sock.c revision c308c1b20e2eb7b13f200a7c18b3f23561318367
1/*
2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
3 *		operating system.  INET is implemented using the  BSD Socket
4 *		interface as the means of communication with the user level.
5 *
6 *		Generic socket support routines. Memory allocators, socket lock/release
7 *		handler for protocols to use and generic option handler.
8 *
9 *
10 * Version:	$Id: sock.c,v 1.117 2002/02/01 22:01:03 davem Exp $
11 *
12 * Authors:	Ross Biro
13 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
14 *		Florian La Roche, <flla@stud.uni-sb.de>
15 *		Alan Cox, <A.Cox@swansea.ac.uk>
16 *
17 * Fixes:
18 *		Alan Cox	: 	Numerous verify_area() problems
19 *		Alan Cox	:	Connecting on a connecting socket
20 *					now returns an error for tcp.
21 *		Alan Cox	:	sock->protocol is set correctly.
22 *					and is not sometimes left as 0.
23 *		Alan Cox	:	connect handles icmp errors on a
24 *					connect properly. Unfortunately there
25 *					is a restart syscall nasty there. I
26 *					can't match BSD without hacking the C
27 *					library. Ideas urgently sought!
28 *		Alan Cox	:	Disallow bind() to addresses that are
29 *					not ours - especially broadcast ones!!
30 *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
31 *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
32 *					instead they leave that for the DESTROY timer.
33 *		Alan Cox	:	Clean up error flag in accept
34 *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
35 *					was buggy. Put a remove_sock() in the handler
36 *					for memory when we hit 0. Also altered the timer
37 *					code. The ACK stuff can wait and needs major
38 *					TCP layer surgery.
39 *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
40 *					and fixed timer/inet_bh race.
41 *		Alan Cox	:	Added zapped flag for TCP
42 *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
43 *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
44 *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
45 *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
46 *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
47 *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
48 *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
49 *	Pauline Middelink	:	identd support
50 *		Alan Cox	:	Fixed connect() taking signals I think.
51 *		Alan Cox	:	SO_LINGER supported
52 *		Alan Cox	:	Error reporting fixes
53 *		Anonymous	:	inet_create tidied up (sk->reuse setting)
54 *		Alan Cox	:	inet sockets don't set sk->type!
55 *		Alan Cox	:	Split socket option code
56 *		Alan Cox	:	Callbacks
57 *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
58 *		Alex		:	Removed restriction on inet fioctl
59 *		Alan Cox	:	Splitting INET from NET core
60 *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
61 *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
62 *		Alan Cox	:	Split IP from generic code
63 *		Alan Cox	:	New kfree_skbmem()
64 *		Alan Cox	:	Make SO_DEBUG superuser only.
65 *		Alan Cox	:	Allow anyone to clear SO_DEBUG
66 *					(compatibility fix)
67 *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
68 *		Alan Cox	:	Allocator for a socket is settable.
69 *		Alan Cox	:	SO_ERROR includes soft errors.
70 *		Alan Cox	:	Allow NULL arguments on some SO_ opts
71 *		Alan Cox	: 	Generic socket allocation to make hooks
72 *					easier (suggested by Craig Metz).
73 *		Michael Pall	:	SO_ERROR returns positive errno again
74 *              Steve Whitehouse:       Added default destructor to free
75 *                                      protocol private data.
76 *              Steve Whitehouse:       Added various other default routines
77 *                                      common to several socket families.
78 *              Chris Evans     :       Call suser() check last on F_SETOWN
79 *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
80 *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
81 *		Andi Kleen	:	Fix write_space callback
82 *		Chris Evans	:	Security fixes - signedness again
83 *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
84 *
85 * To Fix:
86 *
87 *
88 *		This program is free software; you can redistribute it and/or
89 *		modify it under the terms of the GNU General Public License
90 *		as published by the Free Software Foundation; either version
91 *		2 of the License, or (at your option) any later version.
92 */
93
94#include <linux/capability.h>
95#include <linux/errno.h>
96#include <linux/types.h>
97#include <linux/socket.h>
98#include <linux/in.h>
99#include <linux/kernel.h>
100#include <linux/module.h>
101#include <linux/proc_fs.h>
102#include <linux/seq_file.h>
103#include <linux/sched.h>
104#include <linux/timer.h>
105#include <linux/string.h>
106#include <linux/sockios.h>
107#include <linux/net.h>
108#include <linux/mm.h>
109#include <linux/slab.h>
110#include <linux/interrupt.h>
111#include <linux/poll.h>
112#include <linux/tcp.h>
113#include <linux/init.h>
114#include <linux/highmem.h>
115
116#include <asm/uaccess.h>
117#include <asm/system.h>
118
119#include <linux/netdevice.h>
120#include <net/protocol.h>
121#include <linux/skbuff.h>
122#include <net/net_namespace.h>
123#include <net/request_sock.h>
124#include <net/sock.h>
125#include <net/xfrm.h>
126#include <linux/ipsec.h>
127
128#include <linux/filter.h>
129
130#ifdef CONFIG_INET
131#include <net/tcp.h>
132#endif
133
134/*
135 * Each address family might have different locking rules, so we have
136 * one slock key per address family:
137 */
138static struct lock_class_key af_family_keys[AF_MAX];
139static struct lock_class_key af_family_slock_keys[AF_MAX];
140
141#ifdef CONFIG_DEBUG_LOCK_ALLOC
142/*
143 * Make lock validator output more readable. (we pre-construct these
144 * strings build-time, so that runtime initialization of socket
145 * locks is fast):
146 */
147static const char *af_family_key_strings[AF_MAX+1] = {
148  "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX"     , "sk_lock-AF_INET"     ,
149  "sk_lock-AF_AX25"  , "sk_lock-AF_IPX"      , "sk_lock-AF_APPLETALK",
150  "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE"   , "sk_lock-AF_ATMPVC"   ,
151  "sk_lock-AF_X25"   , "sk_lock-AF_INET6"    , "sk_lock-AF_ROSE"     ,
152  "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI"  , "sk_lock-AF_SECURITY" ,
153  "sk_lock-AF_KEY"   , "sk_lock-AF_NETLINK"  , "sk_lock-AF_PACKET"   ,
154  "sk_lock-AF_ASH"   , "sk_lock-AF_ECONET"   , "sk_lock-AF_ATMSVC"   ,
155  "sk_lock-21"       , "sk_lock-AF_SNA"      , "sk_lock-AF_IRDA"     ,
156  "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE"  , "sk_lock-AF_LLC"      ,
157  "sk_lock-27"       , "sk_lock-28"          , "sk_lock-29"          ,
158  "sk_lock-AF_TIPC"  , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV"        ,
159  "sk_lock-AF_RXRPC" , "sk_lock-AF_MAX"
160};
161static const char *af_family_slock_key_strings[AF_MAX+1] = {
162  "slock-AF_UNSPEC", "slock-AF_UNIX"     , "slock-AF_INET"     ,
163  "slock-AF_AX25"  , "slock-AF_IPX"      , "slock-AF_APPLETALK",
164  "slock-AF_NETROM", "slock-AF_BRIDGE"   , "slock-AF_ATMPVC"   ,
165  "slock-AF_X25"   , "slock-AF_INET6"    , "slock-AF_ROSE"     ,
166  "slock-AF_DECnet", "slock-AF_NETBEUI"  , "slock-AF_SECURITY" ,
167  "slock-AF_KEY"   , "slock-AF_NETLINK"  , "slock-AF_PACKET"   ,
168  "slock-AF_ASH"   , "slock-AF_ECONET"   , "slock-AF_ATMSVC"   ,
169  "slock-21"       , "slock-AF_SNA"      , "slock-AF_IRDA"     ,
170  "slock-AF_PPPOX" , "slock-AF_WANPIPE"  , "slock-AF_LLC"      ,
171  "slock-27"       , "slock-28"          , "slock-29"          ,
172  "slock-AF_TIPC"  , "slock-AF_BLUETOOTH", "slock-AF_IUCV"     ,
173  "slock-AF_RXRPC" , "slock-AF_MAX"
174};
175static const char *af_family_clock_key_strings[AF_MAX+1] = {
176  "clock-AF_UNSPEC", "clock-AF_UNIX"     , "clock-AF_INET"     ,
177  "clock-AF_AX25"  , "clock-AF_IPX"      , "clock-AF_APPLETALK",
178  "clock-AF_NETROM", "clock-AF_BRIDGE"   , "clock-AF_ATMPVC"   ,
179  "clock-AF_X25"   , "clock-AF_INET6"    , "clock-AF_ROSE"     ,
180  "clock-AF_DECnet", "clock-AF_NETBEUI"  , "clock-AF_SECURITY" ,
181  "clock-AF_KEY"   , "clock-AF_NETLINK"  , "clock-AF_PACKET"   ,
182  "clock-AF_ASH"   , "clock-AF_ECONET"   , "clock-AF_ATMSVC"   ,
183  "clock-21"       , "clock-AF_SNA"      , "clock-AF_IRDA"     ,
184  "clock-AF_PPPOX" , "clock-AF_WANPIPE"  , "clock-AF_LLC"      ,
185  "clock-27"       , "clock-28"          , "clock-29"          ,
186  "clock-AF_TIPC"  , "clock-AF_BLUETOOTH", "clock-AF_IUCV"     ,
187  "clock-AF_RXRPC" , "clock-AF_MAX"
188};
189#endif
190
191/*
192 * sk_callback_lock locking rules are per-address-family,
193 * so split the lock classes by using a per-AF key:
194 */
195static struct lock_class_key af_callback_keys[AF_MAX];
196
197/* Take into consideration the size of the struct sk_buff overhead in the
198 * determination of these values, since that is non-constant across
199 * platforms.  This makes socket queueing behavior and performance
200 * not depend upon such differences.
