pending(current))
1662			goto interrupted;
1663		timeo = sock_wait_for_wmem(sk, timeo);
1664	}
1665
1666	skb_set_owner_w(skb, sk);
1667	return skb;
1668
1669interrupted:
1670	err = sock_intr_errno(timeo);
1671failure:
1672	*errcode = err;
1673	return NULL;
1674}
1675EXPORT_SYMBOL(sock_alloc_send_pskb);
1676
1677struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1678				    int noblock, int *errcode)
1679{
1680	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1681}
1682EXPORT_SYMBOL(sock_alloc_send_skb);
1683
1684static void __lock_sock(struct sock *sk)
1685	__releases(&sk->sk_lock.slock)
1686	__acquires(&sk->sk_lock.slock)
1687{
1688	DEFINE_WAIT(wait);
1689
1690	for (;;) {
1691		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1692					TASK_UNINTERRUPTIBLE);
1693		spin_unlock_bh(&sk->sk_lock.slock);
1694		schedule();
1695		spin_lock_bh(&sk->sk_lock.slock);
1696		if (!sock_owned_by_user(sk))
1697			break;
1698	}
1699	finish_wait(&sk->sk_lock.wq, &wait);
1700}
1701
1702static void __release_sock(struct sock *sk)
1703	__releases(&sk->sk_lock.slock)
1704	__acquires(&sk->sk_lock.slock)
1705{
1706	struct sk_buff *skb = sk->sk_backlog.head;
1707
1708	do {
1709		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1710		bh_unlock_sock(sk);
1711
1712		do {
1713			struct sk_buff *next = skb->next;
1714
1715			prefetch(next);
1716			WARN_ON_ONCE(skb_dst_is_noref(skb));
1717			skb->next = NULL;
1718			sk_backlog_rcv(sk, skb);
1719
1720			/*
1721			 * We are in process context here with softirqs
1722			 * disabled, use cond_resched_softirq() to preempt.
1723			 * This is safe to do because we've taken the backlog
1724			 * queue private:
1725			 */
1726			cond_resched_softirq();
1727
1728			skb = next;
1729		} while (skb != NULL);
1730
1731		bh_lock_sock(sk);
1732	} while ((skb = sk->sk_backlog.head) != NULL);
1733
1734	/*
1735	 * Doing the zeroing here guarantee we can not loop forever
1736	 * while a wild producer attempts to flood us.
1737	 */
1738	sk->sk_backlog.len = 0;
1739}
1740
1741/**
1742 * sk_wait_data - wait for data to arrive at sk_receive_queue
1743 * @sk:    sock to wait on
1744 * @timeo: for how long
1745 *
1746 * Now socket state including sk->sk_err is changed only under lock,
1747 * hence we may omit checks after joining wait queue.
1748 * We check receive queue before schedule() only as optimization;
1749 * it is very likely that release_sock() added new data.
1750 */
1751int sk_wait_data(struct sock *sk, long *timeo)
1752{
1753	int rc;
1754	DEFINE_WAIT(wait);
1755
1756	prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1757	set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1758	rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1759	clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1760	finish_wait(sk_sleep(sk), &wait);
1761	return rc;
1762}
1763EXPORT_SYMBOL(sk_wait_data);
1764
1765/**
1766 *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1767 *	@sk: socket
1768 *	@size: memory size to allocate
1769 *	@kind: allocation type
1770 *
1771 *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1772 *	rmem allocation. This function assumes that protocols which have
1773 *	memory_pressure use sk_wmem_queued as write buffer accounting.
