sock.c revision f845172531fb7410c7fb7780b1a6e51ee6df7d52
1/*
2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
3 *		operating system.  INET is implemented using the  BSD Socket
4 *		interface as the means of communication with the user level.
5 *
6 *		Generic socket support routines. Memory allocators, socket lock/release
7 *		handler for protocols to use and generic option handler.
8 *
9 *
10 * Authors:	Ross Biro
11 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 *		Florian La Roche, <flla@stud.uni-sb.de>
13 *		Alan Cox, <A.Cox@swansea.ac.uk>
14 *
15 * Fixes:
16 *		Alan Cox	: 	Numerous verify_area() problems
17 *		Alan Cox	:	Connecting on a connecting socket
18 *					now returns an error for tcp.
19 *		Alan Cox	:	sock->protocol is set correctly.
20 *					and is not sometimes left as 0.
21 *		Alan Cox	:	connect handles icmp errors on a
22 *					connect properly. Unfortunately there
23 *					is a restart syscall nasty there. I
24 *					can't match BSD without hacking the C
25 *					library. Ideas urgently sought!
26 *		Alan Cox	:	Disallow bind() to addresses that are
27 *					not ours - especially broadcast ones!!
28 *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
29 *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
30 *					instead they leave that for the DESTROY timer.
31 *		Alan Cox	:	Clean up error flag in accept
32 *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
33 *					was buggy. Put a remove_sock() in the handler
34 *					for memory when we hit 0. Also altered the timer
35 *					code. The ACK stuff can wait and needs major
36 *					TCP layer surgery.
37 *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
38 *					and fixed timer/inet_bh race.
39 *		Alan Cox	:	Added zapped flag for TCP
40 *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
41 *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
43 *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
46 *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
47 *	Pauline Middelink	:	identd support
48 *		Alan Cox	:	Fixed connect() taking signals I think.
49 *		Alan Cox	:	SO_LINGER supported
50 *		Alan Cox	:	Error reporting fixes
51 *		Anonymous	:	inet_create tidied up (sk->reuse setting)
52 *		Alan Cox	:	inet sockets don't set sk->type!
53 *		Alan Cox	:	Split socket option code
54 *		Alan Cox	:	Callbacks
55 *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
56 *		Alex		:	Removed restriction on inet fioctl
57 *		Alan Cox	:	Splitting INET from NET core
58 *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
59 *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
60 *		Alan Cox	:	Split IP from generic code
61 *		Alan Cox	:	New kfree_skbmem()
62 *		Alan Cox	:	Make SO_DEBUG superuser only.
63 *		Alan Cox	:	Allow anyone to clear SO_DEBUG
64 *					(compatibility fix)
65 *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
66 *		Alan Cox	:	Allocator for a socket is settable.
67 *		Alan Cox	:	SO_ERROR includes soft errors.
68 *		Alan Cox	:	Allow NULL arguments on some SO_ opts
69 *		Alan Cox	: 	Generic socket allocation to make hooks
70 *					easier (suggested by Craig Metz).
71 *		Michael Pall	:	SO_ERROR returns positive errno again
72 *              Steve Whitehouse:       Added default destructor to free
73 *                                      protocol private data.
74 *              Steve Whitehouse:       Added various other default routines
75 *                                      common to several socket families.
76 *              Chris Evans     :       Call suser() check last on F_SETOWN
77 *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
79 *		Andi Kleen	:	Fix write_space callback
80 *		Chris Evans	:	Security fixes - signedness again
81 *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
82 *
83 * To Fix:
84 *
85 *
86 *		This program is free software; you can redistribute it and/or
87 *		modify it under the terms of the GNU General Public License
88 *		as published by the Free Software Foundation; either version
89 *		2 of the License, or (at your option) any later version.
90 */
91
92#include <linux/capability.h>
93#include <linux/errno.h>
94#include <linux/types.h>
95#include <linux/socket.h>
96#include <linux/in.h>
97#include <linux/kernel.h>
98#include <linux/module.h>
99#include <linux/proc_fs.h>
100#include <linux/seq_file.h>
101#include <linux/sched.h>
102#include <linux/timer.h>
103#include <linux/string.h>
104#include <linux/sockios.h>
105#include <linux/net.h>
106#include <linux/mm.h>
107#include <linux/slab.h>
108#include <linux/interrupt.h>
109#include <linux/poll.h>
110#include <linux/tcp.h>
111#include <linux/init.h>
112#include <linux/highmem.h>
113
114#include <asm/uaccess.h>
115#include <asm/system.h>
116
117#include <linux/netdevice.h>
118#include <net/protocol.h>
119#include <linux/skbuff.h>
120#include <net/net_namespace.h>
121#include <net/request_sock.h>
122#include <net/sock.h>
123#include <linux/net_tstamp.h>
124#include <net/xfrm.h>
125#include <linux/ipsec.h>
126#include <net/cls_cgroup.h>
127
128#include <linux/filter.h>
129
130#ifdef CONFIG_INET
131#include <net/tcp.h>
132#endif
133
134/*
135 * Each address family might have different locking rules, so we have
136 * one slock key per address family:
137 */
138static struct lock_class_key af_family_keys[AF_MAX];
139static struct lock_class_key af_family_slock_keys[AF_MAX];
140
141/*
142 * Make lock validator output more readable. (we pre-construct these
143 * strings build-time, so that runtime initialization of socket
144 * locks is fast):
145 */
146static const char *const af_family_key_strings[AF_MAX+1] = {
147  "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX"     , "sk_lock-AF_INET"     ,
148  "sk_lock-AF_AX25"  , "sk_lock-AF_IPX"      , "sk_lock-AF_APPLETALK",
149  "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE"   , "sk_lock-AF_ATMPVC"   ,
150  "sk_lock-AF_X25"   , "sk_lock-AF_INET6"    , "sk_lock-AF_ROSE"     ,
151  "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI"  , "sk_lock-AF_SECURITY" ,
152  "sk_lock-AF_KEY"   , "sk_lock-AF_NETLINK"  , "sk_lock-AF_PACKET"   ,
153  "sk_lock-AF_ASH"   , "sk_lock-AF_ECONET"   , "sk_lock-AF_ATMSVC"   ,
154  "sk_lock-AF_RDS"   , "sk_lock-AF_SNA"      , "sk_lock-AF_IRDA"     ,
155  "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE"  , "sk_lock-AF_LLC"      ,
156  "sk_lock-27"       , "sk_lock-28"          , "sk_lock-AF_CAN"      ,
157  "sk_lock-AF_TIPC"  , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV"        ,
158  "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN"     , "sk_lock-AF_PHONET"   ,
159  "sk_lock-AF_IEEE802154",
160  "sk_lock-AF_MAX"
161};
162static const char *const af_family_slock_key_strings[AF_MAX+1] = {
163  "slock-AF_UNSPEC", "slock-AF_UNIX"     , "slock-AF_INET"     ,
164  "slock-AF_AX25"  , "slock-AF_IPX"      , "slock-AF_APPLETALK",
165  "slock-AF_NETROM", "slock-AF_BRIDGE"   , "slock-AF_ATMPVC"   ,
166  "slock-AF_X25"   , "slock-AF_INET6"    , "slock-AF_ROSE"     ,
167  "slock-AF_DECnet", "slock-AF_NETBEUI"  , "slock-AF_SECURITY" ,
168  "slock-AF_KEY"   , "slock-AF_NETLINK"  , "slock-AF_PACKET"   ,
169  "slock-AF_ASH"   , "slock-AF_ECONET"   , "slock-AF_ATMSVC"   ,
170  "slock-AF_RDS"   , "slock-AF_SNA"      , "slock-AF_IRDA"     ,
171  "slock-AF_PPPOX" , "slock-AF_WANPIPE"  , "slock-AF_LLC"      ,
172  "slock-27"       , "slock-28"          , "slock-AF_CAN"      ,
173  "slock-AF_TIPC"  , "slock-AF_BLUETOOTH", "slock-AF_IUCV"     ,
174  "slock-AF_RXRPC" , "slock-AF_ISDN"     , "slock-AF_PHONET"   ,
175  "slock-AF_IEEE802154",
176  "slock-AF_MAX"
177};
178static const char *const af_family_clock_key_strings[AF_MAX+1] = {
179  "clock-AF_UNSPEC", "clock-AF_UNIX"     , "clock-AF_INET"     ,
180  "clock-AF_AX25"  , "clock-AF_IPX"      , "clock-AF_APPLETALK",
181  "clock-AF_NETROM", "clock-AF_BRIDGE"   , "clock-AF_ATMPVC"   ,
182  "clock-AF_X25"   , "clock-AF_INET6"    , "clock-AF_ROSE"     ,
183  "clock-AF_DECnet", "clock-AF_NETBEUI"  , "clock-AF_SECURITY" ,
184  "clock-AF_KEY"   , "clock-AF_NETLINK"  , "clock-AF_PACKET"   ,
185  "clock-AF_ASH"   , "clock-AF_ECONET"   , "clock-AF_ATMSVC"   ,
186  "clock-AF_RDS"   , "clock-AF_SNA"      , "clock-AF_IRDA"     ,
187  "clock-AF_PPPOX" , "clock-AF_WANPIPE"  , "clock-AF_LLC"      ,
188  "clock-27"       , "clock-28"          , "clock-AF_CAN"      ,
189  "clock-AF_TIPC"  , "clock-AF_BLUETOOTH", "clock-AF_IUCV"     ,
190  "clock-AF_RXRPC" , "clock-AF_ISDN"     , "clock-AF_PHONET"   ,
191  "clock-AF_IEEE802154",
192  "clock-AF_MAX"
193};
194
195/*
196 * sk_callback_lock locking rules are per-address-family,
197 * so split the lock classes by using a per-AF key:
198 */
199static struct lock_class_key af_callback_keys[AF_MAX];
200
201/* Take into consideration the size of the struct sk_buff overhead in the
202 * determination of these values, since that is non-constant across
203 * platforms.  This makes socket queueing behavior and performance
204 * not depend upon such differences.
