fib_frontend.c revision a31f2d17b331db970259e875b7223d3aba7e3821
1/*
2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
3 *		operating system.  INET is implemented using the  BSD Socket
4 *		interface as the means of communication with the user level.
5 *
6 *		IPv4 Forwarding Information Base: FIB frontend.
7 *
8 * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
9 *
10 *		This program is free software; you can redistribute it and/or
11 *		modify it under the terms of the GNU General Public License
12 *		as published by the Free Software Foundation; either version
13 *		2 of the License, or (at your option) any later version.
14 */
15
16#include <linux/module.h>
17#include <asm/uaccess.h>
18#include <linux/bitops.h>
19#include <linux/capability.h>
20#include <linux/types.h>
21#include <linux/kernel.h>
22#include <linux/mm.h>
23#include <linux/string.h>
24#include <linux/socket.h>
25#include <linux/sockios.h>
26#include <linux/errno.h>
27#include <linux/in.h>
28#include <linux/inet.h>
29#include <linux/inetdevice.h>
30#include <linux/netdevice.h>
31#include <linux/if_addr.h>
32#include <linux/if_arp.h>
33#include <linux/skbuff.h>
34#include <linux/cache.h>
35#include <linux/init.h>
36#include <linux/list.h>
37#include <linux/slab.h>
38
39#include <net/ip.h>
40#include <net/protocol.h>
41#include <net/route.h>
42#include <net/tcp.h>
43#include <net/sock.h>
44#include <net/arp.h>
45#include <net/ip_fib.h>
46#include <net/rtnetlink.h>
47#include <net/xfrm.h>
48
49#ifndef CONFIG_IP_MULTIPLE_TABLES
50
51static int __net_init fib4_rules_init(struct net *net)
52{
53	struct fib_table *local_table, *main_table;
54
55	local_table = fib_trie_table(RT_TABLE_LOCAL);
56	if (local_table == NULL)
57		return -ENOMEM;
58
59	main_table  = fib_trie_table(RT_TABLE_MAIN);
60	if (main_table == NULL)
61		goto fail;
62
63	hlist_add_head_rcu(&local_table->tb_hlist,
64				&net->ipv4.fib_table_hash[TABLE_LOCAL_INDEX]);
65	hlist_add_head_rcu(&main_table->tb_hlist,
66				&net->ipv4.fib_table_hash[TABLE_MAIN_INDEX]);
67	return 0;
68
69fail:
70	kfree(local_table);
71	return -ENOMEM;
72}
73#else
74
75struct fib_table *fib_new_table(struct net *net, u32 id)
76{
77	struct fib_table *tb;
78	unsigned int h;
79
80	if (id == 0)
81		id = RT_TABLE_MAIN;
82	tb = fib_get_table(net, id);
83	if (tb)
84		return tb;
85
86	tb = fib_trie_table(id);
87	if (!tb)
88		return NULL;
89	h = id & (FIB_TABLE_HASHSZ - 1);
90	hlist_add_head_rcu(&tb->tb_hlist, &net->ipv4.fib_table_hash[h]);
91	return tb;
92}
93
94struct fib_table *fib_get_table(struct net *net, u32 id)
95{
96	struct fib_table *tb;
97	struct hlist_node *node;
98	struct hlist_head *head;
99	unsigned int h;
100
101	if (id == 0)
102		id = RT_TABLE_MAIN;
103	h = id & (FIB_TABLE_HASHSZ - 1);
104
105	rcu_read_lock();
106	head = &net->ipv4.fib_table_hash[h];
107	hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
108		if (tb->tb_id == id) {
109			rcu_read_unlock();
110			return tb;
111		}
112	}
113	rcu_read_unlock();
114	return NULL;
115}
116#endif /* CONFIG_IP_MULTIPLE_TABLES */
117
118static void fib_flush(struct net *net)
119{
120	int flushed = 0;
121	struct fib_table *tb;
122	struct hlist_node *node;
123	struct hlist_head *head;
124	unsigned int h;
125
126	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
127		head = &net->ipv4.fib_table_hash[h];
128		hlist_for_each_entry(tb, node, head, tb_hlist)
129			flushed += fib_table_flush(tb);
130	}
131
132	if (flushed)
133		rt_cache_flush(net, -1);
134}
135
136/*
137 * Find address type as if only "dev" was present in the system. If
138 * on_dev is NULL then all interfaces are taken into consideration.