1774 */
1775int __sk_mem_schedule(struct sock *sk, int size, int kind)
1776{
1777	struct proto *prot = sk->sk_prot;
1778	int amt = sk_mem_pages(size);
1779	long allocated;
1780	int parent_status = UNDER_LIMIT;
1781
1782	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
1783
1784	allocated = sk_memory_allocated_add(sk, amt, &parent_status);
1785
1786	/* Under limit. */
1787	if (parent_status == UNDER_LIMIT &&
1788			allocated <= sk_prot_mem_limits(sk, 0)) {
1789		sk_leave_memory_pressure(sk);
1790		return 1;
1791	}
1792
1793	/* Under pressure. (we or our parents) */
1794	if ((parent_status > SOFT_LIMIT) ||
1795			allocated > sk_prot_mem_limits(sk, 1))
1796		sk_enter_memory_pressure(sk);
1797
1798	/* Over hard limit (we or our parents) */
1799	if ((parent_status == OVER_LIMIT) ||
1800			(allocated > sk_prot_mem_limits(sk, 2)))
1801		goto suppress_allocation;
1802
1803	/* guarantee minimum buffer size under pressure */
1804	if (kind == SK_MEM_RECV) {
1805		if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
1806			return 1;
1807
1808	} else { /* SK_MEM_SEND */
1809		if (sk->sk_type == SOCK_STREAM) {
1810			if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
1811				return 1;
1812		} else if (atomic_read(&sk->sk_wmem_alloc) <
1813			   prot->sysctl_wmem[0])
1814				return 1;
1815	}
1816
1817	if (sk_has_memory_pressure(sk)) {
1818		int alloc;
1819
1820		if (!sk_under_memory_pressure(sk))
1821			return 1;
1822		alloc = sk_sockets_allocated_read_positive(sk);
1823		if (sk_prot_mem_limits(sk, 2) > alloc *
1824		    sk_mem_pages(sk->sk_wmem_queued +
1825				 atomic_read(&sk->sk_rmem_alloc) +
1826				 sk->sk_forward_alloc))
1827			return 1;
1828	}
1829
1830suppress_allocation:
1831
1832	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
1833		sk_stream_moderate_sndbuf(sk);
1834
1835		/* Fail only if socket is _under_ its sndbuf.
1836		 * In this case we cannot block, so that we have to fail.
1837		 */
1838		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
1839			return 1;
1840	}
1841
1842	trace_sock_exceed_buf_limit(sk, prot, allocated);
1843
1844	/* Alas. Undo changes. */
1845	sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
1846
1847	sk_memory_allocated_sub(sk, amt);
1848
1849	return 0;
1850}
1851EXPORT_SYMBOL(__sk_mem_schedule);
1852
1853/**
1854 *	__sk_reclaim - reclaim memory_allocated
1855 *	@sk: socket
1856 */
1857void __sk_mem_reclaim(struct sock *sk)
1858{
1859	sk_memory_allocated_sub(sk,
1860				sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT);
1861	sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
1862
1863	if (sk_under_memory_pressure(sk) &&
1864	    (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
1865		sk_leave_memory_pressure(sk);
1866}
1867EXPORT_SYMBOL(__sk_mem_reclaim);
1868
1869
1870/*
1871 * Set of default routines for initialising struct proto_ops when
1872 * the protocol does not support a particular function. In certain
1873 * cases where it makes no sense for a protocol to have a "do nothing"
1874 * function, some default processing is provided.
1875 */
1876
1877int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1878{
1879	return -EOPNOTSUPP;
1880}
1881EXPORT_SYMBOL(sock_no_bind);
1882
1883int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1884		    int len, int flags)
1885{
1886	return -EOPNOTSUPP;
1887}
1888EXPORT_SYMBOL(sock_no_connect);
1889
1890int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1891{
1892	return -EOPNOTSUPP;
1893}
1894EXPORT_SYMBOL(sock_no_socketpair);
1895
1896int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1897{
1898	return -EOPNOTSUPP;
1899}
1900EXPORT_SYMBOL(sock_no_accept);
1901
1902int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1903		    int *len, int peer)