205 */
206#define _SK_MEM_PACKETS		256
207#define _SK_MEM_OVERHEAD	(sizeof(struct sk_buff) + 256)
208#define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
209#define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
210
211/* Run time adjustable parameters. */
212__u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
213__u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
214__u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
215__u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
216
217/* Maximal space eaten by iovec or ancilliary data plus some space */
218int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
219EXPORT_SYMBOL(sysctl_optmem_max);
220
221#if defined(CONFIG_CGROUPS) && !defined(CONFIG_NET_CLS_CGROUP)
222int net_cls_subsys_id = -1;
223EXPORT_SYMBOL_GPL(net_cls_subsys_id);
224#endif
225
226static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
227{
228	struct timeval tv;
229
230	if (optlen < sizeof(tv))
231		return -EINVAL;
232	if (copy_from_user(&tv, optval, sizeof(tv)))
233		return -EFAULT;
234	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
235		return -EDOM;
236
237	if (tv.tv_sec < 0) {
238		static int warned __read_mostly;
239
240		*timeo_p = 0;
241		if (warned < 10 && net_ratelimit()) {
242			warned++;
243			printk(KERN_INFO "sock_set_timeout: `%s' (pid %d) "
244			       "tries to set negative timeout\n",
245				current->comm, task_pid_nr(current));
246		}
247		return 0;
248	}
249	*timeo_p = MAX_SCHEDULE_TIMEOUT;
250	if (tv.tv_sec == 0 && tv.tv_usec == 0)
251		return 0;
252	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
253		*timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
254	return 0;
255}
256
257static void sock_warn_obsolete_bsdism(const char *name)
258{
259	static int warned;
260	static char warncomm[TASK_COMM_LEN];
261	if (strcmp(warncomm, current->comm) && warned < 5) {
262		strcpy(warncomm,  current->comm);
263		printk(KERN_WARNING "process `%s' is using obsolete "
264		       "%s SO_BSDCOMPAT\n", warncomm, name);
265		warned++;
266	}
267}
268
269static void sock_disable_timestamp(struct sock *sk, int flag)
270{
271	if (sock_flag(sk, flag)) {
272		sock_reset_flag(sk, flag);
273		if (!sock_flag(sk, SOCK_TIMESTAMP) &&
274		    !sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE)) {
275			net_disable_timestamp();
276		}
277	}
278}
279
280
281int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
282{
283	int err;
284	int skb_len;
285	unsigned long flags;
286	struct sk_buff_head *list = &sk->sk_receive_queue;
287
288	/* Cast sk->rcvbuf to unsigned... It's pointless, but reduces
289	   number of warnings when compiling with -W --ANK
290	 */
291	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
292	    (unsigned)sk->sk_rcvbuf) {
293		atomic_inc(&sk->sk_drops);
294		return -ENOMEM;
295	}
296
297	err = sk_filter(sk, skb);
298	if (err)
299		return err;
300
301	if (!sk_rmem_schedule(sk, skb->truesize)) {
302		atomic_inc(&sk->sk_drops);
303		return -ENOBUFS;
304	}
305
306	skb->dev = NULL;
307	skb_set_owner_r(skb, sk);
308
309	/* Cache the SKB length before we tack it onto the receive
310	 * queue.  Once it is added it no longer belongs to us and
311	 * may be freed by other threads of control pulling packets
312	 * from the queue.
313	 */
314	skb_len = skb->len;
315
316	/* we escape from rcu protected region, make sure we dont leak
317	 * a norefcounted dst
318	 */
319	skb_dst_force(skb);
320
321	spin_lock_irqsave(&list->lock, flags);
322	skb->dropcount = atomic_read(&sk->sk_drops);
323	__skb_queue_tail(list, skb);
324	spin_unlock_irqrestore(&list->lock, flags);
325
326	if (!sock_flag(sk, SOCK_DEAD))
327		sk->sk_data_ready(sk, skb_len);
328	return 0;
329}
330EXPORT_SYMBOL(sock_queue_rcv_skb);
331
332int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
333{
334	int rc = NET_RX_SUCCESS;
335
336	if (sk_filter(sk, skb))
337		goto discard_and_relse;
338
339	skb->dev = NULL;
340
341	if (sk_rcvqueues_full(sk, skb)) {
342		atomic_inc(&sk->sk_drops);
343		goto discard_and_relse;
344	}
345	if (nested)
346		bh_lock_sock_nested(sk);
347	else
348		bh_lock_sock(sk);
349	if (!sock_owned_by_user(sk)) {
350		/*
351		 * trylock + unlock semantics:
352		 */
353		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
354
355		rc = sk_backlog_rcv(sk, skb);
356
357		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
358	} else if (sk_add_backlog(sk, skb)) {
359		bh_unlock_sock(sk);
360		atomic_inc(&sk->sk_drops);
361		goto discard_and_relse;
362	}
363
364	bh_unlock_sock(sk);
365out:
366	sock_put(sk);
367	return rc;
368discard_and_relse:
369	kfree_skb(skb);
370	goto out;
371}
372EXPORT_SYMBOL(sk_receive_skb);
373
374void sk_reset_txq(struct sock *sk)
375{
376	sk_tx_queue_clear(sk);
377}
378EXPORT_SYMBOL(sk_reset_txq);
379
380struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
381{
382	struct dst_entry *dst = __sk_dst_get(sk);
383
384	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
385		sk_tx_queue_clear(sk);
386		rcu_assign_pointer(sk->sk_dst_cache, NULL);
387		dst_release(dst);
388		return NULL;
389	}
390
391	return dst;
392}
393EXPORT_SYMBOL(__sk_dst_check);
394
395struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
396{
397	struct dst_entry *dst = sk_dst_get(sk);
398
399	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
400		sk_dst_reset(sk);
401		dst_release(dst);
402		return NULL;
403	}
404
405	return dst;
406}
407EXPORT_SYMBOL(sk_dst_check);
408
409static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
410{
411	int ret = -ENOPROTOOPT;
412#ifdef CONFIG_NETDEVICES
413	struct net *net = sock_net(sk);
414	char devname[IFNAMSIZ];
415	int index;
416
417	/* Sorry... */
418	ret = -EPERM;
419	if (!capable(CAP_NET_RAW))
420		goto out;
421
422	ret = -EINVAL;
423	if (optlen < 0)
424		goto out;
425
426	/* Bind this socket to a particular device like "eth0",
427	 * as specified in the passed interface name. If the
428	 * name is "" or the option length is zero the socket
429	 * is not bound.
430	 */
431	if (optlen > IFNAMSIZ - 1)
432		optlen = IFNAMSIZ - 1;
433	memset(devname, 0, sizeof(devname));
434
435	ret = -EFAULT;
436	if (copy_from_user(devname, optval, optlen))
437		goto out;
438
439	index = 0;
440	if (devname[0] != '\0') {
441		struct net_device *dev;
442
443		rcu_read_lock();
444		dev = dev_get_by_name_rcu(net, devname);
445		if (dev)
446			index = dev->ifindex;
447		rcu_read_unlock();
448		ret = -ENODEV;
449		if (!dev)
450			goto out;
451	}
452
453	lock_sock(sk);
454	sk->sk_bound_dev_if = index;
455	sk_dst_reset(sk);
456	release_sock(sk);
457
458	ret = 0;
459
460out:
461#endif
462
463	return ret;
464}
465
466static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
467{
468	if (valbool)
469		sock_set_flag(sk, bit);
470	else
471		sock_reset_flag(sk, bit);
472}
473
474/*
475 *	This is meant for all protocols to use and covers goings on
476 *	at the socket level. Everything here is generic.
477 */
478
479int sock_setsockopt(struct socket *sock, int level, int optname,
480		    char __user *optval, unsigned int optlen)
481{
482	struct sock *sk = sock->sk;
483	int val;
484	int valbool;
485	struct linger ling;
486	int ret = 0;
487
488	/*
489	 *	Options without arguments
490	 */
491
492	if (optname == SO_BINDTODEVICE)
493		return sock_bindtodevice(sk, optval, optlen);
494
495	if (optlen < sizeof(int))
496		return -EINVAL;
497
498	if (get_user(val, (int __user *)optval))
499		return -EFAULT;
500
501	valbool = val ? 1 : 0;
502
503	lock_sock(sk);
504
505	switch (optname) {
506	case SO_DEBUG:
507		if (val && !capable(CAP_NET_ADMIN))
508			ret = -EACCES;
509		else
510			sock_valbool_flag(sk, SOCK_DBG, valbool);
511		break;
512	case SO_REUSEADDR:
513		sk->sk_reuse = valbool;
514		break;
515	case SO_TYPE:
516	case SO_PROTOCOL:
517	case SO_DOMAIN:
518	case SO_ERROR:
519		ret = -ENOPROTOOPT;
520		break;
521	case SO_DONTROUTE:
522		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
523		break;
524	case SO_BROADCAST:
525		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
526		break;
527	case SO_SNDBUF:
528		/* Don't error on this BSD doesn't and if you think
529		   about it this is right. Otherwise apps have to
530		   play 'guess the biggest size' games. RCVBUF/SNDBUF
531		   are treated in BSD as hints */
532
533		if (val > sysctl_wmem_max)
534			val = sysctl_wmem_max;
535set_sndbuf:
536		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
537		if ((val * 2) < SOCK_MIN_SNDBUF)
538			sk->sk_sndbuf = SOCK_MIN_SNDBUF;
539		else
540			sk->sk_sndbuf = val * 2;
541
542		/*
543		 *	Wake up sending tasks if we
544		 *	upped the value.
545		 */
546		sk->sk_write_space(sk);
547		break;
548
549	case SO_SNDBUFFORCE:
550		if (!capable(CAP_NET_ADMIN)) {
551			ret = -EPERM;
552			break;
553		}
554		goto set_sndbuf;
555
556	case SO_RCVBUF:
557		/* Don't error on this BSD doesn't and if you think
558		   about it this is right. Otherwise apps have to
559		   play 'guess the biggest size' games. RCVBUF/SNDBUF
560		   are treated in BSD as hints */
561
562		if (val > sysctl_rmem_max)
563			val = sysctl_rmem_max;
564set_rcvbuf:
565		sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
566		/*
567		 * We double it on the way in to account for
568		 * "struct sk_buff" etc. overhead.   Applications
569		 * assume that the SO_RCVBUF setting they make will
570		 * allow that much actual data to be received on that
571		 * socket.
