sock.c revision ec98c6b9b47df6df1c1fa6cf3d427414f8c2cf16
1/*
2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
3 *		operating system.  INET is implemented using the  BSD Socket
4 *		interface as the means of communication with the user level.
5 *
6 *		Generic socket support routines. Memory allocators, socket lock/release
7 *		handler for protocols to use and generic option handler.
8 *
9 *
10 * Version:	$Id: sock.c,v 1.117 2002/02/01 22:01:03 davem Exp $
11 *
12 * Authors:	Ross Biro
13 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
14 *		Florian La Roche, <flla@stud.uni-sb.de>
15 *		Alan Cox, <A.Cox@swansea.ac.uk>
16 *
17 * Fixes:
18 *		Alan Cox	: 	Numerous verify_area() problems
19 *		Alan Cox	:	Connecting on a connecting socket
20 *					now returns an error for tcp.
21 *		Alan Cox	:	sock->protocol is set correctly.
22 *					and is not sometimes left as 0.
23 *		Alan Cox	:	connect handles icmp errors on a
24 *					connect properly. Unfortunately there
25 *					is a restart syscall nasty there. I
26 *					can't match BSD without hacking the C
27 *					library. Ideas urgently sought!
28 *		Alan Cox	:	Disallow bind() to addresses that are
29 *					not ours - especially broadcast ones!!
30 *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
31 *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
32 *					instead they leave that for the DESTROY timer.
33 *		Alan Cox	:	Clean up error flag in accept
34 *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
35 *					was buggy. Put a remove_sock() in the handler
36 *					for memory when we hit 0. Also altered the timer
37 *					code. The ACK stuff can wait and needs major
38 *					TCP layer surgery.
39 *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
40 *					and fixed timer/inet_bh race.
41 *		Alan Cox	:	Added zapped flag for TCP
42 *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
43 *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
44 *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
45 *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
46 *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
47 *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
48 *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
49 *	Pauline Middelink	:	identd support
50 *		Alan Cox	:	Fixed connect() taking signals I think.
51 *		Alan Cox	:	SO_LINGER supported
52 *		Alan Cox	:	Error reporting fixes
53 *		Anonymous	:	inet_create tidied up (sk->reuse setting)
54 *		Alan Cox	:	inet sockets don't set sk->type!
55 *		Alan Cox	:	Split socket option code
56 *		Alan Cox	:	Callbacks
57 *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
58 *		Alex		:	Removed restriction on inet fioctl
59 *		Alan Cox	:	Splitting INET from NET core
60 *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
61 *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
62 *		Alan Cox	:	Split IP from generic code
63 *		Alan Cox	:	New kfree_skbmem()
64 *		Alan Cox	:	Make SO_DEBUG superuser only.
65 *		Alan Cox	:	Allow anyone to clear SO_DEBUG
66 *					(compatibility fix)
67 *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
68 *		Alan Cox	:	Allocator for a socket is settable.
69 *		Alan Cox	:	SO_ERROR includes soft errors.
70 *		Alan Cox	:	Allow NULL arguments on some SO_ opts
71 *		Alan Cox	: 	Generic socket allocation to make hooks
72 *					easier (suggested by Craig Metz).
73 *		Michael Pall	:	SO_ERROR returns positive errno again
74 *              Steve Whitehouse:       Added default destructor to free
75 *                                      protocol private data.
76 *              Steve Whitehouse:       Added various other default routines
77 *                                      common to several socket families.
78 *              Chris Evans     :       Call suser() check last on F_SETOWN
79 *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
80 *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
81 *		Andi Kleen	:	Fix write_space callback
82 *		Chris Evans	:	Security fixes - signedness again
83 *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
84 *
85 * To Fix:
86 *
87 *
88 *		This program is free software; you can redistribute it and/or
89 *		modify it under the terms of the GNU General Public License
90 *		as published by the Free Software Foundation; either version
91 *		2 of the License, or (at your option) any later version.
92 */
93
94#include <linux/capability.h>
95#include <linux/errno.h>
96#include <linux/types.h>
97#include <linux/socket.h>
98#include <linux/in.h>
99#include <linux/kernel.h>
100#include <linux/module.h>
101#include <linux/proc_fs.h>
102#include <linux/seq_file.h>
103#include <linux/sched.h>
104#include <linux/timer.h>
105#include <linux/string.h>
106#include <linux/sockios.h>
107#include <linux/net.h>
108#include <linux/mm.h>
109#include <linux/slab.h>
110#include <linux/interrupt.h>
111#include <linux/poll.h>
112#include <linux/tcp.h>
113#include <linux/init.h>
114#include <linux/highmem.h>
115
116#include <asm/uaccess.h>
117#include <asm/system.h>
118
119#include <linux/netdevice.h>
120#include <net/protocol.h>
121#include <linux/skbuff.h>
122#include <net/net_namespace.h>
123#include <net/request_sock.h>
124#include <net/sock.h>
125#include <net/xfrm.h>
126#include <linux/ipsec.h>
127
128#include <linux/filter.h>
129
130#ifdef CONFIG_INET
131#include <net/tcp.h>
132#endif
133
134/*
135 * Each address family might have different locking rules, so we have
136 * one slock key per address family:
137 */
138static struct lock_class_key af_family_keys[AF_MAX];
139static struct lock_class_key af_family_slock_keys[AF_MAX];
140
141#ifdef CONFIG_DEBUG_LOCK_ALLOC
142/*
143 * Make lock validator output more readable. (we pre-construct these
144 * strings build-time, so that runtime initialization of socket
145 * locks is fast):
146 */
147static const char *af_family_key_strings[AF_MAX+1] = {
148  "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX"     , "sk_lock-AF_INET"     ,
149  "sk_lock-AF_AX25"  , "sk_lock-AF_IPX"      , "sk_lock-AF_APPLETALK",
150  "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE"   , "sk_lock-AF_ATMPVC"   ,
151  "sk_lock-AF_X25"   , "sk_lock-AF_INET6"    , "sk_lock-AF_ROSE"     ,
152  "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI"  , "sk_lock-AF_SECURITY" ,
153  "sk_lock-AF_KEY"   , "sk_lock-AF_NETLINK"  , "sk_lock-AF_PACKET"   ,
154  "sk_lock-AF_ASH"   , "sk_lock-AF_ECONET"   , "sk_lock-AF_ATMSVC"   ,
155  "sk_lock-21"       , "sk_lock-AF_SNA"      , "sk_lock-AF_IRDA"     ,
156  "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE"  , "sk_lock-AF_LLC"      ,
157  "sk_lock-27"       , "sk_lock-28"          , "sk_lock-AF_CAN"      ,
158  "sk_lock-AF_TIPC"  , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV"        ,
159  "sk_lock-AF_RXRPC" , "sk_lock-AF_MAX"
160};
161static const char *af_family_slock_key_strings[AF_MAX+1] = {
162  "slock-AF_UNSPEC", "slock-AF_UNIX"     , "slock-AF_INET"     ,
163  "slock-AF_AX25"  , "slock-AF_IPX"      , "slock-AF_APPLETALK",
164  "slock-AF_NETROM", "slock-AF_BRIDGE"   , "slock-AF_ATMPVC"   ,
165  "slock-AF_X25"   , "slock-AF_INET6"    , "slock-AF_ROSE"     ,
166  "slock-AF_DECnet", "slock-AF_NETBEUI"  , "slock-AF_SECURITY" ,
167  "slock-AF_KEY"   , "slock-AF_NETLINK"  , "slock-AF_PACKET"   ,
168  "slock-AF_ASH"   , "slock-AF_ECONET"   , "slock-AF_ATMSVC"   ,
169  "slock-21"       , "slock-AF_SNA"      , "slock-AF_IRDA"     ,
170  "slock-AF_PPPOX" , "slock-AF_WANPIPE"  , "slock-AF_LLC"      ,
171  "slock-27"       , "slock-28"          , "slock-AF_CAN"      ,
172  "slock-AF_TIPC"  , "slock-AF_BLUETOOTH", "slock-AF_IUCV"     ,
173  "slock-AF_RXRPC" , "slock-AF_MAX"
174};
175static const char *af_family_clock_key_strings[AF_MAX+1] = {
176  "clock-AF_UNSPEC", "clock-AF_UNIX"     , "clock-AF_INET"     ,
177  "clock-AF_AX25"  , "clock-AF_IPX"      , "clock-AF_APPLETALK",
178  "clock-AF_NETROM", "clock-AF_BRIDGE"   , "clock-AF_ATMPVC"   ,
179  "clock-AF_X25"   , "clock-AF_INET6"    , "clock-AF_ROSE"     ,
180  "clock-AF_DECnet", "clock-AF_NETBEUI"  , "clock-AF_SECURITY" ,
181  "clock-AF_KEY"   , "clock-AF_NETLINK"  , "clock-AF_PACKET"   ,
182  "clock-AF_ASH"   , "clock-AF_ECONET"   , "clock-AF_ATMSVC"   ,
183  "clock-21"       , "clock-AF_SNA"      , "clock-AF_IRDA"     ,
184  "clock-AF_PPPOX" , "clock-AF_WANPIPE"  , "clock-AF_LLC"      ,
185  "clock-27"       , "clock-28"          , "clock-29"          ,
186  "clock-AF_TIPC"  , "clock-AF_BLUETOOTH", "clock-AF_IUCV"     ,
187  "clock-AF_RXRPC" , "clock-AF_MAX"
188};
189#endif
190
191/*
192 * sk_callback_lock locking rules are per-address-family,
193 * so split the lock classes by using a per-AF key:
194 */
195static struct lock_class_key af_callback_keys[AF_MAX];
196
197/* Take into consideration the size of the struct sk_buff overhead in the
198 * determination of these values, since that is non-constant across
199 * platforms.  This makes socket queueing behavior and performance
200 * not depend upon such differences.