139 */
140static inline unsigned int __inet_dev_addr_type(struct net *net,
141						const struct net_device *dev,
142						__be32 addr)
143{
144	struct flowi4		fl4 = { .daddr = addr };
145	struct fib_result	res;
146	unsigned int ret = RTN_BROADCAST;
147	struct fib_table *local_table;
148
149	if (ipv4_is_zeronet(addr) || ipv4_is_lbcast(addr))
150		return RTN_BROADCAST;
151	if (ipv4_is_multicast(addr))
152		return RTN_MULTICAST;
153
154#ifdef CONFIG_IP_MULTIPLE_TABLES
155	res.r = NULL;
156#endif
157
158	local_table = fib_get_table(net, RT_TABLE_LOCAL);
159	if (local_table) {
160		ret = RTN_UNICAST;
161		rcu_read_lock();
162		if (!fib_table_lookup(local_table, &fl4, &res, FIB_LOOKUP_NOREF)) {
163			if (!dev || dev == res.fi->fib_dev)
164				ret = res.type;
165		}
166		rcu_read_unlock();
167	}
168	return ret;
169}
170
171unsigned int inet_addr_type(struct net *net, __be32 addr)
172{
173	return __inet_dev_addr_type(net, NULL, addr);
174}
175EXPORT_SYMBOL(inet_addr_type);
176
177unsigned int inet_dev_addr_type(struct net *net, const struct net_device *dev,
178				__be32 addr)
179{
180	return __inet_dev_addr_type(net, dev, addr);
181}
182EXPORT_SYMBOL(inet_dev_addr_type);
183
184__be32 fib_compute_spec_dst(struct sk_buff *skb)
185{
186	struct net_device *dev = skb->dev;
187	struct in_device *in_dev;
188	struct fib_result res;
189	struct rtable *rt;
190	struct flowi4 fl4;
191	struct net *net;
192	int scope;
193
194	rt = skb_rtable(skb);
195	if (!(rt->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST)))
196		return ip_hdr(skb)->daddr;
197
198	in_dev = __in_dev_get_rcu(dev);
199	BUG_ON(!in_dev);
200
201	net = dev_net(dev);
202
203	scope = RT_SCOPE_UNIVERSE;
204	if (!ipv4_is_zeronet(ip_hdr(skb)->saddr)) {
205		fl4.flowi4_oif = 0;
206		fl4.flowi4_iif = net->loopback_dev->ifindex;
207		fl4.daddr = ip_hdr(skb)->saddr;
208		fl4.saddr = 0;
209		fl4.flowi4_tos = RT_TOS(ip_hdr(skb)->tos);
210		fl4.flowi4_scope = scope;
211		fl4.flowi4_mark = IN_DEV_SRC_VMARK(in_dev) ? skb->mark : 0;
212		if (!fib_lookup(net, &fl4, &res))
213			return FIB_RES_PREFSRC(net, res);
214	} else {
215		scope = RT_SCOPE_LINK;
216	}
217
218	return inet_select_addr(dev, ip_hdr(skb)->saddr, scope);
219}
220
221#ifdef CONFIG_IP_ROUTE_CLASSID
222int fib_num_tclassid_users __read_mostly;
223#endif
224
225/* Given (packet source, input interface) and optional (dst, oif, tos):
226 * - (main) check, that source is valid i.e. not broadcast or our local
227 *   address.
228 * - figure out what "logical" interface this packet arrived
229 *   and calculate "specific destination" address.
230 * - check, that packet arrived from expected physical interface.
231 * called with rcu_read_lock()
232 */
233static int __fib_validate_source(struct sk_buff *skb, __be32 src, __be32 dst,
234				 u8 tos, int oif, struct net_device *dev,
235				 int rpf, struct in_device *idev, u32 *itag)
236{
237	int ret, no_addr, accept_local;
238	struct fib_result res;
239	struct flowi4 fl4;
240	struct net *net;
241	bool dev_match;
242
243	fl4.flowi4_oif = 0;
244	fl4.flowi4_iif = oif;
245	fl4.daddr = src;
246	fl4.saddr = dst;
247	fl4.flowi4_tos = tos;
248	fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
249
250	no_addr = accept_local = 0;
251	no_addr = idev->ifa_list == NULL;
252
253	accept_local = IN_DEV_ACCEPT_LOCAL(idev);
254	fl4.flowi4_mark = IN_DEV_SRC_VMARK(idev) ? skb->mark : 0;
255
256	net = dev_net(dev);
257	if (fib_lookup(net, &fl4, &res))
258		goto last_resort;
259	if (res.type != RTN_UNICAST) {
260		if (res.type != RTN_LOCAL || !accept_local)
261			goto e_inval;
262	}
263	fib_combine_itag(itag, &res);
264	dev_match = false;
265
266#ifdef CONFIG_IP_ROUTE_MULTIPATH
267	for (ret = 0; ret < res.fi->fib_nhs; ret++) {
268		struct fib_nh *nh = &res.fi->fib_nh[ret];
269
270		if (nh->nh_dev == dev) {
271			dev_match = true;
272			break;
273		}
274	}
275#else
276	if (FIB_RES_DEV(res) == dev)
277		dev_match = true;
278#endif
279	if (dev_match) {
280		ret = FIB_RES_NH(res).nh_scope >= RT_SCOPE_HOST;
281		return ret;
282	}
283	if (no_addr)
284		goto last_resort;
285	if (rpf == 1)
286		goto e_rpf;
287	fl4.flowi4_oif = dev->ifindex;
288
289	ret = 0;
290	if (fib_lookup(net, &fl4, &res) == 0) {
291		if (res.type == RTN_UNICAST)
292			ret = FIB_RES_NH(res).nh_scope >= RT_SCOPE_HOST;
293	}
294	return ret;
295
296last_resort:
297	if (rpf)
298		goto e_rpf;
299	*itag = 0;
300	return 0;
301
302e_inval:
303	return -EINVAL;
304e_rpf:
305	return -EXDEV;
306}
307
308/* Ignore rp_filter for packets protected by IPsec. */
309int fib_validate_source(struct sk_buff *skb, __be32 src, __be32 dst,
310			u8 tos, int oif, struct net_device *dev,
311			struct in_device *idev, u32 *itag)
312{
313	int r = secpath_exists(skb) ? 0 : IN_DEV_RPFILTER(idev);
314
315	if (!r && !fib_num_tclassid_users) {
316		*itag = 0;
317		return 0;
318	}
319	return __fib_validate_source(skb, src, dst, tos, oif, dev, r, idev, itag);
320}
321
322static inline __be32 sk_extract_addr(struct sockaddr *addr)
323{
324	return ((struct sockaddr_in *) addr)->sin_addr.s_addr;
325}
326
327static int put_rtax(struct nlattr *mx, int len, int type, u32 value)
328{
329	struct nlattr *nla;
330
331	nla = (struct nlattr *) ((char *) mx + len);
332	nla->nla_type = type;
333	nla->nla_len = nla_attr_size(4);
334	*(u32 *) nla_data(nla) = value;
335
336	return len + nla_total_size(4);
337}
338
339static int rtentry_to_fib_config(struct net *net, int cmd, struct rtentry *rt,
340				 struct fib_config *cfg)
341{
342	__be32 addr;
343	int plen;
344
345	memset(cfg, 0, sizeof(*cfg));
346	cfg->fc_nlinfo.nl_net = net;
347
348	if (rt->rt_dst.sa_family != AF_INET)
349		return -EAFNOSUPPORT;
350
351	/*
352	 * Check mask for validity:
353	 * a) it must be contiguous.