201 */
202#define _SK_MEM_PACKETS		256
203#define _SK_MEM_OVERHEAD	(sizeof(struct sk_buff) + 256)
204#define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
205#define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
206
207/* Run time adjustable parameters. */
208__u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
209__u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
210__u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
211__u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
212
213/* Maximal space eaten by iovec or ancilliary data plus some space */
214int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
215
216static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
217{
218	struct timeval tv;
219
220	if (optlen < sizeof(tv))
221		return -EINVAL;
222	if (copy_from_user(&tv, optval, sizeof(tv)))
223		return -EFAULT;
224	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
225		return -EDOM;
226
227	if (tv.tv_sec < 0) {
228		static int warned __read_mostly;
229
230		*timeo_p = 0;
231		if (warned < 10 && net_ratelimit())
232			warned++;
233			printk(KERN_INFO "sock_set_timeout: `%s' (pid %d) "
234			       "tries to set negative timeout\n",
235				current->comm, task_pid_nr(current));
236		return 0;
237	}
238	*timeo_p = MAX_SCHEDULE_TIMEOUT;
239	if (tv.tv_sec == 0 && tv.tv_usec == 0)
240		return 0;
241	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
242		*timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
243	return 0;
244}
245
246static void sock_warn_obsolete_bsdism(const char *name)
247{
248	static int warned;
249	static char warncomm[TASK_COMM_LEN];
250	if (strcmp(warncomm, current->comm) && warned < 5) {
251		strcpy(warncomm,  current->comm);
252		printk(KERN_WARNING "process `%s' is using obsolete "
253		       "%s SO_BSDCOMPAT\n", warncomm, name);
254		warned++;
255	}
256}
257
258static void sock_disable_timestamp(struct sock *sk)
259{
260	if (sock_flag(sk, SOCK_TIMESTAMP)) {
261		sock_reset_flag(sk, SOCK_TIMESTAMP);
262		net_disable_timestamp();
263	}
264}
265
266
267int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
268{
269	int err = 0;
270	int skb_len;
271
272	/* Cast skb->rcvbuf to unsigned... It's pointless, but reduces
273	   number of warnings when compiling with -W --ANK
274	 */
275	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
276	    (unsigned)sk->sk_rcvbuf) {
277		err = -ENOMEM;
278		goto out;
279	}
280
281	err = sk_filter(sk, skb);
282	if (err)
283		goto out;
284
285	skb->dev = NULL;
286	skb_set_owner_r(skb, sk);
287
288	/* Cache the SKB length before we tack it onto the receive
289	 * queue.  Once it is added it no longer belongs to us and
290	 * may be freed by other threads of control pulling packets
291	 * from the queue.
292	 */
293	skb_len = skb->len;
294
295	skb_queue_tail(&sk->sk_receive_queue, skb);
296
297	if (!sock_flag(sk, SOCK_DEAD))
298		sk->sk_data_ready(sk, skb_len);
299out:
300	return err;
301}
302EXPORT_SYMBOL(sock_queue_rcv_skb);
303
304int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
305{
306	int rc = NET_RX_SUCCESS;
307
308	if (sk_filter(sk, skb))
309		goto discard_and_relse;
310
311	skb->dev = NULL;
312
313	if (nested)
314		bh_lock_sock_nested(sk);
315	else
316		bh_lock_sock(sk);
317	if (!sock_owned_by_user(sk)) {
318		/*
319		 * trylock + unlock semantics:
320		 */
321		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
322
323		rc = sk->sk_backlog_rcv(sk, skb);
324
325		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
326	} else
327		sk_add_backlog(sk, skb);
328	bh_unlock_sock(sk);
329out:
330	sock_put(sk);
331	return rc;
332discard_and_relse:
333	kfree_skb(skb);
334	goto out;
335}
336EXPORT_SYMBOL(sk_receive_skb);
337
338struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
339{
340	struct dst_entry *dst = sk->sk_dst_cache;
341
342	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
343		sk->sk_dst_cache = NULL;
344		dst_release(dst);
345		return NULL;
346	}
347
348	return dst;
349}
350EXPORT_SYMBOL(__sk_dst_check);
351
352struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
353{
354	struct dst_entry *dst = sk_dst_get(sk);
355
356	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
357		sk_dst_reset(sk);
358		dst_release(dst);
359		return NULL;
360	}
361
362	return dst;
363}
364EXPORT_SYMBOL(sk_dst_check);
365
366static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
367{
368	int ret = -ENOPROTOOPT;
369#ifdef CONFIG_NETDEVICES
370	struct net *net = sk->sk_net;
371	char devname[IFNAMSIZ];
372	int index;
373
374	/* Sorry... */
375	ret = -EPERM;
376	if (!capable(CAP_NET_RAW))
377		goto out;
378
379	ret = -EINVAL;
380	if (optlen < 0)
381		goto out;
382
383	/* Bind this socket to a particular device like "eth0",
384	 * as specified in the passed interface name. If the
385	 * name is "" or the option length is zero the socket
386	 * is not bound.
387	 */
388	if (optlen > IFNAMSIZ - 1)
389		optlen = IFNAMSIZ - 1;
390	memset(devname, 0, sizeof(devname));
391
392	ret = -EFAULT;
393	if (copy_from_user(devname, optval, optlen))
394		goto out;
395
396	if (devname[0] == '\0') {
397		index = 0;
398	} else {
399		struct net_device *dev = dev_get_by_name(net, devname);
400
401		ret = -ENODEV;
402		if (!dev)
403			goto out;
404
405		index = dev->ifindex;
406		dev_put(dev);
407	}
408
409	lock_sock(sk);
410	sk->sk_bound_dev_if = index;
411	sk_dst_reset(sk);
412	release_sock(sk);
413
414	ret = 0;
415
416out:
417#endif
418
419	return ret;
420}
421
422/*
423 *	This is meant for all protocols to use and covers goings on
424 *	at the socket level. Everything here is generic.