572		 *
573		 * Applications are unaware that "struct sk_buff" and
574		 * other overheads allocate from the receive buffer
575		 * during socket buffer allocation.
576		 *
577		 * And after considering the possible alternatives,
578		 * returning the value we actually used in getsockopt
579		 * is the most desirable behavior.
580		 */
581		if ((val * 2) < SOCK_MIN_RCVBUF)
582			sk->sk_rcvbuf = SOCK_MIN_RCVBUF;
583		else
584			sk->sk_rcvbuf = val * 2;
585		break;
586
587	case SO_RCVBUFFORCE:
588		if (!capable(CAP_NET_ADMIN)) {
589			ret = -EPERM;
590			break;
591		}
592		goto set_rcvbuf;
593
594	case SO_KEEPALIVE:
595#ifdef CONFIG_INET
596		if (sk->sk_protocol == IPPROTO_TCP)
597			tcp_set_keepalive(sk, valbool);
598#endif
599		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
600		break;
601
602	case SO_OOBINLINE:
603		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
604		break;
605
606	case SO_NO_CHECK:
607		sk->sk_no_check = valbool;
608		break;
609
610	case SO_PRIORITY:
611		if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
612			sk->sk_priority = val;
613		else
614			ret = -EPERM;
615		break;
616
617	case SO_LINGER:
618		if (optlen < sizeof(ling)) {
619			ret = -EINVAL;	/* 1003.1g */
620			break;
621		}
622		if (copy_from_user(&ling, optval, sizeof(ling))) {
623			ret = -EFAULT;
624			break;
625		}
626		if (!ling.l_onoff)
627			sock_reset_flag(sk, SOCK_LINGER);
628		else {
629#if (BITS_PER_LONG == 32)
630			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
631				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
632			else
633#endif
634				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
635			sock_set_flag(sk, SOCK_LINGER);
636		}
637		break;
638
639	case SO_BSDCOMPAT:
640		sock_warn_obsolete_bsdism("setsockopt");
641		break;
642
643	case SO_PASSCRED:
644		if (valbool)
645			set_bit(SOCK_PASSCRED, &sock->flags);
646		else
647			clear_bit(SOCK_PASSCRED, &sock->flags);
648		break;
649
650	case SO_TIMESTAMP:
651	case SO_TIMESTAMPNS:
652		if (valbool)  {
653			if (optname == SO_TIMESTAMP)
654				sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
655			else
656				sock_set_flag(sk, SOCK_RCVTSTAMPNS);
657			sock_set_flag(sk, SOCK_RCVTSTAMP);
658			sock_enable_timestamp(sk, SOCK_TIMESTAMP);
659		} else {
660			sock_reset_flag(sk, SOCK_RCVTSTAMP);
661			sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
662		}
663		break;
664
665	case SO_TIMESTAMPING:
666		if (val & ~SOF_TIMESTAMPING_MASK) {
667			ret = -EINVAL;
668			break;
669		}
670		sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE,
671				  val & SOF_TIMESTAMPING_TX_HARDWARE);
672		sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE,
673				  val & SOF_TIMESTAMPING_TX_SOFTWARE);
674		sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE,
675				  val & SOF_TIMESTAMPING_RX_HARDWARE);
676		if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
677			sock_enable_timestamp(sk,
678					      SOCK_TIMESTAMPING_RX_SOFTWARE);
679		else
680			sock_disable_timestamp(sk,
681					       SOCK_TIMESTAMPING_RX_SOFTWARE);
682		sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE,
683				  val & SOF_TIMESTAMPING_SOFTWARE);
684		sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE,
685				  val & SOF_TIMESTAMPING_SYS_HARDWARE);
686		sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE,
687				  val & SOF_TIMESTAMPING_RAW_HARDWARE);
688		break;
689
690	case SO_RCVLOWAT:
691		if (val < 0)
692			val = INT_MAX;
693		sk->sk_rcvlowat = val ? : 1;
694		break;
695
696	case SO_RCVTIMEO:
697		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
698		break;
699
700	case SO_SNDTIMEO:
701		ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
702		break;
703
704	case SO_ATTACH_FILTER:
705		ret = -EINVAL;
706		if (optlen == sizeof(struct sock_fprog)) {
707			struct sock_fprog fprog;
708
709			ret = -EFAULT;
710			if (copy_from_user(&fprog, optval, sizeof(fprog)))
711				break;
712
713			ret = sk_attach_filter(&fprog, sk);
714		}
715		break;
716
717	case SO_DETACH_FILTER:
718		ret = sk_detach_filter(sk);
719		break;
720
721	case SO_PASSSEC:
722		if (valbool)
723			set_bit(SOCK_PASSSEC, &sock->flags);
724		else
725			clear_bit(SOCK_PASSSEC, &sock->flags);
726		break;
727	case SO_MARK:
728		if (!capable(CAP_NET_ADMIN))
729			ret = -EPERM;
730		else
731			sk->sk_mark = val;
732		break;
733
734		/* We implement the SO_SNDLOWAT etc to
735		   not be settable (1003.1g 5.3) */
736	case SO_RXQ_OVFL:
737		if (valbool)
738			sock_set_flag(sk, SOCK_RXQ_OVFL);
739		else
740			sock_reset_flag(sk, SOCK_RXQ_OVFL);
741		break;
742	default:
743		ret = -ENOPROTOOPT;
744		break;
745	}
746	release_sock(sk);
747	return ret;
748}
749EXPORT_SYMBOL(sock_setsockopt);
750
751
752int sock_getsockopt(struct socket *sock, int level, int optname,
753		    char __user *optval, int __user *optlen)
754{
755	struct sock *sk = sock->sk;
756
757	union {
758		int val;
759		struct linger ling;
760		struct timeval tm;
761	} v;
762
763	int lv = sizeof(int);
764	int len;
765
766	if (get_user(len, optlen))
767		return -EFAULT;
768	if (len < 0)
769		return -EINVAL;
770
771	memset(&v, 0, sizeof(v));
772
773	switch (optname) {
774	case SO_DEBUG:
775		v.val = sock_flag(sk, SOCK_DBG);
776		break;
777
778	case SO_DONTROUTE:
779		v.val = sock_flag(sk, SOCK_LOCALROUTE);
780		break;
781
782	case SO_BROADCAST:
783		v.val = !!sock_flag(sk, SOCK_BROADCAST);
784		break;
785
786	case SO_SNDBUF:
787		v.val = sk->sk_sndbuf;
788		break;
789
790	case SO_RCVBUF:
791		v.val = sk->sk_rcvbuf;
792		break;
793
794	case SO_REUSEADDR:
795		v.val = sk->sk_reuse;
796		break;
797
798	case SO_KEEPALIVE:
799		v.val = !!sock_flag(sk, SOCK_KEEPOPEN);
800		break;
801
802	case SO_TYPE:
803		v.val = sk->sk_type;
804		break;
805
806	case SO_PROTOCOL:
807		v.val = sk->sk_protocol;
808		break;
809
810	case SO_DOMAIN:
811		v.val = sk->sk_family;
812		break;
813
814	case SO_ERROR:
815		v.val = -sock_error(sk);
816		if (v.val == 0)
817			v.val = xchg(&sk->sk_err_soft, 0);
818		break;
819
820	case SO_OOBINLINE:
821		v.val = !!sock_flag(sk, SOCK_URGINLINE);
822		break;
823
824	case SO_NO_CHECK:
825		v.val = sk->sk_no_check;
826		break;
827
828	case SO_PRIORITY:
829		v.val = sk->sk_priority;
830		break;
831
832	case SO_LINGER:
833		lv		= sizeof(v.ling);
834		v.ling.l_onoff	= !!sock_flag(sk, SOCK_LINGER);
835		v.ling.l_linger	= sk->sk_lingertime / HZ;
836		break;
837
838	case SO_BSDCOMPAT:
839		sock_warn_obsolete_bsdism("getsockopt");
840		break;
841
842	case SO_TIMESTAMP:
843		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
844				!sock_flag(sk, SOCK_RCVTSTAMPNS);
845		break;
846
847	case SO_TIMESTAMPNS:
848		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
849		break;
850
851	case SO_TIMESTAMPING:
852		v.val = 0;
853		if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
854			v.val |= SOF_TIMESTAMPING_TX_HARDWARE;
855		if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
856			v.val |= SOF_TIMESTAMPING_TX_SOFTWARE;
857		if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE))
858			v.val |= SOF_TIMESTAMPING_RX_HARDWARE;
859		if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE))
860			v.val |= SOF_TIMESTAMPING_RX_SOFTWARE;
861		if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE))
862			v.val |= SOF_TIMESTAMPING_SOFTWARE;
863		if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))
864			v.val |= SOF_TIMESTAMPING_SYS_HARDWARE;
865		if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE))
866			v.val |= SOF_TIMESTAMPING_RAW_HARDWARE;
867		break;
868
869	case SO_RCVTIMEO:
870		lv = sizeof(struct timeval);
871		if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
872			v.tm.tv_sec = 0;
873			v.tm.tv_usec = 0;
874		} else {
875			v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
876			v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
877		}
878		break;
879
880	case SO_SNDTIMEO:
881		lv = sizeof(struct timeval);
882		if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
883			v.tm.tv_sec = 0;
884			v.tm.tv_usec = 0;
885		} else {
886			v.tm.tv_sec = sk->sk_sndtimeo / HZ;
887			v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
888		}
889		break;
890
891	case SO_RCVLOWAT:
892		v.val = sk->sk_rcvlowat;
893		break;
894
895	case SO_SNDLOWAT:
896		v.val = 1;
897		break;
898
899	case SO_PASSCRED:
900		v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0;
901		break;
902
903	case SO_PEERCRED:
904		if (len > sizeof(sk->sk_peercred))
905			len = sizeof(sk->sk_peercred);
906		if (copy_to_user(optval, &sk->sk_peercred, len))
907			return -EFAULT;
908		goto lenout;
909
910	case SO_PEERNAME:
911	{
912		char address[128];
913
914		if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
915			return -ENOTCONN;
916		if (lv < len)
917			return -EINVAL;
918		if (copy_to_user(optval, address, len))
919			return -EFAULT;
920		goto lenout;
921	}
922
923	/* Dubious BSD thing... Probably nobody even uses it, but
924	 * the UNIX standard wants it for whatever reason... -DaveM
925	 */
926	case SO_ACCEPTCONN:
927		v.val = sk->sk_state == TCP_LISTEN;
928		break;
929
930	case SO_PASSSEC:
931		v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0;
932		break;
933
934	case SO_PEERSEC:
935		return security_socket_getpeersec_stream(sock, optval, optlen, len);
936
937	case SO_MARK:
938		v.val = sk->sk_mark;
939		break;
940
941	case SO_RXQ_OVFL:
942		v.val = !!sock_flag(sk, SOCK_RXQ_OVFL);
943		break;
944
945	default:
946		return -ENOPROTOOPT;
947	}
948
949	if (len > lv)
950		len = lv;
951	if (copy_to_user(optval, &v, len))
952		return -EFAULT;
953lenout:
954	if (put_user(len, optlen))
955		return -EFAULT;
956	return 0;
957}
958
959/*
960 * Initialize an sk_lock.