354	 * b) destination must have all host bits clear.
355	 * c) if application forgot to set correct family (AF_INET),
356	 *    reject request unless it is absolutely clear i.e.
357	 *    both family and mask are zero.
358	 */
359	plen = 32;
360	addr = sk_extract_addr(&rt->rt_dst);
361	if (!(rt->rt_flags & RTF_HOST)) {
362		__be32 mask = sk_extract_addr(&rt->rt_genmask);
363
364		if (rt->rt_genmask.sa_family != AF_INET) {
365			if (mask || rt->rt_genmask.sa_family)
366				return -EAFNOSUPPORT;
367		}
368
369		if (bad_mask(mask, addr))
370			return -EINVAL;
371
372		plen = inet_mask_len(mask);
373	}
374
375	cfg->fc_dst_len = plen;
376	cfg->fc_dst = addr;
377
378	if (cmd != SIOCDELRT) {
379		cfg->fc_nlflags = NLM_F_CREATE;
380		cfg->fc_protocol = RTPROT_BOOT;
381	}
382
383	if (rt->rt_metric)
384		cfg->fc_priority = rt->rt_metric - 1;
385
386	if (rt->rt_flags & RTF_REJECT) {
387		cfg->fc_scope = RT_SCOPE_HOST;
388		cfg->fc_type = RTN_UNREACHABLE;
389		return 0;
390	}
391
392	cfg->fc_scope = RT_SCOPE_NOWHERE;
393	cfg->fc_type = RTN_UNICAST;
394
395	if (rt->rt_dev) {
396		char *colon;
397		struct net_device *dev;
398		char devname[IFNAMSIZ];
399
400		if (copy_from_user(devname, rt->rt_dev, IFNAMSIZ-1))
401			return -EFAULT;
402
403		devname[IFNAMSIZ-1] = 0;
404		colon = strchr(devname, ':');
405		if (colon)
406			*colon = 0;
407		dev = __dev_get_by_name(net, devname);
408		if (!dev)
409			return -ENODEV;
410		cfg->fc_oif = dev->ifindex;
411		if (colon) {
412			struct in_ifaddr *ifa;
413			struct in_device *in_dev = __in_dev_get_rtnl(dev);
414			if (!in_dev)
415				return -ENODEV;
416			*colon = ':';
417			for (ifa = in_dev->ifa_list; ifa; ifa = ifa->ifa_next)
418				if (strcmp(ifa->ifa_label, devname) == 0)
419					break;
420			if (ifa == NULL)
421				return -ENODEV;
422			cfg->fc_prefsrc = ifa->ifa_local;
423		}
424	}
425
426	addr = sk_extract_addr(&rt->rt_gateway);
427	if (rt->rt_gateway.sa_family == AF_INET && addr) {
428		cfg->fc_gw = addr;
429		if (rt->rt_flags & RTF_GATEWAY &&
430		    inet_addr_type(net, addr) == RTN_UNICAST)
431			cfg->fc_scope = RT_SCOPE_UNIVERSE;
432	}
433
434	if (cmd == SIOCDELRT)
435		return 0;
436
437	if (rt->rt_flags & RTF_GATEWAY && !cfg->fc_gw)
438		return -EINVAL;
439
440	if (cfg->fc_scope == RT_SCOPE_NOWHERE)
441		cfg->fc_scope = RT_SCOPE_LINK;
442
443	if (rt->rt_flags & (RTF_MTU | RTF_WINDOW | RTF_IRTT)) {
444		struct nlattr *mx;
445		int len = 0;
446
447		mx = kzalloc(3 * nla_total_size(4), GFP_KERNEL);
448		if (mx == NULL)
449			return -ENOMEM;
450
451		if (rt->rt_flags & RTF_MTU)
452			len = put_rtax(mx, len, RTAX_ADVMSS, rt->rt_mtu - 40);
453
454		if (rt->rt_flags & RTF_WINDOW)
455			len = put_rtax(mx, len, RTAX_WINDOW, rt->rt_window);
456
457		if (rt->rt_flags & RTF_IRTT)
458			len = put_rtax(mx, len, RTAX_RTT, rt->rt_irtt << 3);
459
460		cfg->fc_mx = mx;
461		cfg->fc_mx_len = len;
462	}
463
464	return 0;
465}
466
467/*
468 * Handle IP routing ioctl calls.