201 */
202#define _SK_MEM_PACKETS		256
203#define _SK_MEM_OVERHEAD	(sizeof(struct sk_buff) + 256)
204#define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
205#define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
206
207/* Run time adjustable parameters. */
208__u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
209__u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
210__u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
211__u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
212
213/* Maximal space eaten by iovec or ancilliary data plus some space */
214int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
215
216static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
217{
218	struct timeval tv;
219
220	if (optlen < sizeof(tv))
221		return -EINVAL;
222	if (copy_from_user(&tv, optval, sizeof(tv)))
223		return -EFAULT;
224	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
225		return -EDOM;
226
227	if (tv.tv_sec < 0) {
228		static int warned __read_mostly;
229
230		*timeo_p = 0;
231		if (warned < 10 && net_ratelimit())
232			warned++;
233			printk(KERN_INFO "sock_set_timeout: `%s' (pid %d) "
234			       "tries to set negative timeout\n",
235				current->comm, task_pid_nr(current));
236		return 0;
237	}
238	*timeo_p = MAX_SCHEDULE_TIMEOUT;
239	if (tv.tv_sec == 0 && tv.tv_usec == 0)
240		return 0;
241	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
242		*timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
243	return 0;
244}
245
246static void sock_warn_obsolete_bsdism(const char *name)
247{
248	static int warned;
249	static char warncomm[TASK_COMM_LEN];
250	if (strcmp(warncomm, current->comm) && warned < 5) {
251		strcpy(warncomm,  current->comm);
252		printk(KERN_WARNING "process `%s' is using obsolete "
253		       "%s SO_BSDCOMPAT\n", warncomm, name);
254		warned++;
255	}
256}
257
258static void sock_disable_timestamp(struct sock *sk)
259{
260	if (sock_flag(sk, SOCK_TIMESTAMP)) {
261		sock_reset_flag(sk, SOCK_TIMESTAMP);
262		net_disable_timestamp();
263	}
264}
265
266
267int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
268{
269	int err = 0;
270	int skb_len;
271
272	/* Cast skb->rcvbuf to unsigned... It's pointless, but reduces
273	   number of warnings when compiling with -W --ANK
274	 */
275	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
276	    (unsigned)sk->sk_rcvbuf) {
277		err = -ENOMEM;
278		goto out;
279	}
280
281	err = sk_filter(sk, skb);
282	if (err)
283		goto out;
284
285	if (!sk_rmem_schedule(sk, skb->truesize)) {
286		err = -ENOBUFS;
287		goto out;
288	}
289
290	skb->dev = NULL;
291	skb_set_owner_r(skb, sk);
292
293	/* Cache the SKB length before we tack it onto the receive
294	 * queue.  Once it is added it no longer belongs to us and
295	 * may be freed by other threads of control pulling packets
296	 * from the queue.
297	 */
298	skb_len = skb->len;
299
300	skb_queue_tail(&sk->sk_receive_queue, skb);
301
302	if (!sock_flag(sk, SOCK_DEAD))
303		sk->sk_data_ready(sk, skb_len);
304out:
305	return err;
306}
307EXPORT_SYMBOL(sock_queue_rcv_skb);
308
309int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
310{
311	int rc = NET_RX_SUCCESS;
312
313	if (sk_filter(sk, skb))
314		goto discard_and_relse;
315
316	skb->dev = NULL;
317
318	if (nested)
319		bh_lock_sock_nested(sk);
320	else
321		bh_lock_sock(sk);
322	if (!sock_owned_by_user(sk)) {
323		/*
324		 * trylock + unlock semantics:
325		 */
326		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
327
328		rc = sk->sk_backlog_rcv(sk, skb);
329
330		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
331	} else
332		sk_add_backlog(sk, skb);
333	bh_unlock_sock(sk);
334out:
335	sock_put(sk);
336	return rc;
337discard_and_relse:
338	kfree_skb(skb);
339	goto out;
340}
341EXPORT_SYMBOL(sk_receive_skb);
342
343struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
344{
345	struct dst_entry *dst = sk->sk_dst_cache;
346
347	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
348		sk->sk_dst_cache = NULL;
349		dst_release(dst);
350		return NULL;
351	}
352
353	return dst;
354}
355EXPORT_SYMBOL(__sk_dst_check);
356
357struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
358{
359	struct dst_entry *dst = sk_dst_get(sk);
360
361	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
362		sk_dst_reset(sk);
363		dst_release(dst);
364		return NULL;
365	}
366
367	return dst;
368}
369EXPORT_SYMBOL(sk_dst_check);
370
371static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
372{
373	int ret = -ENOPROTOOPT;
374#ifdef CONFIG_NETDEVICES
375	struct net *net = sock_net(sk);
376	char devname[IFNAMSIZ];
377	int index;
378
379	/* Sorry... */
380	ret = -EPERM;
381	if (!capable(CAP_NET_RAW))
382		goto out;
383
384	ret = -EINVAL;
385	if (optlen < 0)
386		goto out;
387
388	/* Bind this socket to a particular device like "eth0",
389	 * as specified in the passed interface name. If the
390	 * name is "" or the option length is zero the socket
391	 * is not bound.
392	 */
393	if (optlen > IFNAMSIZ - 1)
394		optlen = IFNAMSIZ - 1;
395	memset(devname, 0, sizeof(devname));
396
397	ret = -EFAULT;
398	if (copy_from_user(devname, optval, optlen))
399		goto out;
400
401	if (devname[0] == '\0') {
402		index = 0;
403	} else {
404		struct net_device *dev = dev_get_by_name(net, devname);
405
406		ret = -ENODEV;
407		if (!dev)
408			goto out;
409
410		index = dev->ifindex;
411		dev_put(dev);
412	}
413
414	lock_sock(sk);
415	sk->sk_bound_dev_if = index;
416	sk_dst_reset(sk);
417	release_sock(sk);
418
419	ret = 0;
420
421out:
422#endif
423
424	return ret;
425}
426
427static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
428{
429	if (valbool)
430		sock_set_flag(sk, bit);
431	else
432		sock_reset_flag(sk, bit);
433}
434
435/*
436 *	This is meant for all protocols to use and covers goings on
437 *	at the socket level. Everything here is generic.
438 */
439
440int sock_setsockopt(struct socket *sock, int level, int optname,
441		    char __user *optval, int optlen)
442{
443	struct sock *sk=sock->sk;
444	int val;
445	int valbool;
446	struct linger ling;
447	int ret = 0;
448
449	/*
450	 *	Options without arguments
451	 */
452
453	if (optname == SO_BINDTODEVICE)
454		return sock_bindtodevice(sk, optval, optlen);
455
456	if (optlen < sizeof(int))
457		return -EINVAL;
458
459	if (get_user(val, (int __user *)optval))
460		return -EFAULT;
461
462	valbool = val?1:0;
463
464	lock_sock(sk);
465
466	switch(optname) {
467	case SO_DEBUG:
468		if (val && !capable(CAP_NET_ADMIN)) {
469			ret = -EACCES;
470		} else
471			sock_valbool_flag(sk, SOCK_DBG, valbool);
472		break;
473	case SO_REUSEADDR:
474		sk->sk_reuse = valbool;
475		break;
476	case SO_TYPE:
477	case SO_ERROR:
478		ret = -ENOPROTOOPT;
479		break;
480	case SO_DONTROUTE:
481		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
482		break;
483	case SO_BROADCAST:
484		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
485		break;
486	case SO_SNDBUF:
487		/* Don't error on this BSD doesn't and if you think
488		   about it this is right. Otherwise apps have to
489		   play 'guess the biggest size' games. RCVBUF/SNDBUF
490		   are treated in BSD as hints */
491
492		if (val > sysctl_wmem_max)
493			val = sysctl_wmem_max;
494set_sndbuf:
495		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
496		if ((val * 2) < SOCK_MIN_SNDBUF)
497			sk->sk_sndbuf = SOCK_MIN_SNDBUF;
498		else
499			sk->sk_sndbuf = val * 2;
500
501		/*
502		 *	Wake up sending tasks if we
503		 *	upped the value.