1904{
1905	return -EOPNOTSUPP;
1906}
1907EXPORT_SYMBOL(sock_no_getname);
1908
1909unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
1910{
1911	return 0;
1912}
1913EXPORT_SYMBOL(sock_no_poll);
1914
1915int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1916{
1917	return -EOPNOTSUPP;
1918}
1919EXPORT_SYMBOL(sock_no_ioctl);
1920
1921int sock_no_listen(struct socket *sock, int backlog)
1922{
1923	return -EOPNOTSUPP;
1924}
1925EXPORT_SYMBOL(sock_no_listen);
1926
1927int sock_no_shutdown(struct socket *sock, int how)
1928{
1929	return -EOPNOTSUPP;
1930}
1931EXPORT_SYMBOL(sock_no_shutdown);
1932
1933int sock_no_setsockopt(struct socket *sock, int level, int optname,
1934		    char __user *optval, unsigned int optlen)
1935{
1936	return -EOPNOTSUPP;
1937}
1938EXPORT_SYMBOL(sock_no_setsockopt);
1939
1940int sock_no_getsockopt(struct socket *sock, int level, int optname,
1941		    char __user *optval, int __user *optlen)
1942{
1943	return -EOPNOTSUPP;
1944}
1945EXPORT_SYMBOL(sock_no_getsockopt);
1946
1947int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1948		    size_t len)
1949{
1950	return -EOPNOTSUPP;
1951}
1952EXPORT_SYMBOL(sock_no_sendmsg);
1953
1954int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1955		    size_t len, int flags)
1956{
1957	return -EOPNOTSUPP;
1958}
1959EXPORT_SYMBOL(sock_no_recvmsg);
1960
1961int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
1962{
1963	/* Mirror missing mmap method error code */
1964	return -ENODEV;
1965}
1966EXPORT_SYMBOL(sock_no_mmap);
1967
1968ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
1969{
1970	ssize_t res;
1971	struct msghdr msg = {.msg_flags = flags};
1972	struct kvec iov;
1973	char *kaddr = kmap(page);
1974	iov.iov_base = kaddr + offset;
1975	iov.iov_len = size;
1976	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
1977	kunmap(page);
1978	return res;
1979}
1980EXPORT_SYMBOL(sock_no_sendpage);
1981
1982/*
1983 *	Default Socket Callbacks
1984 */
1985
1986static void sock_def_wakeup(struct sock *sk)
1987{
1988	struct socket_wq *wq;
1989
1990	rcu_read_lock();
1991	wq = rcu_dereference(sk->sk_wq);
1992	if (wq_has_sleeper(wq))
1993		wake_up_interruptible_all(&wq->wait);
1994	rcu_read_unlock();
1995}
1996
1997static void sock_def_error_report(struct sock *sk)
1998{
1999	struct socket_wq *wq;
2000
2001	rcu_read_lock();
2002	wq = rcu_dereference(sk->sk_wq);
2003	if (wq_has_sleeper(wq))
2004		wake_up_interruptible_poll(&wq->wait, POLLERR);
2005	sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2006	rcu_read_unlock();
2007}
2008
2009static void sock_def_readable(struct sock *sk, int len)
2010{
2011	struct socket_wq *wq;
2012
2013	rcu_read_lock();
2014	wq = rcu_dereference(sk->sk_wq);
2015	if (wq_has_sleeper(wq))
2016		wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
2017						POLLRDNORM | POLLRDBAND);
2018	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2019	rcu_read_unlock();
2020}
2021
2022static void sock_def_write_space(struct sock *sk)
2023{
2024	struct socket_wq *wq;
2025
2026	rcu_read_lock();
2027
2028	/* Do not wake up a writer until he can make "significant"
2029	 * progress.  --DaveM
2030	 */
2031	if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
2032		wq = rcu_dereference(sk->sk_wq);
2033		if (wq_has_sleeper(wq))
2034			wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
2035						POLLWRNORM | POLLWRBAND);
2036
2037		/* Should agree with poll, otherwise some programs break */
2038		if (sock_writeable(sk))
2039			sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2040	}
2041
2042	rcu_read_unlock();
2043}
2044
2045static void sock_def_destruct(struct sock *sk)
2046{
