sock.c revision c7fe3b52c1283b8ba810eb6ecddf1c8a0bcc13ab
1/*
2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
3 *		operating system.  INET is implemented using the  BSD Socket
4 *		interface as the means of communication with the user level.
5 *
6 *		Generic socket support routines. Memory allocators, socket lock/release
7 *		handler for protocols to use and generic option handler.
8 *
9 *
10 * Authors:	Ross Biro
11 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 *		Florian La Roche, <flla@stud.uni-sb.de>
13 *		Alan Cox, <A.Cox@swansea.ac.uk>
14 *
15 * Fixes:
16 *		Alan Cox	: 	Numerous verify_area() problems
17 *		Alan Cox	:	Connecting on a connecting socket
18 *					now returns an error for tcp.
19 *		Alan Cox	:	sock->protocol is set correctly.
20 *					and is not sometimes left as 0.
21 *		Alan Cox	:	connect handles icmp errors on a
22 *					connect properly. Unfortunately there
23 *					is a restart syscall nasty there. I
24 *					can't match BSD without hacking the C
25 *					library. Ideas urgently sought!
26 *		Alan Cox	:	Disallow bind() to addresses that are
27 *					not ours - especially broadcast ones!!
28 *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
29 *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
30 *					instead they leave that for the DESTROY timer.
31 *		Alan Cox	:	Clean up error flag in accept
32 *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
33 *					was buggy. Put a remove_sock() in the handler
34 *					for memory when we hit 0. Also altered the timer
35 *					code. The ACK stuff can wait and needs major
36 *					TCP layer surgery.
37 *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
38 *					and fixed timer/inet_bh race.
39 *		Alan Cox	:	Added zapped flag for TCP
40 *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
41 *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
43 *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
46 *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
47 *	Pauline Middelink	:	identd support
48 *		Alan Cox	:	Fixed connect() taking signals I think.
49 *		Alan Cox	:	SO_LINGER supported
50 *		Alan Cox	:	Error reporting fixes
51 *		Anonymous	:	inet_create tidied up (sk->reuse setting)
52 *		Alan Cox	:	inet sockets don't set sk->type!
53 *		Alan Cox	:	Split socket option code
54 *		Alan Cox	:	Callbacks
55 *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
56 *		Alex		:	Removed restriction on inet fioctl
57 *		Alan Cox	:	Splitting INET from NET core
58 *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
59 *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
60 *		Alan Cox	:	Split IP from generic code
61 *		Alan Cox	:	New kfree_skbmem()
62 *		Alan Cox	:	Make SO_DEBUG superuser only.
63 *		Alan Cox	:	Allow anyone to clear SO_DEBUG
64 *					(compatibility fix)
65 *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
66 *		Alan Cox	:	Allocator for a socket is settable.
67 *		Alan Cox	:	SO_ERROR includes soft errors.
68 *		Alan Cox	:	Allow NULL arguments on some SO_ opts
69 *		Alan Cox	: 	Generic socket allocation to make hooks
70 *					easier (suggested by Craig Metz).
71 *		Michael Pall	:	SO_ERROR returns positive errno again
72 *              Steve Whitehouse:       Added default destructor to free
73 *                                      protocol private data.
74 *              Steve Whitehouse:       Added various other default routines
75 *                                      common to several socket families.
76 *              Chris Evans     :       Call suser() check last on F_SETOWN
77 *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
79 *		Andi Kleen	:	Fix write_space callback
80 *		Chris Evans	:	Security fixes - signedness again
81 *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
82 *
83 * To Fix:
84 *
85 *
86 *		This program is free software; you can redistribute it and/or
87 *		modify it under the terms of the GNU General Public License
88 *		as published by the Free Software Foundation; either version
89 *		2 of the License, or (at your option) any later version.
90 */
91
92#include <linux/capability.h>
93#include <linux/errno.h>
94#include <linux/types.h>
95#include <linux/socket.h>
96#include <linux/in.h>
97#include <linux/kernel.h>
98#include <linux/module.h>
99#include <linux/proc_fs.h>
100#include <linux/seq_file.h>
101#include <linux/sched.h>
102#include <linux/timer.h>
103#include <linux/string.h>
104#include <linux/sockios.h>
105#include <linux/net.h>
106#include <linux/mm.h>
107#include <linux/slab.h>
108#include <linux/interrupt.h>
109#include <linux/poll.h>
110#include <linux/tcp.h>
111#include <linux/init.h>
112#include <linux/highmem.h>
113#include <linux/user_namespace.h>
114
115#include <asm/uaccess.h>
116#include <asm/system.h>
117
118#include <linux/netdevice.h>
119#include <net/protocol.h>
120#include <linux/skbuff.h>
121#include <net/net_namespace.h>
122#include <net/request_sock.h>
123#include <net/sock.h>
124#include <linux/net_tstamp.h>
125#include <net/xfrm.h>
126#include <linux/ipsec.h>
127#include <net/cls_cgroup.h>
128
129#include <linux/filter.h>
130
131#ifdef CONFIG_INET
132#include <net/tcp.h>
133#endif
134
135/*
136 * Each address family might have different locking rules, so we have
137 * one slock key per address family:
138 */
139static struct lock_class_key af_family_keys[AF_MAX];
140static struct lock_class_key af_family_slock_keys[AF_MAX];
141
142/*
143 * Make lock validator output more readable. (we pre-construct these
144 * strings build-time, so that runtime initialization of socket
145 * locks is fast):
146 */
147static const char *const af_family_key_strings[AF_MAX+1] = {
148  "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX"     , "sk_lock-AF_INET"     ,
149  "sk_lock-AF_AX25"  , "sk_lock-AF_IPX"      , "sk_lock-AF_APPLETALK",
150  "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE"   , "sk_lock-AF_ATMPVC"   ,
151  "sk_lock-AF_X25"   , "sk_lock-AF_INET6"    , "sk_lock-AF_ROSE"     ,
152  "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI"  , "sk_lock-AF_SECURITY" ,
153  "sk_lock-AF_KEY"   , "sk_lock-AF_NETLINK"  , "sk_lock-AF_PACKET"   ,
154  "sk_lock-AF_ASH"   , "sk_lock-AF_ECONET"   , "sk_lock-AF_ATMSVC"   ,
155  "sk_lock-AF_RDS"   , "sk_lock-AF_SNA"      , "sk_lock-AF_IRDA"     ,
156  "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE"  , "sk_lock-AF_LLC"      ,
157  "sk_lock-27"       , "sk_lock-28"          , "sk_lock-AF_CAN"      ,
158  "sk_lock-AF_TIPC"  , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV"        ,
159  "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN"     , "sk_lock-AF_PHONET"   ,
160  "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG"      ,
161  "sk_lock-AF_NFC"   , "sk_lock-AF_MAX"
162};
163static const char *const af_family_slock_key_strings[AF_MAX+1] = {
164  "slock-AF_UNSPEC", "slock-AF_UNIX"     , "slock-AF_INET"     ,
165  "slock-AF_AX25"  , "slock-AF_IPX"      , "slock-AF_APPLETALK",
166  "slock-AF_NETROM", "slock-AF_BRIDGE"   , "slock-AF_ATMPVC"   ,
167  "slock-AF_X25"   , "slock-AF_INET6"    , "slock-AF_ROSE"     ,
168  "slock-AF_DECnet", "slock-AF_NETBEUI"  , "slock-AF_SECURITY" ,
169  "slock-AF_KEY"   , "slock-AF_NETLINK"  , "slock-AF_PACKET"   ,
170  "slock-AF_ASH"   , "slock-AF_ECONET"   , "slock-AF_ATMSVC"   ,
171  "slock-AF_RDS"   , "slock-AF_SNA"      , "slock-AF_IRDA"     ,
172  "slock-AF_PPPOX" , "slock-AF_WANPIPE"  , "slock-AF_LLC"      ,
173  "slock-27"       , "slock-28"          , "slock-AF_CAN"      ,
174  "slock-AF_TIPC"  , "slock-AF_BLUETOOTH", "slock-AF_IUCV"     ,
175  "slock-AF_RXRPC" , "slock-AF_ISDN"     , "slock-AF_PHONET"   ,
176  "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG"      ,
177  "slock-AF_NFC"   , "slock-AF_MAX"
178};
179static const char *const af_family_clock_key_strings[AF_MAX+1] = {
180  "clock-AF_UNSPEC", "clock-AF_UNIX"     , "clock-AF_INET"     ,
181  "clock-AF_AX25"  , "clock-AF_IPX"      , "clock-AF_APPLETALK",
182  "clock-AF_NETROM", "clock-AF_BRIDGE"   , "clock-AF_ATMPVC"   ,
183  "clock-AF_X25"   , "clock-AF_INET6"    , "clock-AF_ROSE"     ,
184  "clock-AF_DECnet", "clock-AF_NETBEUI"  , "clock-AF_SECURITY" ,
185  "clock-AF_KEY"   , "clock-AF_NETLINK"  , "clock-AF_PACKET"   ,
186  "clock-AF_ASH"   , "clock-AF_ECONET"   , "clock-AF_ATMSVC"   ,
187  "clock-AF_RDS"   , "clock-AF_SNA"      , "clock-AF_IRDA"     ,
188  "clock-AF_PPPOX" , "clock-AF_WANPIPE"  , "clock-AF_LLC"      ,
189  "clock-27"       , "clock-28"          , "clock-AF_CAN"      ,
190  "clock-AF_TIPC"  , "clock-AF_BLUETOOTH", "clock-AF_IUCV"     ,
191  "clock-AF_RXRPC" , "clock-AF_ISDN"     , "clock-AF_PHONET"   ,
192  "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG"      ,
193  "clock-AF_NFC"   , "clock-AF_MAX"
194};
195
196/*
197 * sk_callback_lock locking rules are per-address-family,
198 * so split the lock classes by using a per-AF key:
199 */
200static struct lock_class_key af_callback_keys[AF_MAX];
201
202/* Take into consideration the size of the struct sk_buff overhead in the
203 * determination of these values, since that is non-constant across
204 * platforms.  This makes socket queueing behavior and performance
205 * not depend upon such differences.