961 *
962 * (We also register the sk_lock with the lock validator.)
963 */
964static inline void sock_lock_init(struct sock *sk)
965{
966	sock_lock_init_class_and_name(sk,
967			af_family_slock_key_strings[sk->sk_family],
968			af_family_slock_keys + sk->sk_family,
969			af_family_key_strings[sk->sk_family],
970			af_family_keys + sk->sk_family);
971}
972
973/*
974 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
975 * even temporarly, because of RCU lookups. sk_node should also be left as is.
976 */
977static void sock_copy(struct sock *nsk, const struct sock *osk)
978{
979#ifdef CONFIG_SECURITY_NETWORK
980	void *sptr = nsk->sk_security;
981#endif
982	BUILD_BUG_ON(offsetof(struct sock, sk_copy_start) !=
983		     sizeof(osk->sk_node) + sizeof(osk->sk_refcnt) +
984		     sizeof(osk->sk_tx_queue_mapping));
985	memcpy(&nsk->sk_copy_start, &osk->sk_copy_start,
986	       osk->sk_prot->obj_size - offsetof(struct sock, sk_copy_start));
987#ifdef CONFIG_SECURITY_NETWORK
988	nsk->sk_security = sptr;
989	security_sk_clone(osk, nsk);
990#endif
991}
992
993static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
994		int family)
995{
996	struct sock *sk;
997	struct kmem_cache *slab;
998
999	slab = prot->slab;
1000	if (slab != NULL) {
1001		sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1002		if (!sk)
1003			return sk;
1004		if (priority & __GFP_ZERO) {
1005			/*
1006			 * caches using SLAB_DESTROY_BY_RCU should let
1007			 * sk_node.next un-modified. Special care is taken
1008			 * when initializing object to zero.
1009			 */
1010			if (offsetof(struct sock, sk_node.next) != 0)
1011				memset(sk, 0, offsetof(struct sock, sk_node.next));
1012			memset(&sk->sk_node.pprev, 0,
1013			       prot->obj_size - offsetof(struct sock,
1014							 sk_node.pprev));
1015		}
1016	}
1017	else
1018		sk = kmalloc(prot->obj_size, priority);
1019
1020	if (sk != NULL) {
1021		kmemcheck_annotate_bitfield(sk, flags);
1022
1023		if (security_sk_alloc(sk, family, priority))
1024			goto out_free;
1025
1026		if (!try_module_get(prot->owner))
1027			goto out_free_sec;
1028		sk_tx_queue_clear(sk);
1029	}
1030
1031	return sk;
1032
1033out_free_sec:
1034	security_sk_free(sk);
1035out_free:
1036	if (slab != NULL)
1037		kmem_cache_free(slab, sk);
1038	else
1039		kfree(sk);
1040	return NULL;
1041}
1042
1043static void sk_prot_free(struct proto *prot, struct sock *sk)
1044{
1045	struct kmem_cache *slab;
1046	struct module *owner;
1047
1048	owner = prot->owner;
1049	slab = prot->slab;
1050
1051	security_sk_free(sk);
1052	if (slab != NULL)
1053		kmem_cache_free(slab, sk);
1054	else
1055		kfree(sk);
1056	module_put(owner);
1057}
1058
1059#ifdef CONFIG_CGROUPS
1060void sock_update_classid(struct sock *sk)
1061{
1062	u32 classid = task_cls_classid(current);
1063
1064	if (classid && classid != sk->sk_classid)
1065		sk->sk_classid = classid;
1066}
1067#endif
1068
1069/**
1070 *	sk_alloc - All socket objects are allocated here
1071 *	@net: the applicable net namespace
1072 *	@family: protocol family
1073 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1074 *	@prot: struct proto associated with this new sock instance
1075 */
1076struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1077		      struct proto *prot)
1078{
1079	struct sock *sk;
1080
1081	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1082	if (sk) {
1083		sk->sk_family = family;
1084		/*
1085		 * See comment in struct sock definition to understand
1086		 * why we need sk_prot_creator -acme
1087		 */
1088		sk->sk_prot = sk->sk_prot_creator = prot;
1089		sock_lock_init(sk);
1090		sock_net_set(sk, get_net(net));
1091		atomic_set(&sk->sk_wmem_alloc, 1);
1092
1093		sock_update_classid(sk);
1094	}
1095
1096	return sk;
1097}
1098EXPORT_SYMBOL(sk_alloc);
1099
1100static void __sk_free(struct sock *sk)
1101{
1102	struct sk_filter *filter;
1103
1104	if (sk->sk_destruct)
1105		sk->sk_destruct(sk);
1106
1107	filter = rcu_dereference_check(sk->sk_filter,
1108				       atomic_read(&sk->sk_wmem_alloc) == 0);
1109	if (filter) {
1110		sk_filter_uncharge(sk, filter);
1111		rcu_assign_pointer(sk->sk_filter, NULL);
1112	}
1113
1114	sock_disable_timestamp(sk, SOCK_TIMESTAMP);
1115	sock_disable_timestamp(sk, SOCK_TIMESTAMPING_RX_SOFTWARE);
1116
1117	if (atomic_read(&sk->sk_omem_alloc))
1118		printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n",
1119		       __func__, atomic_read(&sk->sk_omem_alloc));
1120
1121	put_net(sock_net(sk));
1122	sk_prot_free(sk->sk_prot_creator, sk);
1123}
1124
1125void sk_free(struct sock *sk)
1126{
1127	/*
1128	 * We substract one from sk_wmem_alloc and can know if
1129	 * some packets are still in some tx queue.
1130	 * If not null, sock_wfree() will call __sk_free(sk) later
1131	 */
1132	if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1133		__sk_free(sk);
1134}
1135EXPORT_SYMBOL(sk_free);
1136
1137/*
1138 * Last sock_put should drop referrence to sk->sk_net. It has already
1139 * been dropped in sk_change_net. Taking referrence to stopping namespace
1140 * is not an option.
1141 * Take referrence to a socket to remove it from hash _alive_ and after that
1142 * destroy it in the context of init_net.
1143 */
1144void sk_release_kernel(struct sock *sk)
1145{
1146	if (sk == NULL || sk->sk_socket == NULL)
1147		return;
1148
1149	sock_hold(sk);
1150	sock_release(sk->sk_socket);
1151	release_net(sock_net(sk));
1152	sock_net_set(sk, get_net(&init_net));
1153	sock_put(sk);
1154}
1155EXPORT_SYMBOL(sk_release_kernel);
1156
1157struct sock *sk_clone(const struct sock *sk, const gfp_t priority)
1158{
1159	struct sock *newsk;
1160
1161	newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1162	if (newsk != NULL) {
1163		struct sk_filter *filter;
1164
1165		sock_copy(newsk, sk);
1166
1167		/* SANITY */
1168		get_net(sock_net(newsk));
1169		sk_node_init(&newsk->sk_node);
1170		sock_lock_init(newsk);
1171		bh_lock_sock(newsk);
1172		newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
1173		newsk->sk_backlog.len = 0;
1174
1175		atomic_set(&newsk->sk_rmem_alloc, 0);
1176		/*
1177		 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1178		 */
1179		atomic_set(&newsk->sk_wmem_alloc, 1);
1180		atomic_set(&newsk->sk_omem_alloc, 0);
1181		skb_queue_head_init(&newsk->sk_receive_queue);
1182		skb_queue_head_init(&newsk->sk_write_queue);
1183#ifdef CONFIG_NET_DMA
1184		skb_queue_head_init(&newsk->sk_async_wait_queue);
1185#endif
1186
1187		spin_lock_init(&newsk->sk_dst_lock);
1188		rwlock_init(&newsk->sk_callback_lock);
1189		lockdep_set_class_and_name(&newsk->sk_callback_lock,
1190				af_callback_keys + newsk->sk_family,
1191				af_family_clock_key_strings[newsk->sk_family]);
1192
1193		newsk->sk_dst_cache	= NULL;
1194		newsk->sk_wmem_queued	= 0;
1195		newsk->sk_forward_alloc = 0;
1196		newsk->sk_send_head	= NULL;
1197		newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1198
1199		sock_reset_flag(newsk, SOCK_DONE);
1200		skb_queue_head_init(&newsk->sk_error_queue);
1201
1202		filter = newsk->sk_filter;
1203		if (filter != NULL)
1204			sk_filter_charge(newsk, filter);
1205
1206		if (unlikely(xfrm_sk_clone_policy(newsk))) {
1207			/* It is still raw copy of parent, so invalidate
1208			 * destructor and make plain sk_free() */
1209			newsk->sk_destruct = NULL;
1210			sk_free(newsk);
1211			newsk = NULL;
1212			goto out;
1213		}
1214
1215		newsk->sk_err	   = 0;
1216		newsk->sk_priority = 0;
1217		/*
1218		 * Before updating sk_refcnt, we must commit prior changes to memory
1219		 * (Documentation/RCU/rculist_nulls.txt for details)
1220		 */
1221		smp_wmb();
1222		atomic_set(&newsk->sk_refcnt, 2);
1223
1224		/*
1225		 * Increment the counter in the same struct proto as the master
1226		 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1227		 * is the same as sk->sk_prot->socks, as this field was copied
1228		 * with memcpy).