425 */
426
427int sock_setsockopt(struct socket *sock, int level, int optname,
428		    char __user *optval, int optlen)
429{
430	struct sock *sk=sock->sk;
431	int val;
432	int valbool;
433	struct linger ling;
434	int ret = 0;
435
436	/*
437	 *	Options without arguments
438	 */
439
440#ifdef SO_DONTLINGER		/* Compatibility item... */
441	if (optname == SO_DONTLINGER) {
442		lock_sock(sk);
443		sock_reset_flag(sk, SOCK_LINGER);
444		release_sock(sk);
445		return 0;
446	}
447#endif
448
449	if (optname == SO_BINDTODEVICE)
450		return sock_bindtodevice(sk, optval, optlen);
451
452	if (optlen < sizeof(int))
453		return -EINVAL;
454
455	if (get_user(val, (int __user *)optval))
456		return -EFAULT;
457
458	valbool = val?1:0;
459
460	lock_sock(sk);
461
462	switch(optname) {
463	case SO_DEBUG:
464		if (val && !capable(CAP_NET_ADMIN)) {
465			ret = -EACCES;
466		}
467		else if (valbool)
468			sock_set_flag(sk, SOCK_DBG);
469		else
470			sock_reset_flag(sk, SOCK_DBG);
471		break;
472	case SO_REUSEADDR:
473		sk->sk_reuse = valbool;
474		break;
475	case SO_TYPE:
476	case SO_ERROR:
477		ret = -ENOPROTOOPT;
478		break;
479	case SO_DONTROUTE:
480		if (valbool)
481			sock_set_flag(sk, SOCK_LOCALROUTE);
482		else
483			sock_reset_flag(sk, SOCK_LOCALROUTE);
484		break;
485	case SO_BROADCAST:
486		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
487		break;
488	case SO_SNDBUF:
489		/* Don't error on this BSD doesn't and if you think
490		   about it this is right. Otherwise apps have to
491		   play 'guess the biggest size' games. RCVBUF/SNDBUF
492		   are treated in BSD as hints */
493
494		if (val > sysctl_wmem_max)
495			val = sysctl_wmem_max;
496set_sndbuf:
497		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
498		if ((val * 2) < SOCK_MIN_SNDBUF)
499			sk->sk_sndbuf = SOCK_MIN_SNDBUF;
500		else
501			sk->sk_sndbuf = val * 2;
502
503		/*
504		 *	Wake up sending tasks if we
505		 *	upped the value.
506		 */
507		sk->sk_write_space(sk);
508		break;
509
510	case SO_SNDBUFFORCE:
511		if (!capable(CAP_NET_ADMIN)) {
512			ret = -EPERM;
513			break;
514		}
515		goto set_sndbuf;
516
517	case SO_RCVBUF:
518		/* Don't error on this BSD doesn't and if you think
519		   about it this is right. Otherwise apps have to
520		   play 'guess the biggest size' games. RCVBUF/SNDBUF
521		   are treated in BSD as hints */
522
523		if (val > sysctl_rmem_max)
524			val = sysctl_rmem_max;
525set_rcvbuf:
526		sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
527		/*
528		 * We double it on the way in to account for
529		 * "struct sk_buff" etc. overhead.   Applications
530		 * assume that the SO_RCVBUF setting they make will
531		 * allow that much actual data to be received on that
532		 * socket.
533		 *
534		 * Applications are unaware that "struct sk_buff" and
535		 * other overheads allocate from the receive buffer
536		 * during socket buffer allocation.
537		 *
538		 * And after considering the possible alternatives,
539		 * returning the value we actually used in getsockopt
540		 * is the most desirable behavior.
541		 */
542		if ((val * 2) < SOCK_MIN_RCVBUF)
543			sk->sk_rcvbuf = SOCK_MIN_RCVBUF;
544		else
545			sk->sk_rcvbuf = val * 2;
546		break;
547
548	case SO_RCVBUFFORCE:
549		if (!capable(CAP_NET_ADMIN)) {
550			ret = -EPERM;
551			break;
552		}
553		goto set_rcvbuf;
554
555	case SO_KEEPALIVE:
556#ifdef CONFIG_INET
557		if (sk->sk_protocol == IPPROTO_TCP)
558			tcp_set_keepalive(sk, valbool);
559#endif
560		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
561		break;
562
563	case SO_OOBINLINE:
564		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
565		break;
566
567	case SO_NO_CHECK:
568		sk->sk_no_check = valbool;
569		break;
570
571	case SO_PRIORITY:
572		if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
573			sk->sk_priority = val;
574		else
575			ret = -EPERM;
576		break;
577
578	case SO_LINGER:
579		if (optlen < sizeof(ling)) {
580			ret = -EINVAL;	/* 1003.1g */
581			break;
582		}
583		if (copy_from_user(&ling,optval,sizeof(ling))) {
584			ret = -EFAULT;
585			break;
586		}
587		if (!ling.l_onoff)
588			sock_reset_flag(sk, SOCK_LINGER);
589		else {
590#if (BITS_PER_LONG == 32)
591			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
592				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
593			else
594#endif
595				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
596			sock_set_flag(sk, SOCK_LINGER);
597		}
598		break;
599
600	case SO_BSDCOMPAT:
601		sock_warn_obsolete_bsdism("setsockopt");
602		break;
603
604	case SO_PASSCRED:
605		if (valbool)
606			set_bit(SOCK_PASSCRED, &sock->flags);
607		else
608			clear_bit(SOCK_PASSCRED, &sock->flags);
609		break;
610
611	case SO_TIMESTAMP:
612	case SO_TIMESTAMPNS:
613		if (valbool)  {
614			if (optname == SO_TIMESTAMP)
615				sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
616			else
617				sock_set_flag(sk, SOCK_RCVTSTAMPNS);
618			sock_set_flag(sk, SOCK_RCVTSTAMP);
619			sock_enable_timestamp(sk);
620		} else {
621			sock_reset_flag(sk, SOCK_RCVTSTAMP);
622			sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
623		}
624		break;
625
626	case SO_RCVLOWAT:
627		if (val < 0)
628			val = INT_MAX;
629		sk->sk_rcvlowat = val ? : 1;
630		break;
631
632	case SO_RCVTIMEO:
633		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
634		break;
635
636	case SO_SNDTIMEO:
637		ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
638		break;
639
640	case SO_ATTACH_FILTER:
641		ret = -EINVAL;
642		if (optlen == sizeof(struct sock_fprog)) {
643			struct sock_fprog fprog;
644
645			ret = -EFAULT;
646			if (copy_from_user(&fprog, optval, sizeof(fprog)))
647				break;
648
649			ret = sk_attach_filter(&fprog, sk);
650		}
651		break;
652
653	case SO_DETACH_FILTER:
654		ret = sk_detach_filter(sk);
655		break;
656
657	case SO_PASSSEC:
658		if (valbool)
659			set_bit(SOCK_PASSSEC, &sock->flags);
660		else
661			clear_bit(SOCK_PASSSEC, &sock->flags);
662		break;
663
664		/* We implement the SO_SNDLOWAT etc to
665		   not be settable (1003.1g 5.3) */
666	default:
667		ret = -ENOPROTOOPT;
668		break;
669	}
670	release_sock(sk);
671	return ret;
672}
673
674
675int sock_getsockopt(struct socket *sock, int level, int optname,
676		    char __user *optval, int __user *optlen)
677{
678	struct sock *sk = sock->sk;
679
680	union {
681		int val;
682		struct linger ling;
683		struct timeval tm;
684	} v;
685
686	unsigned int lv = sizeof(int);
687	int len;
688
689	if (get_user(len, optlen))
690		return -EFAULT;
691	if (len < 0)
692		return -EINVAL;
693
694	switch(optname) {
695	case SO_DEBUG:
696		v.val = sock_flag(sk, SOCK_DBG);
697		break;
698
699	case SO_DONTROUTE:
700		v.val = sock_flag(sk, SOCK_LOCALROUTE);
701		break;
702
703	case SO_BROADCAST:
704		v.val = !!sock_flag(sk, SOCK_BROADCAST);
705		break;
706
707	case SO_SNDBUF:
708		v.val = sk->sk_sndbuf;
709		break;
710
711	case SO_RCVBUF:
712		v.val = sk->sk_rcvbuf;
713		break;
714
715	case SO_REUSEADDR:
716		v.val = sk->sk_reuse;
717		break;
718
719	case SO_KEEPALIVE:
720		v.val = !!sock_flag(sk, SOCK_KEEPOPEN);
721		break;
722
723	case SO_TYPE:
724		v.val = sk->sk_type;
725		break;
726
727	case SO_ERROR:
728		v.val = -sock_error(sk);
729		if (v.val==0)
730			v.val = xchg(&sk->sk_err_soft, 0);
731		break;
732
733	case SO_OOBINLINE:
734		v.val = !!sock_flag(sk, SOCK_URGINLINE);
735		break;
736
737	case SO_NO_CHECK:
738		v.val = sk->sk_no_check;
739		break;
740
741	case SO_PRIORITY:
742		v.val = sk->sk_priority;