206 */
207#define _SK_MEM_PACKETS		256
208#define _SK_MEM_OVERHEAD	(sizeof(struct sk_buff) + 256)
209#define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
210#define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
211
212/* Run time adjustable parameters. */
213__u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
214__u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
215__u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
216__u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
217
218/* Maximal space eaten by iovec or ancillary data plus some space */
219int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
220EXPORT_SYMBOL(sysctl_optmem_max);
221
222#if defined(CONFIG_CGROUPS) && !defined(CONFIG_NET_CLS_CGROUP)
223int net_cls_subsys_id = -1;
224EXPORT_SYMBOL_GPL(net_cls_subsys_id);
225#endif
226
227static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
228{
229	struct timeval tv;
230
231	if (optlen < sizeof(tv))
232		return -EINVAL;
233	if (copy_from_user(&tv, optval, sizeof(tv)))
234		return -EFAULT;
235	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
236		return -EDOM;
237
238	if (tv.tv_sec < 0) {
239		static int warned __read_mostly;
240
241		*timeo_p = 0;
242		if (warned < 10 && net_ratelimit()) {
243			warned++;
244			printk(KERN_INFO "sock_set_timeout: `%s' (pid %d) "
245			       "tries to set negative timeout\n",
246				current->comm, task_pid_nr(current));
247		}
248		return 0;
249	}
250	*timeo_p = MAX_SCHEDULE_TIMEOUT;
251	if (tv.tv_sec == 0 && tv.tv_usec == 0)
252		return 0;
253	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
254		*timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
255	return 0;
256}
257
258static void sock_warn_obsolete_bsdism(const char *name)
259{
260	static int warned;
261	static char warncomm[TASK_COMM_LEN];
262	if (strcmp(warncomm, current->comm) && warned < 5) {
263		strcpy(warncomm,  current->comm);
264		printk(KERN_WARNING "process `%s' is using obsolete "
265		       "%s SO_BSDCOMPAT\n", warncomm, name);
266		warned++;
267	}
268}
269
270static void sock_disable_timestamp(struct sock *sk, int flag)
271{
272	if (sock_flag(sk, flag)) {
273		sock_reset_flag(sk, flag);
274		if (!sock_flag(sk, SOCK_TIMESTAMP) &&
275		    !sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE)) {
276			net_disable_timestamp();
277		}
278	}
279}
280
281
282int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
283{
284	int err;
285	int skb_len;
286	unsigned long flags;
287	struct sk_buff_head *list = &sk->sk_receive_queue;
288
289	/* Cast sk->rcvbuf to unsigned... It's pointless, but reduces
290	   number of warnings when compiling with -W --ANK
291	 */
292	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
293	    (unsigned)sk->sk_rcvbuf) {
294		atomic_inc(&sk->sk_drops);
295		return -ENOMEM;
296	}
297
298	err = sk_filter(sk, skb);
299	if (err)
300		return err;
301
302	if (!sk_rmem_schedule(sk, skb->truesize)) {
303		atomic_inc(&sk->sk_drops);
304		return -ENOBUFS;
305	}
306
307	skb->dev = NULL;
308	skb_set_owner_r(skb, sk);
309
310	/* Cache the SKB length before we tack it onto the receive
311	 * queue.  Once it is added it no longer belongs to us and
312	 * may be freed by other threads of control pulling packets
313	 * from the queue.
314	 */
315	skb_len = skb->len;
316
317	/* we escape from rcu protected region, make sure we dont leak
318	 * a norefcounted dst
319	 */
320	skb_dst_force(skb);
321
322	spin_lock_irqsave(&list->lock, flags);
323	skb->dropcount = atomic_read(&sk->sk_drops);
324	__skb_queue_tail(list, skb);
325	spin_unlock_irqrestore(&list->lock, flags);
326
327	if (!sock_flag(sk, SOCK_DEAD))
328		sk->sk_data_ready(sk, skb_len);
329	return 0;
330}
331EXPORT_SYMBOL(sock_queue_rcv_skb);
332
333int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
334{
335	int rc = NET_RX_SUCCESS;
336
337	if (sk_filter(sk, skb))
338		goto discard_and_relse;
339
340	skb->dev = NULL;
341
342	if (sk_rcvqueues_full(sk, skb)) {
343		atomic_inc(&sk->sk_drops);
344		goto discard_and_relse;
345	}
346	if (nested)
347		bh_lock_sock_nested(sk);
348	else
349		bh_lock_sock(sk);
350	if (!sock_owned_by_user(sk)) {
351		/*
352		 * trylock + unlock semantics:
353		 */
354		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
355
356		rc = sk_backlog_rcv(sk, skb);
357
358		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
359	} else if (sk_add_backlog(sk, skb)) {
360		bh_unlock_sock(sk);
361		atomic_inc(&sk->sk_drops);
362		goto discard_and_relse;
363	}
364
365	bh_unlock_sock(sk);
366out:
367	sock_put(sk);
368	return rc;
369discard_and_relse:
370	kfree_skb(skb);
371	goto out;
372}
373EXPORT_SYMBOL(sk_receive_skb);
374
375void sk_reset_txq(struct sock *sk)
376{
377	sk_tx_queue_clear(sk);
378}
379EXPORT_SYMBOL(sk_reset_txq);
380
381struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
382{
383	struct dst_entry *dst = __sk_dst_get(sk);
384
385	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
386		sk_tx_queue_clear(sk);
387		rcu_assign_pointer(sk->sk_dst_cache, NULL);
388		dst_release(dst);
389		return NULL;
390	}
391
392	return dst;
393}
394EXPORT_SYMBOL(__sk_dst_check);
395
396struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
397{
398	struct dst_entry *dst = sk_dst_get(sk);
399
400	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
401		sk_dst_reset(sk);
402		dst_release(dst);
403		return NULL;
404	}
405
406	return dst;
407}
408EXPORT_SYMBOL(sk_dst_check);
409
410static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
411{
412	int ret = -ENOPROTOOPT;
413#ifdef CONFIG_NETDEVICES
414	struct net *net = sock_net(sk);
415	char devname[IFNAMSIZ];
416	int index;
417
418	/* Sorry... */
419	ret = -EPERM;
420	if (!capable(CAP_NET_RAW))
421		goto out;
422
423	ret = -EINVAL;
424	if (optlen < 0)
425		goto out;
426
427	/* Bind this socket to a particular device like "eth0",
428	 * as specified in the passed interface name. If the
429	 * name is "" or the option length is zero the socket
430	 * is not bound.
431	 */
432	if (optlen > IFNAMSIZ - 1)
433		optlen = IFNAMSIZ - 1;
434	memset(devname, 0, sizeof(devname));
435
436	ret = -EFAULT;
437	if (copy_from_user(devname, optval, optlen))
438		goto out;
439
440	index = 0;
441	if (devname[0] != '\0') {
442		struct net_device *dev;
443
444		rcu_read_lock();
445		dev = dev_get_by_name_rcu(net, devname);
446		if (dev)
447			index = dev->ifindex;
448		rcu_read_unlock();
449		ret = -ENODEV;
450		if (!dev)
451			goto out;
452	}
453
454	lock_sock(sk);
455	sk->sk_bound_dev_if = index;
456	sk_dst_reset(sk);
457	release_sock(sk);
458
459	ret = 0;
460
461out:
462#endif
463
464	return ret;
465}
466
467static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
468{
469	if (valbool)
470		sock_set_flag(sk, bit);
471	else
472		sock_reset_flag(sk, bit);
473}
474
475/*
476 *	This is meant for all protocols to use and covers goings on
477 *	at the socket level. Everything here is generic.
478 */
479
480int sock_setsockopt(struct socket *sock, int level, int optname,
481		    char __user *optval, unsigned int optlen)
482{
483	struct sock *sk = sock->sk;
484	int val;
485	int valbool;
486	struct linger ling;
487	int ret = 0;
488
489	/*
490	 *	Options without arguments
491	 */
492
493	if (optname == SO_BINDTODEVICE)
494		return sock_bindtodevice(sk, optval, optlen);
495
496	if (optlen < sizeof(int))
497		return -EINVAL;
498
499	if (get_user(val, (int __user *)optval))
500		return -EFAULT;
501
502	valbool = val ? 1 : 0;
503
504	lock_sock(sk);
505
506	switch (optname) {
507	case SO_DEBUG:
508		if (val && !capable(CAP_NET_ADMIN))
509			ret = -EACCES;
510		else
511			sock_valbool_flag(sk, SOCK_DBG, valbool);
512		break;
513	case SO_REUSEADDR:
514		sk->sk_reuse = valbool;
515		break;
516	case SO_TYPE:
517	case SO_PROTOCOL:
518	case SO_DOMAIN:
519	case SO_ERROR:
520		ret = -ENOPROTOOPT;
521		break;
522	case SO_DONTROUTE:
523		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
524		break;
525	case SO_BROADCAST:
526		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
527		break;
528	case SO_SNDBUF:
529		/* Don't error on this BSD doesn't and if you think
530		   about it this is right. Otherwise apps have to
531		   play 'guess the biggest size' games. RCVBUF/SNDBUF
532		   are treated in BSD as hints */
533
534		if (val > sysctl_wmem_max)
535			val = sysctl_wmem_max;
536set_sndbuf:
537		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
538		if ((val * 2) < SOCK_MIN_SNDBUF)
539			sk->sk_sndbuf = SOCK_MIN_SNDBUF;
540		else
541			sk->sk_sndbuf = val * 2;
542
543		/*
544		 *	Wake up sending tasks if we
545		 *	upped the value.
546		 */
547		sk->sk_write_space(sk);
548		break;
549
550	case SO_SNDBUFFORCE:
551		if (!capable(CAP_NET_ADMIN)) {
552			ret = -EPERM;
553			break;
554		}
555		goto set_sndbuf;
556
557	case SO_RCVBUF:
558		/* Don't error on this BSD doesn't and if you think
559		   about it this is right. Otherwise apps have to
560		   play 'guess the biggest size' games. RCVBUF/SNDBUF
561		   are treated in BSD as hints */
562
563		if (val > sysctl_rmem_max)
564			val = sysctl_rmem_max;
565set_rcvbuf:
566		sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
567		/*
568		 * We double it on the way in to account for
569		 * "struct sk_buff" etc. overhead.   Applications
570		 * assume that the SO_RCVBUF setting they make will
571		 * allow that much actual data to be received on that
572		 * socket.
573		 *
574		 * Applications are unaware that "struct sk_buff" and
575		 * other overheads allocate from the receive buffer
576		 * during socket buffer allocation.
577		 *
578		 * And after considering the possible alternatives,
579		 * returning the value we actually used in getsockopt
580		 * is the most desirable behavior.