1229		 *
1230		 * This _changes_ the previous behaviour, where
1231		 * tcp_create_openreq_child always was incrementing the
1232		 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1233		 * to be taken into account in all callers. -acme
1234		 */
1235		sk_refcnt_debug_inc(newsk);
1236		sk_set_socket(newsk, NULL);
1237		newsk->sk_wq = NULL;
1238
1239		if (newsk->sk_prot->sockets_allocated)
1240			percpu_counter_inc(newsk->sk_prot->sockets_allocated);
1241
1242		if (sock_flag(newsk, SOCK_TIMESTAMP) ||
1243		    sock_flag(newsk, SOCK_TIMESTAMPING_RX_SOFTWARE))
1244			net_enable_timestamp();
1245	}
1246out:
1247	return newsk;
1248}
1249EXPORT_SYMBOL_GPL(sk_clone);
1250
1251void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1252{
1253	__sk_dst_set(sk, dst);
1254	sk->sk_route_caps = dst->dev->features;
1255	if (sk->sk_route_caps & NETIF_F_GSO)
1256		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1257	sk->sk_route_caps &= ~sk->sk_route_nocaps;
1258	if (sk_can_gso(sk)) {
1259		if (dst->header_len) {
1260			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1261		} else {
1262			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1263			sk->sk_gso_max_size = dst->dev->gso_max_size;
1264		}
1265	}
1266}
1267EXPORT_SYMBOL_GPL(sk_setup_caps);
1268
1269void __init sk_init(void)
1270{
1271	if (totalram_pages <= 4096) {
1272		sysctl_wmem_max = 32767;
1273		sysctl_rmem_max = 32767;
1274		sysctl_wmem_default = 32767;
1275		sysctl_rmem_default = 32767;
1276	} else if (totalram_pages >= 131072) {
1277		sysctl_wmem_max = 131071;
1278		sysctl_rmem_max = 131071;
1279	}
1280}
1281
1282/*
1283 *	Simple resource managers for sockets.
1284 */
1285
1286
1287/*
1288 * Write buffer destructor automatically called from kfree_skb.
1289 */
1290void sock_wfree(struct sk_buff *skb)
1291{
1292	struct sock *sk = skb->sk;
1293	unsigned int len = skb->truesize;
1294
1295	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1296		/*
1297		 * Keep a reference on sk_wmem_alloc, this will be released
1298		 * after sk_write_space() call
1299		 */
1300		atomic_sub(len - 1, &sk->sk_wmem_alloc);
1301		sk->sk_write_space(sk);
1302		len = 1;
1303	}
1304	/*
1305	 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1306	 * could not do because of in-flight packets
1307	 */
1308	if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1309		__sk_free(sk);
1310}
1311EXPORT_SYMBOL(sock_wfree);
1312
1313/*
1314 * Read buffer destructor automatically called from kfree_skb.
1315 */
1316void sock_rfree(struct sk_buff *skb)
1317{
1318	struct sock *sk = skb->sk;
1319
1320	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1321	sk_mem_uncharge(skb->sk, skb->truesize);
1322}
1323EXPORT_SYMBOL(sock_rfree);
1324
1325
1326int sock_i_uid(struct sock *sk)
1327{
1328	int uid;
1329
1330	read_lock(&sk->sk_callback_lock);
1331	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1332	read_unlock(&sk->sk_callback_lock);
1333	return uid;
1334}
1335EXPORT_SYMBOL(sock_i_uid);
1336
1337unsigned long sock_i_ino(struct sock *sk)
1338{
1339	unsigned long ino;
1340
1341	read_lock(&sk->sk_callback_lock);
1342	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1343	read_unlock(&sk->sk_callback_lock);
1344	return ino;
1345}
1346EXPORT_SYMBOL(sock_i_ino);
1347
1348/*
1349 * Allocate a skb from the socket's send buffer.
1350 */
1351struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1352			     gfp_t priority)
1353{
1354	if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1355		struct sk_buff *skb = alloc_skb(size, priority);
1356		if (skb) {
1357			skb_set_owner_w(skb, sk);
1358			return skb;
1359		}
1360	}
1361	return NULL;
1362}
1363EXPORT_SYMBOL(sock_wmalloc);
1364
1365/*
1366 * Allocate a skb from the socket's receive buffer.
1367 */
1368struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1369			     gfp_t priority)
1370{
1371	if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1372		struct sk_buff *skb = alloc_skb(size, priority);
1373		if (skb) {
1374			skb_set_owner_r(skb, sk);
1375			return skb;
1376		}
1377	}
1378	return NULL;
1379}
1380
1381/*
1382 * Allocate a memory block from the socket's option memory buffer.
1383 */
1384void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1385{
1386	if ((unsigned)size <= sysctl_optmem_max &&
1387	    atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1388		void *mem;
1389		/* First do the add, to avoid the race if kmalloc
1390		 * might sleep.
1391		 */
1392		atomic_add(size, &sk->sk_omem_alloc);
1393		mem = kmalloc(size, priority);
1394		if (mem)
1395			return mem;
1396		atomic_sub(size, &sk->sk_omem_alloc);
1397	}
1398	return NULL;
1399}
1400EXPORT_SYMBOL(sock_kmalloc);
1401
1402/*
1403 * Free an option memory block.
1404 */
1405void sock_kfree_s(struct sock *sk, void *mem, int size)
1406{
1407	kfree(mem);
1408	atomic_sub(size, &sk->sk_omem_alloc);
1409}
1410EXPORT_SYMBOL(sock_kfree_s);
1411
1412/* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1413   I think, these locks should be removed for datagram sockets.
1414 */
1415static long sock_wait_for_wmem(struct sock *sk, long timeo)
1416{
1417	DEFINE_WAIT(wait);
1418
1419	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1420	for (;;) {
1421		if (!timeo)
1422			break;
1423		if (signal_pending(current))
1424			break;
1425		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1426		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1427		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1428			break;
1429		if (sk->sk_shutdown & SEND_SHUTDOWN)
1430			break;
1431		if (sk->sk_err)
1432			break;
1433		timeo = schedule_timeout(timeo);
1434	}
1435	finish_wait(sk_sleep(sk), &wait);
1436	return timeo;
1437}
1438
1439
1440/*
1441 *	Generic send/receive buffer handlers
1442 */
1443
1444struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1445				     unsigned long data_len, int noblock,
1446				     int *errcode)
1447{
1448	struct sk_buff *skb;
1449	gfp_t gfp_mask;
1450	long timeo;
1451	int err;
1452
1453	gfp_mask = sk->sk_allocation;
1454	if (gfp_mask & __GFP_WAIT)
1455		gfp_mask |= __GFP_REPEAT;
1456
1457	timeo = sock_sndtimeo(sk, noblock);
1458	while (1) {
1459		err = sock_error(sk);
1460		if (err != 0)
1461			goto failure;
1462
1463		err = -EPIPE;
1464		if (sk->sk_shutdown & SEND_SHUTDOWN)
1465			goto failure;
1466
1467		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1468			skb = alloc_skb(header_len, gfp_mask);
1469			if (skb) {
1470				int npages;
1471				int i;
1472
1473				/* No pages, we're done... */
1474				if (!data_len)
1475					break;
1476
1477				npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1478				skb->truesize += data_len;
1479				skb_shinfo(skb)->nr_frags = npages;
1480				for (i = 0; i < npages; i++) {
1481					struct page *page;
1482					skb_frag_t *frag;
1483
1484					page = alloc_pages(sk->sk_allocation, 0);
1485					if (!page) {
1486						err = -ENOBUFS;
1487						skb_shinfo(skb)->nr_frags = i;
1488						kfree_skb(skb);
1489						goto failure;
1490					}
1491
1492					frag = &skb_shinfo(skb)->frags[i];
1493					frag->page = page;
1494					frag->page_offset = 0;
1495					frag->size = (data_len >= PAGE_SIZE ?
1496						      PAGE_SIZE :
1497						      data_len);
1498					data_len -= PAGE_SIZE;
1499				}
1500
1501				/* Full success... */
1502				break;
1503			}
1504			err = -ENOBUFS;
1505			goto failure;
1506		}
1507		set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1508		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1509		err = -EAGAIN;
1510		if (!timeo)
1511			goto failure;
1512		if (signal_pending(current))
1513			goto interrupted;
1514		timeo = sock_wait_for_wmem(sk, timeo);
1515	}
1516
1517	skb_set_owner_w(skb, sk);
1518	return skb;
1519
1520interrupted:
1521	err = sock_intr_errno(timeo);
1522failure:
1523	*errcode = err;
1524	return NULL;
1525}
1526EXPORT_SYMBOL(sock_alloc_send_pskb);
1527
1528struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1529				    int noblock, int *errcode)
1530{
1531	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1532}
1533EXPORT_SYMBOL(sock_alloc_send_skb);
1534
1535static void __lock_sock(struct sock *sk)
1536{
1537	DEFINE_WAIT(wait);
1538
1539	for (;;) {
1540		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1541					TASK_UNINTERRUPTIBLE);
1542		spin_unlock_bh(&sk->sk_lock.slock);
1543		schedule();
1544		spin_lock_bh(&sk->sk_lock.slock);
1545		if (!sock_owned_by_user(sk))
1546			break;
1547	}
1548	finish_wait(&sk->sk_lock.wq, &wait);
1549}
1550
1551static void __release_sock(struct sock *sk)
1552{
1553	struct sk_buff *skb = sk->sk_backlog.head;
1554
1555	do {
1556		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1557		bh_unlock_sock(sk);
1558
1559		do {
1560			struct sk_buff *next = skb->next;
1561
1562			WARN_ON_ONCE(skb_dst_is_noref(skb));
1563			skb->next = NULL;
1564			sk_backlog_rcv(sk, skb);
1565
1566			/*
1567			 * We are in process context here with softirqs
1568			 * disabled, use cond_resched_softirq() to preempt.