743		break;
744
745	case SO_LINGER:
746		lv		= sizeof(v.ling);
747		v.ling.l_onoff	= !!sock_flag(sk, SOCK_LINGER);
748		v.ling.l_linger	= sk->sk_lingertime / HZ;
749		break;
750
751	case SO_BSDCOMPAT:
752		sock_warn_obsolete_bsdism("getsockopt");
753		break;
754
755	case SO_TIMESTAMP:
756		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
757				!sock_flag(sk, SOCK_RCVTSTAMPNS);
758		break;
759
760	case SO_TIMESTAMPNS:
761		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
762		break;
763
764	case SO_RCVTIMEO:
765		lv=sizeof(struct timeval);
766		if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
767			v.tm.tv_sec = 0;
768			v.tm.tv_usec = 0;
769		} else {
770			v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
771			v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
772		}
773		break;
774
775	case SO_SNDTIMEO:
776		lv=sizeof(struct timeval);
777		if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
778			v.tm.tv_sec = 0;
779			v.tm.tv_usec = 0;
780		} else {
781			v.tm.tv_sec = sk->sk_sndtimeo / HZ;
782			v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
783		}
784		break;
785
786	case SO_RCVLOWAT:
787		v.val = sk->sk_rcvlowat;
788		break;
789
790	case SO_SNDLOWAT:
791		v.val=1;
792		break;
793
794	case SO_PASSCRED:
795		v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0;
796		break;
797
798	case SO_PEERCRED:
799		if (len > sizeof(sk->sk_peercred))
800			len = sizeof(sk->sk_peercred);
801		if (copy_to_user(optval, &sk->sk_peercred, len))
802			return -EFAULT;
803		goto lenout;
804
805	case SO_PEERNAME:
806	{
807		char address[128];
808
809		if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
810			return -ENOTCONN;
811		if (lv < len)
812			return -EINVAL;
813		if (copy_to_user(optval, address, len))
814			return -EFAULT;
815		goto lenout;
816	}
817
818	/* Dubious BSD thing... Probably nobody even uses it, but
819	 * the UNIX standard wants it for whatever reason... -DaveM
820	 */
821	case SO_ACCEPTCONN:
822		v.val = sk->sk_state == TCP_LISTEN;
823		break;
824
825	case SO_PASSSEC:
826		v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0;
827		break;
828
829	case SO_PEERSEC:
830		return security_socket_getpeersec_stream(sock, optval, optlen, len);
831
832	default:
833		return -ENOPROTOOPT;
834	}
835
836	if (len > lv)
837		len = lv;
838	if (copy_to_user(optval, &v, len))
839		return -EFAULT;
840lenout:
841	if (put_user(len, optlen))
842		return -EFAULT;
843	return 0;
844}
845
846/*
847 * Initialize an sk_lock.
848 *
849 * (We also register the sk_lock with the lock validator.)
850 */
851static inline void sock_lock_init(struct sock *sk)
852{
853	sock_lock_init_class_and_name(sk,
854			af_family_slock_key_strings[sk->sk_family],
855			af_family_slock_keys + sk->sk_family,
856			af_family_key_strings[sk->sk_family],
857			af_family_keys + sk->sk_family);
858}
859
860static void sock_copy(struct sock *nsk, const struct sock *osk)
861{
862#ifdef CONFIG_SECURITY_NETWORK
863	void *sptr = nsk->sk_security;
864#endif
865
866	memcpy(nsk, osk, osk->sk_prot->obj_size);
867#ifdef CONFIG_SECURITY_NETWORK
868	nsk->sk_security = sptr;
869	security_sk_clone(osk, nsk);
870#endif
871}
872
873static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority)
874{
875	struct sock *sk;
876	struct kmem_cache *slab;
877
878	slab = prot->slab;
879	if (slab != NULL)
880		sk = kmem_cache_alloc(slab, priority);
881	else
882		sk = kmalloc(prot->obj_size, priority);
883
884	return sk;
885}
886
887static void sk_prot_free(struct proto *prot, struct sock *sk)
888{
889	struct kmem_cache *slab;
890
891	slab = prot->slab;
892	if (slab != NULL)
893		kmem_cache_free(slab, sk);
894	else
895		kfree(sk);
896}
897
898/**
899 *	sk_alloc - All socket objects are allocated here
900 *	@net: the applicable net namespace
901 *	@family: protocol family
902 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
903 *	@prot: struct proto associated with this new sock instance
904 *	@zero_it: if we should zero the newly allocated sock
905 */
906struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
907		      struct proto *prot, int zero_it)
908{
909	struct sock *sk;
910
911	sk = sk_prot_alloc(prot, priority);
912	if (sk) {
913		if (zero_it) {
914			memset(sk, 0, prot->obj_size);
915			sk->sk_family = family;
916			/*
917			 * See comment in struct sock definition to understand
918			 * why we need sk_prot_creator -acme
919			 */
920			sk->sk_prot = sk->sk_prot_creator = prot;
921			sock_lock_init(sk);
922			sk->sk_net = get_net(net);
923		}
924
925		if (security_sk_alloc(sk, family, priority))
926			goto out_free;
927
928		if (!try_module_get(prot->owner))
929			goto out_free;
930	}
931	return sk;
932
933out_free:
934	sk_prot_free(prot, sk);
935	return NULL;
936}
937
938void sk_free(struct sock *sk)
939{
940	struct sk_filter *filter;
941	struct module *owner = sk->sk_prot_creator->owner;
942
943	if (sk->sk_destruct)
944		sk->sk_destruct(sk);
945
946	filter = rcu_dereference(sk->sk_filter);
947	if (filter) {
948		sk_filter_uncharge(sk, filter);
949		rcu_assign_pointer(sk->sk_filter, NULL);
950	}
951
952	sock_disable_timestamp(sk);
953
954	if (atomic_read(&sk->sk_omem_alloc))
955		printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n",
956		       __FUNCTION__, atomic_read(&sk->sk_omem_alloc));
957
958	security_sk_free(sk);
959	put_net(sk->sk_net);
960	sk_prot_free(sk->sk_prot_creator, sk);
961	module_put(owner);
962}
963
964struct sock *sk_clone(const struct sock *sk, const gfp_t priority)
965{
966	struct sock *newsk = sk_alloc(sk->sk_net, sk->sk_family, priority, sk->sk_prot, 0);
967
968	if (newsk != NULL) {
969		struct sk_filter *filter;
970
971		sock_copy(newsk, sk);
972
973		/* SANITY */
974		get_net(newsk->sk_net);
975		sk_node_init(&newsk->sk_node);
976		sock_lock_init(newsk);
977		bh_lock_sock(newsk);
978		newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
979
980		atomic_set(&newsk->sk_rmem_alloc, 0);
981		atomic_set(&newsk->sk_wmem_alloc, 0);
982		atomic_set(&newsk->sk_omem_alloc, 0);
983		skb_queue_head_init(&newsk->sk_receive_queue);
984		skb_queue_head_init(&newsk->sk_write_queue);
985#ifdef CONFIG_NET_DMA
986		skb_queue_head_init(&newsk->sk_async_wait_queue);
987#endif
988
989		rwlock_init(&newsk->sk_dst_lock);
990		rwlock_init(&newsk->sk_callback_lock);
991		lockdep_set_class_and_name(&newsk->sk_callback_lock,
992				af_callback_keys + newsk->sk_family,
993				af_family_clock_key_strings[newsk->sk_family]);
994
995		newsk->sk_dst_cache	= NULL;
996		newsk->sk_wmem_queued	= 0;
997		newsk->sk_forward_alloc = 0;
998		newsk->sk_send_head	= NULL;
999		newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1000
1001		sock_reset_flag(newsk, SOCK_DONE);
1002		skb_queue_head_init(&newsk->sk_error_queue);
1003
1004		filter = newsk->sk_filter;
1005		if (filter != NULL)
1006			sk_filter_charge(newsk, filter);
1007
1008		if (unlikely(xfrm_sk_clone_policy(newsk))) {
1009			/* It is still raw copy of parent, so invalidate
1010			 * destructor and make plain sk_free() */
1011			newsk->sk_destruct = NULL;
1012			sk_free(newsk);
1013			newsk = NULL;
1014			goto out;
1015		}
1016
1017		newsk->sk_err	   = 0;
1018		newsk->sk_priority = 0;
1019		atomic_set(&newsk->sk_refcnt, 2);
1020
1021		/*
1022		 * Increment the counter in the same struct proto as the master
1023		 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1024		 * is the same as sk->sk_prot->socks, as this field was copied
1025		 * with memcpy).