469 * These are used to manipulate the routing tables
470 */
471int ip_rt_ioctl(struct net *net, unsigned int cmd, void __user *arg)
472{
473	struct fib_config cfg;
474	struct rtentry rt;
475	int err;
476
477	switch (cmd) {
478	case SIOCADDRT:		/* Add a route */
479	case SIOCDELRT:		/* Delete a route */
480		if (!capable(CAP_NET_ADMIN))
481			return -EPERM;
482
483		if (copy_from_user(&rt, arg, sizeof(rt)))
484			return -EFAULT;
485
486		rtnl_lock();
487		err = rtentry_to_fib_config(net, cmd, &rt, &cfg);
488		if (err == 0) {
489			struct fib_table *tb;
490
491			if (cmd == SIOCDELRT) {
492				tb = fib_get_table(net, cfg.fc_table);
493				if (tb)
494					err = fib_table_delete(tb, &cfg);
495				else
496					err = -ESRCH;
497			} else {
498				tb = fib_new_table(net, cfg.fc_table);
499				if (tb)
500					err = fib_table_insert(tb, &cfg);
501				else
502					err = -ENOBUFS;
503			}
504
505			/* allocated by rtentry_to_fib_config() */
506			kfree(cfg.fc_mx);
507		}
508		rtnl_unlock();
509		return err;
510	}
511	return -EINVAL;
512}
513
514const struct nla_policy rtm_ipv4_policy[RTA_MAX + 1] = {
515	[RTA_DST]		= { .type = NLA_U32 },
516	[RTA_SRC]		= { .type = NLA_U32 },
517	[RTA_IIF]		= { .type = NLA_U32 },
518	[RTA_OIF]		= { .type = NLA_U32 },
519	[RTA_GATEWAY]		= { .type = NLA_U32 },
520	[RTA_PRIORITY]		= { .type = NLA_U32 },
521	[RTA_PREFSRC]		= { .type = NLA_U32 },
522	[RTA_METRICS]		= { .type = NLA_NESTED },
523	[RTA_MULTIPATH]		= { .len = sizeof(struct rtnexthop) },
524	[RTA_FLOW]		= { .type = NLA_U32 },
525};
526
527static int rtm_to_fib_config(struct net *net, struct sk_buff *skb,
528			     struct nlmsghdr *nlh, struct fib_config *cfg)
529{
530	struct nlattr *attr;
531	int err, remaining;
532	struct rtmsg *rtm;
533
534	err = nlmsg_validate(nlh, sizeof(*rtm), RTA_MAX, rtm_ipv4_policy);
535	if (err < 0)
536		goto errout;
537
538	memset(cfg, 0, sizeof(*cfg));
539
540	rtm = nlmsg_data(nlh);
541	cfg->fc_dst_len = rtm->rtm_dst_len;
542	cfg->fc_tos = rtm->rtm_tos;
543	cfg->fc_table = rtm->rtm_table;
544	cfg->fc_protocol = rtm->rtm_protocol;
545	cfg->fc_scope = rtm->rtm_scope;
546	cfg->fc_type = rtm->rtm_type;
547	cfg->fc_flags = rtm->rtm_flags;
548	cfg->fc_nlflags = nlh->nlmsg_flags;
549
550	cfg->fc_nlinfo.pid = NETLINK_CB(skb).pid;
551	cfg->fc_nlinfo.nlh = nlh;
552	cfg->fc_nlinfo.nl_net = net;
553
554	if (cfg->fc_type > RTN_MAX) {
555		err = -EINVAL;
556		goto errout;
557	}
558
559	nlmsg_for_each_attr(attr, nlh, sizeof(struct rtmsg), remaining) {
560		switch (nla_type(attr)) {
561		case RTA_DST:
562			cfg->fc_dst = nla_get_be32(attr);
563			break;
564		case RTA_OIF:
565			cfg->fc_oif = nla_get_u32(attr);
566			break;
567		case RTA_GATEWAY:
568			cfg->fc_gw = nla_get_be32(attr);
569			break;
570		case RTA_PRIORITY:
571			cfg->fc_priority = nla_get_u32(attr);
572			break;
573		case RTA_PREFSRC:
574			cfg->fc_prefsrc = nla_get_be32(attr);
575			break;
576		case RTA_METRICS:
577			cfg->fc_mx = nla_data(attr);
578			cfg->fc_mx_len = nla_len(attr);
579			break;
580		case RTA_MULTIPATH:
581			cfg->fc_mp = nla_data(attr);
582			cfg->fc_mp_len = nla_len(attr);
583			break;
584		case RTA_FLOW:
585			cfg->fc_flow = nla_get_u32(attr);
586			break;
587		case RTA_TABLE:
588			cfg->fc_table = nla_get_u32(attr);
589			break;
590		}
591	}
592
593	return 0;
594errout:
595	return err;
596}
597
598static int inet_rtm_delroute(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
599{
600	struct net *net = sock_net(skb->sk);
601	struct fib_config cfg;
602	struct fib_table *tb;
603	int err;
604
605	err = rtm_to_fib_config(net, skb, nlh, &cfg);
606	if (err < 0)
607		goto errout;
608
609	tb = fib_get_table(net, cfg.fc_table);
610	if (tb == NULL) {
611		err = -ESRCH;
612		goto errout;
613	}
614
615	err = fib_table_delete(tb, &cfg);
616errout:
617	return err;
618}
619
620static int inet_rtm_newroute(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
621{
622	struct net *net = sock_net(skb->sk);