1569			 * This is safe to do because we've taken the backlog
1570			 * queue private:
1571			 */
1572			cond_resched_softirq();
1573
1574			skb = next;
1575		} while (skb != NULL);
1576
1577		bh_lock_sock(sk);
1578	} while ((skb = sk->sk_backlog.head) != NULL);
1579
1580	/*
1581	 * Doing the zeroing here guarantee we can not loop forever
1582	 * while a wild producer attempts to flood us.
1583	 */
1584	sk->sk_backlog.len = 0;
1585}
1586
1587/**
1588 * sk_wait_data - wait for data to arrive at sk_receive_queue
1589 * @sk:    sock to wait on
1590 * @timeo: for how long
1591 *
1592 * Now socket state including sk->sk_err is changed only under lock,
1593 * hence we may omit checks after joining wait queue.
1594 * We check receive queue before schedule() only as optimization;
1595 * it is very likely that release_sock() added new data.
1596 */
1597int sk_wait_data(struct sock *sk, long *timeo)
1598{
1599	int rc;
1600	DEFINE_WAIT(wait);
1601
1602	prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1603	set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1604	rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1605	clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1606	finish_wait(sk_sleep(sk), &wait);
1607	return rc;
1608}
1609EXPORT_SYMBOL(sk_wait_data);
1610
1611/**
1612 *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1613 *	@sk: socket
1614 *	@size: memory size to allocate
1615 *	@kind: allocation type
1616 *
1617 *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1618 *	rmem allocation. This function assumes that protocols which have
1619 *	memory_pressure use sk_wmem_queued as write buffer accounting.
1620 */
1621int __sk_mem_schedule(struct sock *sk, int size, int kind)
1622{
1623	struct proto *prot = sk->sk_prot;
1624	int amt = sk_mem_pages(size);
1625	int allocated;
1626
1627	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
1628	allocated = atomic_add_return(amt, prot->memory_allocated);
1629
1630	/* Under limit. */
1631	if (allocated <= prot->sysctl_mem[0]) {
1632		if (prot->memory_pressure && *prot->memory_pressure)
1633			*prot->memory_pressure = 0;
1634		return 1;
1635	}
1636
1637	/* Under pressure. */
1638	if (allocated > prot->sysctl_mem[1])
1639		if (prot->enter_memory_pressure)
1640			prot->enter_memory_pressure(sk);
1641
1642	/* Over hard limit. */
1643	if (allocated > prot->sysctl_mem[2])
1644		goto suppress_allocation;
1645
1646	/* guarantee minimum buffer size under pressure */
1647	if (kind == SK_MEM_RECV) {
1648		if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
1649			return 1;
1650	} else { /* SK_MEM_SEND */
1651		if (sk->sk_type == SOCK_STREAM) {
1652			if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
1653				return 1;
1654		} else if (atomic_read(&sk->sk_wmem_alloc) <
1655			   prot->sysctl_wmem[0])
1656				return 1;
1657	}
1658
1659	if (prot->memory_pressure) {
1660		int alloc;
1661
1662		if (!*prot->memory_pressure)
1663			return 1;
1664		alloc = percpu_counter_read_positive(prot->sockets_allocated);
1665		if (prot->sysctl_mem[2] > alloc *
1666		    sk_mem_pages(sk->sk_wmem_queued +
1667				 atomic_read(&sk->sk_rmem_alloc) +
1668				 sk->sk_forward_alloc))
1669			return 1;
1670	}
1671
1672suppress_allocation:
1673
1674	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
1675		sk_stream_moderate_sndbuf(sk);
1676
1677		/* Fail only if socket is _under_ its sndbuf.
1678		 * In this case we cannot block, so that we have to fail.
1679		 */
1680		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
1681			return 1;
1682	}
1683
1684	/* Alas. Undo changes. */
1685	sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
1686	atomic_sub(amt, prot->memory_allocated);
1687	return 0;
1688}
1689EXPORT_SYMBOL(__sk_mem_schedule);
1690
1691/**
1692 *	__sk_reclaim - reclaim memory_allocated
1693 *	@sk: socket
1694 */
1695void __sk_mem_reclaim(struct sock *sk)
1696{
1697	struct proto *prot = sk->sk_prot;
1698
1699	atomic_sub(sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT,
1700		   prot->memory_allocated);
1701	sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
1702
1703	if (prot->memory_pressure && *prot->memory_pressure &&
1704	    (atomic_read(prot->memory_allocated) < prot->sysctl_mem[0]))
1705		*prot->memory_pressure = 0;
1706}
1707EXPORT_SYMBOL(__sk_mem_reclaim);
1708
1709
1710/*
1711 * Set of default routines for initialising struct proto_ops when
1712 * the protocol does not support a particular function. In certain
1713 * cases where it makes no sense for a protocol to have a "do nothing"
1714 * function, some default processing is provided.
1715 */
1716
1717int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1718{
1719	return -EOPNOTSUPP;
1720}
1721EXPORT_SYMBOL(sock_no_bind);
1722
1723int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1724		    int len, int flags)
1725{
1726	return -EOPNOTSUPP;
1727}
1728EXPORT_SYMBOL(sock_no_connect);
1729
1730int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1731{
1732	return -EOPNOTSUPP;
1733}
1734EXPORT_SYMBOL(sock_no_socketpair);
1735
1736int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1737{
1738	return -EOPNOTSUPP;
1739}
1740EXPORT_SYMBOL(sock_no_accept);
1741
1742int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1743		    int *len, int peer)
1744{
1745	return -EOPNOTSUPP;
1746}
1747EXPORT_SYMBOL(sock_no_getname);
1748
1749unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
1750{
1751	return 0;
1752}
1753EXPORT_SYMBOL(sock_no_poll);
1754
1755int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1756{
1757	return -EOPNOTSUPP;
1758}
1759EXPORT_SYMBOL(sock_no_ioctl);
1760
1761int sock_no_listen(struct socket *sock, int backlog)
1762{
1763	return -EOPNOTSUPP;
1764}
1765EXPORT_SYMBOL(sock_no_listen);
1766
1767int sock_no_shutdown(struct socket *sock, int how)
1768{
1769	return -EOPNOTSUPP;
1770}
1771EXPORT_SYMBOL(sock_no_shutdown);
1772
1773int sock_no_setsockopt(struct socket *sock, int level, int optname,
1774		    char __user *optval, unsigned int optlen)
1775{
1776	return -EOPNOTSUPP;
1777}
1778EXPORT_SYMBOL(sock_no_setsockopt);
1779
1780int sock_no_getsockopt(struct socket *sock, int level, int optname,
1781		    char __user *optval, int __user *optlen)
1782{
1783	return -EOPNOTSUPP;
1784}
1785EXPORT_SYMBOL(sock_no_getsockopt);
1786
1787int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1788		    size_t len)
1789{
1790	return -EOPNOTSUPP;
1791}
1792EXPORT_SYMBOL(sock_no_sendmsg);
1793
1794int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1795		    size_t len, int flags)
1796{
1797	return -EOPNOTSUPP;
1798}
1799EXPORT_SYMBOL(sock_no_recvmsg);
1800
1801int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
1802{
1803	/* Mirror missing mmap method error code */
1804	return -ENODEV;
1805}
1806EXPORT_SYMBOL(sock_no_mmap);
1807
1808ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
1809{
1810	ssize_t res;
1811	struct msghdr msg = {.msg_flags = flags};
1812	struct kvec iov;
1813	char *kaddr = kmap(page);
1814	iov.iov_base = kaddr + offset;
1815	iov.iov_len = size;
1816	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
1817	kunmap(page);
1818	return res;
1819}
1820EXPORT_SYMBOL(sock_no_sendpage);
1821
1822/*
1823 *	Default Socket Callbacks
1824 */
1825
1826static void sock_def_wakeup(struct sock *sk)
1827{
1828	struct socket_wq *wq;
1829
1830	rcu_read_lock();
1831	wq = rcu_dereference(sk->sk_wq);
1832	if (wq_has_sleeper(wq))
1833		wake_up_interruptible_all(&wq->wait);
1834	rcu_read_unlock();
1835}
1836
1837static void sock_def_error_report(struct sock *sk)
1838{
1839	struct socket_wq *wq;
1840
1841	rcu_read_lock();
1842	wq = rcu_dereference(sk->sk_wq);
1843	if (wq_has_sleeper(wq))
1844		wake_up_interruptible_poll(&wq->wait, POLLERR);
1845	sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
1846	rcu_read_unlock();
1847}
1848
1849static void sock_def_readable(struct sock *sk, int len)
1850{
1851	struct socket_wq *wq;
1852
1853	rcu_read_lock();
1854	wq = rcu_dereference(sk->sk_wq);
1855	if (wq_has_sleeper(wq))
1856		wake_up_interruptible_sync_poll(&wq->wait, POLLIN |
1857						POLLRDNORM | POLLRDBAND);
1858	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
1859	rcu_read_unlock();
1860}
1861
1862static void sock_def_write_space(struct sock *sk)
1863{
1864	struct socket_wq *wq;
1865
1866	rcu_read_lock();
1867
1868	/* Do not wake up a writer until he can make "significant"
1869	 * progress.  --DaveM
1870	 */
1871	if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
1872		wq = rcu_dereference(sk->sk_wq);
1873		if (wq_has_sleeper(wq))