581		 */
582		if ((val * 2) < SOCK_MIN_RCVBUF)
583			sk->sk_rcvbuf = SOCK_MIN_RCVBUF;
584		else
585			sk->sk_rcvbuf = val * 2;
586		break;
587
588	case SO_RCVBUFFORCE:
589		if (!capable(CAP_NET_ADMIN)) {
590			ret = -EPERM;
591			break;
592		}
593		goto set_rcvbuf;
594
595	case SO_KEEPALIVE:
596#ifdef CONFIG_INET
597		if (sk->sk_protocol == IPPROTO_TCP)
598			tcp_set_keepalive(sk, valbool);
599#endif
600		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
601		break;
602
603	case SO_OOBINLINE:
604		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
605		break;
606
607	case SO_NO_CHECK:
608		sk->sk_no_check = valbool;
609		break;
610
611	case SO_PRIORITY:
612		if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
613			sk->sk_priority = val;
614		else
615			ret = -EPERM;
616		break;
617
618	case SO_LINGER:
619		if (optlen < sizeof(ling)) {
620			ret = -EINVAL;	/* 1003.1g */
621			break;
622		}
623		if (copy_from_user(&ling, optval, sizeof(ling))) {
624			ret = -EFAULT;
625			break;
626		}
627		if (!ling.l_onoff)
628			sock_reset_flag(sk, SOCK_LINGER);
629		else {
630#if (BITS_PER_LONG == 32)
631			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
632				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
633			else
634#endif
635				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
636			sock_set_flag(sk, SOCK_LINGER);
637		}
638		break;
639
640	case SO_BSDCOMPAT:
641		sock_warn_obsolete_bsdism("setsockopt");
642		break;
643
644	case SO_PASSCRED:
645		if (valbool)
646			set_bit(SOCK_PASSCRED, &sock->flags);
647		else
648			clear_bit(SOCK_PASSCRED, &sock->flags);
649		break;
650
651	case SO_TIMESTAMP:
652	case SO_TIMESTAMPNS:
653		if (valbool)  {
654			if (optname == SO_TIMESTAMP)
655				sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
656			else
657				sock_set_flag(sk, SOCK_RCVTSTAMPNS);
658			sock_set_flag(sk, SOCK_RCVTSTAMP);
659			sock_enable_timestamp(sk, SOCK_TIMESTAMP);
660		} else {
661			sock_reset_flag(sk, SOCK_RCVTSTAMP);
662			sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
663		}
664		break;
665
666	case SO_TIMESTAMPING:
667		if (val & ~SOF_TIMESTAMPING_MASK) {
668			ret = -EINVAL;
669			break;
670		}
671		sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE,
672				  val & SOF_TIMESTAMPING_TX_HARDWARE);
673		sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE,
674				  val & SOF_TIMESTAMPING_TX_SOFTWARE);
675		sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE,
676				  val & SOF_TIMESTAMPING_RX_HARDWARE);
677		if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
678			sock_enable_timestamp(sk,
679					      SOCK_TIMESTAMPING_RX_SOFTWARE);
680		else
681			sock_disable_timestamp(sk,
682					       SOCK_TIMESTAMPING_RX_SOFTWARE);
683		sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE,
684				  val & SOF_TIMESTAMPING_SOFTWARE);
685		sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE,
686				  val & SOF_TIMESTAMPING_SYS_HARDWARE);
687		sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE,
688				  val & SOF_TIMESTAMPING_RAW_HARDWARE);
689		break;
690
691	case SO_RCVLOWAT:
692		if (val < 0)
693			val = INT_MAX;
694		sk->sk_rcvlowat = val ? : 1;
695		break;
696
697	case SO_RCVTIMEO:
698		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
699		break;
700
701	case SO_SNDTIMEO:
702		ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
703		break;
704
705	case SO_ATTACH_FILTER:
706		ret = -EINVAL;
707		if (optlen == sizeof(struct sock_fprog)) {
708			struct sock_fprog fprog;
709
710			ret = -EFAULT;
711			if (copy_from_user(&fprog, optval, sizeof(fprog)))
712				break;
713
714			ret = sk_attach_filter(&fprog, sk);
715		}
716		break;
717
718	case SO_DETACH_FILTER:
719		ret = sk_detach_filter(sk);
720		break;
721
722	case SO_PASSSEC:
723		if (valbool)
724			set_bit(SOCK_PASSSEC, &sock->flags);
725		else
726			clear_bit(SOCK_PASSSEC, &sock->flags);
727		break;
728	case SO_MARK:
729		if (!capable(CAP_NET_ADMIN))
730			ret = -EPERM;
731		else
732			sk->sk_mark = val;
733		break;
734
735		/* We implement the SO_SNDLOWAT etc to
736		   not be settable (1003.1g 5.3) */
737	case SO_RXQ_OVFL:
738		if (valbool)
739			sock_set_flag(sk, SOCK_RXQ_OVFL);
740		else
741			sock_reset_flag(sk, SOCK_RXQ_OVFL);
742		break;
743	default:
744		ret = -ENOPROTOOPT;
745		break;
746	}
747	release_sock(sk);
748	return ret;
749}
750EXPORT_SYMBOL(sock_setsockopt);
751
752
753void cred_to_ucred(struct pid *pid, const struct cred *cred,
754		   struct ucred *ucred)
755{
756	ucred->pid = pid_vnr(pid);
757	ucred->uid = ucred->gid = -1;
758	if (cred) {
759		struct user_namespace *current_ns = current_user_ns();
760
761		ucred->uid = user_ns_map_uid(current_ns, cred, cred->euid);
762		ucred->gid = user_ns_map_gid(current_ns, cred, cred->egid);
763	}
764}
765EXPORT_SYMBOL_GPL(cred_to_ucred);
766
767int sock_getsockopt(struct socket *sock, int level, int optname,
768		    char __user *optval, int __user *optlen)
769{
770	struct sock *sk = sock->sk;
771
772	union {
773		int val;
774		struct linger ling;
775		struct timeval tm;
776	} v;
777
778	int lv = sizeof(int);
779	int len;
780
781	if (get_user(len, optlen))
782		return -EFAULT;
783	if (len < 0)
784		return -EINVAL;
785
786	memset(&v, 0, sizeof(v));
787
788	switch (optname) {
789	case SO_DEBUG:
790		v.val = sock_flag(sk, SOCK_DBG);
791		break;
792
793	case SO_DONTROUTE:
794		v.val = sock_flag(sk, SOCK_LOCALROUTE);
795		break;
796
797	case SO_BROADCAST:
798		v.val = !!sock_flag(sk, SOCK_BROADCAST);
799		break;
800
801	case SO_SNDBUF:
802		v.val = sk->sk_sndbuf;
803		break;
804
805	case SO_RCVBUF:
806		v.val = sk->sk_rcvbuf;
807		break;
808
809	case SO_REUSEADDR:
810		v.val = sk->sk_reuse;
811		break;
812
813	case SO_KEEPALIVE:
814		v.val = !!sock_flag(sk, SOCK_KEEPOPEN);
815		break;
816
817	case SO_TYPE:
818		v.val = sk->sk_type;
819		break;
820
821	case SO_PROTOCOL:
822		v.val = sk->sk_protocol;
823		break;
824
825	case SO_DOMAIN:
826		v.val = sk->sk_family;
827		break;
828
829	case SO_ERROR:
830		v.val = -sock_error(sk);
831		if (v.val == 0)
832			v.val = xchg(&sk->sk_err_soft, 0);
833		break;
834
835	case SO_OOBINLINE:
836		v.val = !!sock_flag(sk, SOCK_URGINLINE);
837		break;
838
839	case SO_NO_CHECK:
840		v.val = sk->sk_no_check;
841		break;
842
843	case SO_PRIORITY:
844		v.val = sk->sk_priority;
845		break;
846
847	case SO_LINGER:
848		lv		= sizeof(v.ling);
849		v.ling.l_onoff	= !!sock_flag(sk, SOCK_LINGER);
850		v.ling.l_linger	= sk->sk_lingertime / HZ;
851		break;
852
853	case SO_BSDCOMPAT:
854		sock_warn_obsolete_bsdism("getsockopt");
855		break;
856
857	case SO_TIMESTAMP:
858		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
859				!sock_flag(sk, SOCK_RCVTSTAMPNS);
860		break;
861
862	case SO_TIMESTAMPNS:
863		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
864		break;
865
866	case SO_TIMESTAMPING:
867		v.val = 0;
868		if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
869			v.val |= SOF_TIMESTAMPING_TX_HARDWARE;
870		if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
871			v.val |= SOF_TIMESTAMPING_TX_SOFTWARE;
872		if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE))
873			v.val |= SOF_TIMESTAMPING_RX_HARDWARE;
874		if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE))
875			v.val |= SOF_TIMESTAMPING_RX_SOFTWARE;
876		if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE))
877			v.val |= SOF_TIMESTAMPING_SOFTWARE;
878		if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))
879			v.val |= SOF_TIMESTAMPING_SYS_HARDWARE;
880		if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE))
881			v.val |= SOF_TIMESTAMPING_RAW_HARDWARE;
882		break;
883
884	case SO_RCVTIMEO:
885		lv = sizeof(struct timeval);
886		if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
887			v.tm.tv_sec = 0;
888			v.tm.tv_usec = 0;
889		} else {
890			v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
891			v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
892		}
893		break;
894
895	case SO_SNDTIMEO:
896		lv = sizeof(struct timeval);
897		if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
898			v.tm.tv_sec = 0;
899			v.tm.tv_usec = 0;
900		} else {
901			v.tm.tv_sec = sk->sk_sndtimeo / HZ;
902			v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
903		}
904		break;
905
906	case SO_RCVLOWAT:
907		v.val = sk->sk_rcvlowat;
908		break;
909
910	case SO_SNDLOWAT:
911		v.val = 1;
912		break;
913
914	case SO_PASSCRED:
915		v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0;
916		break;
917
918	case SO_PEERCRED:
919	{
920		struct ucred peercred;
921		if (len > sizeof(peercred))
922			len = sizeof(peercred);
923		cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
924		if (copy_to_user(optval, &peercred, len))
925			return -EFAULT;
926		goto lenout;
927	}
928
929	case SO_PEERNAME:
930	{
931		char address[128];
932
933		if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
934			return -ENOTCONN;
935		if (lv < len)
936			return -EINVAL;
937		if (copy_to_user(optval, address, len))
938			return -EFAULT;
939		goto lenout;
940	}
941
942	/* Dubious BSD thing... Probably nobody even uses it, but
943	 * the UNIX standard wants it for whatever reason... -DaveM
944	 */
945	case SO_ACCEPTCONN:
946		v.val = sk->sk_state == TCP_LISTEN;
947		break;
948
949	case SO_PASSSEC:
950		v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0;
951		break;
952
953	case SO_PEERSEC:
954		return security_socket_getpeersec_stream(sock, optval, optlen, len);
955
956	case SO_MARK:
957		v.val = sk->sk_mark;
958		break;
959
960	case SO_RXQ_OVFL:
961		v.val = !!sock_flag(sk, SOCK_RXQ_OVFL);
962		break;
963
964	default:
965		return -ENOPROTOOPT;
966	}
967
968	if (len > lv)
969		len = lv;
970	if (copy_to_user(optval, &v, len))
971		return -EFAULT;
972lenout:
973	if (put_user(len, optlen))
974		return -EFAULT;
975	return 0;
976}
977
978/*
979 * Initialize an sk_lock.