504		 */
505		sk->sk_write_space(sk);
506		break;
507
508	case SO_SNDBUFFORCE:
509		if (!capable(CAP_NET_ADMIN)) {
510			ret = -EPERM;
511			break;
512		}
513		goto set_sndbuf;
514
515	case SO_RCVBUF:
516		/* Don't error on this BSD doesn't and if you think
517		   about it this is right. Otherwise apps have to
518		   play 'guess the biggest size' games. RCVBUF/SNDBUF
519		   are treated in BSD as hints */
520
521		if (val > sysctl_rmem_max)
522			val = sysctl_rmem_max;
523set_rcvbuf:
524		sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
525		/*
526		 * We double it on the way in to account for
527		 * "struct sk_buff" etc. overhead.   Applications
528		 * assume that the SO_RCVBUF setting they make will
529		 * allow that much actual data to be received on that
530		 * socket.
531		 *
532		 * Applications are unaware that "struct sk_buff" and
533		 * other overheads allocate from the receive buffer
534		 * during socket buffer allocation.
535		 *
536		 * And after considering the possible alternatives,
537		 * returning the value we actually used in getsockopt
538		 * is the most desirable behavior.
539		 */
540		if ((val * 2) < SOCK_MIN_RCVBUF)
541			sk->sk_rcvbuf = SOCK_MIN_RCVBUF;
542		else
543			sk->sk_rcvbuf = val * 2;
544		break;
545
546	case SO_RCVBUFFORCE:
547		if (!capable(CAP_NET_ADMIN)) {
548			ret = -EPERM;
549			break;
550		}
551		goto set_rcvbuf;
552
553	case SO_KEEPALIVE:
554#ifdef CONFIG_INET
555		if (sk->sk_protocol == IPPROTO_TCP)
556			tcp_set_keepalive(sk, valbool);
557#endif
558		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
559		break;
560
561	case SO_OOBINLINE:
562		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
563		break;
564
565	case SO_NO_CHECK:
566		sk->sk_no_check = valbool;
567		break;
568
569	case SO_PRIORITY:
570		if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
571			sk->sk_priority = val;
572		else
573			ret = -EPERM;
574		break;
575
576	case SO_LINGER:
577		if (optlen < sizeof(ling)) {
578			ret = -EINVAL;	/* 1003.1g */
579			break;
580		}
581		if (copy_from_user(&ling,optval,sizeof(ling))) {
582			ret = -EFAULT;
583			break;
584		}
585		if (!ling.l_onoff)
586			sock_reset_flag(sk, SOCK_LINGER);
587		else {
588#if (BITS_PER_LONG == 32)
589			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
590				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
591			else
592#endif
593				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
594			sock_set_flag(sk, SOCK_LINGER);
595		}
596		break;
597
598	case SO_BSDCOMPAT:
599		sock_warn_obsolete_bsdism("setsockopt");
600		break;
601
602	case SO_PASSCRED:
603		if (valbool)
604			set_bit(SOCK_PASSCRED, &sock->flags);
605		else
606			clear_bit(SOCK_PASSCRED, &sock->flags);
607		break;
608
609	case SO_TIMESTAMP:
610	case SO_TIMESTAMPNS:
611		if (valbool)  {
612			if (optname == SO_TIMESTAMP)
613				sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
614			else
615				sock_set_flag(sk, SOCK_RCVTSTAMPNS);
616			sock_set_flag(sk, SOCK_RCVTSTAMP);
617			sock_enable_timestamp(sk);
618		} else {
619			sock_reset_flag(sk, SOCK_RCVTSTAMP);
620			sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
621		}
622		break;
623
624	case SO_RCVLOWAT:
625		if (val < 0)
626			val = INT_MAX;
627		sk->sk_rcvlowat = val ? : 1;
628		break;
629
630	case SO_RCVTIMEO:
631		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
632		break;
633
634	case SO_SNDTIMEO:
635		ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
636		break;
637
638	case SO_ATTACH_FILTER:
639		ret = -EINVAL;
640		if (optlen == sizeof(struct sock_fprog)) {
641			struct sock_fprog fprog;
642
643			ret = -EFAULT;
644			if (copy_from_user(&fprog, optval, sizeof(fprog)))
645				break;
646
647			ret = sk_attach_filter(&fprog, sk);
648		}
649		break;
650
651	case SO_DETACH_FILTER:
652		ret = sk_detach_filter(sk);
653		break;
654
655	case SO_PASSSEC:
656		if (valbool)
657			set_bit(SOCK_PASSSEC, &sock->flags);
658		else
659			clear_bit(SOCK_PASSSEC, &sock->flags);
660		break;
661	case SO_MARK:
662		if (!capable(CAP_NET_ADMIN))
663			ret = -EPERM;
664		else {
665			sk->sk_mark = val;
666		}
667		break;
668
669		/* We implement the SO_SNDLOWAT etc to
670		   not be settable (1003.1g 5.3) */
671	default:
672		ret = -ENOPROTOOPT;
673		break;
674	}
675	release_sock(sk);
676	return ret;
677}
678
679
680int sock_getsockopt(struct socket *sock, int level, int optname,
681		    char __user *optval, int __user *optlen)
682{
683	struct sock *sk = sock->sk;
684
685	union {
686		int val;
687		struct linger ling;
688		struct timeval tm;
689	} v;
690
691	unsigned int lv = sizeof(int);
692	int len;
693
694	if (get_user(len, optlen))
695		return -EFAULT;
696	if (len < 0)
697		return -EINVAL;
698
699	switch(optname) {
700	case SO_DEBUG:
701		v.val = sock_flag(sk, SOCK_DBG);
702		break;
703
704	case SO_DONTROUTE:
705		v.val = sock_flag(sk, SOCK_LOCALROUTE);
706		break;
707
708	case SO_BROADCAST:
709		v.val = !!sock_flag(sk, SOCK_BROADCAST);
710		break;
711
712	case SO_SNDBUF:
713		v.val = sk->sk_sndbuf;
714		break;
715
716	case SO_RCVBUF:
717		v.val = sk->sk_rcvbuf;
718		break;
719
720	case SO_REUSEADDR:
721		v.val = sk->sk_reuse;
722		break;
723
724	case SO_KEEPALIVE:
725		v.val = !!sock_flag(sk, SOCK_KEEPOPEN);
726		break;
727
728	case SO_TYPE:
729		v.val = sk->sk_type;
730		break;
731
732	case SO_ERROR:
733		v.val = -sock_error(sk);
734		if (v.val==0)
735			v.val = xchg(&sk->sk_err_soft, 0);
736		break;
737
738	case SO_OOBINLINE:
739		v.val = !!sock_flag(sk, SOCK_URGINLINE);
740		break;
741
742	case SO_NO_CHECK:
743		v.val = sk->sk_no_check;
744		break;
745
746	case SO_PRIORITY:
747		v.val = sk->sk_priority;
748		break;
749
750	case SO_LINGER:
751		lv		= sizeof(v.ling);
752		v.ling.l_onoff	= !!sock_flag(sk, SOCK_LINGER);
753		v.ling.l_linger	= sk->sk_lingertime / HZ;
754		break;
755
756	case SO_BSDCOMPAT:
757		sock_warn_obsolete_bsdism("getsockopt");
758		break;
759
760	case SO_TIMESTAMP:
761		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
762				!sock_flag(sk, SOCK_RCVTSTAMPNS);
763		break;
764
765	case SO_TIMESTAMPNS:
766		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
767		break;
768
769	case SO_RCVTIMEO:
770		lv=sizeof(struct timeval);
771		if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
772			v.tm.tv_sec = 0;
773			v.tm.tv_usec = 0;
774		} else {
775			v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
776			v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
777		}
778		break;
779
780	case SO_SNDTIMEO:
781		lv=sizeof(struct timeval);
782		if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
783			v.tm.tv_sec = 0;
784			v.tm.tv_usec = 0;
785		} else {
786			v.tm.tv_sec = sk->sk_sndtimeo / HZ;
787			v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
788		}
789		break;
790
791	case SO_RCVLOWAT:
792		v.val = sk->sk_rcvlowat;
793		break;
794
795	case SO_SNDLOWAT:
796		v.val=1;
797		break;
798
799	case SO_PASSCRED:
800		v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0;
801		break;
802
803	case SO_PEERCRED:
804		if (len > sizeof(sk->sk_peercred))
805			len = sizeof(sk->sk_peercred);
806		if (copy_to_user(optval, &sk->sk_peercred, len))
807			return -EFAULT;
808		goto lenout;
809
810	case SO_PEERNAME:
811	{
812		char address[128];
813
814		if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
815			return -ENOTCONN;
816		if (lv < len)
817			return -EINVAL;
818		if (copy_to_user(optval, address, len))
819			return -EFAULT;
820		goto lenout;
821	}
822
823	/* Dubious BSD thing... Probably nobody even uses it, but
824	 * the UNIX standard wants it for whatever reason... -DaveM
825	 */
826	case SO_ACCEPTCONN:
827		v.val = sk->sk_state == TCP_LISTEN;
828		break;
829
830	case SO_PASSSEC:
831		v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0;
832		break;
833
834	case SO_PEERSEC:
835		return security_socket_getpeersec_stream(sock, optval, optlen, len);
836
837	case SO_MARK:
838		v.val = sk->sk_mark;
839		break;
840
841	default:
842		return -ENOPROTOOPT;
843	}
844
845	if (len > lv)
846		len = lv;
847	if (copy_to_user(optval, &v, len))
848		return -EFAULT;
849lenout:
850	if (put_user(len, optlen))
851		return -EFAULT;
852	return 0;
853}
854
855/*
856 * Initialize an sk_lock.