1874			wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
1875						POLLWRNORM | POLLWRBAND);
1876
1877		/* Should agree with poll, otherwise some programs break */
1878		if (sock_writeable(sk))
1879			sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
1880	}
1881
1882	rcu_read_unlock();
1883}
1884
1885static void sock_def_destruct(struct sock *sk)
1886{
1887	kfree(sk->sk_protinfo);
1888}
1889
1890void sk_send_sigurg(struct sock *sk)
1891{
1892	if (sk->sk_socket && sk->sk_socket->file)
1893		if (send_sigurg(&sk->sk_socket->file->f_owner))
1894			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
1895}
1896EXPORT_SYMBOL(sk_send_sigurg);
1897
1898void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1899		    unsigned long expires)
1900{
1901	if (!mod_timer(timer, expires))
1902		sock_hold(sk);
1903}
1904EXPORT_SYMBOL(sk_reset_timer);
1905
1906void sk_stop_timer(struct sock *sk, struct timer_list* timer)
1907{
1908	if (timer_pending(timer) && del_timer(timer))
1909		__sock_put(sk);
1910}
1911EXPORT_SYMBOL(sk_stop_timer);
1912
1913void sock_init_data(struct socket *sock, struct sock *sk)
1914{
1915	skb_queue_head_init(&sk->sk_receive_queue);
1916	skb_queue_head_init(&sk->sk_write_queue);
1917	skb_queue_head_init(&sk->sk_error_queue);
1918#ifdef CONFIG_NET_DMA
1919	skb_queue_head_init(&sk->sk_async_wait_queue);
1920#endif
1921
1922	sk->sk_send_head	=	NULL;
1923
1924	init_timer(&sk->sk_timer);
1925
1926	sk->sk_allocation	=	GFP_KERNEL;
1927	sk->sk_rcvbuf		=	sysctl_rmem_default;
1928	sk->sk_sndbuf		=	sysctl_wmem_default;
1929	sk->sk_state		=	TCP_CLOSE;
1930	sk_set_socket(sk, sock);
1931
1932	sock_set_flag(sk, SOCK_ZAPPED);
1933
1934	if (sock) {
1935		sk->sk_type	=	sock->type;
1936		sk->sk_wq	=	sock->wq;
1937		sock->sk	=	sk;
1938	} else
1939		sk->sk_wq	=	NULL;
1940
1941	spin_lock_init(&sk->sk_dst_lock);
1942	rwlock_init(&sk->sk_callback_lock);
1943	lockdep_set_class_and_name(&sk->sk_callback_lock,
1944			af_callback_keys + sk->sk_family,
1945			af_family_clock_key_strings[sk->sk_family]);
1946
1947	sk->sk_state_change	=	sock_def_wakeup;
1948	sk->sk_data_ready	=	sock_def_readable;
1949	sk->sk_write_space	=	sock_def_write_space;
1950	sk->sk_error_report	=	sock_def_error_report;
1951	sk->sk_destruct		=	sock_def_destruct;
1952
1953	sk->sk_sndmsg_page	=	NULL;
1954	sk->sk_sndmsg_off	=	0;
1955
1956	sk->sk_peercred.pid 	=	0;
1957	sk->sk_peercred.uid	=	-1;
1958	sk->sk_peercred.gid	=	-1;
1959	sk->sk_write_pending	=	0;
1960	sk->sk_rcvlowat		=	1;
1961	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
1962	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
1963
1964	sk->sk_stamp = ktime_set(-1L, 0);
1965
1966	/*
1967	 * Before updating sk_refcnt, we must commit prior changes to memory
1968	 * (Documentation/RCU/rculist_nulls.txt for details)
1969	 */
1970	smp_wmb();
1971	atomic_set(&sk->sk_refcnt, 1);
1972	atomic_set(&sk->sk_drops, 0);
1973}
1974EXPORT_SYMBOL(sock_init_data);
1975
1976void lock_sock_nested(struct sock *sk, int subclass)
1977{
1978	might_sleep();
1979	spin_lock_bh(&sk->sk_lock.slock);
1980	if (sk->sk_lock.owned)
1981		__lock_sock(sk);
1982	sk->sk_lock.owned = 1;
1983	spin_unlock(&sk->sk_lock.slock);
1984	/*
1985	 * The sk_lock has mutex_lock() semantics here:
1986	 */
1987	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
1988	local_bh_enable();
1989}
1990EXPORT_SYMBOL(lock_sock_nested);
1991
1992void release_sock(struct sock *sk)
1993{
1994	/*
1995	 * The sk_lock has mutex_unlock() semantics:
1996	 */
1997	mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1998
1999	spin_lock_bh(&sk->sk_lock.slock);
2000	if (sk->sk_backlog.tail)
2001		__release_sock(sk);
2002	sk->sk_lock.owned = 0;
2003	if (waitqueue_active(&sk->sk_lock.wq))
2004		wake_up(&sk->sk_lock.wq);
2005	spin_unlock_bh(&sk->sk_lock.slock);
2006}
2007EXPORT_SYMBOL(release_sock);
2008
2009int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2010{
2011	struct timeval tv;
2012	if (!sock_flag(sk, SOCK_TIMESTAMP))
2013		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2014	tv = ktime_to_timeval(sk->sk_stamp);
2015	if (tv.tv_sec == -1)
2016		return -ENOENT;
2017	if (tv.tv_sec == 0) {
2018		sk->sk_stamp = ktime_get_real();
2019		tv = ktime_to_timeval(sk->sk_stamp);
2020	}
2021	return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2022}
2023EXPORT_SYMBOL(sock_get_timestamp);
2024
2025int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2026{
2027	struct timespec ts;
2028	if (!sock_flag(sk, SOCK_TIMESTAMP))
2029		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2030	ts = ktime_to_timespec(sk->sk_stamp);
2031	if (ts.tv_sec == -1)
2032		return -ENOENT;
2033	if (ts.tv_sec == 0) {
2034		sk->sk_stamp = ktime_get_real();
2035		ts = ktime_to_timespec(sk->sk_stamp);
2036	}
2037	return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2038}
2039EXPORT_SYMBOL(sock_get_timestampns);
2040
2041void sock_enable_timestamp(struct sock *sk, int flag)
2042{
2043	if (!sock_flag(sk, flag)) {
2044		sock_set_flag(sk, flag);
2045		/*
2046		 * we just set one of the two flags which require net
2047		 * time stamping, but time stamping might have been on
2048		 * already because of the other one
2049		 */
2050		if (!sock_flag(sk,
2051				flag == SOCK_TIMESTAMP ?
2052				SOCK_TIMESTAMPING_RX_SOFTWARE :
2053				SOCK_TIMESTAMP))
2054			net_enable_timestamp();
2055	}
2056}
2057
2058/*
2059 *	Get a socket option on an socket.
2060 *
2061 *	FIX: POSIX 1003.1g is very ambiguous here. It states that
2062 *	asynchronous errors should be reported by getsockopt. We assume
2063 *	this means if you specify SO_ERROR (otherwise whats the point of it).
2064 */
2065int sock_common_getsockopt(struct socket *sock, int level, int optname,
2066			   char __user *optval, int __user *optlen)
2067{
2068	struct sock *sk = sock->sk;
2069
2070	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2071}
2072EXPORT_SYMBOL(sock_common_getsockopt);
2073
2074#ifdef CONFIG_COMPAT
2075int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2076				  char __user *optval, int __user *optlen)
2077{
2078	struct sock *sk = sock->sk;
2079
2080	if (sk->sk_prot->compat_getsockopt != NULL)
2081		return sk->sk_prot->compat_getsockopt(sk, level, optname,
2082						      optval, optlen);
2083	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2084}
2085EXPORT_SYMBOL(compat_sock_common_getsockopt);
2086#endif
2087
2088int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
2089			struct msghdr *msg, size_t size, int flags)
2090{
2091	struct sock *sk = sock->sk;
2092	int addr_len = 0;
2093	int err;
2094
2095	err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
2096				   flags & ~MSG_DONTWAIT, &addr_len);
2097	if (err >= 0)
2098		msg->msg_namelen = addr_len;
2099	return err;
2100}
2101EXPORT_SYMBOL(sock_common_recvmsg);
2102
2103/*
2104 *	Set socket options on an inet socket.
2105 */
2106int sock_common_setsockopt(struct socket *sock, int level, int optname,
2107			   char __user *optval, unsigned int optlen)
2108{
2109	struct sock *sk = sock->sk;
2110
2111	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2112}
2113EXPORT_SYMBOL(sock_common_setsockopt);
2114
2115#ifdef CONFIG_COMPAT
2116int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2117				  char __user *optval, unsigned int optlen)
2118{
2119	struct sock *sk = sock->sk;
2120
2121	if (sk->sk_prot->compat_setsockopt != NULL)
2122		return sk->sk_prot->compat_setsockopt(sk, level, optname,
2123						      optval, optlen);
2124	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2125}
2126EXPORT_SYMBOL(compat_sock_common_setsockopt);
2127#endif
2128
2129void sk_common_release(struct sock *sk)
2130{
2131	if (sk->sk_prot->destroy)
2132		sk->sk_prot->destroy(sk);
2133
2134	/*
2135	 * Observation: when sock_common_release is called, processes have
2136	 * no access to socket. But net still has.
2137	 * Step one, detach it from networking:
2138	 *
2139	 * A. Remove from hash tables.
2140	 */
2141
2142	sk->sk_prot->unhash(sk);
2143
2144	/*
2145	 * In this point socket cannot receive new packets, but it is possible
2146	 * that some packets are in flight because some CPU runs receiver and
2147	 * did hash table lookup before we unhashed socket. They will achieve
2148	 * receive queue and will be purged by socket destructor.
2149	 *
2150	 * Also we still have packets pending on receive queue and probably,
2151	 * our own packets waiting in device queues. sock_destroy will drain
2152	 * receive queue, but transmitted packets will delay socket destruction
2153	 * until the last reference will be released.