980 *
981 * (We also register the sk_lock with the lock validator.)
982 */
983static inline void sock_lock_init(struct sock *sk)
984{
985	sock_lock_init_class_and_name(sk,
986			af_family_slock_key_strings[sk->sk_family],
987			af_family_slock_keys + sk->sk_family,
988			af_family_key_strings[sk->sk_family],
989			af_family_keys + sk->sk_family);
990}
991
992/*
993 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
994 * even temporarly, because of RCU lookups. sk_node should also be left as is.
995 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
996 */
997static void sock_copy(struct sock *nsk, const struct sock *osk)
998{
999#ifdef CONFIG_SECURITY_NETWORK
1000	void *sptr = nsk->sk_security;
1001#endif
1002	memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1003
1004	memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1005	       osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1006
1007#ifdef CONFIG_SECURITY_NETWORK
1008	nsk->sk_security = sptr;
1009	security_sk_clone(osk, nsk);
1010#endif
1011}
1012
1013/*
1014 * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
1015 * un-modified. Special care is taken when initializing object to zero.
1016 */
1017static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1018{
1019	if (offsetof(struct sock, sk_node.next) != 0)
1020		memset(sk, 0, offsetof(struct sock, sk_node.next));
1021	memset(&sk->sk_node.pprev, 0,
1022	       size - offsetof(struct sock, sk_node.pprev));
1023}
1024
1025void sk_prot_clear_portaddr_nulls(struct sock *sk, int size)
1026{
1027	unsigned long nulls1, nulls2;
1028
1029	nulls1 = offsetof(struct sock, __sk_common.skc_node.next);
1030	nulls2 = offsetof(struct sock, __sk_common.skc_portaddr_node.next);
1031	if (nulls1 > nulls2)
1032		swap(nulls1, nulls2);
1033
1034	if (nulls1 != 0)
1035		memset((char *)sk, 0, nulls1);
1036	memset((char *)sk + nulls1 + sizeof(void *), 0,
1037	       nulls2 - nulls1 - sizeof(void *));
1038	memset((char *)sk + nulls2 + sizeof(void *), 0,
1039	       size - nulls2 - sizeof(void *));
1040}
1041EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls);
1042
1043static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1044		int family)
1045{
1046	struct sock *sk;
1047	struct kmem_cache *slab;
1048
1049	slab = prot->slab;
1050	if (slab != NULL) {
1051		sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1052		if (!sk)
1053			return sk;
1054		if (priority & __GFP_ZERO) {
1055			if (prot->clear_sk)
1056				prot->clear_sk(sk, prot->obj_size);
1057			else
1058				sk_prot_clear_nulls(sk, prot->obj_size);
1059		}
1060	} else
1061		sk = kmalloc(prot->obj_size, priority);
1062
1063	if (sk != NULL) {
1064		kmemcheck_annotate_bitfield(sk, flags);
1065
1066		if (security_sk_alloc(sk, family, priority))
1067			goto out_free;
1068
1069		if (!try_module_get(prot->owner))
1070			goto out_free_sec;
1071		sk_tx_queue_clear(sk);
1072	}
1073
1074	return sk;
1075
1076out_free_sec:
1077	security_sk_free(sk);
1078out_free:
1079	if (slab != NULL)
1080		kmem_cache_free(slab, sk);
1081	else
1082		kfree(sk);
1083	return NULL;
1084}
1085
1086static void sk_prot_free(struct proto *prot, struct sock *sk)
1087{
1088	struct kmem_cache *slab;
1089	struct module *owner;
1090
1091	owner = prot->owner;
1092	slab = prot->slab;
1093
1094	security_sk_free(sk);
1095	if (slab != NULL)
1096		kmem_cache_free(slab, sk);
1097	else
1098		kfree(sk);
1099	module_put(owner);
1100}
1101
1102#ifdef CONFIG_CGROUPS
1103void sock_update_classid(struct sock *sk)
1104{
1105	u32 classid;
1106
1107	rcu_read_lock();  /* doing current task, which cannot vanish. */
1108	classid = task_cls_classid(current);
1109	rcu_read_unlock();
1110	if (classid && classid != sk->sk_classid)
1111		sk->sk_classid = classid;
1112}
1113EXPORT_SYMBOL(sock_update_classid);
1114#endif
1115
1116/**
1117 *	sk_alloc - All socket objects are allocated here
1118 *	@net: the applicable net namespace
1119 *	@family: protocol family
1120 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1121 *	@prot: struct proto associated with this new sock instance
1122 */
1123struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1124		      struct proto *prot)
1125{
1126	struct sock *sk;
1127
1128	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1129	if (sk) {
1130		sk->sk_family = family;
1131		/*
1132		 * See comment in struct sock definition to understand
1133		 * why we need sk_prot_creator -acme
1134		 */
1135		sk->sk_prot = sk->sk_prot_creator = prot;
1136		sock_lock_init(sk);
1137		sock_net_set(sk, get_net(net));
1138		atomic_set(&sk->sk_wmem_alloc, 1);
1139
1140		sock_update_classid(sk);
1141	}
1142
1143	return sk;
1144}
1145EXPORT_SYMBOL(sk_alloc);
1146
1147static void __sk_free(struct sock *sk)
1148{
1149	struct sk_filter *filter;
1150
1151	if (sk->sk_destruct)
1152		sk->sk_destruct(sk);
1153
1154	filter = rcu_dereference_check(sk->sk_filter,
1155				       atomic_read(&sk->sk_wmem_alloc) == 0);
1156	if (filter) {
1157		sk_filter_uncharge(sk, filter);
1158		rcu_assign_pointer(sk->sk_filter, NULL);
1159	}
1160
1161	sock_disable_timestamp(sk, SOCK_TIMESTAMP);
1162	sock_disable_timestamp(sk, SOCK_TIMESTAMPING_RX_SOFTWARE);
1163
1164	if (atomic_read(&sk->sk_omem_alloc))
1165		printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n",
1166		       __func__, atomic_read(&sk->sk_omem_alloc));
1167
1168	if (sk->sk_peer_cred)
1169		put_cred(sk->sk_peer_cred);
1170	put_pid(sk->sk_peer_pid);
1171	put_net(sock_net(sk));
1172	sk_prot_free(sk->sk_prot_creator, sk);
1173}
1174
1175void sk_free(struct sock *sk)
1176{
1177	/*
1178	 * We subtract one from sk_wmem_alloc and can know if
1179	 * some packets are still in some tx queue.
1180	 * If not null, sock_wfree() will call __sk_free(sk) later
1181	 */
1182	if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1183		__sk_free(sk);
1184}
1185EXPORT_SYMBOL(sk_free);
1186
1187/*
1188 * Last sock_put should drop reference to sk->sk_net. It has already
1189 * been dropped in sk_change_net. Taking reference to stopping namespace
1190 * is not an option.
1191 * Take reference to a socket to remove it from hash _alive_ and after that
1192 * destroy it in the context of init_net.
1193 */
1194void sk_release_kernel(struct sock *sk)
1195{
1196	if (sk == NULL || sk->sk_socket == NULL)
1197		return;
1198
1199	sock_hold(sk);
1200	sock_release(sk->sk_socket);
1201	release_net(sock_net(sk));
1202	sock_net_set(sk, get_net(&init_net));
1203	sock_put(sk);
1204}
1205EXPORT_SYMBOL(sk_release_kernel);
1206
1207struct sock *sk_clone(const struct sock *sk, const gfp_t priority)
1208{
1209	struct sock *newsk;
1210
1211	newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1212	if (newsk != NULL) {
1213		struct sk_filter *filter;
1214
1215		sock_copy(newsk, sk);
1216
1217		/* SANITY */
1218		get_net(sock_net(newsk));
1219		sk_node_init(&newsk->sk_node);
1220		sock_lock_init(newsk);
1221		bh_lock_sock(newsk);
1222		newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
1223		newsk->sk_backlog.len = 0;
1224
1225		atomic_set(&newsk->sk_rmem_alloc, 0);
1226		/*
1227		 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1228		 */
1229		atomic_set(&newsk->sk_wmem_alloc, 1);
1230		atomic_set(&newsk->sk_omem_alloc, 0);
1231		skb_queue_head_init(&newsk->sk_receive_queue);
1232		skb_queue_head_init(&newsk->sk_write_queue);
1233#ifdef CONFIG_NET_DMA
1234		skb_queue_head_init(&newsk->sk_async_wait_queue);
1235#endif
1236
1237		spin_lock_init(&newsk->sk_dst_lock);
1238		rwlock_init(&newsk->sk_callback_lock);
1239		lockdep_set_class_and_name(&newsk->sk_callback_lock,
1240				af_callback_keys + newsk->sk_family,
1241				af_family_clock_key_strings[newsk->sk_family]);
1242
1243		newsk->sk_dst_cache	= NULL;
1244		newsk->sk_wmem_queued	= 0;
1245		newsk->sk_forward_alloc = 0;
1246		newsk->sk_send_head	= NULL;
1247		newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1248
1249		sock_reset_flag(newsk, SOCK_DONE);
1250		skb_queue_head_init(&newsk->sk_error_queue);
1251
1252		filter = rcu_dereference_protected(newsk->sk_filter, 1);
1253		if (filter != NULL)
1254			sk_filter_charge(newsk, filter);
1255
1256		if (unlikely(xfrm_sk_clone_policy(newsk))) {
1257			/* It is still raw copy of parent, so invalidate
1258			 * destructor and make plain sk_free() */
1259			newsk->sk_destruct = NULL;
1260			sk_free(newsk);
1261			newsk = NULL;
1262			goto out;
1263		}
1264
1265		newsk->sk_err	   = 0;
1266		newsk->sk_priority = 0;
1267		/*
1268		 * Before updating sk_refcnt, we must commit prior changes to memory
1269		 * (Documentation/RCU/rculist_nulls.txt for details)
1270		 */
1271		smp_wmb();
1272		atomic_set(&newsk->sk_refcnt, 2);
1273
1274		/*
1275		 * Increment the counter in the same struct proto as the master
1276		 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1277		 * is the same as sk->sk_prot->socks, as this field was copied
1278		 * with memcpy).