857 *
858 * (We also register the sk_lock with the lock validator.)
859 */
860static inline void sock_lock_init(struct sock *sk)
861{
862	sock_lock_init_class_and_name(sk,
863			af_family_slock_key_strings[sk->sk_family],
864			af_family_slock_keys + sk->sk_family,
865			af_family_key_strings[sk->sk_family],
866			af_family_keys + sk->sk_family);
867}
868
869static void sock_copy(struct sock *nsk, const struct sock *osk)
870{
871#ifdef CONFIG_SECURITY_NETWORK
872	void *sptr = nsk->sk_security;
873#endif
874
875	memcpy(nsk, osk, osk->sk_prot->obj_size);
876#ifdef CONFIG_SECURITY_NETWORK
877	nsk->sk_security = sptr;
878	security_sk_clone(osk, nsk);
879#endif
880}
881
882static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
883		int family)
884{
885	struct sock *sk;
886	struct kmem_cache *slab;
887
888	slab = prot->slab;
889	if (slab != NULL)
890		sk = kmem_cache_alloc(slab, priority);
891	else
892		sk = kmalloc(prot->obj_size, priority);
893
894	if (sk != NULL) {
895		if (security_sk_alloc(sk, family, priority))
896			goto out_free;
897
898		if (!try_module_get(prot->owner))
899			goto out_free_sec;
900	}
901
902	return sk;
903
904out_free_sec:
905	security_sk_free(sk);
906out_free:
907	if (slab != NULL)
908		kmem_cache_free(slab, sk);
909	else
910		kfree(sk);
911	return NULL;
912}
913
914static void sk_prot_free(struct proto *prot, struct sock *sk)
915{
916	struct kmem_cache *slab;
917	struct module *owner;
918
919	owner = prot->owner;
920	slab = prot->slab;
921
922	security_sk_free(sk);
923	if (slab != NULL)
924		kmem_cache_free(slab, sk);
925	else
926		kfree(sk);
927	module_put(owner);
928}
929
930/**
931 *	sk_alloc - All socket objects are allocated here
932 *	@net: the applicable net namespace
933 *	@family: protocol family
934 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
935 *	@prot: struct proto associated with this new sock instance
936 *	@zero_it: if we should zero the newly allocated sock
937 */
938struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
939		      struct proto *prot)
940{
941	struct sock *sk;
942
943	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
944	if (sk) {
945		sk->sk_family = family;
946		/*
947		 * See comment in struct sock definition to understand
948		 * why we need sk_prot_creator -acme
949		 */
950		sk->sk_prot = sk->sk_prot_creator = prot;
951		sock_lock_init(sk);
952		sock_net_set(sk, get_net(net));
953	}
954
955	return sk;
956}
957
958void sk_free(struct sock *sk)
959{
960	struct sk_filter *filter;
961
962	if (sk->sk_destruct)
963		sk->sk_destruct(sk);
964
965	filter = rcu_dereference(sk->sk_filter);
966	if (filter) {
967		sk_filter_uncharge(sk, filter);
968		rcu_assign_pointer(sk->sk_filter, NULL);
969	}
970
971	sock_disable_timestamp(sk);
972
973	if (atomic_read(&sk->sk_omem_alloc))
974		printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n",
975		       __func__, atomic_read(&sk->sk_omem_alloc));
976
977	put_net(sock_net(sk));
978	sk_prot_free(sk->sk_prot_creator, sk);
979}
980
981/*
982 * Last sock_put should drop referrence to sk->sk_net. It has already
983 * been dropped in sk_change_net. Taking referrence to stopping namespace
984 * is not an option.
985 * Take referrence to a socket to remove it from hash _alive_ and after that
986 * destroy it in the context of init_net.
987 */
988void sk_release_kernel(struct sock *sk)
989{
990	if (sk == NULL || sk->sk_socket == NULL)
991		return;
992
993	sock_hold(sk);
994	sock_release(sk->sk_socket);
995	release_net(sock_net(sk));
996	sock_net_set(sk, get_net(&init_net));
997	sock_put(sk);
998}
999EXPORT_SYMBOL(sk_release_kernel);
1000
1001struct sock *sk_clone(const struct sock *sk, const gfp_t priority)
1002{
1003	struct sock *newsk;
1004
1005	newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1006	if (newsk != NULL) {
1007		struct sk_filter *filter;
1008
1009		sock_copy(newsk, sk);
1010
1011		/* SANITY */
1012		get_net(sock_net(newsk));
1013		sk_node_init(&newsk->sk_node);
1014		sock_lock_init(newsk);
1015		bh_lock_sock(newsk);
1016		newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
1017
1018		atomic_set(&newsk->sk_rmem_alloc, 0);
1019		atomic_set(&newsk->sk_wmem_alloc, 0);
1020		atomic_set(&newsk->sk_omem_alloc, 0);
1021		skb_queue_head_init(&newsk->sk_receive_queue);
1022		skb_queue_head_init(&newsk->sk_write_queue);
1023#ifdef CONFIG_NET_DMA
1024		skb_queue_head_init(&newsk->sk_async_wait_queue);
1025#endif
1026
1027		rwlock_init(&newsk->sk_dst_lock);
1028		rwlock_init(&newsk->sk_callback_lock);
1029		lockdep_set_class_and_name(&newsk->sk_callback_lock,
1030				af_callback_keys + newsk->sk_family,
1031				af_family_clock_key_strings[newsk->sk_family]);
1032
1033		newsk->sk_dst_cache	= NULL;
1034		newsk->sk_wmem_queued	= 0;
1035		newsk->sk_forward_alloc = 0;
1036		newsk->sk_send_head	= NULL;
1037		newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1038
1039		sock_reset_flag(newsk, SOCK_DONE);
1040		skb_queue_head_init(&newsk->sk_error_queue);
1041
1042		filter = newsk->sk_filter;
1043		if (filter != NULL)
1044			sk_filter_charge(newsk, filter);
1045
1046		if (unlikely(xfrm_sk_clone_policy(newsk))) {
1047			/* It is still raw copy of parent, so invalidate
1048			 * destructor and make plain sk_free() */
1049			newsk->sk_destruct = NULL;
1050			sk_free(newsk);
1051			newsk = NULL;
1052			goto out;
1053		}
1054
1055		newsk->sk_err	   = 0;
1056		newsk->sk_priority = 0;
1057		atomic_set(&newsk->sk_refcnt, 2);
1058
1059		/*
1060		 * Increment the counter in the same struct proto as the master
1061		 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1062		 * is the same as sk->sk_prot->socks, as this field was copied
1063		 * with memcpy).
1064		 *
1065		 * This _changes_ the previous behaviour, where
1066		 * tcp_create_openreq_child always was incrementing the
1067		 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1068		 * to be taken into account in all callers. -acme
1069		 */
1070		sk_refcnt_debug_inc(newsk);
1071		newsk->sk_socket = NULL;
1072		newsk->sk_sleep	 = NULL;
1073
1074		if (newsk->sk_prot->sockets_allocated)
1075			atomic_inc(newsk->sk_prot->sockets_allocated);
1076	}
1077out:
1078	return newsk;
1079}
1080
1081EXPORT_SYMBOL_GPL(sk_clone);
1082
1083void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1084{
1085	__sk_dst_set(sk, dst);
1086	sk->sk_route_caps = dst->dev->features;
1087	if (sk->sk_route_caps & NETIF_F_GSO)
1088		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1089	if (sk_can_gso(sk)) {
1090		if (dst->header_len) {
1091			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1092		} else {
1093			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1094			sk->sk_gso_max_size = dst->dev->gso_max_size;
1095		}
1096	}
1097}
1098EXPORT_SYMBOL_GPL(sk_setup_caps);
1099
1100void __init sk_init(void)
1101{
1102	if (num_physpages <= 4096) {
1103		sysctl_wmem_max = 32767;
1104		sysctl_rmem_max = 32767;
1105		sysctl_wmem_default = 32767;
1106		sysctl_rmem_default = 32767;
1107	} else if (num_physpages >= 131072) {
1108		sysctl_wmem_max = 131071;
1109		sysctl_rmem_max = 131071;
1110	}
1111}
1112
1113/*
1114 *	Simple resource managers for sockets.
1115 */
1116
1117
1118/*
1119 * Write buffer destructor automatically called from kfree_skb.
1120 */
1121void sock_wfree(struct sk_buff *skb)
1122{
1123	struct sock *sk = skb->sk;
1124
1125	/* In case it might be waiting for more memory. */
1126	atomic_sub(skb->truesize, &sk->sk_wmem_alloc);
1127	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE))
1128		sk->sk_write_space(sk);
1129	sock_put(sk);
1130}
1131
1132/*
1133 * Read buffer destructor automatically called from kfree_skb.