2154	 */
2155
2156	sock_orphan(sk);
2157
2158	xfrm_sk_free_policy(sk);
2159
2160	sk_refcnt_debug_release(sk);
2161	sock_put(sk);
2162}
2163EXPORT_SYMBOL(sk_common_release);
2164
2165static DEFINE_RWLOCK(proto_list_lock);
2166static LIST_HEAD(proto_list);
2167
2168#ifdef CONFIG_PROC_FS
2169#define PROTO_INUSE_NR	64	/* should be enough for the first time */
2170struct prot_inuse {
2171	int val[PROTO_INUSE_NR];
2172};
2173
2174static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2175
2176#ifdef CONFIG_NET_NS
2177void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2178{
2179	int cpu = smp_processor_id();
2180	per_cpu_ptr(net->core.inuse, cpu)->val[prot->inuse_idx] += val;
2181}
2182EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2183
2184int sock_prot_inuse_get(struct net *net, struct proto *prot)
2185{
2186	int cpu, idx = prot->inuse_idx;
2187	int res = 0;
2188
2189	for_each_possible_cpu(cpu)
2190		res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2191
2192	return res >= 0 ? res : 0;
2193}
2194EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2195
2196static int __net_init sock_inuse_init_net(struct net *net)
2197{
2198	net->core.inuse = alloc_percpu(struct prot_inuse);
2199	return net->core.inuse ? 0 : -ENOMEM;
2200}
2201
2202static void __net_exit sock_inuse_exit_net(struct net *net)
2203{
2204	free_percpu(net->core.inuse);
2205}
2206
2207static struct pernet_operations net_inuse_ops = {
2208	.init = sock_inuse_init_net,
2209	.exit = sock_inuse_exit_net,
2210};
2211
2212static __init int net_inuse_init(void)
2213{
2214	if (register_pernet_subsys(&net_inuse_ops))
2215		panic("Cannot initialize net inuse counters");
2216
2217	return 0;
2218}
2219
2220core_initcall(net_inuse_init);
2221#else
2222static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2223
2224void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2225{
2226	__get_cpu_var(prot_inuse).val[prot->inuse_idx] += val;
2227}
2228EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2229
2230int sock_prot_inuse_get(struct net *net, struct proto *prot)
2231{
2232	int cpu, idx = prot->inuse_idx;
2233	int res = 0;
2234
2235	for_each_possible_cpu(cpu)
2236		res += per_cpu(prot_inuse, cpu).val[idx];
2237
2238	return res >= 0 ? res : 0;
2239}
2240EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2241#endif
2242
2243static void assign_proto_idx(struct proto *prot)
2244{
2245	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2246
2247	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2248		printk(KERN_ERR "PROTO_INUSE_NR exhausted\n");
2249		return;
2250	}
2251
2252	set_bit(prot->inuse_idx, proto_inuse_idx);
2253}
2254
2255static void release_proto_idx(struct proto *prot)
2256{
2257	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2258		clear_bit(prot->inuse_idx, proto_inuse_idx);
2259}
2260#else
2261static inline void assign_proto_idx(struct proto *prot)
2262{
2263}
2264
2265static inline void release_proto_idx(struct proto *prot)
2266{
2267}
2268#endif
2269
2270int proto_register(struct proto *prot, int alloc_slab)
2271{
2272	if (alloc_slab) {
2273		prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2274					SLAB_HWCACHE_ALIGN | prot->slab_flags,
2275					NULL);
2276
2277		if (prot->slab == NULL) {
2278			printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n",
2279			       prot->name);
2280			goto out;
2281		}
2282
2283		if (prot->rsk_prot != NULL) {
2284			prot->rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", prot->name);
2285			if (prot->rsk_prot->slab_name == NULL)
2286				goto out_free_sock_slab;
2287
2288			prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
2289								 prot->rsk_prot->obj_size, 0,
2290								 SLAB_HWCACHE_ALIGN, NULL);
2291
2292			if (prot->rsk_prot->slab == NULL) {
2293				printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n",
2294				       prot->name);
2295				goto out_free_request_sock_slab_name;
2296			}
2297		}
2298
2299		if (prot->twsk_prot != NULL) {
2300			prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
2301
2302			if (prot->twsk_prot->twsk_slab_name == NULL)
2303				goto out_free_request_sock_slab;
2304
2305			prot->twsk_prot->twsk_slab =
2306				kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2307						  prot->twsk_prot->twsk_obj_size,
2308						  0,
2309						  SLAB_HWCACHE_ALIGN |
2310							prot->slab_flags,
2311						  NULL);
2312			if (prot->twsk_prot->twsk_slab == NULL)
2313				goto out_free_timewait_sock_slab_name;
2314		}
2315	}
2316
2317	write_lock(&proto_list_lock);
2318	list_add(&prot->node, &proto_list);
2319	assign_proto_idx(prot);
2320	write_unlock(&proto_list_lock);
2321	return 0;
2322
2323out_free_timewait_sock_slab_name:
2324	kfree(prot->twsk_prot->twsk_slab_name);
2325out_free_request_sock_slab:
2326	if (prot->rsk_prot && prot->rsk_prot->slab) {
2327		kmem_cache_destroy(prot->rsk_prot->slab);
2328		prot->rsk_prot->slab = NULL;
2329	}
2330out_free_request_sock_slab_name:
2331	if (prot->rsk_prot)
2332		kfree(prot->rsk_prot->slab_name);
2333out_free_sock_slab:
2334	kmem_cache_destroy(prot->slab);
2335	prot->slab = NULL;
2336out:
2337	return -ENOBUFS;
2338}
2339EXPORT_SYMBOL(proto_register);
2340
2341void proto_unregister(struct proto *prot)
2342{
2343	write_lock(&proto_list_lock);
2344	release_proto_idx(prot);
2345	list_del(&prot->node);
2346	write_unlock(&proto_list_lock);
2347
2348	if (prot->slab != NULL) {
2349		kmem_cache_destroy(prot->slab);
2350		prot->slab = NULL;
2351	}
2352
2353	if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2354		kmem_cache_destroy(prot->rsk_prot->slab);
2355		kfree(prot->rsk_prot->slab_name);
2356		prot->rsk_prot->slab = NULL;
2357	}
2358
2359	if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2360		kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2361		kfree(prot->twsk_prot->twsk_slab_name);
2362		prot->twsk_prot->twsk_slab = NULL;
2363	}
2364}
2365EXPORT_SYMBOL(proto_unregister);
2366
2367#ifdef CONFIG_PROC_FS
2368static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2369	__acquires(proto_list_lock)
2370{
2371	read_lock(&proto_list_lock);
2372	return seq_list_start_head(&proto_list, *pos);
2373}
2374
2375static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2376{
2377	return seq_list_next(v, &proto_list, pos);
2378}
2379
2380static void proto_seq_stop(struct seq_file *seq, void *v)
2381	__releases(proto_list_lock)
2382{
2383	read_unlock(&proto_list_lock);
2384}
2385
2386static char proto_method_implemented(const void *method)
2387{
2388	return method == NULL ? 'n' : 'y';
2389}
2390
2391static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2392{
2393	seq_printf(seq, "%-9s %4u %6d  %6d   %-3s %6u   %-3s  %-10s "
2394			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2395		   proto->name,
2396		   proto->obj_size,
2397		   sock_prot_inuse_get(seq_file_net(seq), proto),
2398		   proto->memory_allocated != NULL ? atomic_read(proto->memory_allocated) : -1,
2399		   proto->memory_pressure != NULL ? *proto->memory_pressure ? "yes" : "no" : "NI",
2400		   proto->max_header,
2401		   proto->slab == NULL ? "no" : "yes",
2402		   module_name(proto->owner),
2403		   proto_method_implemented(proto->close),
2404		   proto_method_implemented(proto->connect),
2405		   proto_method_implemented(proto->disconnect),
2406		   proto_method_implemented(proto->accept),
2407		   proto_method_implemented(proto->ioctl),
2408		   proto_method_implemented(proto->init),
2409		   proto_method_implemented(proto->destroy),
2410		   proto_method_implemented(proto->shutdown),
2411		   proto_method_implemented(proto->setsockopt),
2412		   proto_method_implemented(proto->getsockopt),
2413		   proto_method_implemented(proto->sendmsg),
2414		   proto_method_implemented(proto->recvmsg),
2415		   proto_method_implemented(proto->sendpage),
2416		   proto_method_implemented(proto->bind),
2417		   proto_method_implemented(proto->backlog_rcv),
2418		   proto_method_implemented(proto->hash),
2419		   proto_method_implemented(proto->unhash),
2420		   proto_method_implemented(proto->get_port),
2421		   proto_method_implemented(proto->enter_memory_pressure));
2422}
2423
2424static int proto_seq_show(struct seq_file *seq, void *v)
2425{
2426	if (v == &proto_list)
2427		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2428			   "protocol",
2429			   "size",
2430			   "sockets",
2431			   "memory",
2432			   "press",
2433			   "maxhdr",
2434			   "slab",
2435			   "module",
2436			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2437	else
2438		proto_seq_printf(seq, list_entry(v, struct proto, node));
2439	return 0;
2440}
2441
2442static const struct seq_operations proto_seq_ops = {
2443	.start  = proto_seq_start,
2444	.next   = proto_seq_next,
2445	.stop   = proto_seq_stop,
2446	.show   = proto_seq_show,
2447};
2448
2449static int proto_seq_open(struct inode *inode, struct file *file)
2450{
2451	return seq_open_net(inode, file, &proto_seq_ops,
2452			    sizeof(struct seq_net_private));
2453}
2454
2455static const struct file_operations proto_seq_fops = {
2456	.owner		= THIS_MODULE,
2457	.open		= proto_seq_open,
2458	.read		= seq_read,
2459	.llseek		= seq_lseek,
2460	.release	= seq_release_net,
2461};
2462
2463static __net_init int proto_init_net(struct net *net)
2464{
2465	if (!proc_net_fops_create(net, "protocols", S_IRUGO, &proto_seq_fops))
2466		return -ENOMEM;
2467
2468	return 0;
2469}
2470
2471static __net_exit void proto_exit_net(struct net *net)
2472{
2473	proc_net_remove(net, "protocols");
2474}
2475
2476
2477static __net_initdata struct pernet_operations proto_net_ops = {
2478	.init = proto_init_net,
2479	.exit = proto_exit_net,
2480};
2481
2482static int __init proto_init(void)
2483{
2484	return register_pernet_subsys(&proto_net_ops);
2485}
2486
2487subsys_initcall(proto_init);
2488
2489#endif /* PROC_FS */
2490