1026		 *
1027		 * This _changes_ the previous behaviour, where
1028		 * tcp_create_openreq_child always was incrementing the
1029		 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1030		 * to be taken into account in all callers. -acme
1031		 */
1032		sk_refcnt_debug_inc(newsk);
1033		newsk->sk_socket = NULL;
1034		newsk->sk_sleep	 = NULL;
1035
1036		if (newsk->sk_prot->sockets_allocated)
1037			atomic_inc(newsk->sk_prot->sockets_allocated);
1038	}
1039out:
1040	return newsk;
1041}
1042
1043EXPORT_SYMBOL_GPL(sk_clone);
1044
1045void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1046{
1047	__sk_dst_set(sk, dst);
1048	sk->sk_route_caps = dst->dev->features;
1049	if (sk->sk_route_caps & NETIF_F_GSO)
1050		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1051	if (sk_can_gso(sk)) {
1052		if (dst->header_len)
1053			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1054		else
1055			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1056	}
1057}
1058EXPORT_SYMBOL_GPL(sk_setup_caps);
1059
1060void __init sk_init(void)
1061{
1062	if (num_physpages <= 4096) {
1063		sysctl_wmem_max = 32767;
1064		sysctl_rmem_max = 32767;
1065		sysctl_wmem_default = 32767;
1066		sysctl_rmem_default = 32767;
1067	} else if (num_physpages >= 131072) {
1068		sysctl_wmem_max = 131071;
1069		sysctl_rmem_max = 131071;
1070	}
1071}
1072
1073/*
1074 *	Simple resource managers for sockets.
1075 */
1076
1077
1078/*
1079 * Write buffer destructor automatically called from kfree_skb.
1080 */
1081void sock_wfree(struct sk_buff *skb)
1082{
1083	struct sock *sk = skb->sk;
1084
1085	/* In case it might be waiting for more memory. */
1086	atomic_sub(skb->truesize, &sk->sk_wmem_alloc);
1087	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE))
1088		sk->sk_write_space(sk);
1089	sock_put(sk);
1090}
1091
1092/*
1093 * Read buffer destructor automatically called from kfree_skb.
1094 */
1095void sock_rfree(struct sk_buff *skb)
1096{
1097	struct sock *sk = skb->sk;
1098
1099	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1100}
1101
1102
1103int sock_i_uid(struct sock *sk)
1104{
1105	int uid;
1106
1107	read_lock(&sk->sk_callback_lock);
1108	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1109	read_unlock(&sk->sk_callback_lock);
1110	return uid;
1111}
1112
1113unsigned long sock_i_ino(struct sock *sk)
1114{
1115	unsigned long ino;
1116
1117	read_lock(&sk->sk_callback_lock);
1118	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1119	read_unlock(&sk->sk_callback_lock);
1120	return ino;
1121}
1122
1123/*
1124 * Allocate a skb from the socket's send buffer.
1125 */
1126struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1127			     gfp_t priority)
1128{
1129	if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1130		struct sk_buff * skb = alloc_skb(size, priority);
1131		if (skb) {
1132			skb_set_owner_w(skb, sk);
1133			return skb;
1134		}
1135	}
1136	return NULL;
1137}
1138
1139/*
1140 * Allocate a skb from the socket's receive buffer.
1141 */
1142struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1143			     gfp_t priority)
1144{
1145	if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1146		struct sk_buff *skb = alloc_skb(size, priority);
1147		if (skb) {
1148			skb_set_owner_r(skb, sk);
1149			return skb;
1150		}
1151	}
1152	return NULL;
1153}
1154
1155/*
1156 * Allocate a memory block from the socket's option memory buffer.
1157 */
1158void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1159{
1160	if ((unsigned)size <= sysctl_optmem_max &&
1161	    atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1162		void *mem;
1163		/* First do the add, to avoid the race if kmalloc
1164		 * might sleep.
1165		 */
1166		atomic_add(size, &sk->sk_omem_alloc);
1167		mem = kmalloc(size, priority);
1168		if (mem)
1169			return mem;
1170		atomic_sub(size, &sk->sk_omem_alloc);
1171	}
1172	return NULL;
1173}
1174
1175/*
1176 * Free an option memory block.
1177 */
1178void sock_kfree_s(struct sock *sk, void *mem, int size)
1179{
1180	kfree(mem);
1181	atomic_sub(size, &sk->sk_omem_alloc);
1182}
1183
1184/* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1185   I think, these locks should be removed for datagram sockets.
1186 */
1187static long sock_wait_for_wmem(struct sock * sk, long timeo)
1188{
1189	DEFINE_WAIT(wait);
1190
1191	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1192	for (;;) {
1193		if (!timeo)
1194			break;
1195		if (signal_pending(current))
1196			break;
1197		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1198		prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1199		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1200			break;
1201		if (sk->sk_shutdown & SEND_SHUTDOWN)
1202			break;
1203		if (sk->sk_err)
1204			break;
1205		timeo = schedule_timeout(timeo);
1206	}
1207	finish_wait(sk->sk_sleep, &wait);
1208	return timeo;
1209}
1210
1211
1212/*
1213 *	Generic send/receive buffer handlers
1214 */
1215
1216static struct sk_buff *sock_alloc_send_pskb(struct sock *sk,
1217					    unsigned long header_len,
1218					    unsigned long data_len,
1219					    int noblock, int *errcode)
1220{
1221	struct sk_buff *skb;
1222	gfp_t gfp_mask;
1223	long timeo;
1224	int err;
1225
1226	gfp_mask = sk->sk_allocation;
1227	if (gfp_mask & __GFP_WAIT)
1228		gfp_mask |= __GFP_REPEAT;
1229
1230	timeo = sock_sndtimeo(sk, noblock);
1231	while (1) {
1232		err = sock_error(sk);
1233		if (err != 0)
1234			goto failure;
1235
1236		err = -EPIPE;
1237		if (sk->sk_shutdown & SEND_SHUTDOWN)
1238			goto failure;
1239
1240		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1241			skb = alloc_skb(header_len, gfp_mask);
1242			if (skb) {
1243				int npages;
1244				int i;
1245
1246				/* No pages, we're done... */
1247				if (!data_len)
1248					break;
1249
1250				npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1251				skb->truesize += data_len;
1252				skb_shinfo(skb)->nr_frags = npages;
1253				for (i = 0; i < npages; i++) {
1254					struct page *page;
1255					skb_frag_t *frag;
1256
1257					page = alloc_pages(sk->sk_allocation, 0);
1258					if (!page) {
1259						err = -ENOBUFS;
1260						skb_shinfo(skb)->nr_frags = i;
1261						kfree_skb(skb);
1262						goto failure;
1263					}
1264
1265					frag = &skb_shinfo(skb)->frags[i];
1266					frag->page = page;
1267					frag->page_offset = 0;
1268					frag->size = (data_len >= PAGE_SIZE ?
1269						      PAGE_SIZE :
1270						      data_len);
1271					data_len -= PAGE_SIZE;
1272				}
1273
1274				/* Full success... */
1275				break;
1276			}
1277			err = -ENOBUFS;
1278			goto failure;
1279		}
1280		set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1281		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1282		err = -EAGAIN;
1283		if (!timeo)
1284			goto failure;
1285		if (signal_pending(current))
1286			goto interrupted;
1287		timeo = sock_wait_for_wmem(sk, timeo);
1288	}
1289
1290	skb_set_owner_w(skb, sk);
1291	return skb;
1292
1293interrupted:
1294	err = sock_intr_errno(timeo);
1295failure:
1296	*errcode = err;
1297	return NULL;
1298}
1299
1300struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1301				    int noblock, int *errcode)
1302{
1303	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1304}
1305
1306static void __lock_sock(struct sock *sk)
1307{
1308	DEFINE_WAIT(wait);
1309
1310	for (;;) {
1311		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1312					TASK_UNINTERRUPTIBLE);
1313		spin_unlock_bh(&sk->sk_lock.slock);
1314		schedule();
1315		spin_lock_bh(&sk->sk_lock.slock);
1316		if (!sock_owned_by_user(sk))
1317			break;
1318	}
1319	finish_wait(&sk->sk_lock.wq, &wait);
1320}
1321
1322static void __release_sock(struct sock *sk)
1323{
1324	struct sk_buff *skb = sk->sk_backlog.head;
1325
1326	do {
1327		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1328		bh_unlock_sock(sk);
1329
1330		do {
1331			struct sk_buff *next = skb->next;
1332
1333			skb->next = NULL;
1334			sk->sk_backlog_rcv(sk, skb);
1335
1336			/*
1337			 * We are in process context here with softirqs
1338			 * disabled, use cond_resched_softirq() to preempt.