1134 */
1135void sock_rfree(struct sk_buff *skb)
1136{
1137	struct sock *sk = skb->sk;
1138
1139	skb_truesize_check(skb);
1140	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1141	sk_mem_uncharge(skb->sk, skb->truesize);
1142}
1143
1144
1145int sock_i_uid(struct sock *sk)
1146{
1147	int uid;
1148
1149	read_lock(&sk->sk_callback_lock);
1150	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1151	read_unlock(&sk->sk_callback_lock);
1152	return uid;
1153}
1154
1155unsigned long sock_i_ino(struct sock *sk)
1156{
1157	unsigned long ino;
1158
1159	read_lock(&sk->sk_callback_lock);
1160	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1161	read_unlock(&sk->sk_callback_lock);
1162	return ino;
1163}
1164
1165/*
1166 * Allocate a skb from the socket's send buffer.
1167 */
1168struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1169			     gfp_t priority)
1170{
1171	if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1172		struct sk_buff * skb = alloc_skb(size, priority);
1173		if (skb) {
1174			skb_set_owner_w(skb, sk);
1175			return skb;
1176		}
1177	}
1178	return NULL;
1179}
1180
1181/*
1182 * Allocate a skb from the socket's receive buffer.
1183 */
1184struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1185			     gfp_t priority)
1186{
1187	if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1188		struct sk_buff *skb = alloc_skb(size, priority);
1189		if (skb) {
1190			skb_set_owner_r(skb, sk);
1191			return skb;
1192		}
1193	}
1194	return NULL;
1195}
1196
1197/*
1198 * Allocate a memory block from the socket's option memory buffer.
1199 */
1200void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1201{
1202	if ((unsigned)size <= sysctl_optmem_max &&
1203	    atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1204		void *mem;
1205		/* First do the add, to avoid the race if kmalloc
1206		 * might sleep.
1207		 */
1208		atomic_add(size, &sk->sk_omem_alloc);
1209		mem = kmalloc(size, priority);
1210		if (mem)
1211			return mem;
1212		atomic_sub(size, &sk->sk_omem_alloc);
1213	}
1214	return NULL;
1215}
1216
1217/*
1218 * Free an option memory block.
1219 */
1220void sock_kfree_s(struct sock *sk, void *mem, int size)
1221{
1222	kfree(mem);
1223	atomic_sub(size, &sk->sk_omem_alloc);
1224}
1225
1226/* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1227   I think, these locks should be removed for datagram sockets.
1228 */
1229static long sock_wait_for_wmem(struct sock * sk, long timeo)
1230{
1231	DEFINE_WAIT(wait);
1232
1233	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1234	for (;;) {
1235		if (!timeo)
1236			break;
1237		if (signal_pending(current))
1238			break;
1239		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1240		prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1241		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1242			break;
1243		if (sk->sk_shutdown & SEND_SHUTDOWN)
1244			break;
1245		if (sk->sk_err)
1246			break;
1247		timeo = schedule_timeout(timeo);
1248	}
1249	finish_wait(sk->sk_sleep, &wait);
1250	return timeo;
1251}
1252
1253
1254/*
1255 *	Generic send/receive buffer handlers
1256 */
1257
1258static struct sk_buff *sock_alloc_send_pskb(struct sock *sk,
1259					    unsigned long header_len,
1260					    unsigned long data_len,
1261					    int noblock, int *errcode)
1262{
1263	struct sk_buff *skb;
1264	gfp_t gfp_mask;
1265	long timeo;
1266	int err;
1267
1268	gfp_mask = sk->sk_allocation;
1269	if (gfp_mask & __GFP_WAIT)
1270		gfp_mask |= __GFP_REPEAT;
1271
1272	timeo = sock_sndtimeo(sk, noblock);
1273	while (1) {
1274		err = sock_error(sk);
1275		if (err != 0)
1276			goto failure;
1277
1278		err = -EPIPE;
1279		if (sk->sk_shutdown & SEND_SHUTDOWN)
1280			goto failure;
1281
1282		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1283			skb = alloc_skb(header_len, gfp_mask);
1284			if (skb) {
1285				int npages;
1286				int i;
1287
1288				/* No pages, we're done... */
1289				if (!data_len)
1290					break;
1291
1292				npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1293				skb->truesize += data_len;
1294				skb_shinfo(skb)->nr_frags = npages;
1295				for (i = 0; i < npages; i++) {
1296					struct page *page;
1297					skb_frag_t *frag;
1298
1299					page = alloc_pages(sk->sk_allocation, 0);
1300					if (!page) {
1301						err = -ENOBUFS;
1302						skb_shinfo(skb)->nr_frags = i;
1303						kfree_skb(skb);
1304						goto failure;
1305					}
1306
1307					frag = &skb_shinfo(skb)->frags[i];
1308					frag->page = page;
1309					frag->page_offset = 0;
1310					frag->size = (data_len >= PAGE_SIZE ?
1311						      PAGE_SIZE :
1312						      data_len);
1313					data_len -= PAGE_SIZE;
1314				}
1315
1316				/* Full success... */
1317				break;
1318			}
1319			err = -ENOBUFS;
1320			goto failure;
1321		}
1322		set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1323		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1324		err = -EAGAIN;
1325		if (!timeo)
1326			goto failure;
1327		if (signal_pending(current))
1328			goto interrupted;
1329		timeo = sock_wait_for_wmem(sk, timeo);
1330	}
1331
1332	skb_set_owner_w(skb, sk);
1333	return skb;
1334
1335interrupted:
1336	err = sock_intr_errno(timeo);
1337failure:
1338	*errcode = err;
1339	return NULL;
1340}
1341
1342struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1343				    int noblock, int *errcode)
1344{
1345	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1346}
1347
1348static void __lock_sock(struct sock *sk)
1349{
1350	DEFINE_WAIT(wait);
1351
1352	for (;;) {
1353		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1354					TASK_UNINTERRUPTIBLE);
1355		spin_unlock_bh(&sk->sk_lock.slock);
1356		schedule();
1357		spin_lock_bh(&sk->sk_lock.slock);
1358		if (!sock_owned_by_user(sk))
1359			break;
1360	}
1361	finish_wait(&sk->sk_lock.wq, &wait);
1362}
1363
1364static void __release_sock(struct sock *sk)
1365{
1366	struct sk_buff *skb = sk->sk_backlog.head;
1367
1368	do {
1369		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1370		bh_unlock_sock(sk);
1371
1372		do {
1373			struct sk_buff *next = skb->next;
1374
1375			skb->next = NULL;
1376			sk->sk_backlog_rcv(sk, skb);
1377
1378			/*
1379			 * We are in process context here with softirqs
1380			 * disabled, use cond_resched_softirq() to preempt.
1381			 * This is safe to do because we've taken the backlog
1382			 * queue private:
1383			 */
1384			cond_resched_softirq();
1385
1386			skb = next;
1387		} while (skb != NULL);
1388
1389		bh_lock_sock(sk);
1390	} while ((skb = sk->sk_backlog.head) != NULL);
1391}
1392
1393/**
1394 * sk_wait_data - wait for data to arrive at sk_receive_queue
1395 * @sk:    sock to wait on
1396 * @timeo: for how long
1397 *
1398 * Now socket state including sk->sk_err is changed only under lock,
1399 * hence we may omit checks after joining wait queue.
1400 * We check receive queue before schedule() only as optimization;
1401 * it is very likely that release_sock() added new data.
1402 */
1403int sk_wait_data(struct sock *sk, long *timeo)
1404{
1405	int rc;
1406	DEFINE_WAIT(wait);
1407
1408	prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1409	set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1410	rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1411	clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1412	finish_wait(sk->sk_sleep, &wait);
1413	return rc;
1414}
1415
1416EXPORT_SYMBOL(sk_wait_data);
1417
1418/**
1419 *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1420 *	@sk: socket
1421 *	@size: memory size to allocate
1422 *	@kind: allocation type
1423 *
1424 *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1425 *	rmem allocation. This function assumes that protocols which have
1426 *	memory_pressure use sk_wmem_queued as write buffer accounting.
1427 */
1428int __sk_mem_schedule(struct sock *sk, int size, int kind)
1429{
1430	struct proto *prot = sk->sk_prot;
1431	int amt = sk_mem_pages(size);
1432	int allocated;
1433
1434	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
1435	allocated = atomic_add_return(amt, prot->memory_allocated);
1436
1437	/* Under limit. */
1438	if (allocated <= prot->sysctl_mem[0]) {
1439		if (prot->memory_pressure && *prot->memory_pressure)
1440			*prot->memory_pressure = 0;
1441		return 1;
1442	}
1443
1444	/* Under pressure. */
1445	if (allocated > prot->sysctl_mem[1])
1446		if (prot->enter_memory_pressure)
1447			prot->enter_memory_pressure();
1448
1449	/* Over hard limit. */
1450	if (allocated > prot->sysctl_mem[2])
1451		goto suppress_allocation;
1452
1453	/* guarantee minimum buffer size under pressure */
1454	if (kind == SK_MEM_RECV) {
1455		if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
1456			return 1;
1457	} else { /* SK_MEM_SEND */
1458		if (sk->sk_type == SOCK_STREAM) {
1459			if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
1460				return 1;
1461		} else if (atomic_read(&sk->sk_wmem_alloc) <
1462			   prot->sysctl_wmem[0])
1463				return 1;
1464	}
1465
1466	if (prot->memory_pressure) {
1467		if (!*prot->memory_pressure ||
1468		    prot->sysctl_mem[2] > atomic_read(prot->sockets_allocated) *
1469		    sk_mem_pages(sk->sk_wmem_queued +
1470				 atomic_read(&sk->sk_rmem_alloc) +
1471				 sk->sk_forward_alloc))
1472			return 1;
1473	}
1474
1475suppress_allocation:
1476
1477	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
1478		sk_stream_moderate_sndbuf(sk);
1479
1480		/* Fail only if socket is _under_ its sndbuf.