1279		 *
1280		 * This _changes_ the previous behaviour, where
1281		 * tcp_create_openreq_child always was incrementing the
1282		 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1283		 * to be taken into account in all callers. -acme
1284		 */
1285		sk_refcnt_debug_inc(newsk);
1286		sk_set_socket(newsk, NULL);
1287		newsk->sk_wq = NULL;
1288
1289		if (newsk->sk_prot->sockets_allocated)
1290			percpu_counter_inc(newsk->sk_prot->sockets_allocated);
1291
1292		if (sock_flag(newsk, SOCK_TIMESTAMP) ||
1293		    sock_flag(newsk, SOCK_TIMESTAMPING_RX_SOFTWARE))
1294			net_enable_timestamp();
1295	}
1296out:
1297	return newsk;
1298}
1299EXPORT_SYMBOL_GPL(sk_clone);
1300
1301void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1302{
1303	__sk_dst_set(sk, dst);
1304	sk->sk_route_caps = dst->dev->features;
1305	if (sk->sk_route_caps & NETIF_F_GSO)
1306		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1307	sk->sk_route_caps &= ~sk->sk_route_nocaps;
1308	if (sk_can_gso(sk)) {
1309		if (dst->header_len) {
1310			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1311		} else {
1312			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1313			sk->sk_gso_max_size = dst->dev->gso_max_size;
1314		}
1315	}
1316}
1317EXPORT_SYMBOL_GPL(sk_setup_caps);
1318
1319void __init sk_init(void)
1320{
1321	if (totalram_pages <= 4096) {
1322		sysctl_wmem_max = 32767;
1323		sysctl_rmem_max = 32767;
1324		sysctl_wmem_default = 32767;
1325		sysctl_rmem_default = 32767;
1326	} else if (totalram_pages >= 131072) {
1327		sysctl_wmem_max = 131071;
1328		sysctl_rmem_max = 131071;
1329	}
1330}
1331
1332/*
1333 *	Simple resource managers for sockets.
1334 */
1335
1336
1337/*
1338 * Write buffer destructor automatically called from kfree_skb.
1339 */
1340void sock_wfree(struct sk_buff *skb)
1341{
1342	struct sock *sk = skb->sk;
1343	unsigned int len = skb->truesize;
1344
1345	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1346		/*
1347		 * Keep a reference on sk_wmem_alloc, this will be released
1348		 * after sk_write_space() call
1349		 */
1350		atomic_sub(len - 1, &sk->sk_wmem_alloc);
1351		sk->sk_write_space(sk);
1352		len = 1;
1353	}
1354	/*
1355	 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1356	 * could not do because of in-flight packets
1357	 */
1358	if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1359		__sk_free(sk);
1360}
1361EXPORT_SYMBOL(sock_wfree);
1362
1363/*
1364 * Read buffer destructor automatically called from kfree_skb.
1365 */
1366void sock_rfree(struct sk_buff *skb)
1367{
1368	struct sock *sk = skb->sk;
1369	unsigned int len = skb->truesize;
1370
1371	atomic_sub(len, &sk->sk_rmem_alloc);
1372	sk_mem_uncharge(sk, len);
1373}
1374EXPORT_SYMBOL(sock_rfree);
1375
1376
1377int sock_i_uid(struct sock *sk)
1378{
1379	int uid;
1380
1381	read_lock_bh(&sk->sk_callback_lock);
1382	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1383	read_unlock_bh(&sk->sk_callback_lock);
1384	return uid;
1385}
1386EXPORT_SYMBOL(sock_i_uid);
1387
1388unsigned long sock_i_ino(struct sock *sk)
1389{
1390	unsigned long ino;
1391
1392	read_lock_bh(&sk->sk_callback_lock);
1393	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1394	read_unlock_bh(&sk->sk_callback_lock);
1395	return ino;
1396}
1397EXPORT_SYMBOL(sock_i_ino);
1398
1399/*
1400 * Allocate a skb from the socket's send buffer.
1401 */
1402struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1403			     gfp_t priority)
1404{
1405	if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1406		struct sk_buff *skb = alloc_skb(size, priority);
1407		if (skb) {
1408			skb_set_owner_w(skb, sk);
1409			return skb;
1410		}
1411	}
1412	return NULL;
1413}
1414EXPORT_SYMBOL(sock_wmalloc);
1415
1416/*
1417 * Allocate a skb from the socket's receive buffer.
1418 */
1419struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1420			     gfp_t priority)
1421{
1422	if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1423		struct sk_buff *skb = alloc_skb(size, priority);
1424		if (skb) {
1425			skb_set_owner_r(skb, sk);
1426			return skb;
1427		}
1428	}
1429	return NULL;
1430}
1431
1432/*
1433 * Allocate a memory block from the socket's option memory buffer.
1434 */
1435void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1436{
1437	if ((unsigned)size <= sysctl_optmem_max &&
1438	    atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1439		void *mem;
1440		/* First do the add, to avoid the race if kmalloc
1441		 * might sleep.
1442		 */
1443		atomic_add(size, &sk->sk_omem_alloc);
1444		mem = kmalloc(size, priority);
1445		if (mem)
1446			return mem;
1447		atomic_sub(size, &sk->sk_omem_alloc);
1448	}
1449	return NULL;
1450}
1451EXPORT_SYMBOL(sock_kmalloc);
1452
1453/*
1454 * Free an option memory block.
1455 */
1456void sock_kfree_s(struct sock *sk, void *mem, int size)
1457{
1458	kfree(mem);
1459	atomic_sub(size, &sk->sk_omem_alloc);
1460}
1461EXPORT_SYMBOL(sock_kfree_s);
1462
1463/* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1464   I think, these locks should be removed for datagram sockets.
1465 */
1466static long sock_wait_for_wmem(struct sock *sk, long timeo)
1467{
1468	DEFINE_WAIT(wait);
1469
1470	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1471	for (;;) {
1472		if (!timeo)
1473			break;
1474		if (signal_pending(current))
1475			break;
1476		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1477		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1478		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1479			break;
1480		if (sk->sk_shutdown & SEND_SHUTDOWN)
1481			break;
1482		if (sk->sk_err)
1483			break;
1484		timeo = schedule_timeout(timeo);
1485	}
1486	finish_wait(sk_sleep(sk), &wait);
1487	return timeo;
1488}
1489
1490
1491/*
1492 *	Generic send/receive buffer handlers
1493 */
1494
1495struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1496				     unsigned long data_len, int noblock,
1497				     int *errcode)
1498{
1499	struct sk_buff *skb;
1500	gfp_t gfp_mask;
1501	long timeo;
1502	int err;
1503
1504	gfp_mask = sk->sk_allocation;
1505	if (gfp_mask & __GFP_WAIT)
1506		gfp_mask |= __GFP_REPEAT;
1507
1508	timeo = sock_sndtimeo(sk, noblock);
1509	while (1) {
1510		err = sock_error(sk);
1511		if (err != 0)
1512			goto failure;
1513
1514		err = -EPIPE;
1515		if (sk->sk_shutdown & SEND_SHUTDOWN)
1516			goto failure;
1517
1518		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1519			skb = alloc_skb(header_len, gfp_mask);
1520			if (skb) {
1521				int npages;
1522				int i;
1523
1524				/* No pages, we're done... */
1525				if (!data_len)
1526					break;
1527
1528				npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1529				skb->truesize += data_len;
1530				skb_shinfo(skb)->nr_frags = npages;
1531				for (i = 0; i < npages; i++) {
1532					struct page *page;
1533					skb_frag_t *frag;
1534
1535					page = alloc_pages(sk->sk_allocation, 0);
1536					if (!page) {
1537						err = -ENOBUFS;
1538						skb_shinfo(skb)->nr_frags = i;
1539						kfree_skb(skb);
1540						goto failure;
1541					}
1542
1543					frag = &skb_shinfo(skb)->frags[i];
1544					frag->page = page;
1545					frag->page_offset = 0;
1546					frag->size = (data_len >= PAGE_SIZE ?
1547						      PAGE_SIZE :
1548						      data_len);
1549					data_len -= PAGE_SIZE;
1550				}
1551
1552				/* Full success... */
1553				break;
1554			}
1555			err = -ENOBUFS;
1556			goto failure;
1557		}
1558		set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1559		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1560		err = -EAGAIN;
1561		if (!timeo)
1562			goto failure;
1563		if (signal_pending(current))
1564			goto interrupted;
1565		timeo = sock_wait_for_wmem(sk, timeo);
1566	}
1567
1568	skb_set_owner_w(skb, sk);
1569	return skb;
1570
1571interrupted:
1572	err = sock_intr_errno(timeo);
1573failure:
1574	*errcode = err;
1575	return NULL;
1576}
1577EXPORT_SYMBOL(sock_alloc_send_pskb);
1578
1579struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1580				    int noblock, int *errcode)
1581{
1582	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1583}
1584EXPORT_SYMBOL(sock_alloc_send_skb);
1585
1586static void __lock_sock(struct sock *sk)
1587	__releases(&sk->sk_lock.slock)
1588	__acquires(&sk->sk_lock.slock)
1589{
1590	DEFINE_WAIT(wait);
1591
1592	for (;;) {
1593		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1594					TASK_UNINTERRUPTIBLE);
1595		spin_unlock_bh(&sk->sk_lock.slock);
1596		schedule();
1597		spin_lock_bh(&sk->sk_lock.slock);
1598		if (!sock_owned_by_user(sk))
1599			break;
1600	}
1601	finish_wait(&sk->sk_lock.wq, &wait);
1602}
1603
1604static void __release_sock(struct sock *sk)
1605	__releases(&sk->sk_lock.slock)
1606	__acquires(&sk->sk_lock.slock)
1607{
1608	struct sk_buff *skb = sk->sk_backlog.head;
1609
1610	do {
1611		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1612		bh_unlock_sock(sk);
1613
1614		do {
1615			struct sk_buff *next = skb->next;
1616
1617			WARN_ON_ONCE(skb_dst_is_noref(skb));
1618			skb->next = NULL;
1619			sk_backlog_rcv(sk, skb);
1620
1621			/*
1622			 * We are in process context here with softirqs
1623			 * disabled, use cond_resched_softirq() to preempt.