2047	kfree(sk->sk_protinfo);
2048}
2049
2050void sk_send_sigurg(struct sock *sk)
2051{
2052	if (sk->sk_socket && sk->sk_socket->file)
2053		if (send_sigurg(&sk->sk_socket->file->f_owner))
2054			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2055}
2056EXPORT_SYMBOL(sk_send_sigurg);
2057
2058void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2059		    unsigned long expires)
2060{
2061	if (!mod_timer(timer, expires))
2062		sock_hold(sk);
2063}
2064EXPORT_SYMBOL(sk_reset_timer);
2065
2066void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2067{
2068	if (timer_pending(timer) && del_timer(timer))
2069		__sock_put(sk);
2070}
2071EXPORT_SYMBOL(sk_stop_timer);
2072
2073void sock_init_data(struct socket *sock, struct sock *sk)
2074{
2075	skb_queue_head_init(&sk->sk_receive_queue);
2076	skb_queue_head_init(&sk->sk_write_queue);
2077	skb_queue_head_init(&sk->sk_error_queue);
2078#ifdef CONFIG_NET_DMA
2079	skb_queue_head_init(&sk->sk_async_wait_queue);
2080#endif
2081
2082	sk->sk_send_head	=	NULL;
2083
2084	init_timer(&sk->sk_timer);
2085
2086	sk->sk_allocation	=	GFP_KERNEL;
2087	sk->sk_rcvbuf		=	sysctl_rmem_default;
2088	sk->sk_sndbuf		=	sysctl_wmem_default;
2089	sk->sk_state		=	TCP_CLOSE;
2090	sk_set_socket(sk, sock);
2091
2092	sock_set_flag(sk, SOCK_ZAPPED);
2093
2094	if (sock) {
2095		sk->sk_type	=	sock->type;
2096		sk->sk_wq	=	sock->wq;
2097		sock->sk	=	sk;
2098	} else
2099		sk->sk_wq	=	NULL;
2100
2101	spin_lock_init(&sk->sk_dst_lock);
2102	rwlock_init(&sk->sk_callback_lock);
2103	lockdep_set_class_and_name(&sk->sk_callback_lock,
2104			af_callback_keys + sk->sk_family,
2105			af_family_clock_key_strings[sk->sk_family]);
2106
2107	sk->sk_state_change	=	sock_def_wakeup;
2108	sk->sk_data_ready	=	sock_def_readable;
2109	sk->sk_write_space	=	sock_def_write_space;
2110	sk->sk_error_report	=	sock_def_error_report;
2111	sk->sk_destruct		=	sock_def_destruct;
2112
2113	sk->sk_sndmsg_page	=	NULL;
2114	sk->sk_sndmsg_off	=	0;
2115	sk->sk_peek_off		=	-1;
2116
2117	sk->sk_peer_pid 	=	NULL;
2118	sk->sk_peer_cred	=	NULL;
2119	sk->sk_write_pending	=	0;
2120	sk->sk_rcvlowat		=	1;
2121	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
2122	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
2123
2124	sk->sk_stamp = ktime_set(-1L, 0);
2125
2126	/*
2127	 * Before updating sk_refcnt, we must commit prior changes to memory
2128	 * (Documentation/RCU/rculist_nulls.txt for details)
2129	 */
2130	smp_wmb();
2131	atomic_set(&sk->sk_refcnt, 1);
2132	atomic_set(&sk->sk_drops, 0);
2133}
2134EXPORT_SYMBOL(sock_init_data);
2135
2136void lock_sock_nested(struct sock *sk, int subclass)
2137{
2138	might_sleep();
2139	spin_lock_bh(&sk->sk_lock.slock);
2140	if (sk->sk_lock.owned)
2141		__lock_sock(sk);
2142	sk->sk_lock.owned = 1;
2143	spin_unlock(&sk->sk_lock.slock);
2144	/*
2145	 * The sk_lock has mutex_lock() semantics here:
2146	 */
2147	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2148	local_bh_enable();
2149}
2150EXPORT_SYMBOL(lock_sock_nested);
2151
2152void release_sock(struct sock *sk)
2153{
2154	/*
2155	 * The sk_lock has mutex_unlock() semantics:
2156	 */
2157	mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
2158
2159	spin_lock_bh(&sk->sk_lock.slock);
2160	if (sk->sk_backlog.tail)
2161		__release_sock(sk);
2162
2163	if (sk->sk_prot->release_cb)
2164		sk->sk_prot->release_cb(sk);
2165
2166	sk->sk_lock.owned = 0;
2167	if (waitqueue_active(&sk->sk_lock.wq))
2168		wake_up(&sk->sk_lock.wq);
2169	spin_unlock_bh(&sk->sk_lock.slock);
2170}
2171EXPORT_SYMBOL(release_sock);
2172
2173/**
2174 * lock_sock_fast - fast version of lock_sock
2175 * @sk: socket
2176 *
2177 * This version should be used for very small section, where process wont block