1339			 * This is safe to do because we've taken the backlog
1340			 * queue private:
1341			 */
1342			cond_resched_softirq();
1343
1344			skb = next;
1345		} while (skb != NULL);
1346
1347		bh_lock_sock(sk);
1348	} while ((skb = sk->sk_backlog.head) != NULL);
1349}
1350
1351/**
1352 * sk_wait_data - wait for data to arrive at sk_receive_queue
1353 * @sk:    sock to wait on
1354 * @timeo: for how long
1355 *
1356 * Now socket state including sk->sk_err is changed only under lock,
1357 * hence we may omit checks after joining wait queue.
1358 * We check receive queue before schedule() only as optimization;
1359 * it is very likely that release_sock() added new data.
1360 */
1361int sk_wait_data(struct sock *sk, long *timeo)
1362{
1363	int rc;
1364	DEFINE_WAIT(wait);
1365
1366	prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1367	set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1368	rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1369	clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1370	finish_wait(sk->sk_sleep, &wait);
1371	return rc;
1372}
1373
1374EXPORT_SYMBOL(sk_wait_data);
1375
1376/*
1377 * Set of default routines for initialising struct proto_ops when
1378 * the protocol does not support a particular function. In certain
1379 * cases where it makes no sense for a protocol to have a "do nothing"
1380 * function, some default processing is provided.
1381 */
1382
1383int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1384{
1385	return -EOPNOTSUPP;
1386}
1387
1388int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1389		    int len, int flags)
1390{
1391	return -EOPNOTSUPP;
1392}
1393
1394int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1395{
1396	return -EOPNOTSUPP;
1397}
1398
1399int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1400{
1401	return -EOPNOTSUPP;
1402}
1403
1404int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1405		    int *len, int peer)
1406{
1407	return -EOPNOTSUPP;
1408}
1409
1410unsigned int sock_no_poll(struct file * file, struct socket *sock, poll_table *pt)
1411{
1412	return 0;
1413}
1414
1415int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1416{
1417	return -EOPNOTSUPP;
1418}
1419
1420int sock_no_listen(struct socket *sock, int backlog)
1421{
1422	return -EOPNOTSUPP;
1423}
1424
1425int sock_no_shutdown(struct socket *sock, int how)
1426{
1427	return -EOPNOTSUPP;
1428}
1429
1430int sock_no_setsockopt(struct socket *sock, int level, int optname,
1431		    char __user *optval, int optlen)
1432{
1433	return -EOPNOTSUPP;
1434}
1435
1436int sock_no_getsockopt(struct socket *sock, int level, int optname,
1437		    char __user *optval, int __user *optlen)
1438{
1439	return -EOPNOTSUPP;
1440}
1441
1442int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1443		    size_t len)
1444{
1445	return -EOPNOTSUPP;
1446}
1447
1448int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1449		    size_t len, int flags)
1450{
1451	return -EOPNOTSUPP;
1452}
1453
1454int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
1455{
1456	/* Mirror missing mmap method error code */
1457	return -ENODEV;
1458}
1459
1460ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
1461{
1462	ssize_t res;
1463	struct msghdr msg = {.msg_flags = flags};
1464	struct kvec iov;
1465	char *kaddr = kmap(page);
1466	iov.iov_base = kaddr + offset;
1467	iov.iov_len = size;
1468	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
1469	kunmap(page);
1470	return res;
1471}
1472
1473/*
1474 *	Default Socket Callbacks
1475 */
1476
1477static void sock_def_wakeup(struct sock *sk)
1478{
1479	read_lock(&sk->sk_callback_lock);
1480	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1481		wake_up_interruptible_all(sk->sk_sleep);
1482	read_unlock(&sk->sk_callback_lock);
1483}
1484
1485static void sock_def_error_report(struct sock *sk)
1486{
1487	read_lock(&sk->sk_callback_lock);
1488	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1489		wake_up_interruptible(sk->sk_sleep);
1490	sk_wake_async(sk,0,POLL_ERR);
1491	read_unlock(&sk->sk_callback_lock);
1492}
1493
1494static void sock_def_readable(struct sock *sk, int len)
1495{
1496	read_lock(&sk->sk_callback_lock);
1497	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1498		wake_up_interruptible(sk->sk_sleep);
1499	sk_wake_async(sk,1,POLL_IN);
1500	read_unlock(&sk->sk_callback_lock);
1501}
1502
1503static void sock_def_write_space(struct sock *sk)
1504{
1505	read_lock(&sk->sk_callback_lock);
1506
1507	/* Do not wake up a writer until he can make "significant"
1508	 * progress.  --DaveM
1509	 */
1510	if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
1511		if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1512			wake_up_interruptible(sk->sk_sleep);
1513
1514		/* Should agree with poll, otherwise some programs break */
1515		if (sock_writeable(sk))
1516			sk_wake_async(sk, 2, POLL_OUT);
1517	}
1518
1519	read_unlock(&sk->sk_callback_lock);
1520}
1521
1522static void sock_def_destruct(struct sock *sk)
1523{
1524	kfree(sk->sk_protinfo);
1525}
1526
1527void sk_send_sigurg(struct sock *sk)
1528{
1529	if (sk->sk_socket && sk->sk_socket->file)
1530		if (send_sigurg(&sk->sk_socket->file->f_owner))
1531			sk_wake_async(sk, 3, POLL_PRI);
1532}
1533
1534void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1535		    unsigned long expires)
1536{
1537	if (!mod_timer(timer, expires))
1538		sock_hold(sk);
1539}
1540
1541EXPORT_SYMBOL(sk_reset_timer);
1542
1543void sk_stop_timer(struct sock *sk, struct timer_list* timer)
1544{
1545	if (timer_pending(timer) && del_timer(timer))
1546		__sock_put(sk);
1547}
1548
1549EXPORT_SYMBOL(sk_stop_timer);
1550
1551void sock_init_data(struct socket *sock, struct sock *sk)
1552{
1553	skb_queue_head_init(&sk->sk_receive_queue);
1554	skb_queue_head_init(&sk->sk_write_queue);
1555	skb_queue_head_init(&sk->sk_error_queue);
1556#ifdef CONFIG_NET_DMA
1557	skb_queue_head_init(&sk->sk_async_wait_queue);
1558#endif
1559
1560	sk->sk_send_head	=	NULL;
1561
1562	init_timer(&sk->sk_timer);
1563
1564	sk->sk_allocation	=	GFP_KERNEL;
1565	sk->sk_rcvbuf		=	sysctl_rmem_default;
1566	sk->sk_sndbuf		=	sysctl_wmem_default;
1567	sk->sk_state		=	TCP_CLOSE;
1568	sk->sk_socket		=	sock;
1569
1570	sock_set_flag(sk, SOCK_ZAPPED);
1571
1572	if (sock) {
1573		sk->sk_type	=	sock->type;