1481		 * In this case we cannot block, so that we have to fail.
1482		 */
1483		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
1484			return 1;
1485	}
1486
1487	/* Alas. Undo changes. */
1488	sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
1489	atomic_sub(amt, prot->memory_allocated);
1490	return 0;
1491}
1492
1493EXPORT_SYMBOL(__sk_mem_schedule);
1494
1495/**
1496 *	__sk_reclaim - reclaim memory_allocated
1497 *	@sk: socket
1498 */
1499void __sk_mem_reclaim(struct sock *sk)
1500{
1501	struct proto *prot = sk->sk_prot;
1502
1503	atomic_sub(sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT,
1504		   prot->memory_allocated);
1505	sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
1506
1507	if (prot->memory_pressure && *prot->memory_pressure &&
1508	    (atomic_read(prot->memory_allocated) < prot->sysctl_mem[0]))
1509		*prot->memory_pressure = 0;
1510}
1511
1512EXPORT_SYMBOL(__sk_mem_reclaim);
1513
1514
1515/*
1516 * Set of default routines for initialising struct proto_ops when
1517 * the protocol does not support a particular function. In certain
1518 * cases where it makes no sense for a protocol to have a "do nothing"
1519 * function, some default processing is provided.
1520 */
1521
1522int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1523{
1524	return -EOPNOTSUPP;
1525}
1526
1527int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1528		    int len, int flags)
1529{
1530	return -EOPNOTSUPP;
1531}
1532
1533int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1534{
1535	return -EOPNOTSUPP;
1536}
1537
1538int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1539{
1540	return -EOPNOTSUPP;
1541}
1542
1543int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1544		    int *len, int peer)
1545{
1546	return -EOPNOTSUPP;
1547}
1548
1549unsigned int sock_no_poll(struct file * file, struct socket *sock, poll_table *pt)
1550{
1551	return 0;
1552}
1553
1554int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1555{
1556	return -EOPNOTSUPP;
1557}
1558
1559int sock_no_listen(struct socket *sock, int backlog)
1560{
1561	return -EOPNOTSUPP;
1562}
1563
1564int sock_no_shutdown(struct socket *sock, int how)
1565{
1566	return -EOPNOTSUPP;
1567}
1568
1569int sock_no_setsockopt(struct socket *sock, int level, int optname,
1570		    char __user *optval, int optlen)
1571{
1572	return -EOPNOTSUPP;
1573}
1574
1575int sock_no_getsockopt(struct socket *sock, int level, int optname,
1576		    char __user *optval, int __user *optlen)
1577{
1578	return -EOPNOTSUPP;
1579}
1580
1581int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1582		    size_t len)
1583{
1584	return -EOPNOTSUPP;
1585}
1586
1587int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1588		    size_t len, int flags)
1589{
1590	return -EOPNOTSUPP;
1591}
1592
1593int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
1594{
1595	/* Mirror missing mmap method error code */
1596	return -ENODEV;
1597}
1598
1599ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
1600{
1601	ssize_t res;
1602	struct msghdr msg = {.msg_flags = flags};
1603	struct kvec iov;
1604	char *kaddr = kmap(page);
1605	iov.iov_base = kaddr + offset;
1606	iov.iov_len = size;
1607	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
1608	kunmap(page);
1609	return res;
1610}
1611
1612/*
1613 *	Default Socket Callbacks
1614 */
1615
1616static void sock_def_wakeup(struct sock *sk)
1617{
1618	read_lock(&sk->sk_callback_lock);
1619	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1620		wake_up_interruptible_all(sk->sk_sleep);
1621	read_unlock(&sk->sk_callback_lock);
1622}
1623
1624static void sock_def_error_report(struct sock *sk)
1625{
1626	read_lock(&sk->sk_callback_lock);
1627	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1628		wake_up_interruptible(sk->sk_sleep);
1629	sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
1630	read_unlock(&sk->sk_callback_lock);
1631}
1632
1633static void sock_def_readable(struct sock *sk, int len)
1634{
1635	read_lock(&sk->sk_callback_lock);
1636	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1637		wake_up_interruptible_sync(sk->sk_sleep);
1638	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
1639	read_unlock(&sk->sk_callback_lock);
1640}
1641
1642static void sock_def_write_space(struct sock *sk)
1643{
1644	read_lock(&sk->sk_callback_lock);
1645
1646	/* Do not wake up a writer until he can make "significant"
1647	 * progress.  --DaveM
1648	 */
1649	if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
1650		if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1651			wake_up_interruptible_sync(sk->sk_sleep);
1652
1653		/* Should agree with poll, otherwise some programs break */
1654		if (sock_writeable(sk))
1655			sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
1656	}
1657
1658	read_unlock(&sk->sk_callback_lock);
1659}
1660
1661static void sock_def_destruct(struct sock *sk)
1662{
1663	kfree(sk->sk_protinfo);
1664}
1665
1666void sk_send_sigurg(struct sock *sk)
1667{
1668	if (sk->sk_socket && sk->sk_socket->file)
1669		if (send_sigurg(&sk->sk_socket->file->f_owner))
1670			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
1671}
1672
1673void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1674		    unsigned long expires)
1675{
1676	if (!mod_timer(timer, expires))
1677		sock_hold(sk);
1678}
1679
1680EXPORT_SYMBOL(sk_reset_timer);
1681
1682void sk_stop_timer(struct sock *sk, struct timer_list* timer)
1683{
1684	if (timer_pending(timer) && del_timer(timer))
1685		__sock_put(sk);
1686}
1687
1688EXPORT_SYMBOL(sk_stop_timer);
1689
1690void sock_init_data(struct socket *sock, struct sock *sk)
1691{
1692	skb_queue_head_init(&sk->sk_receive_queue);
1693	skb_queue_head_init(&sk->sk_write_queue);
1694	skb_queue_head_init(&sk->sk_error_queue);
1695#ifdef CONFIG_NET_DMA
1696	skb_queue_head_init(&sk->sk_async_wait_queue);
1697#endif
1698
1699	sk->sk_send_head	=	NULL;
1700
1701	init_timer(&sk->sk_timer);
1702
1703	sk->sk_allocation	=	GFP_KERNEL;
1704	sk->sk_rcvbuf		=	sysctl_rmem_default;
1705	sk->sk_sndbuf		=	sysctl_wmem_default;
1706	sk->sk_state		=	TCP_CLOSE;
1707	sk->sk_socket		=	sock;
1708
1709	sock_set_flag(sk, SOCK_ZAPPED);
1710
1711	if (sock) {
1712		sk->sk_type	=	sock->type;
1713		sk->sk_sleep	=	&sock->wait;
1714		sock->sk	=	sk;
1715	} else
1716		sk->sk_sleep	=	NULL;
1717
1718	rwlock_init(&sk->sk_dst_lock);
1719	rwlock_init(&sk->sk_callback_lock);
1720	lockdep_set_class_and_name(&sk->sk_callback_lock,
1721			af_callback_keys + sk->sk_family,
1722			af_family_clock_key_strings[sk->sk_family]);
1723
1724	sk->sk_state_change	=	sock_def_wakeup;
1725	sk->sk_data_ready	=	sock_def_readable;
1726	sk->sk_write_space	=	sock_def_write_space;
1727	sk->sk_error_report	=	sock_def_error_report;
1728	sk->sk_destruct		=	sock_def_destruct;
1729
1730	sk->sk_sndmsg_page	=	NULL;
1731	sk->sk_sndmsg_off	=	0;
1732
1733	sk->sk_peercred.pid 	=	0;
1734	sk->sk_peercred.uid	=	-1;
1735	sk->sk_peercred.gid	=	-1;
1736	sk->sk_write_pending	=	0;
1737	sk->sk_rcvlowat		=	1;
1738	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
1739	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
1740
1741	sk->sk_stamp = ktime_set(-1L, 0);
1742
1743	atomic_set(&sk->sk_refcnt, 1);
1744	atomic_set(&sk->sk_drops, 0);
1745}
1746
1747void lock_sock_nested(struct sock *sk, int subclass)
1748{
1749	might_sleep();
1750	spin_lock_bh(&sk->sk_lock.slock);
1751	if (sk->sk_lock.owned)
1752		__lock_sock(sk);
1753	sk->sk_lock.owned = 1;
1754	spin_unlock(&sk->sk_lock.slock);
1755	/*
1756	 * The sk_lock has mutex_lock() semantics here:
1757	 */
1758	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
1759	local_bh_enable();
1760}
1761
1762EXPORT_SYMBOL(lock_sock_nested);
1763
1764void release_sock(struct sock *sk)
1765{
1766	/*
1767	 * The sk_lock has mutex_unlock() semantics:
1768	 */
1769	mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1770
1771	spin_lock_bh(&sk->sk_lock.slock);
1772	if (sk->sk_backlog.tail)
1773		__release_sock(sk);
1774	sk->sk_lock.owned = 0;
1775	if (waitqueue_active(&sk->sk_lock.wq))
1776		wake_up(&sk->sk_lock.wq);
1777	spin_unlock_bh(&sk->sk_lock.slock);
1778}
1779EXPORT_SYMBOL(release_sock);
1780
1781int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
1782{
1783	struct timeval tv;
1784	if (!sock_flag(sk, SOCK_TIMESTAMP))
1785		sock_enable_timestamp(sk);
1786	tv = ktime_to_timeval(sk->sk_stamp);
1787	if (tv.tv_sec == -1)
1788		return -ENOENT;
1789	if (tv.tv_sec == 0) {
1790		sk->sk_stamp = ktime_get_real();
1791		tv = ktime_to_timeval(sk->sk_stamp);
1792	}
1793	return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
1794}
1795EXPORT_SYMBOL(sock_get_timestamp);
1796
1797int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
1798{
1799	struct timespec ts;
1800	if (!sock_flag(sk, SOCK_TIMESTAMP))
1801		sock_enable_timestamp(sk);
1802	ts = ktime_to_timespec(sk->sk_stamp);
1803	if (ts.tv_sec == -1)
1804		return -ENOENT;
1805	if (ts.tv_sec == 0) {
1806		sk->sk_stamp = ktime_get_real();
1807		ts = ktime_to_timespec(sk->sk_stamp);
1808	}
1809	return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
1810}
1811EXPORT_SYMBOL(sock_get_timestampns);
1812
1813void sock_enable_timestamp(struct sock *sk)
1814{
1815	if (!sock_flag(sk, SOCK_TIMESTAMP)) {
1816		sock_set_flag(sk, SOCK_TIMESTAMP);
1817		net_enable_timestamp();
1818	}
1819}
1820
1821/*
1822 *	Get a socket option on an socket.