1624			 * This is safe to do because we've taken the backlog
1625			 * queue private:
1626			 */
1627			cond_resched_softirq();
1628
1629			skb = next;
1630		} while (skb != NULL);
1631
1632		bh_lock_sock(sk);
1633	} while ((skb = sk->sk_backlog.head) != NULL);
1634
1635	/*
1636	 * Doing the zeroing here guarantee we can not loop forever
1637	 * while a wild producer attempts to flood us.
1638	 */
1639	sk->sk_backlog.len = 0;
1640}
1641
1642/**
1643 * sk_wait_data - wait for data to arrive at sk_receive_queue
1644 * @sk:    sock to wait on
1645 * @timeo: for how long
1646 *
1647 * Now socket state including sk->sk_err is changed only under lock,
1648 * hence we may omit checks after joining wait queue.
1649 * We check receive queue before schedule() only as optimization;
1650 * it is very likely that release_sock() added new data.
1651 */
1652int sk_wait_data(struct sock *sk, long *timeo)
1653{
1654	int rc;
1655	DEFINE_WAIT(wait);
1656
1657	prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1658	set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1659	rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1660	clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1661	finish_wait(sk_sleep(sk), &wait);
1662	return rc;
1663}
1664EXPORT_SYMBOL(sk_wait_data);
1665
1666/**
1667 *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1668 *	@sk: socket
1669 *	@size: memory size to allocate
1670 *	@kind: allocation type
1671 *
1672 *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1673 *	rmem allocation. This function assumes that protocols which have
1674 *	memory_pressure use sk_wmem_queued as write buffer accounting.
1675 */
1676int __sk_mem_schedule(struct sock *sk, int size, int kind)
1677{
1678	struct proto *prot = sk->sk_prot;
1679	int amt = sk_mem_pages(size);
1680	long allocated;
1681
1682	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
1683	allocated = atomic_long_add_return(amt, prot->memory_allocated);
1684
1685	/* Under limit. */
1686	if (allocated <= prot->sysctl_mem[0]) {
1687		if (prot->memory_pressure && *prot->memory_pressure)
1688			*prot->memory_pressure = 0;
1689		return 1;
1690	}
1691
1692	/* Under pressure. */
1693	if (allocated > prot->sysctl_mem[1])
1694		if (prot->enter_memory_pressure)
1695			prot->enter_memory_pressure(sk);
1696
1697	/* Over hard limit. */
1698	if (allocated > prot->sysctl_mem[2])
1699		goto suppress_allocation;
1700
1701	/* guarantee minimum buffer size under pressure */
1702	if (kind == SK_MEM_RECV) {
1703		if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
1704			return 1;
1705	} else { /* SK_MEM_SEND */
1706		if (sk->sk_type == SOCK_STREAM) {
1707			if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
1708				return 1;
1709		} else if (atomic_read(&sk->sk_wmem_alloc) <
1710			   prot->sysctl_wmem[0])
1711				return 1;
1712	}
1713
1714	if (prot->memory_pressure) {
1715		int alloc;
1716
1717		if (!*prot->memory_pressure)
1718			return 1;
1719		alloc = percpu_counter_read_positive(prot->sockets_allocated);
1720		if (prot->sysctl_mem[2] > alloc *
1721		    sk_mem_pages(sk->sk_wmem_queued +
1722				 atomic_read(&sk->sk_rmem_alloc) +
1723				 sk->sk_forward_alloc))
1724			return 1;
1725	}
1726
1727suppress_allocation:
1728
1729	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
1730		sk_stream_moderate_sndbuf(sk);
1731
1732		/* Fail only if socket is _under_ its sndbuf.
1733		 * In this case we cannot block, so that we have to fail.
1734		 */
1735		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
1736			return 1;
1737	}
1738
1739	/* Alas. Undo changes. */
1740	sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
1741	atomic_long_sub(amt, prot->memory_allocated);
1742	return 0;
1743}
1744EXPORT_SYMBOL(__sk_mem_schedule);
1745
1746/**
1747 *	__sk_reclaim - reclaim memory_allocated
1748 *	@sk: socket
1749 */
1750void __sk_mem_reclaim(struct sock *sk)
1751{
1752	struct proto *prot = sk->sk_prot;
1753
1754	atomic_long_sub(sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT,
1755		   prot->memory_allocated);
1756	sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
1757
1758	if (prot->memory_pressure && *prot->memory_pressure &&
1759	    (atomic_long_read(prot->memory_allocated) < prot->sysctl_mem[0]))
1760		*prot->memory_pressure = 0;
1761}
1762EXPORT_SYMBOL(__sk_mem_reclaim);
1763
1764
1765/*
1766 * Set of default routines for initialising struct proto_ops when
1767 * the protocol does not support a particular function. In certain
1768 * cases where it makes no sense for a protocol to have a "do nothing"
1769 * function, some default processing is provided.
1770 */
1771
1772int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1773{
1774	return -EOPNOTSUPP;
1775}
1776EXPORT_SYMBOL(sock_no_bind);
1777
1778int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1779		    int len, int flags)
1780{
1781	return -EOPNOTSUPP;
1782}
1783EXPORT_SYMBOL(sock_no_connect);
1784
1785int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1786{
1787	return -EOPNOTSUPP;
1788}
1789EXPORT_SYMBOL(sock_no_socketpair);
1790
1791int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1792{
1793	return -EOPNOTSUPP;
1794}
1795EXPORT_SYMBOL(sock_no_accept);
1796
1797int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1798		    int *len, int peer)
1799{
1800	return -EOPNOTSUPP;
1801}
1802EXPORT_SYMBOL(sock_no_getname);
1803
1804unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
1805{
1806	return 0;
1807}
1808EXPORT_SYMBOL(sock_no_poll);
1809
1810int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1811{
1812	return -EOPNOTSUPP;
1813}
1814EXPORT_SYMBOL(sock_no_ioctl);
1815
1816int sock_no_listen(struct socket *sock, int backlog)
1817{
1818	return -EOPNOTSUPP;
1819}
1820EXPORT_SYMBOL(sock_no_listen);
1821
1822int sock_no_shutdown(struct socket *sock, int how)
1823{
1824	return -EOPNOTSUPP;
1825}
1826EXPORT_SYMBOL(sock_no_shutdown);
1827
1828int sock_no_setsockopt(struct socket *sock, int level, int optname,
1829		    char __user *optval, unsigned int optlen)
1830{
1831	return -EOPNOTSUPP;
1832}
1833EXPORT_SYMBOL(sock_no_setsockopt);
1834
1835int sock_no_getsockopt(struct socket *sock, int level, int optname,
1836		    char __user *optval, int __user *optlen)
1837{
1838	return -EOPNOTSUPP;
1839}
1840EXPORT_SYMBOL(sock_no_getsockopt);
1841
1842int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1843		    size_t len)
1844{
1845	return -EOPNOTSUPP;
1846}
1847EXPORT_SYMBOL(sock_no_sendmsg);
1848
1849int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1850		    size_t len, int flags)
1851{
1852	return -EOPNOTSUPP;
1853}
1854EXPORT_SYMBOL(sock_no_recvmsg);
1855
1856int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
1857{
1858	/* Mirror missing mmap method error code */
1859	return -ENODEV;
1860}
1861EXPORT_SYMBOL(sock_no_mmap);
1862
1863ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
1864{
1865	ssize_t res;
1866	struct msghdr msg = {.msg_flags = flags};
1867	struct kvec iov;
1868	char *kaddr = kmap(page);
1869	iov.iov_base = kaddr + offset;
1870	iov.iov_len = size;
1871	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
1872	kunmap(page);
1873	return res;
1874}
1875EXPORT_SYMBOL(sock_no_sendpage);
1876
1877/*
1878 *	Default Socket Callbacks
1879 */
1880
1881static void sock_def_wakeup(struct sock *sk)
1882{
1883	struct socket_wq *wq;
1884
1885	rcu_read_lock();
1886	wq = rcu_dereference(sk->sk_wq);
1887	if (wq_has_sleeper(wq))
1888		wake_up_interruptible_all(&wq->wait);
1889	rcu_read_unlock();
1890}
1891
1892static void sock_def_error_report(struct sock *sk)
1893{
1894	struct socket_wq *wq;
1895
1896	rcu_read_lock();
1897	wq = rcu_dereference(sk->sk_wq);
1898	if (wq_has_sleeper(wq))
1899		wake_up_interruptible_poll(&wq->wait, POLLERR);
1900	sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
1901	rcu_read_unlock();
1902}
1903
1904static void sock_def_readable(struct sock *sk, int len)
1905{
1906	struct socket_wq *wq;
1907
1908	rcu_read_lock();
1909	wq = rcu_dereference(sk->sk_wq);
1910	if (wq_has_sleeper(wq))
1911		wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
1912						POLLRDNORM | POLLRDBAND);
1913	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
1914	rcu_read_unlock();
1915}
1916
1917static void sock_def_write_space(struct sock *sk)
1918{
1919	struct socket_wq *wq;
1920
1921	rcu_read_lock();
1922
1923	/* Do not wake up a writer until he can make "significant"
1924	 * progress.  --DaveM
1925	 */
1926	if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
1927		wq = rcu_dereference(sk->sk_wq);
1928		if (wq_has_sleeper(wq))
1929			wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
1930						POLLWRNORM | POLLWRBAND);
1931
1932		/* Should agree with poll, otherwise some programs break */
1933		if (sock_writeable(sk))
1934			sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
1935	}
1936
1937	rcu_read_unlock();
1938}
1939
1940static void sock_def_destruct(struct sock *sk)
1941{
1942	kfree(sk->sk_protinfo);
1943}
1944