623	struct fib_config cfg;
624	struct fib_table *tb;
625	int err;
626
627	err = rtm_to_fib_config(net, skb, nlh, &cfg);
628	if (err < 0)
629		goto errout;
630
631	tb = fib_new_table(net, cfg.fc_table);
632	if (tb == NULL) {
633		err = -ENOBUFS;
634		goto errout;
635	}
636
637	err = fib_table_insert(tb, &cfg);
638errout:
639	return err;
640}
641
642static int inet_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
643{
644	struct net *net = sock_net(skb->sk);
645	unsigned int h, s_h;
646	unsigned int e = 0, s_e;
647	struct fib_table *tb;
648	struct hlist_node *node;
649	struct hlist_head *head;
650	int dumped = 0;
651
652	if (nlmsg_len(cb->nlh) >= sizeof(struct rtmsg) &&
653	    ((struct rtmsg *) nlmsg_data(cb->nlh))->rtm_flags & RTM_F_CLONED)
654		return ip_rt_dump(skb, cb);
655
656	s_h = cb->args[0];
657	s_e = cb->args[1];
658
659	for (h = s_h; h < FIB_TABLE_HASHSZ; h++, s_e = 0) {
660		e = 0;
661		head = &net->ipv4.fib_table_hash[h];
662		hlist_for_each_entry(tb, node, head, tb_hlist) {
663			if (e < s_e)
664				goto next;
665			if (dumped)
666				memset(&cb->args[2], 0, sizeof(cb->args) -
667						 2 * sizeof(cb->args[0]));
668			if (fib_table_dump(tb, skb, cb) < 0)
669				goto out;
670			dumped = 1;
671next:
672			e++;
673		}
674	}
675out:
676	cb->args[1] = e;
677	cb->args[0] = h;
678
679	return skb->len;
680}
681
682/* Prepare and feed intra-kernel routing request.
683 * Really, it should be netlink message, but :-( netlink
684 * can be not configured, so that we feed it directly
685 * to fib engine. It is legal, because all events occur
686 * only when netlink is already locked.
687 */
688static void fib_magic(int cmd, int type, __be32 dst, int dst_len, struct in_ifaddr *ifa)
689{
690	struct net *net = dev_net(ifa->ifa_dev->dev);
691	struct fib_table *tb;
692	struct fib_config cfg = {
693		.fc_protocol = RTPROT_KERNEL,
694		.fc_type = type,
695		.fc_dst = dst,
696		.fc_dst_len = dst_len,
697		.fc_prefsrc = ifa->ifa_local,
698		.fc_oif = ifa->ifa_dev->dev->ifindex,
699		.fc_nlflags = NLM_F_CREATE | NLM_F_APPEND,
700		.fc_nlinfo = {
701			.nl_net = net,
702		},
703	};
704
705	if (type == RTN_UNICAST)
706		tb = fib_new_table(net, RT_TABLE_MAIN);
707	else
708		tb = fib_new_table(net, RT_TABLE_LOCAL);
709
710	if (tb == NULL)
711		return;
712
713	cfg.fc_table = tb->tb_id;
714
715	if (type != RTN_LOCAL)
716		cfg.fc_scope = RT_SCOPE_LINK;
717	else
718		cfg.fc_scope = RT_SCOPE_HOST;
719
720	if (cmd == RTM_NEWROUTE)
721		fib_table_insert(tb, &cfg);
722	else
723		fib_table_delete(tb, &cfg);
724}
725
726void fib_add_ifaddr(struct in_ifaddr *ifa)
727{
728	struct in_device *in_dev = ifa->ifa_dev;
729	struct net_device *dev = in_dev->dev;
730	struct in_ifaddr *prim = ifa;
731	__be32 mask = ifa->ifa_mask;
732	__be32 addr = ifa->ifa_local;
733	__be32 prefix = ifa->ifa_address & mask;
734
735	if (ifa->ifa_flags & IFA_F_SECONDARY) {
736		prim = inet_ifa_byprefix(in_dev, prefix, mask);
737		if (prim == NULL) {
738			pr_warn("%s: bug: prim == NULL\n", __func__);
739			return;
740		}
741	}
742
743	fib_magic(RTM_NEWROUTE, RTN_LOCAL, addr, 32, prim);
744
745	if (!(dev->flags & IFF_UP))
746		return;
747
748	/* Add broadcast address, if it is explicitly assigned. */
749	if (ifa->ifa_broadcast && ifa->ifa_broadcast != htonl(0xFFFFFFFF))
750		fib_magic(RTM_NEWROUTE, RTN_BROADCAST, ifa->ifa_broadcast, 32, prim);
751
752	if (!ipv4_is_zeronet(prefix) && !(ifa->ifa_flags & IFA_F_SECONDARY) &&
753	    (prefix != addr || ifa->ifa_prefixlen < 32)) {
754		fib_magic(RTM_NEWROUTE,
755			  dev->flags & IFF_LOOPBACK ? RTN_LOCAL : RTN_UNICAST,
756			  prefix, ifa->ifa_prefixlen, prim);
757
758		/* Add network specific broadcasts, when it takes a sense */
759		if (ifa->ifa_prefixlen < 31) {
760			fib_magic(RTM_NEWROUTE, RTN_BROADCAST, prefix, 32, prim);
761			fib_magic(RTM_NEWROUTE, RTN_BROADCAST, prefix | ~mask,
762				  32, prim);
763		}
764	}
765}
766
767/* Delete primary or secondary address.