2178 * return false if fast path is taken
2179 *   sk_lock.slock locked, owned = 0, BH disabled
2180 * return true if slow path is taken
2181 *   sk_lock.slock unlocked, owned = 1, BH enabled
2182 */
2183bool lock_sock_fast(struct sock *sk)
2184{
2185	might_sleep();
2186	spin_lock_bh(&sk->sk_lock.slock);
2187
2188	if (!sk->sk_lock.owned)
2189		/*
2190		 * Note : We must disable BH
2191		 */
2192		return false;
2193
2194	__lock_sock(sk);
2195	sk->sk_lock.owned = 1;
2196	spin_unlock(&sk->sk_lock.slock);
2197	/*
2198	 * The sk_lock has mutex_lock() semantics here:
2199	 */
2200	mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2201	local_bh_enable();
2202	return true;
2203}
2204EXPORT_SYMBOL(lock_sock_fast);
2205
2206int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2207{
2208	struct timeval tv;
2209	if (!sock_flag(sk, SOCK_TIMESTAMP))
2210		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2211	tv = ktime_to_timeval(sk->sk_stamp);
2212	if (tv.tv_sec == -1)
2213		return -ENOENT;
2214	if (tv.tv_sec == 0) {
2215		sk->sk_stamp = ktime_get_real();
2216		tv = ktime_to_timeval(sk->sk_stamp);
2217	}
2218	return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2219}
2220EXPORT_SYMBOL(sock_get_timestamp);
2221
2222int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2223{
2224	struct timespec ts;
2225	if (!sock_flag(sk, SOCK_TIMESTAMP))
2226		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2227	ts = ktime_to_timespec(sk->sk_stamp);
2228	if (ts.tv_sec == -1)
2229		return -ENOENT;
2230	if (ts.tv_sec == 0) {
2231		sk->sk_stamp = ktime_get_real();
2232		ts = ktime_to_timespec(sk->sk_stamp);
2233	}
2234	return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2235}
2236EXPORT_SYMBOL(sock_get_timestampns);
2237
2238void sock_enable_timestamp(struct sock *sk, int flag)
2239{
2240	if (!sock_flag(sk, flag)) {
2241		unsigned long previous_flags = sk->sk_flags;
2242
2243		sock_set_flag(sk, flag);
2244		/*
2245		 * we just set one of the two flags which require net
2246		 * time stamping, but time stamping might have been on
2247		 * already because of the other one
2248		 */
2249		if (!(previous_flags & SK_FLAGS_TIMESTAMP))
2250			net_enable_timestamp();
2251	}
2252}
2253
2254/*
2255 *	Get a socket option on an socket.
2256 *
2257 *	FIX: POSIX 1003.1g is very ambiguous here. It states that
2258 *	asynchronous errors should be reported by getsockopt. We assume
2259 *	this means if you specify SO_ERROR (otherwise whats the point of it).
2260 */
2261int sock_common_getsockopt(struct socket *sock, int level, int optname,
2262			   char __user *optval, int __user *optlen)
2263{
2264	struct sock *sk = sock->sk;
2265
2266	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2267}
2268EXPORT_SYMBOL(sock_common_getsockopt);
2269
2270#ifdef CONFIG_COMPAT
2271int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2272				  char __user *optval, int __user *optlen)
2273{
2274	struct sock *sk = sock->sk;
2275
2276	if (sk->sk_prot->compat_getsockopt != NULL)
2277		return sk->sk_prot->compat_getsockopt(sk, level, optname,
2278						      optval, optlen);
2279	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2280}
2281EXPORT_SYMBOL(compat_sock_common_getsockopt);
2282#endif
2283
2284int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
2285			struct msghdr *msg, size_t size, int flags)
2286{
2287	struct sock *sk = sock->sk;
2288	int addr_len = 0;
2289	int err;
2290
2291	err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
2292				   flags & ~MSG_DONTWAIT, &addr_len);
2293	if (err >= 0)
2294		msg->msg_namelen = addr_len;
2295	return err;
2296}
2297EXPORT_SYMBOL(sock_common_recvmsg);
2298
2299/*
2300 *	Set socket options on an inet socket.