1945void sk_send_sigurg(struct sock *sk)
1946{
1947	if (sk->sk_socket && sk->sk_socket->file)
1948		if (send_sigurg(&sk->sk_socket->file->f_owner))
1949			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
1950}
1951EXPORT_SYMBOL(sk_send_sigurg);
1952
1953void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1954		    unsigned long expires)
1955{
1956	if (!mod_timer(timer, expires))
1957		sock_hold(sk);
1958}
1959EXPORT_SYMBOL(sk_reset_timer);
1960
1961void sk_stop_timer(struct sock *sk, struct timer_list* timer)
1962{
1963	if (timer_pending(timer) && del_timer(timer))
1964		__sock_put(sk);
1965}
1966EXPORT_SYMBOL(sk_stop_timer);
1967
1968void sock_init_data(struct socket *sock, struct sock *sk)
1969{
1970	skb_queue_head_init(&sk->sk_receive_queue);
1971	skb_queue_head_init(&sk->sk_write_queue);
1972	skb_queue_head_init(&sk->sk_error_queue);
1973#ifdef CONFIG_NET_DMA
1974	skb_queue_head_init(&sk->sk_async_wait_queue);
1975#endif
1976
1977	sk->sk_send_head	=	NULL;
1978
1979	init_timer(&sk->sk_timer);
1980
1981	sk->sk_allocation	=	GFP_KERNEL;
1982	sk->sk_rcvbuf		=	sysctl_rmem_default;
1983	sk->sk_sndbuf		=	sysctl_wmem_default;
1984	sk->sk_state		=	TCP_CLOSE;
1985	sk_set_socket(sk, sock);
1986
1987	sock_set_flag(sk, SOCK_ZAPPED);
1988
1989	if (sock) {
1990		sk->sk_type	=	sock->type;
1991		sk->sk_wq	=	sock->wq;
1992		sock->sk	=	sk;
1993	} else
1994		sk->sk_wq	=	NULL;
1995
1996	spin_lock_init(&sk->sk_dst_lock);
1997	rwlock_init(&sk->sk_callback_lock);
1998	lockdep_set_class_and_name(&sk->sk_callback_lock,
1999			af_callback_keys + sk->sk_family,
2000			af_family_clock_key_strings[sk->sk_family]);
2001
2002	sk->sk_state_change	=	sock_def_wakeup;
2003	sk->sk_data_ready	=	sock_def_readable;
2004	sk->sk_write_space	=	sock_def_write_space;
2005	sk->sk_error_report	=	sock_def_error_report;
2006	sk->sk_destruct		=	sock_def_destruct;
2007
2008	sk->sk_sndmsg_page	=	NULL;
2009	sk->sk_sndmsg_off	=	0;
2010
2011	sk->sk_peer_pid 	=	NULL;
2012	sk->sk_peer_cred	=	NULL;
2013	sk->sk_write_pending	=	0;
2014	sk->sk_rcvlowat		=	1;
2015	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
2016	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
2017
2018	sk->sk_stamp = ktime_set(-1L, 0);
2019
2020	/*
2021	 * Before updating sk_refcnt, we must commit prior changes to memory
2022	 * (Documentation/RCU/rculist_nulls.txt for details)
2023	 */
2024	smp_wmb();
2025	atomic_set(&sk->sk_refcnt, 1);
2026	atomic_set(&sk->sk_drops, 0);
2027}
2028EXPORT_SYMBOL(sock_init_data);
2029
2030void lock_sock_nested(struct sock *sk, int subclass)
2031{
2032	might_sleep();
2033	spin_lock_bh(&sk->sk_lock.slock);
2034	if (sk->sk_lock.owned)
2035		__lock_sock(sk);
2036	sk->sk_lock.owned = 1;
2037	spin_unlock(&sk->sk_lock.slock);
2038	/*
2039	 * The sk_lock has mutex_lock() semantics here:
2040	 */
2041	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2042	local_bh_enable();
2043}
2044EXPORT_SYMBOL(lock_sock_nested);
2045
2046void release_sock(struct sock *sk)
2047{
2048	/*
2049	 * The sk_lock has mutex_unlock() semantics:
2050	 */
2051	mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
2052
2053	spin_lock_bh(&sk->sk_lock.slock);
2054	if (sk->sk_backlog.tail)
2055		__release_sock(sk);
2056	sk->sk_lock.owned = 0;
2057	if (waitqueue_active(&sk->sk_lock.wq))
2058		wake_up(&sk->sk_lock.wq);
2059	spin_unlock_bh(&sk->sk_lock.slock);
2060}
2061EXPORT_SYMBOL(release_sock);
2062
2063/**
2064 * lock_sock_fast - fast version of lock_sock
2065 * @sk: socket
2066 *
2067 * This version should be used for very small section, where process wont block
2068 * return false if fast path is taken
2069 *   sk_lock.slock locked, owned = 0, BH disabled
2070 * return true if slow path is taken
2071 *   sk_lock.slock unlocked, owned = 1, BH enabled
2072 */
2073bool lock_sock_fast(struct sock *sk)
2074{
2075	might_sleep();
2076	spin_lock_bh(&sk->sk_lock.slock);
2077
2078	if (!sk->sk_lock.owned)
2079		/*
2080		 * Note : We must disable BH
2081		 */
2082		return false;
2083
2084	__lock_sock(sk);
2085	sk->sk_lock.owned = 1;
2086	spin_unlock(&sk->sk_lock.slock);
2087	/*
2088	 * The sk_lock has mutex_lock() semantics here:
2089	 */
2090	mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2091	local_bh_enable();
2092	return true;
2093}
2094EXPORT_SYMBOL(lock_sock_fast);
2095
2096int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2097{
2098	struct timeval tv;
2099	if (!sock_flag(sk, SOCK_TIMESTAMP))
2100		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2101	tv = ktime_to_timeval(sk->sk_stamp);
2102	if (tv.tv_sec == -1)
2103		return -ENOENT;
2104	if (tv.tv_sec == 0) {
2105		sk->sk_stamp = ktime_get_real();
2106		tv = ktime_to_timeval(sk->sk_stamp);
2107	}
2108	return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2109}
2110EXPORT_SYMBOL(sock_get_timestamp);
2111
2112int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2113{
2114	struct timespec ts;
2115	if (!sock_flag(sk, SOCK_TIMESTAMP))
2116		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2117	ts = ktime_to_timespec(sk->sk_stamp);
2118	if (ts.tv_sec == -1)
2119		return -ENOENT;
2120	if (ts.tv_sec == 0) {
2121		sk->sk_stamp = ktime_get_real();
2122		ts = ktime_to_timespec(sk->sk_stamp);
2123	}
2124	return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2125}
2126EXPORT_SYMBOL(sock_get_timestampns);
2127
2128void sock_enable_timestamp(struct sock *sk, int flag)
2129{
2130	if (!sock_flag(sk, flag)) {
2131		sock_set_flag(sk, flag);
2132		/*
2133		 * we just set one of the two flags which require net
2134		 * time stamping, but time stamping might have been on
2135		 * already because of the other one
2136		 */
2137		if (!sock_flag(sk,
2138				flag == SOCK_TIMESTAMP ?
2139				SOCK_TIMESTAMPING_RX_SOFTWARE :
2140				SOCK_TIMESTAMP))
2141			net_enable_timestamp();
2142	}
2143}
2144
2145/*
2146 *	Get a socket option on an socket.
2147 *
2148 *	FIX: POSIX 1003.1g is very ambiguous here. It states that
2149 *	asynchronous errors should be reported by getsockopt. We assume
2150 *	this means if you specify SO_ERROR (otherwise whats the point of it).
2151 */
2152int sock_common_getsockopt(struct socket *sock, int level, int optname,
2153			   char __user *optval, int __user *optlen)
2154{
2155	struct sock *sk = sock->sk;
2156
2157	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2158}
2159EXPORT_SYMBOL(sock_common_getsockopt);
2160
2161#ifdef CONFIG_COMPAT
2162int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2163				  char __user *optval, int __user *optlen)
2164{
2165	struct sock *sk = sock->sk;
2166
2167	if (sk->sk_prot->compat_getsockopt != NULL)
2168		return sk->sk_prot->compat_getsockopt(sk, level, optname,
2169						      optval, optlen);
2170	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2171}
2172EXPORT_SYMBOL(compat_sock_common_getsockopt);
2173#endif
2174
2175int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
2176			struct msghdr *msg, size_t size, int flags)
2177{
2178	struct sock *sk = sock->sk;
2179	int addr_len = 0;
2180	int err;
2181
2182	err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
2183				   flags & ~MSG_DONTWAIT, &addr_len);
2184	if (err >= 0)
2185		msg->msg_namelen = addr_len;
2186	return err;
2187}
2188EXPORT_SYMBOL(sock_common_recvmsg);
2189
2190/*
2191 *	Set socket options on an inet socket.
2192 */
2193int sock_common_setsockopt(struct socket *sock, int level, int optname,
2194			   char __user *optval, unsigned int optlen)
2195{
2196	struct sock *sk = sock->sk;
2197
2198	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2199}
2200EXPORT_SYMBOL(sock_common_setsockopt);
2201
2202#ifdef CONFIG_COMPAT
2203int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2204				  char __user *optval, unsigned int optlen)
2205{
2206	struct sock *sk = sock->sk;
2207
2208	if (sk->sk_prot->compat_setsockopt != NULL)
2209		return sk->sk_prot->compat_setsockopt(sk, level, optname,
2210						      optval, optlen);
2211	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2212}
2213EXPORT_SYMBOL(compat_sock_common_setsockopt);
2214#endif
2215
2216void sk_common_release(struct sock *sk)
2217{
2218	if (sk->sk_prot->destroy)
2219		sk->sk_prot->destroy(sk);
2220
2221	/*
2222	 * Observation: when sock_common_release is called, processes have
2223	 * no access to socket. But net still has.
2224	 * Step one, detach it from networking:
2225	 *
2226	 * A. Remove from hash tables.
2227	 */
2228
2229	sk->sk_prot->unhash(sk);
2230
2231	/*
2232	 * In this point socket cannot receive new packets, but it is possible
2233	 * that some packets are in flight because some CPU runs receiver and
2234	 * did hash table lookup before we unhashed socket. They will achieve
2235	 * receive queue and will be purged by socket destructor.
2236	 *
2237	 * Also we still have packets pending on receive queue and probably,
2238	 * our own packets waiting in device queues. sock_destroy will drain
2239	 * receive queue, but transmitted packets will delay socket destruction
2240	 * until the last reference will be released.