768 * Optionally, on secondary address promotion consider the addresses
769 * from subnet iprim as deleted, even if they are in device list.
770 * In this case the secondary ifa can be in device list.
771 */
772void fib_del_ifaddr(struct in_ifaddr *ifa, struct in_ifaddr *iprim)
773{
774	struct in_device *in_dev = ifa->ifa_dev;
775	struct net_device *dev = in_dev->dev;
776	struct in_ifaddr *ifa1;
777	struct in_ifaddr *prim = ifa, *prim1 = NULL;
778	__be32 brd = ifa->ifa_address | ~ifa->ifa_mask;
779	__be32 any = ifa->ifa_address & ifa->ifa_mask;
780#define LOCAL_OK	1
781#define BRD_OK		2
782#define BRD0_OK		4
783#define BRD1_OK		8
784	unsigned int ok = 0;
785	int subnet = 0;		/* Primary network */
786	int gone = 1;		/* Address is missing */
787	int same_prefsrc = 0;	/* Another primary with same IP */
788
789	if (ifa->ifa_flags & IFA_F_SECONDARY) {
790		prim = inet_ifa_byprefix(in_dev, any, ifa->ifa_mask);
791		if (prim == NULL) {
792			pr_warn("%s: bug: prim == NULL\n", __func__);
793			return;
794		}
795		if (iprim && iprim != prim) {
796			pr_warn("%s: bug: iprim != prim\n", __func__);
797			return;
798		}
799	} else if (!ipv4_is_zeronet(any) &&
800		   (any != ifa->ifa_local || ifa->ifa_prefixlen < 32)) {
801		fib_magic(RTM_DELROUTE,
802			  dev->flags & IFF_LOOPBACK ? RTN_LOCAL : RTN_UNICAST,
803			  any, ifa->ifa_prefixlen, prim);
804		subnet = 1;
805	}
806
807	/* Deletion is more complicated than add.
808	 * We should take care of not to delete too much :-)
809	 *
810	 * Scan address list to be sure that addresses are really gone.
811	 */
812
813	for (ifa1 = in_dev->ifa_list; ifa1; ifa1 = ifa1->ifa_next) {
814		if (ifa1 == ifa) {
815			/* promotion, keep the IP */
816			gone = 0;
817			continue;
818		}
819		/* Ignore IFAs from our subnet */
820		if (iprim && ifa1->ifa_mask == iprim->ifa_mask &&
821		    inet_ifa_match(ifa1->ifa_address, iprim))
822			continue;
823
824		/* Ignore ifa1 if it uses different primary IP (prefsrc) */
825		if (ifa1->ifa_flags & IFA_F_SECONDARY) {
826			/* Another address from our subnet? */
827			if (ifa1->ifa_mask == prim->ifa_mask &&
828			    inet_ifa_match(ifa1->ifa_address, prim))
829				prim1 = prim;
830			else {
831				/* We reached the secondaries, so
832				 * same_prefsrc should be determined.
833				 */
834				if (!same_prefsrc)
835					continue;
836				/* Search new prim1 if ifa1 is not
837				 * using the current prim1
838				 */
839				if (!prim1 ||
840				    ifa1->ifa_mask != prim1->ifa_mask ||
841				    !inet_ifa_match(ifa1->ifa_address, prim1))
842					prim1 = inet_ifa_byprefix(in_dev,
843							ifa1->ifa_address,
844							ifa1->ifa_mask);
845				if (!prim1)
846					continue;
847				if (prim1->ifa_local != prim->ifa_local)
848					continue;
849			}
850		} else {
851			if (prim->ifa_local != ifa1->ifa_local)
852				continue;
853			prim1 = ifa1;
854			if (prim != prim1)
855				same_prefsrc = 1;
856		}
857		if (ifa->ifa_local == ifa1->ifa_local)
858			ok |= LOCAL_OK;
859		if (ifa->ifa_broadcast == ifa1->ifa_broadcast)
860			ok |= BRD_OK;
861		if (brd == ifa1->ifa_broadcast)
862			ok |= BRD1_OK;
863		if (any == ifa1->ifa_broadcast)
864			ok |= BRD0_OK;
865		/* primary has network specific broadcasts */
866		if (prim1 == ifa1 && ifa1->ifa_prefixlen < 31) {
867			__be32 brd1 = ifa1->ifa_address | ~ifa1->ifa_mask;
868			__be32 any1 = ifa1->ifa_address & ifa1->ifa_mask;
869
870			if (!ipv4_is_zeronet(any1)) {
871				if (ifa->ifa_broadcast == brd1 ||
872				    ifa->ifa_broadcast == any1)
873					ok |= BRD_OK;
874				if (brd == brd1 || brd == any1)
875					ok |= BRD1_OK;
876				if (any == brd1 || any == any1)
877					ok |= BRD0_OK;
878			}
879		}
880	}
881
882	if (!(ok & BRD_OK))
883		fib_magic(RTM_DELROUTE, RTN_BROADCAST, ifa->ifa_broadcast, 32, prim);
884	if (subnet && ifa->ifa_prefixlen < 31) {
885		if (!(ok & BRD1_OK))
886			fib_magic(RTM_DELROUTE, RTN_BROADCAST, brd, 32, prim);
887		if (!(ok & BRD0_OK))
888			fib_magic(RTM_DELROUTE, RTN_BROADCAST, any, 32, prim);
889	}
890	if (!(ok & LOCAL_OK)) {
891		fib_magic(RTM_DELROUTE, RTN_LOCAL, ifa->ifa_local, 32, prim);
892
893		/* Check, that this local address finally disappeared. */
894		if (gone &&
895		    inet_addr_type(dev_net(dev), ifa->ifa_local) != RTN_LOCAL) {
896			/* And the last, but not the least thing.