2301 */
2302int sock_common_setsockopt(struct socket *sock, int level, int optname,
2303			   char __user *optval, unsigned int optlen)
2304{
2305	struct sock *sk = sock->sk;
2306
2307	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2308}
2309EXPORT_SYMBOL(sock_common_setsockopt);
2310
2311#ifdef CONFIG_COMPAT
2312int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2313				  char __user *optval, unsigned int optlen)
2314{
2315	struct sock *sk = sock->sk;
2316
2317	if (sk->sk_prot->compat_setsockopt != NULL)
2318		return sk->sk_prot->compat_setsockopt(sk, level, optname,
2319						      optval, optlen);
2320	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2321}
2322EXPORT_SYMBOL(compat_sock_common_setsockopt);
2323#endif
2324
2325void sk_common_release(struct sock *sk)
2326{
2327	if (sk->sk_prot->destroy)
2328		sk->sk_prot->destroy(sk);
2329
2330	/*
2331	 * Observation: when sock_common_release is called, processes have
2332	 * no access to socket. But net still has.
2333	 * Step one, detach it from networking:
2334	 *
2335	 * A. Remove from hash tables.
2336	 */
2337
2338	sk->sk_prot->unhash(sk);
2339
2340	/*
2341	 * In this point socket cannot receive new packets, but it is possible
2342	 * that some packets are in flight because some CPU runs receiver and
2343	 * did hash table lookup before we unhashed socket. They will achieve
2344	 * receive queue and will be purged by socket destructor.
2345	 *
2346	 * Also we still have packets pending on receive queue and probably,
2347	 * our own packets waiting in device queues. sock_destroy will drain
2348	 * receive queue, but transmitted packets will delay socket destruction
2349	 * until the last reference will be released.
2350	 */
2351
2352	sock_orphan(sk);
2353
2354	xfrm_sk_free_policy(sk);
2355
2356	sk_refcnt_debug_release(sk);
2357	sock_put(sk);
2358}
2359EXPORT_SYMBOL(sk_common_release);
2360
2361#ifdef CONFIG_PROC_FS
2362#define PROTO_INUSE_NR	64	/* should be enough for the first time */
2363struct prot_inuse {
2364	int val[PROTO_INUSE_NR];
2365};
2366
2367static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2368
2369#ifdef CONFIG_NET_NS
2370void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2371{
2372	__this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
2373}
2374EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2375
2376int sock_prot_inuse_get(struct net *net, struct proto *prot)
2377{
2378	int cpu, idx = prot->inuse_idx;
2379	int res = 0;
2380
2381	for_each_possible_cpu(cpu)
2382		res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2383
2384	return res >= 0 ? res : 0;
2385}
2386EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2387
2388static int __net_init sock_inuse_init_net(struct net *net)
2389{
2390	net->core.inuse = alloc_percpu(struct prot_inuse);
2391	return net->core.inuse ? 0 : -ENOMEM;
2392}
2393
2394static void __net_exit sock_inuse_exit_net(struct net *net)
2395{
2396	free_percpu(net->core.inuse);
2397}
2398
2399static struct pernet_operations net_inuse_ops = {
2400	.init = sock_inuse_init_net,
2401	.exit = sock_inuse_exit_net,
2402};
2403
2404static __init int net_inuse_init(void)
2405{
2406	if (register_pernet_subsys(&net_inuse_ops))
2407		panic("Cannot initialize net inuse counters");
2408
2409	return 0;
2410}
2411
2412core_initcall(net_inuse_init);
2413#else
2414static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2415
2416void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2417{
2418	__this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
2419}
2420EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2421
2422int sock_prot_inuse_get(struct net *net, struct proto *prot)
2423{
2424	int cpu, idx = prot->inuse_idx;
2425	int res = 0;
2426
2427	for_each_possible_cpu(cpu)
2428		res += per_cpu(prot_inuse, cpu).val[idx];
2429
2430	return res >= 0 ? res : 0;
2431}
2432EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2433#endif
2434
2435static void assign_proto_idx(struct proto *prot)
2436{
2437	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2438
2439	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2440		pr_err("PROTO_INUSE_NR exhausted\n");
2441		return;
2442	}
2443