1574		sk->sk_sleep	=	&sock->wait;
1575		sock->sk	=	sk;
1576	} else
1577		sk->sk_sleep	=	NULL;
1578
1579	rwlock_init(&sk->sk_dst_lock);
1580	rwlock_init(&sk->sk_callback_lock);
1581	lockdep_set_class_and_name(&sk->sk_callback_lock,
1582			af_callback_keys + sk->sk_family,
1583			af_family_clock_key_strings[sk->sk_family]);
1584
1585	sk->sk_state_change	=	sock_def_wakeup;
1586	sk->sk_data_ready	=	sock_def_readable;
1587	sk->sk_write_space	=	sock_def_write_space;
1588	sk->sk_error_report	=	sock_def_error_report;
1589	sk->sk_destruct		=	sock_def_destruct;
1590
1591	sk->sk_sndmsg_page	=	NULL;
1592	sk->sk_sndmsg_off	=	0;
1593
1594	sk->sk_peercred.pid 	=	0;
1595	sk->sk_peercred.uid	=	-1;
1596	sk->sk_peercred.gid	=	-1;
1597	sk->sk_write_pending	=	0;
1598	sk->sk_rcvlowat		=	1;
1599	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
1600	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
1601
1602	sk->sk_stamp = ktime_set(-1L, -1L);
1603
1604	atomic_set(&sk->sk_refcnt, 1);
1605}
1606
1607void fastcall lock_sock_nested(struct sock *sk, int subclass)
1608{
1609	might_sleep();
1610	spin_lock_bh(&sk->sk_lock.slock);
1611	if (sk->sk_lock.owned)
1612		__lock_sock(sk);
1613	sk->sk_lock.owned = 1;
1614	spin_unlock(&sk->sk_lock.slock);
1615	/*
1616	 * The sk_lock has mutex_lock() semantics here:
1617	 */
1618	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
1619	local_bh_enable();
1620}
1621
1622EXPORT_SYMBOL(lock_sock_nested);
1623
1624void fastcall release_sock(struct sock *sk)
1625{
1626	/*
1627	 * The sk_lock has mutex_unlock() semantics:
1628	 */
1629	mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1630
1631	spin_lock_bh(&sk->sk_lock.slock);
1632	if (sk->sk_backlog.tail)
1633		__release_sock(sk);
1634	sk->sk_lock.owned = 0;
1635	if (waitqueue_active(&sk->sk_lock.wq))
1636		wake_up(&sk->sk_lock.wq);
1637	spin_unlock_bh(&sk->sk_lock.slock);
1638}
1639EXPORT_SYMBOL(release_sock);
1640
1641int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
1642{
1643	struct timeval tv;
1644	if (!sock_flag(sk, SOCK_TIMESTAMP))
1645		sock_enable_timestamp(sk);
1646	tv = ktime_to_timeval(sk->sk_stamp);
1647	if (tv.tv_sec == -1)
1648		return -ENOENT;
1649	if (tv.tv_sec == 0) {
1650		sk->sk_stamp = ktime_get_real();
1651		tv = ktime_to_timeval(sk->sk_stamp);
1652	}
1653	return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
1654}
1655EXPORT_SYMBOL(sock_get_timestamp);
1656
1657int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
1658{
1659	struct timespec ts;
1660	if (!sock_flag(sk, SOCK_TIMESTAMP))
1661		sock_enable_timestamp(sk);
1662	ts = ktime_to_timespec(sk->sk_stamp);
1663	if (ts.tv_sec == -1)
1664		return -ENOENT;
1665	if (ts.tv_sec == 0) {
1666		sk->sk_stamp = ktime_get_real();
1667		ts = ktime_to_timespec(sk->sk_stamp);
1668	}
1669	return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
1670}
1671EXPORT_SYMBOL(sock_get_timestampns);
1672
1673void sock_enable_timestamp(struct sock *sk)
1674{
1675	if (!sock_flag(sk, SOCK_TIMESTAMP)) {
1676		sock_set_flag(sk, SOCK_TIMESTAMP);
1677		net_enable_timestamp();
1678	}
1679}
1680
1681/*
1682 *	Get a socket option on an socket.
1683 *
1684 *	FIX: POSIX 1003.1g is very ambiguous here. It states that
1685 *	asynchronous errors should be reported by getsockopt. We assume
1686 *	this means if you specify SO_ERROR (otherwise whats the point of it).
1687 */
1688int sock_common_getsockopt(struct socket *sock, int level, int optname,
1689			   char __user *optval, int __user *optlen)
1690{
1691	struct sock *sk = sock->sk;
1692
1693	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1694}
1695
1696EXPORT_SYMBOL(sock_common_getsockopt);
1697
1698#ifdef CONFIG_COMPAT
1699int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
1700				  char __user *optval, int __user *optlen)
1701{
1702	struct sock *sk = sock->sk;
1703
1704	if (sk->sk_prot->compat_getsockopt != NULL)
1705		return sk->sk_prot->compat_getsockopt(sk, level, optname,
1706						      optval, optlen);
1707	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1708}
1709EXPORT_SYMBOL(compat_sock_common_getsockopt);
1710#endif
1711
1712int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1713			struct msghdr *msg, size_t size, int flags)
1714{
1715	struct sock *sk = sock->sk;
1716	int addr_len = 0;
1717	int err;
1718
1719	err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
1720				   flags & ~MSG_DONTWAIT, &addr_len);
1721	if (err >= 0)
1722		msg->msg_namelen = addr_len;
1723	return err;
1724}
1725
1726EXPORT_SYMBOL(sock_common_recvmsg);
1727
1728/*
1729 *	Set socket options on an inet socket.
1730 */
1731int sock_common_setsockopt(struct socket *sock, int level, int optname,
1732			   char __user *optval, int optlen)
1733{
1734	struct sock *sk = sock->sk;
1735
1736	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
1737}
1738
1739EXPORT_SYMBOL(sock_common_setsockopt);
1740
1741#ifdef CONFIG_COMPAT
1742int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
1743				  char __user *optval, int optlen)
1744{
1745	struct sock *sk = sock->sk;
1746
1747	if (sk->sk_prot->compat_setsockopt != NULL)
1748		return sk->sk_prot->compat_setsockopt(sk, level, optname,
1749						      optval, optlen);
1750	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
1751}
1752EXPORT_SYMBOL(compat_sock_common_setsockopt);
1753#endif
1754
1755void sk_common_release(struct sock *sk)
1756{
1757	if (sk->sk_prot->destroy)
1758		sk->sk_prot->destroy(sk);
1759
1760	/*
1761	 * Observation: when sock_common_release is called, processes have
1762	 * no access to socket. But net still has.
1763	 * Step one, detach it from networking:
1764	 *
1765	 * A. Remove from hash tables.
1766	 */
1767
1768	sk->sk_prot->unhash(sk);
1769
1770	/*
1771	 * In this point socket cannot receive new packets, but it is possible
1772	 * that some packets are in flight because some CPU runs receiver and
1773	 * did hash table lookup before we unhashed socket. They will achieve
1774	 * receive queue and will be purged by socket destructor.
1775	 *
1776	 * Also we still have packets pending on receive queue and probably,
1777	 * our own packets waiting in device queues. sock_destroy will drain
1778	 * receive queue, but transmitted packets will delay socket destruction
1779	 * until the last reference will be released.