897			 * We must flush stray FIB entries.
898			 *
899			 * First of all, we scan fib_info list searching
900			 * for stray nexthop entries, then ignite fib_flush.
901			 */
902			if (fib_sync_down_addr(dev_net(dev), ifa->ifa_local))
903				fib_flush(dev_net(dev));
904		}
905	}
906#undef LOCAL_OK
907#undef BRD_OK
908#undef BRD0_OK
909#undef BRD1_OK
910}
911
912static void nl_fib_lookup(struct fib_result_nl *frn, struct fib_table *tb)
913{
914
915	struct fib_result       res;
916	struct flowi4           fl4 = {
917		.flowi4_mark = frn->fl_mark,
918		.daddr = frn->fl_addr,
919		.flowi4_tos = frn->fl_tos,
920		.flowi4_scope = frn->fl_scope,
921	};
922
923#ifdef CONFIG_IP_MULTIPLE_TABLES
924	res.r = NULL;
925#endif
926
927	frn->err = -ENOENT;
928	if (tb) {
929		local_bh_disable();
930
931		frn->tb_id = tb->tb_id;
932		rcu_read_lock();
933		frn->err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF);
934
935		if (!frn->err) {
936			frn->prefixlen = res.prefixlen;
937			frn->nh_sel = res.nh_sel;
938			frn->type = res.type;
939			frn->scope = res.scope;
940		}
941		rcu_read_unlock();
942		local_bh_enable();
943	}
944}
945
946static void nl_fib_input(struct sk_buff *skb)
947{
948	struct net *net;
949	struct fib_result_nl *frn;
950	struct nlmsghdr *nlh;
951	struct fib_table *tb;
952	u32 pid;
953
954	net = sock_net(skb->sk);
955	nlh = nlmsg_hdr(skb);
956	if (skb->len < NLMSG_SPACE(0) || skb->len < nlh->nlmsg_len ||
957	    nlh->nlmsg_len < NLMSG_LENGTH(sizeof(*frn)))
958		return;
959
960	skb = skb_clone(skb, GFP_KERNEL);
961	if (skb == NULL)
962		return;
963	nlh = nlmsg_hdr(skb);
964
965	frn = (struct fib_result_nl *) NLMSG_DATA(nlh);
966	tb = fib_get_table(net, frn->tb_id_in);
967
968	nl_fib_lookup(frn, tb);
969
970	pid = NETLINK_CB(skb).pid;      /* pid of sending process */
971	NETLINK_CB(skb).pid = 0;        /* from kernel */
972	NETLINK_CB(skb).dst_group = 0;  /* unicast */
973	netlink_unicast(net->ipv4.fibnl, skb, pid, MSG_DONTWAIT);
974}
975
976static int __net_init nl_fib_lookup_init(struct net *net)
977{
978	struct sock *sk;
979	struct netlink_kernel_cfg cfg = {
980		.input	= nl_fib_input,
981	};
982
983	sk = netlink_kernel_create(net, NETLINK_FIB_LOOKUP, THIS_MODULE, &cfg);
984	if (sk == NULL)
985		return -EAFNOSUPPORT;
986	net->ipv4.fibnl = sk;
987	return 0;
988}
989
990static void nl_fib_lookup_exit(struct net *net)
991{
992	netlink_kernel_release(net->ipv4.fibnl);
993	net->ipv4.fibnl = NULL;
994}
995
996static void fib_disable_ip(struct net_device *dev, int force, int delay)
997{
998	if (fib_sync_down_dev(dev, force))
999		fib_flush(dev_net(dev));
1000	rt_cache_flush(dev_net(dev), delay);
1001	arp_ifdown(dev);
1002}
1003
1004static int fib_inetaddr_event(struct notifier_block *this, unsigned long event, void *ptr)
1005{
1006	struct in_ifaddr *ifa = (struct in_ifaddr *)ptr;
1007	struct net_device *dev = ifa->ifa_dev->dev;
1008	struct net *net = dev_net(dev);
1009
1010	switch (event) {
1011	case NETDEV_UP:
1012		fib_add_ifaddr(ifa);
1013#ifdef CONFIG_IP_ROUTE_MULTIPATH
1014		fib_sync_up(dev);
1015#endif
1016		atomic_inc(&net->ipv4.dev_addr_genid);
1017		rt_cache_flush(dev_net(dev), -1);
1018		break;
1019	case NETDEV_DOWN:
1020		fib_del_ifaddr(ifa, NULL);
1021		atomic_inc(&net->ipv4.dev_addr_genid);
1022		if (ifa->ifa_dev->ifa_list == NULL) {
1023			/* Last address was deleted from this interface.
1024			 * Disable IP.