2444	set_bit(prot->inuse_idx, proto_inuse_idx);
2445}
2446
2447static void release_proto_idx(struct proto *prot)
2448{
2449	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2450		clear_bit(prot->inuse_idx, proto_inuse_idx);
2451}
2452#else
2453static inline void assign_proto_idx(struct proto *prot)
2454{
2455}
2456
2457static inline void release_proto_idx(struct proto *prot)
2458{
2459}
2460#endif
2461
2462int proto_register(struct proto *prot, int alloc_slab)
2463{
2464	if (alloc_slab) {
2465		prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2466					SLAB_HWCACHE_ALIGN | prot->slab_flags,
2467					NULL);
2468
2469		if (prot->slab == NULL) {
2470			pr_crit("%s: Can't create sock SLAB cache!\n",
2471				prot->name);
2472			goto out;
2473		}
2474
2475		if (prot->rsk_prot != NULL) {
2476			prot->rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", prot->name);
2477			if (prot->rsk_prot->slab_name == NULL)
2478				goto out_free_sock_slab;
2479
2480			prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
2481								 prot->rsk_prot->obj_size, 0,
2482								 SLAB_HWCACHE_ALIGN, NULL);
2483
2484			if (prot->rsk_prot->slab == NULL) {
2485				pr_crit("%s: Can't create request sock SLAB cache!\n",
2486					prot->name);
2487				goto out_free_request_sock_slab_name;
2488			}
2489		}
2490
2491		if (prot->twsk_prot != NULL) {
2492			prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
2493
2494			if (prot->twsk_prot->twsk_slab_name == NULL)
2495				goto out_free_request_sock_slab;
2496
2497			prot->twsk_prot->twsk_slab =
2498				kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2499						  prot->twsk_prot->twsk_obj_size,
2500						  0,
2501						  SLAB_HWCACHE_ALIGN |
2502							prot->slab_flags,
2503						  NULL);
2504			if (prot->twsk_prot->twsk_slab == NULL)
2505				goto out_free_timewait_sock_slab_name;
2506		}
2507	}
2508
2509	mutex_lock(&proto_list_mutex);
2510	list_add(&prot->node, &proto_list);
2511	assign_proto_idx(prot);
2512	mutex_unlock(&proto_list_mutex);
2513	return 0;
2514
2515out_free_timewait_sock_slab_name:
2516	kfree(prot->twsk_prot->twsk_slab_name);
2517out_free_request_sock_slab:
2518	if (prot->rsk_prot && prot->rsk_prot->slab) {
2519		kmem_cache_destroy(prot->rsk_prot->slab);
2520		prot->rsk_prot->slab = NULL;
2521	}
2522out_free_request_sock_slab_name:
2523	if (prot->rsk_prot)
2524		kfree(prot->rsk_prot->slab_name);
2525out_free_sock_slab:
2526	kmem_cache_destroy(prot->slab);
2527	prot->slab = NULL;
2528out:
2529	return -ENOBUFS;
2530}
2531EXPORT_SYMBOL(proto_register);
2532
2533void proto_unregister(struct proto *prot)
2534{
2535	mutex_lock(&proto_list_mutex);
2536	release_proto_idx(prot);
2537	list_del(&prot->node);
2538	mutex_unlock(&proto_list_mutex);
2539
2540	if (prot->slab != NULL) {
2541		kmem_cache_destroy(prot->slab);
2542		prot->slab = NULL;
2543	}
2544
2545	if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2546		kmem_cache_destroy(prot->rsk_prot->slab);
2547		kfree(prot->rsk_prot->slab_name);
2548		prot->rsk_prot->slab = NULL;
2549	}
2550
2551	if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2552		kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2553		kfree(prot->twsk_prot->twsk_slab_name);
2554		prot->twsk_prot->twsk_slab = NULL;
2555	}
2556}
2557EXPORT_SYMBOL(proto_unregister);
2558
2559#ifdef CONFIG_PROC_FS
2560static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2561	__acquires(proto_list_mutex)
2562{
2563	mutex_lock(&proto_list_mutex);
2564	return seq_list_start_head(&proto_list, *pos);
2565}
2566
2567static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2568{
2569	return seq_list_next(v, &proto_list, pos);
2570}
2571
2572static void proto_seq_stop(struct seq_file *seq, void *v)
2573	__releases(proto_list_mutex)
2574{
2575	mutex_unlock(&proto_list_mutex);
2576}
2577
2578static char proto_method_implemented(const void *method)
2579{
2580	return method == NULL ? 'n' : 'y';
2581}
2582static long sock_prot_memory_allocated(struct proto *proto)
2583{
2584	return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
2585}
2586
2587static char *sock_prot_memory_pressure(struct proto *proto)
2588{
2589	return proto->memory_pressure != NULL ?