1823 *
1824 *	FIX: POSIX 1003.1g is very ambiguous here. It states that
1825 *	asynchronous errors should be reported by getsockopt. We assume
1826 *	this means if you specify SO_ERROR (otherwise whats the point of it).
1827 */
1828int sock_common_getsockopt(struct socket *sock, int level, int optname,
1829			   char __user *optval, int __user *optlen)
1830{
1831	struct sock *sk = sock->sk;
1832
1833	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1834}
1835
1836EXPORT_SYMBOL(sock_common_getsockopt);
1837
1838#ifdef CONFIG_COMPAT
1839int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
1840				  char __user *optval, int __user *optlen)
1841{
1842	struct sock *sk = sock->sk;
1843
1844	if (sk->sk_prot->compat_getsockopt != NULL)
1845		return sk->sk_prot->compat_getsockopt(sk, level, optname,
1846						      optval, optlen);
1847	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1848}
1849EXPORT_SYMBOL(compat_sock_common_getsockopt);
1850#endif
1851
1852int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1853			struct msghdr *msg, size_t size, int flags)
1854{
1855	struct sock *sk = sock->sk;
1856	int addr_len = 0;
1857	int err;
1858
1859	err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
1860				   flags & ~MSG_DONTWAIT, &addr_len);
1861	if (err >= 0)
1862		msg->msg_namelen = addr_len;
1863	return err;
1864}
1865
1866EXPORT_SYMBOL(sock_common_recvmsg);
1867
1868/*
1869 *	Set socket options on an inet socket.
1870 */
1871int sock_common_setsockopt(struct socket *sock, int level, int optname,
1872			   char __user *optval, int optlen)
1873{
1874	struct sock *sk = sock->sk;
1875
1876	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
1877}
1878
1879EXPORT_SYMBOL(sock_common_setsockopt);
1880
1881#ifdef CONFIG_COMPAT
1882int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
1883				  char __user *optval, int optlen)
1884{
1885	struct sock *sk = sock->sk;
1886
1887	if (sk->sk_prot->compat_setsockopt != NULL)
1888		return sk->sk_prot->compat_setsockopt(sk, level, optname,
1889						      optval, optlen);
1890	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
1891}
1892EXPORT_SYMBOL(compat_sock_common_setsockopt);
1893#endif
1894
1895void sk_common_release(struct sock *sk)
1896{
1897	if (sk->sk_prot->destroy)
1898		sk->sk_prot->destroy(sk);
1899
1900	/*
1901	 * Observation: when sock_common_release is called, processes have
1902	 * no access to socket. But net still has.
1903	 * Step one, detach it from networking:
1904	 *
1905	 * A. Remove from hash tables.
1906	 */
1907
1908	sk->sk_prot->unhash(sk);
1909
1910	/*
1911	 * In this point socket cannot receive new packets, but it is possible
1912	 * that some packets are in flight because some CPU runs receiver and
1913	 * did hash table lookup before we unhashed socket. They will achieve
1914	 * receive queue and will be purged by socket destructor.
1915	 *
1916	 * Also we still have packets pending on receive queue and probably,
1917	 * our own packets waiting in device queues. sock_destroy will drain
1918	 * receive queue, but transmitted packets will delay socket destruction
1919	 * until the last reference will be released.
1920	 */
1921
1922	sock_orphan(sk);
1923
1924	xfrm_sk_free_policy(sk);
1925
1926	sk_refcnt_debug_release(sk);
1927	sock_put(sk);
1928}
1929
1930EXPORT_SYMBOL(sk_common_release);
1931
1932static DEFINE_RWLOCK(proto_list_lock);
1933static LIST_HEAD(proto_list);
1934
1935#ifdef CONFIG_PROC_FS
1936#define PROTO_INUSE_NR	64	/* should be enough for the first time */
1937struct prot_inuse {
1938	int val[PROTO_INUSE_NR];
1939};
1940
1941static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
1942
1943#ifdef CONFIG_NET_NS
1944void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
1945{
1946	int cpu = smp_processor_id();
1947	per_cpu_ptr(net->core.inuse, cpu)->val[prot->inuse_idx] += val;
1948}
1949EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
1950
1951int sock_prot_inuse_get(struct net *net, struct proto *prot)
1952{
1953	int cpu, idx = prot->inuse_idx;
1954	int res = 0;
1955
1956	for_each_possible_cpu(cpu)
1957		res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
1958
1959	return res >= 0 ? res : 0;
1960}
1961EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
1962
1963static int sock_inuse_init_net(struct net *net)
1964{
1965	net->core.inuse = alloc_percpu(struct prot_inuse);
1966	return net->core.inuse ? 0 : -ENOMEM;
1967}
1968
1969static void sock_inuse_exit_net(struct net *net)
1970{
1971	free_percpu(net->core.inuse);
1972}
1973
1974static struct pernet_operations net_inuse_ops = {
1975	.init = sock_inuse_init_net,
1976	.exit = sock_inuse_exit_net,
1977};
1978
1979static __init int net_inuse_init(void)
1980{
1981	if (register_pernet_subsys(&net_inuse_ops))
1982		panic("Cannot initialize net inuse counters");
1983
1984	return 0;
1985}
1986
1987core_initcall(net_inuse_init);
1988#else
1989static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
1990
1991void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
1992{
1993	__get_cpu_var(prot_inuse).val[prot->inuse_idx] += val;
1994}
1995EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
1996
1997int sock_prot_inuse_get(struct net *net, struct proto *prot)
1998{
1999	int cpu, idx = prot->inuse_idx;
2000	int res = 0;
2001
2002	for_each_possible_cpu(cpu)
2003		res += per_cpu(prot_inuse, cpu).val[idx];
2004
2005	return res >= 0 ? res : 0;
2006}
2007EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2008#endif
2009
2010static void assign_proto_idx(struct proto *prot)
2011{
2012	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2013
2014	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2015		printk(KERN_ERR "PROTO_INUSE_NR exhausted\n");
2016		return;
2017	}
2018
2019	set_bit(prot->inuse_idx, proto_inuse_idx);
2020}
2021
2022static void release_proto_idx(struct proto *prot)
2023{
2024	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2025		clear_bit(prot->inuse_idx, proto_inuse_idx);
2026}
2027#else
2028static inline void assign_proto_idx(struct proto *prot)
2029{
2030}
2031
2032static inline void release_proto_idx(struct proto *prot)
2033{
2034}
2035#endif
2036
2037int proto_register(struct proto *prot, int alloc_slab)
2038{
2039	char *request_sock_slab_name = NULL;
2040	char *timewait_sock_slab_name;
2041
2042	if (alloc_slab) {
2043		prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2044					       SLAB_HWCACHE_ALIGN, NULL);
2045
2046		if (prot->slab == NULL) {
2047			printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n",
2048			       prot->name);
2049			goto out;
2050		}
2051
2052		if (prot->rsk_prot != NULL) {
2053			static const char mask[] = "request_sock_%s";
2054
2055			request_sock_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
2056			if (request_sock_slab_name == NULL)
2057				goto out_free_sock_slab;
2058
2059			sprintf(request_sock_slab_name, mask, prot->name);
2060			prot->rsk_prot->slab = kmem_cache_create(request_sock_slab_name,