1025			 */
1026			fib_disable_ip(dev, 1, 0);
1027		} else {
1028			rt_cache_flush(dev_net(dev), -1);
1029		}
1030		break;
1031	}
1032	return NOTIFY_DONE;
1033}
1034
1035static int fib_netdev_event(struct notifier_block *this, unsigned long event, void *ptr)
1036{
1037	struct net_device *dev = ptr;
1038	struct in_device *in_dev = __in_dev_get_rtnl(dev);
1039	struct net *net = dev_net(dev);
1040
1041	if (event == NETDEV_UNREGISTER) {
1042		fib_disable_ip(dev, 2, -1);
1043		return NOTIFY_DONE;
1044	}
1045
1046	if (!in_dev)
1047		return NOTIFY_DONE;
1048
1049	switch (event) {
1050	case NETDEV_UP:
1051		for_ifa(in_dev) {
1052			fib_add_ifaddr(ifa);
1053		} endfor_ifa(in_dev);
1054#ifdef CONFIG_IP_ROUTE_MULTIPATH
1055		fib_sync_up(dev);
1056#endif
1057		atomic_inc(&net->ipv4.dev_addr_genid);
1058		rt_cache_flush(dev_net(dev), -1);
1059		break;
1060	case NETDEV_DOWN:
1061		fib_disable_ip(dev, 0, 0);
1062		break;
1063	case NETDEV_CHANGEMTU:
1064	case NETDEV_CHANGE:
1065		rt_cache_flush(dev_net(dev), 0);
1066		break;
1067	case NETDEV_UNREGISTER_BATCH:
1068		/* The batch unregister is only called on the first
1069		 * device in the list of devices being unregistered.
1070		 * Therefore we should not pass dev_net(dev) in here.
1071		 */
1072		rt_cache_flush_batch(NULL);
1073		break;
1074	}
1075	return NOTIFY_DONE;
1076}
1077
1078static struct notifier_block fib_inetaddr_notifier = {
1079	.notifier_call = fib_inetaddr_event,
1080};
1081
1082static struct notifier_block fib_netdev_notifier = {
1083	.notifier_call = fib_netdev_event,
1084};
1085
1086static int __net_init ip_fib_net_init(struct net *net)
1087{
1088	int err;
1089	size_t size = sizeof(struct hlist_head) * FIB_TABLE_HASHSZ;
1090
1091	/* Avoid false sharing : Use at least a full cache line */
1092	size = max_t(size_t, size, L1_CACHE_BYTES);
1093
1094	net->ipv4.fib_table_hash = kzalloc(size, GFP_KERNEL);
1095	if (net->ipv4.fib_table_hash == NULL)
1096		return -ENOMEM;
1097
1098	err = fib4_rules_init(net);
1099	if (err < 0)
1100		goto fail;
1101	return 0;
1102
1103fail:
1104	kfree(net->ipv4.fib_table_hash);
1105	return err;
1106}
1107
1108static void ip_fib_net_exit(struct net *net)
1109{
1110	unsigned int i;
1111
1112#ifdef CONFIG_IP_MULTIPLE_TABLES
1113	fib4_rules_exit(net);
1114#endif
1115
1116	rtnl_lock();
1117	for (i = 0; i < FIB_TABLE_HASHSZ; i++) {
1118		struct fib_table *tb;
1119		struct hlist_head *head;
1120		struct hlist_node *node, *tmp;
1121
1122		head = &net->ipv4.fib_table_hash[i];
1123		hlist_for_each_entry_safe(tb, node, tmp, head, tb_hlist) {
1124			hlist_del(node);
1125			fib_table_flush(tb);
1126			fib_free_table(tb);
1127		}
1128	}
1129	rtnl_unlock();
1130	kfree(net->ipv4.fib_table_hash);
1131}
1132
1133static int __net_init fib_net_init(struct net *net)
1134{
1135	int error;
1136
1137	error = ip_fib_net_init(net);
1138	if (error < 0)
1139		goto out;
1140	error = nl_fib_lookup_init(net);
1141	if (error < 0)
1142		goto out_nlfl;
1143	error = fib_proc_init(net);
1144	if (error < 0)
1145		goto out_proc;
1146out:
1147	return error;
1148
1149out_proc:
1150	nl_fib_lookup_exit(net);
1151out_nlfl:
1152	ip_fib_net_exit(net);
1153	goto out;
1154}
1155
1156static void __net_exit fib_net_exit(struct net *net)
1157{
1158	fib_proc_exit(net);
1159	nl_fib_lookup_exit(net);
1160	ip_fib_net_exit(net);
1161}
1162
1163static struct pernet_operations fib_net_ops = {
1164	.init = fib_net_init,
1165	.exit = fib_net_exit,
1166};
1167
1168void __init ip_fib_init(void)
1169{
1170	rtnl_register(PF_INET, RTM_NEWROUTE, inet_rtm_newroute, NULL, NULL);
1171	rtnl_register(PF_INET, RTM_DELROUTE, inet_rtm_delroute, NULL, NULL);
1172	rtnl_register(PF_INET, RTM_GETROUTE, NULL, inet_dump_fib, NULL);
1173
1174	register_pernet_subsys(&fib_net_ops);
1175	register_netdevice_notifier(&fib_netdev_notifier);
1176	register_inetaddr_notifier(&fib_inetaddr_notifier);
1177
1178	fib_trie_init();
1179}
1180