2590	proto_memory_pressure(proto) ? "yes" : "no" : "NI";
2591}
2592
2593static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2594{
2595
2596	seq_printf(seq, "%-9s %4u %6d  %6ld   %-3s %6u   %-3s  %-10s "
2597			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2598		   proto->name,
2599		   proto->obj_size,
2600		   sock_prot_inuse_get(seq_file_net(seq), proto),
2601		   sock_prot_memory_allocated(proto),
2602		   sock_prot_memory_pressure(proto),
2603		   proto->max_header,
2604		   proto->slab == NULL ? "no" : "yes",
2605		   module_name(proto->owner),
2606		   proto_method_implemented(proto->close),
2607		   proto_method_implemented(proto->connect),
2608		   proto_method_implemented(proto->disconnect),
2609		   proto_method_implemented(proto->accept),
2610		   proto_method_implemented(proto->ioctl),
2611		   proto_method_implemented(proto->init),
2612		   proto_method_implemented(proto->destroy),
2613		   proto_method_implemented(proto->shutdown),
2614		   proto_method_implemented(proto->setsockopt),
2615		   proto_method_implemented(proto->getsockopt),
2616		   proto_method_implemented(proto->sendmsg),
2617		   proto_method_implemented(proto->recvmsg),
2618		   proto_method_implemented(proto->sendpage),
2619		   proto_method_implemented(proto->bind),
2620		   proto_method_implemented(proto->backlog_rcv),
2621		   proto_method_implemented(proto->hash),
2622		   proto_method_implemented(proto->unhash),
2623		   proto_method_implemented(proto->get_port),
2624		   proto_method_implemented(proto->enter_memory_pressure));
2625}
2626
2627static int proto_seq_show(struct seq_file *seq, void *v)
2628{
2629	if (v == &proto_list)
2630		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2631			   "protocol",
2632			   "size",
2633			   "sockets",
2634			   "memory",
2635			   "press",
2636			   "maxhdr",
2637			   "slab",
2638			   "module",
2639			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2640	else
2641		proto_seq_printf(seq, list_entry(v, struct proto, node));
2642	return 0;
2643}
2644
2645static const struct seq_operations proto_seq_ops = {
2646	.start  = proto_seq_start,
2647	.next   = proto_seq_next,
2648	.stop   = proto_seq_stop,
2649	.show   = proto_seq_show,
2650};
2651
2652static int proto_seq_open(struct inode *inode, struct file *file)
2653{
2654	return seq_open_net(inode, file, &proto_seq_ops,
2655			    sizeof(struct seq_net_private));
2656}
2657
2658static const struct file_operations proto_seq_fops = {
2659	.owner		= THIS_MODULE,
2660	.open		= proto_seq_open,
2661	.read		= seq_read,
2662	.llseek		= seq_lseek,
2663	.release	= seq_release_net,
2664};
2665
2666static __net_init int proto_init_net(struct net *net)
2667{
2668	if (!proc_net_fops_create(net, "protocols", S_IRUGO, &proto_seq_fops))
2669		return -ENOMEM;
2670
2671	return 0;
2672}
2673
2674static __net_exit void proto_exit_net(struct net *net)
2675{
2676	proc_net_remove(net, "protocols");
2677}
2678
2679
2680static __net_initdata struct pernet_operations proto_net_ops = {
2681	.init = proto_init_net,
2682	.exit = proto_exit_net,
2683};
2684
2685static int __init proto_init(void)
2686{
2687	return register_pernet_subsys(&proto_net_ops);
2688}
2689
2690subsys_initcall(proto_init);
2691
2692#endif /* PROC_FS */
2693