1780	 */
1781
1782	sock_orphan(sk);
1783
1784	xfrm_sk_free_policy(sk);
1785
1786	sk_refcnt_debug_release(sk);
1787	sock_put(sk);
1788}
1789
1790EXPORT_SYMBOL(sk_common_release);
1791
1792static DEFINE_RWLOCK(proto_list_lock);
1793static LIST_HEAD(proto_list);
1794
1795int proto_register(struct proto *prot, int alloc_slab)
1796{
1797	char *request_sock_slab_name = NULL;
1798	char *timewait_sock_slab_name;
1799	int rc = -ENOBUFS;
1800
1801	if (alloc_slab) {
1802		prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
1803					       SLAB_HWCACHE_ALIGN, NULL);
1804
1805		if (prot->slab == NULL) {
1806			printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n",
1807			       prot->name);
1808			goto out;
1809		}
1810
1811		if (prot->rsk_prot != NULL) {
1812			static const char mask[] = "request_sock_%s";
1813
1814			request_sock_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
1815			if (request_sock_slab_name == NULL)
1816				goto out_free_sock_slab;
1817
1818			sprintf(request_sock_slab_name, mask, prot->name);
1819			prot->rsk_prot->slab = kmem_cache_create(request_sock_slab_name,
1820								 prot->rsk_prot->obj_size, 0,
1821								 SLAB_HWCACHE_ALIGN, NULL);
1822
1823			if (prot->rsk_prot->slab == NULL) {
1824				printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n",
1825				       prot->name);
1826				goto out_free_request_sock_slab_name;
1827			}
1828		}
1829
1830		if (prot->twsk_prot != NULL) {
1831			static const char mask[] = "tw_sock_%s";
1832
1833			timewait_sock_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
1834
1835			if (timewait_sock_slab_name == NULL)
1836				goto out_free_request_sock_slab;
1837
1838			sprintf(timewait_sock_slab_name, mask, prot->name);
1839			prot->twsk_prot->twsk_slab =
1840				kmem_cache_create(timewait_sock_slab_name,
1841						  prot->twsk_prot->twsk_obj_size,
1842						  0, SLAB_HWCACHE_ALIGN,
1843						  NULL);
1844			if (prot->twsk_prot->twsk_slab == NULL)
1845				goto out_free_timewait_sock_slab_name;
1846		}
1847	}
1848
1849	write_lock(&proto_list_lock);
1850	list_add(&prot->node, &proto_list);
1851	write_unlock(&proto_list_lock);
1852	rc = 0;
1853out:
1854	return rc;
1855out_free_timewait_sock_slab_name:
1856	kfree(timewait_sock_slab_name);
1857out_free_request_sock_slab:
1858	if (prot->rsk_prot && prot->rsk_prot->slab) {
1859		kmem_cache_destroy(prot->rsk_prot->slab);
1860		prot->rsk_prot->slab = NULL;
1861	}
1862out_free_request_sock_slab_name:
1863	kfree(request_sock_slab_name);
1864out_free_sock_slab:
1865	kmem_cache_destroy(prot->slab);
1866	prot->slab = NULL;
1867	goto out;
1868}
1869
1870EXPORT_SYMBOL(proto_register);
1871
1872void proto_unregister(struct proto *prot)
1873{
1874	write_lock(&proto_list_lock);
1875	list_del(&prot->node);
1876	write_unlock(&proto_list_lock);
1877
1878	if (prot->slab != NULL) {
1879		kmem_cache_destroy(prot->slab);
1880		prot->slab = NULL;
1881	}
1882
1883	if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
1884		const char *name = kmem_cache_name(prot->rsk_prot->slab);
1885
1886		kmem_cache_destroy(prot->rsk_prot->slab);
1887		kfree(name);
1888		prot->rsk_prot->slab = NULL;
1889	}
1890
1891	if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
1892		const char *name = kmem_cache_name(prot->twsk_prot->twsk_slab);
1893
1894		kmem_cache_destroy(prot->twsk_prot->twsk_slab);
1895		kfree(name);
1896		prot->twsk_prot->twsk_slab = NULL;
1897	}
1898}
1899
1900EXPORT_SYMBOL(proto_unregister);
1901
1902#ifdef CONFIG_PROC_FS
1903static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
1904{
1905	read_lock(&proto_list_lock);
1906	return seq_list_start_head(&proto_list, *pos);
1907}
1908
1909static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1910{
1911	return seq_list_next(v, &proto_list, pos);
1912}
1913
1914static void proto_seq_stop(struct seq_file *seq, void *v)
1915{
1916	read_unlock(&proto_list_lock);
1917}
1918
1919static char proto_method_implemented(const void *method)
1920{
1921	return method == NULL ? 'n' : 'y';
1922}
1923
1924static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
1925{
1926	seq_printf(seq, "%-9s %4u %6d  %6d   %-3s %6u   %-3s  %-10s "
1927			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
1928		   proto->name,
1929		   proto->obj_size,
1930		   proto->sockets_allocated != NULL ? atomic_read(proto->sockets_allocated) : -1,
1931		   proto->memory_allocated != NULL ? atomic_read(proto->memory_allocated) : -1,
1932		   proto->memory_pressure != NULL ? *proto->memory_pressure ? "yes" : "no" : "NI",
1933		   proto->max_header,
1934		   proto->slab == NULL ? "no" : "yes",
1935		   module_name(proto->owner),
1936		   proto_method_implemented(proto->close),
1937		   proto_method_implemented(proto->connect),
1938		   proto_method_implemented(proto->disconnect),
1939		   proto_method_implemented(proto->accept),
1940		   proto_method_implemented(proto->ioctl),
1941		   proto_method_implemented(proto->init),
1942		   proto_method_implemented(proto->destroy),
1943		   proto_method_implemented(proto->shutdown),
1944		   proto_method_implemented(proto->setsockopt),
1945		   proto_method_implemented(proto->getsockopt),
1946		   proto_method_implemented(proto->sendmsg),
1947		   proto_method_implemented(proto->recvmsg),
1948		   proto_method_implemented(proto->sendpage),
1949		   proto_method_implemented(proto->bind),
1950		   proto_method_implemented(proto->backlog_rcv),
1951		   proto_method_implemented(proto->hash),
1952		   proto_method_implemented(proto->unhash),
1953		   proto_method_implemented(proto->get_port),
1954		   proto_method_implemented(proto->enter_memory_pressure));
1955}
1956
1957static int proto_seq_show(struct seq_file *seq, void *v)
1958{
1959	if (v == &proto_list)
1960		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
1961			   "protocol",
1962			   "size",
1963			   "sockets",
1964			   "memory",
1965			   "press",
1966			   "maxhdr",
1967			   "slab",
1968			   "module",
1969			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
1970	else
1971		proto_seq_printf(seq, list_entry(v, struct proto, node));
1972	return 0;
1973}
1974
1975static const struct seq_operations proto_seq_ops = {
1976	.start  = proto_seq_start,
1977	.next   = proto_seq_next,
1978	.stop   = proto_seq_stop,
1979	.show   = proto_seq_show,
1980};
1981
1982static int proto_seq_open(struct inode *inode, struct file *file)
1983{
1984	return seq_open(file, &proto_seq_ops);
1985}
1986
1987static const struct file_operations proto_seq_fops = {
1988	.owner		= THIS_MODULE,
1989	.open		= proto_seq_open,
1990	.read		= seq_read,
1991	.llseek		= seq_lseek,
1992	.release	= seq_release,
1993};
1994
1995static int __init proto_init(void)
1996{
1997	/* register /proc/net/protocols */
1998	return proc_net_fops_create(&init_net, "protocols", S_IRUGO, &proto_seq_fops) == NULL ? -ENOBUFS : 0;
1999}
2000
2001subsys_initcall(proto_init);
2002
2003#endif /* PROC_FS */
2004
2005EXPORT_SYMBOL(sk_alloc);
2006EXPORT_SYMBOL(sk_free);
2007EXPORT_SYMBOL(sk_send_sigurg);
2008EXPORT_SYMBOL(sock_alloc_send_skb);
2009EXPORT_SYMBOL(sock_init_data);
2010EXPORT_SYMBOL(sock_kfree_s);
2011EXPORT_SYMBOL(sock_kmalloc);
2012EXPORT_SYMBOL(sock_no_accept);
2013EXPORT_SYMBOL(sock_no_bind);
2014EXPORT_SYMBOL(sock_no_connect);
2015EXPORT_SYMBOL(sock_no_getname);
2016EXPORT_SYMBOL(sock_no_getsockopt);
2017EXPORT_SYMBOL(sock_no_ioctl);
2018EXPORT_SYMBOL(sock_no_listen);
2019EXPORT_SYMBOL(sock_no_mmap);
2020EXPORT_SYMBOL(sock_no_poll);
2021EXPORT_SYMBOL(sock_no_recvmsg);
2022EXPORT_SYMBOL(sock_no_sendmsg);
2023EXPORT_SYMBOL(sock_no_sendpage);
2024EXPORT_SYMBOL(sock_no_setsockopt);
2025EXPORT_SYMBOL(sock_no_shutdown);
2026EXPORT_SYMBOL(sock_no_socketpair);
2027EXPORT_SYMBOL(sock_rfree);
2028EXPORT_SYMBOL(sock_setsockopt);
2029EXPORT_SYMBOL(sock_wfree);
2030EXPORT_SYMBOL(sock_wmalloc);
2031EXPORT_SYMBOL(sock_i_uid);
2032EXPORT_SYMBOL(sock_i_ino);
2033EXPORT_SYMBOL(sysctl_optmem_max);
2034#ifdef CONFIG_SYSCTL
2035EXPORT_SYMBOL(sysctl_rmem_max);
2036EXPORT_SYMBOL(sysctl_wmem_max);
2037#endif
2038