2061								 prot->rsk_prot->obj_size, 0,
2062								 SLAB_HWCACHE_ALIGN, NULL);
2063
2064			if (prot->rsk_prot->slab == NULL) {
2065				printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n",
2066				       prot->name);
2067				goto out_free_request_sock_slab_name;
2068			}
2069		}
2070
2071		if (prot->twsk_prot != NULL) {
2072			static const char mask[] = "tw_sock_%s";
2073
2074			timewait_sock_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
2075
2076			if (timewait_sock_slab_name == NULL)
2077				goto out_free_request_sock_slab;
2078
2079			sprintf(timewait_sock_slab_name, mask, prot->name);
2080			prot->twsk_prot->twsk_slab =
2081				kmem_cache_create(timewait_sock_slab_name,
2082						  prot->twsk_prot->twsk_obj_size,
2083						  0, SLAB_HWCACHE_ALIGN,
2084						  NULL);
2085			if (prot->twsk_prot->twsk_slab == NULL)
2086				goto out_free_timewait_sock_slab_name;
2087		}
2088	}
2089
2090	write_lock(&proto_list_lock);
2091	list_add(&prot->node, &proto_list);
2092	assign_proto_idx(prot);
2093	write_unlock(&proto_list_lock);
2094	return 0;
2095
2096out_free_timewait_sock_slab_name:
2097	kfree(timewait_sock_slab_name);
2098out_free_request_sock_slab:
2099	if (prot->rsk_prot && prot->rsk_prot->slab) {
2100		kmem_cache_destroy(prot->rsk_prot->slab);
2101		prot->rsk_prot->slab = NULL;
2102	}
2103out_free_request_sock_slab_name:
2104	kfree(request_sock_slab_name);
2105out_free_sock_slab:
2106	kmem_cache_destroy(prot->slab);
2107	prot->slab = NULL;
2108out:
2109	return -ENOBUFS;
2110}
2111
2112EXPORT_SYMBOL(proto_register);
2113
2114void proto_unregister(struct proto *prot)
2115{
2116	write_lock(&proto_list_lock);
2117	release_proto_idx(prot);
2118	list_del(&prot->node);
2119	write_unlock(&proto_list_lock);
2120
2121	if (prot->slab != NULL) {
2122		kmem_cache_destroy(prot->slab);
2123		prot->slab = NULL;
2124	}
2125
2126	if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2127		const char *name = kmem_cache_name(prot->rsk_prot->slab);
2128
2129		kmem_cache_destroy(prot->rsk_prot->slab);
2130		kfree(name);
2131		prot->rsk_prot->slab = NULL;
2132	}
2133
2134	if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2135		const char *name = kmem_cache_name(prot->twsk_prot->twsk_slab);
2136
2137		kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2138		kfree(name);
2139		prot->twsk_prot->twsk_slab = NULL;
2140	}
2141}
2142
2143EXPORT_SYMBOL(proto_unregister);
2144
2145#ifdef CONFIG_PROC_FS
2146static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2147	__acquires(proto_list_lock)
2148{
2149	read_lock(&proto_list_lock);
2150	return seq_list_start_head(&proto_list, *pos);
2151}
2152
2153static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2154{
2155	return seq_list_next(v, &proto_list, pos);
2156}
2157
2158static void proto_seq_stop(struct seq_file *seq, void *v)
2159	__releases(proto_list_lock)
2160{
2161	read_unlock(&proto_list_lock);
2162}
2163
2164static char proto_method_implemented(const void *method)
2165{
2166	return method == NULL ? 'n' : 'y';
2167}
2168
2169static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2170{
2171	seq_printf(seq, "%-9s %4u %6d  %6d   %-3s %6u   %-3s  %-10s "
2172			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2173		   proto->name,
2174		   proto->obj_size,
2175		   proto->sockets_allocated != NULL ? atomic_read(proto->sockets_allocated) : -1,
2176		   proto->memory_allocated != NULL ? atomic_read(proto->memory_allocated) : -1,
2177		   proto->memory_pressure != NULL ? *proto->memory_pressure ? "yes" : "no" : "NI",
2178		   proto->max_header,
2179		   proto->slab == NULL ? "no" : "yes",
2180		   module_name(proto->owner),
2181		   proto_method_implemented(proto->close),
2182		   proto_method_implemented(proto->connect),
2183		   proto_method_implemented(proto->disconnect),
2184		   proto_method_implemented(proto->accept),
2185		   proto_method_implemented(proto->ioctl),
2186		   proto_method_implemented(proto->init),
2187		   proto_method_implemented(proto->destroy),
2188		   proto_method_implemented(proto->shutdown),
2189		   proto_method_implemented(proto->setsockopt),
2190		   proto_method_implemented(proto->getsockopt),
2191		   proto_method_implemented(proto->sendmsg),
2192		   proto_method_implemented(proto->recvmsg),
2193		   proto_method_implemented(proto->sendpage),
2194		   proto_method_implemented(proto->bind),
2195		   proto_method_implemented(proto->backlog_rcv),
2196		   proto_method_implemented(proto->hash),
2197		   proto_method_implemented(proto->unhash),
2198		   proto_method_implemented(proto->get_port),
2199		   proto_method_implemented(proto->enter_memory_pressure));
2200}
2201
2202static int proto_seq_show(struct seq_file *seq, void *v)
2203{
2204	if (v == &proto_list)
2205		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2206			   "protocol",
2207			   "size",
2208			   "sockets",
2209			   "memory",
2210			   "press",
2211			   "maxhdr",
2212			   "slab",
2213			   "module",
2214			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2215	else
2216		proto_seq_printf(seq, list_entry(v, struct proto, node));
2217	return 0;
2218}
2219
2220static const struct seq_operations proto_seq_ops = {
2221	.start  = proto_seq_start,
2222	.next   = proto_seq_next,
2223	.stop   = proto_seq_stop,
2224	.show   = proto_seq_show,
2225};
2226
2227static int proto_seq_open(struct inode *inode, struct file *file)
2228{
2229	return seq_open(file, &proto_seq_ops);
2230}
2231
2232static const struct file_operations proto_seq_fops = {
2233	.owner		= THIS_MODULE,
2234	.open		= proto_seq_open,
2235	.read		= seq_read,
2236	.llseek		= seq_lseek,
2237	.release	= seq_release,
2238};
2239
2240static int __init proto_init(void)
2241{
2242	/* register /proc/net/protocols */
2243	return proc_net_fops_create(&init_net, "protocols", S_IRUGO, &proto_seq_fops) == NULL ? -ENOBUFS : 0;
2244}
2245
2246subsys_initcall(proto_init);
2247
2248#endif /* PROC_FS */
2249
2250EXPORT_SYMBOL(sk_alloc);
2251EXPORT_SYMBOL(sk_free);
2252EXPORT_SYMBOL(sk_send_sigurg);
2253EXPORT_SYMBOL(sock_alloc_send_skb);
2254EXPORT_SYMBOL(sock_init_data);
2255EXPORT_SYMBOL(sock_kfree_s);
2256EXPORT_SYMBOL(sock_kmalloc);
2257EXPORT_SYMBOL(sock_no_accept);
2258EXPORT_SYMBOL(sock_no_bind);
2259EXPORT_SYMBOL(sock_no_connect);
2260EXPORT_SYMBOL(sock_no_getname);
2261EXPORT_SYMBOL(sock_no_getsockopt);
2262EXPORT_SYMBOL(sock_no_ioctl);
2263EXPORT_SYMBOL(sock_no_listen);
2264EXPORT_SYMBOL(sock_no_mmap);
2265EXPORT_SYMBOL(sock_no_poll);
2266EXPORT_SYMBOL(sock_no_recvmsg);
2267EXPORT_SYMBOL(sock_no_sendmsg);
2268EXPORT_SYMBOL(sock_no_sendpage);
2269EXPORT_SYMBOL(sock_no_setsockopt);
2270EXPORT_SYMBOL(sock_no_shutdown);
2271EXPORT_SYMBOL(sock_no_socketpair);
2272EXPORT_SYMBOL(sock_rfree);
2273EXPORT_SYMBOL(sock_setsockopt);
2274EXPORT_SYMBOL(sock_wfree);
2275EXPORT_SYMBOL(sock_wmalloc);
2276EXPORT_SYMBOL(sock_i_uid);
2277EXPORT_SYMBOL(sock_i_ino);
2278EXPORT_SYMBOL(sysctl_optmem_max);
2279