2241	 */
2242
2243	sock_orphan(sk);
2244
2245	xfrm_sk_free_policy(sk);
2246
2247	sk_refcnt_debug_release(sk);
2248	sock_put(sk);
2249}
2250EXPORT_SYMBOL(sk_common_release);
2251
2252static DEFINE_RWLOCK(proto_list_lock);
2253static LIST_HEAD(proto_list);
2254
2255#ifdef CONFIG_PROC_FS
2256#define PROTO_INUSE_NR	64	/* should be enough for the first time */
2257struct prot_inuse {
2258	int val[PROTO_INUSE_NR];
2259};
2260
2261static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2262
2263#ifdef CONFIG_NET_NS
2264void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2265{
2266	__this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
2267}
2268EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2269
2270int sock_prot_inuse_get(struct net *net, struct proto *prot)
2271{
2272	int cpu, idx = prot->inuse_idx;
2273	int res = 0;
2274
2275	for_each_possible_cpu(cpu)
2276		res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2277
2278	return res >= 0 ? res : 0;
2279}
2280EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2281
2282static int __net_init sock_inuse_init_net(struct net *net)
2283{
2284	net->core.inuse = alloc_percpu(struct prot_inuse);
2285	return net->core.inuse ? 0 : -ENOMEM;
2286}
2287
2288static void __net_exit sock_inuse_exit_net(struct net *net)
2289{
2290	free_percpu(net->core.inuse);
2291}
2292
2293static struct pernet_operations net_inuse_ops = {
2294	.init = sock_inuse_init_net,
2295	.exit = sock_inuse_exit_net,
2296};
2297
2298static __init int net_inuse_init(void)
2299{
2300	if (register_pernet_subsys(&net_inuse_ops))
2301		panic("Cannot initialize net inuse counters");
2302
2303	return 0;
2304}
2305
2306core_initcall(net_inuse_init);
2307#else
2308static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2309
2310void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2311{
2312	__this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
2313}
2314EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2315
2316int sock_prot_inuse_get(struct net *net, struct proto *prot)
2317{
2318	int cpu, idx = prot->inuse_idx;
2319	int res = 0;
2320
2321	for_each_possible_cpu(cpu)
2322		res += per_cpu(prot_inuse, cpu).val[idx];
2323
2324	return res >= 0 ? res : 0;
2325}
2326EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2327#endif
2328
2329static void assign_proto_idx(struct proto *prot)
2330{
2331	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2332
2333	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2334		printk(KERN_ERR "PROTO_INUSE_NR exhausted\n");
2335		return;
2336	}
2337
2338	set_bit(prot->inuse_idx, proto_inuse_idx);
2339}
2340
2341static void release_proto_idx(struct proto *prot)
2342{
2343	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2344		clear_bit(prot->inuse_idx, proto_inuse_idx);
2345}
2346#else
2347static inline void assign_proto_idx(struct proto *prot)
2348{
2349}
2350
2351static inline void release_proto_idx(struct proto *prot)
2352{
2353}
2354#endif
2355
2356int proto_register(struct proto *prot, int alloc_slab)
2357{
2358	if (alloc_slab) {
2359		prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2360					SLAB_HWCACHE_ALIGN | prot->slab_flags,
2361					NULL);
2362
2363		if (prot->slab == NULL) {
2364			printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n",
2365			       prot->name);
2366			goto out;
2367		}
2368
2369		if (prot->rsk_prot != NULL) {
2370			prot->rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", prot->name);
2371			if (prot->rsk_prot->slab_name == NULL)
2372				goto out_free_sock_slab;
2373
2374			prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
2375								 prot->rsk_prot->obj_size, 0,
2376								 SLAB_HWCACHE_ALIGN, NULL);
2377
2378			if (prot->rsk_prot->slab == NULL) {
2379				printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n",
2380				       prot->name);
2381				goto out_free_request_sock_slab_name;
2382			}
2383		}
2384
2385		if (prot->twsk_prot != NULL) {
2386			prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
2387
2388			if (prot->twsk_prot->twsk_slab_name == NULL)
2389				goto out_free_request_sock_slab;
2390
2391			prot->twsk_prot->twsk_slab =
2392				kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2393						  prot->twsk_prot->twsk_obj_size,
2394						  0,
2395						  SLAB_HWCACHE_ALIGN |
2396							prot->slab_flags,
2397						  NULL);
2398			if (prot->twsk_prot->twsk_slab == NULL)
2399				goto out_free_timewait_sock_slab_name;
2400		}
2401	}
2402
2403	write_lock(&proto_list_lock);
2404	list_add(&prot->node, &proto_list);
2405	assign_proto_idx(prot);
2406	write_unlock(&proto_list_lock);
2407	return 0;
2408
2409out_free_timewait_sock_slab_name:
2410	kfree(prot->twsk_prot->twsk_slab_name);
2411out_free_request_sock_slab:
2412	if (prot->rsk_prot && prot->rsk_prot->slab) {
2413		kmem_cache_destroy(prot->rsk_prot->slab);
2414		prot->rsk_prot->slab = NULL;
2415	}
2416out_free_request_sock_slab_name:
2417	if (prot->rsk_prot)
2418		kfree(prot->rsk_prot->slab_name);
2419out_free_sock_slab:
2420	kmem_cache_destroy(prot->slab);
2421	prot->slab = NULL;
2422out:
2423	return -ENOBUFS;
2424}
2425EXPORT_SYMBOL(proto_register);
2426
2427void proto_unregister(struct proto *prot)
2428{
2429	write_lock(&proto_list_lock);
2430	release_proto_idx(prot);
2431	list_del(&prot->node);
2432	write_unlock(&proto_list_lock);
2433
2434	if (prot->slab != NULL) {
2435		kmem_cache_destroy(prot->slab);
2436		prot->slab = NULL;
2437	}
2438
2439	if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2440		kmem_cache_destroy(prot->rsk_prot->slab);
2441		kfree(prot->rsk_prot->slab_name);
2442		prot->rsk_prot->slab = NULL;
2443	}
2444
2445	if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2446		kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2447		kfree(prot->twsk_prot->twsk_slab_name);
2448		prot->twsk_prot->twsk_slab = NULL;
2449	}
2450}
2451EXPORT_SYMBOL(proto_unregister);
2452
2453#ifdef CONFIG_PROC_FS
2454static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2455	__acquires(proto_list_lock)
2456{
2457	read_lock(&proto_list_lock);
2458	return seq_list_start_head(&proto_list, *pos);
2459}
2460
2461static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2462{
2463	return seq_list_next(v, &proto_list, pos);
2464}
2465
2466static void proto_seq_stop(struct seq_file *seq, void *v)
2467	__releases(proto_list_lock)
2468{
2469	read_unlock(&proto_list_lock);
2470}
2471
2472static char proto_method_implemented(const void *method)
2473{
2474	return method == NULL ? 'n' : 'y';
2475}
2476
2477static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2478{
2479	seq_printf(seq, "%-9s %4u %6d  %6ld   %-3s %6u   %-3s  %-10s "
2480			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2481		   proto->name,
2482		   proto->obj_size,
2483		   sock_prot_inuse_get(seq_file_net(seq), proto),
2484		   proto->memory_allocated != NULL ? atomic_long_read(proto->memory_allocated) : -1L,
2485		   proto->memory_pressure != NULL ? *proto->memory_pressure ? "yes" : "no" : "NI",
2486		   proto->max_header,
2487		   proto->slab == NULL ? "no" : "yes",
2488		   module_name(proto->owner),
2489		   proto_method_implemented(proto->close),
2490		   proto_method_implemented(proto->connect),
2491		   proto_method_implemented(proto->disconnect),
2492		   proto_method_implemented(proto->accept),
2493		   proto_method_implemented(proto->ioctl),
2494		   proto_method_implemented(proto->init),
2495		   proto_method_implemented(proto->destroy),
2496		   proto_method_implemented(proto->shutdown),
2497		   proto_method_implemented(proto->setsockopt),
2498		   proto_method_implemented(proto->getsockopt),
2499		   proto_method_implemented(proto->sendmsg),
2500		   proto_method_implemented(proto->recvmsg),
2501		   proto_method_implemented(proto->sendpage),
2502		   proto_method_implemented(proto->bind),
2503		   proto_method_implemented(proto->backlog_rcv),
2504		   proto_method_implemented(proto->hash),
2505		   proto_method_implemented(proto->unhash),
2506		   proto_method_implemented(proto->get_port),
2507		   proto_method_implemented(proto->enter_memory_pressure));
2508}
2509
2510static int proto_seq_show(struct seq_file *seq, void *v)
2511{
2512	if (v == &proto_list)
2513		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2514			   "protocol",
2515			   "size",
2516			   "sockets",
2517			   "memory",
2518			   "press",
2519			   "maxhdr",
2520			   "slab",
2521			   "module",
2522			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2523	else
2524		proto_seq_printf(seq, list_entry(v, struct proto, node));
2525	return 0;
2526}
2527
2528static const struct seq_operations proto_seq_ops = {
2529	.start  = proto_seq_start,
2530	.next   = proto_seq_next,
2531	.stop   = proto_seq_stop,
2532	.show   = proto_seq_show,
2533};
2534
2535static int proto_seq_open(struct inode *inode, struct file *file)
2536{
2537	return seq_open_net(inode, file, &proto_seq_ops,
2538			    sizeof(struct seq_net_private));
2539}
2540
2541static const struct file_operations proto_seq_fops = {
2542	.owner		= THIS_MODULE,
2543	.open		= proto_seq_open,
2544	.read		= seq_read,
2545	.llseek		= seq_lseek,
2546	.release	= seq_release_net,
2547};
2548
2549static __net_init int proto_init_net(struct net *net)
2550{
2551	if (!proc_net_fops_create(net, "protocols", S_IRUGO, &proto_seq_fops))
2552		return -ENOMEM;
2553
2554	return 0;
2555}
2556
2557static __net_exit void proto_exit_net(struct net *net)
2558{
2559	proc_net_remove(net, "protocols");
2560}
2561
2562
2563static __net_initdata struct pernet_operations proto_net_ops = {
2564	.init = proto_init_net,
2565	.exit = proto_exit_net,
2566};
2567
2568static int __init proto_init(void)
2569{
2570	return register_pernet_subsys(&proto_net_ops);
2571}
2572
2573subsys_initcall(proto_init);
2574
2575#endif /* PROC_FS */
2576