tcp_minisocks.c revision 02c30a84e6298b6b20a56f0896ac80b47839e134
1/*
2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
3 *		operating system.  INET is implemented using the  BSD Socket
4 *		interface as the means of communication with the user level.
5 *
6 *		Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Version:	$Id: tcp_minisocks.c,v 1.15 2002/02/01 22:01:04 davem Exp $
9 *
10 * Authors:	Ross Biro
11 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14 *		Florian La Roche, <flla@stud.uni-sb.de>
15 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
17 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
18 *		Matthew Dillon, <dillon@apollo.west.oic.com>
19 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 *		Jorge Cwik, <jorge@laser.satlink.net>
21 */
22
23#include <linux/config.h>
24#include <linux/mm.h>
25#include <linux/module.h>
26#include <linux/sysctl.h>
27#include <linux/workqueue.h>
28#include <net/tcp.h>
29#include <net/inet_common.h>
30#include <net/xfrm.h>
31
32#ifdef CONFIG_SYSCTL
33#define SYNC_INIT 0 /* let the user enable it */
34#else
35#define SYNC_INIT 1
36#endif
37
38int sysctl_tcp_tw_recycle;
39int sysctl_tcp_max_tw_buckets = NR_FILE*2;
40
41int sysctl_tcp_syncookies = SYNC_INIT;
42int sysctl_tcp_abort_on_overflow;
43
44static void tcp_tw_schedule(struct tcp_tw_bucket *tw, int timeo);
45
46static __inline__ int tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
47{
48	if (seq == s_win)
49		return 1;
50	if (after(end_seq, s_win) && before(seq, e_win))
51		return 1;
52	return (seq == e_win && seq == end_seq);
53}
54
55/* New-style handling of TIME_WAIT sockets. */
56
57int tcp_tw_count;
58
59
60/* Must be called with locally disabled BHs. */
61static void tcp_timewait_kill(struct tcp_tw_bucket *tw)
62{
63	struct tcp_ehash_bucket *ehead;
64	struct tcp_bind_hashbucket *bhead;
65	struct tcp_bind_bucket *tb;
66
67	/* Unlink from established hashes. */
68	ehead = &tcp_ehash[tw->tw_hashent];
69	write_lock(&ehead->lock);
70	if (hlist_unhashed(&tw->tw_node)) {
71		write_unlock(&ehead->lock);
72		return;
73	}
74	__hlist_del(&tw->tw_node);
75	sk_node_init(&tw->tw_node);
76	write_unlock(&ehead->lock);
77
78	/* Disassociate with bind bucket. */
79	bhead = &tcp_bhash[tcp_bhashfn(tw->tw_num)];
80	spin_lock(&bhead->lock);
81	tb = tw->tw_tb;
82	__hlist_del(&tw->tw_bind_node);
83	tw->tw_tb = NULL;
84	tcp_bucket_destroy(tb);
85	spin_unlock(&bhead->lock);
86
87#ifdef INET_REFCNT_DEBUG
88	if (atomic_read(&tw->tw_refcnt) != 1) {
89		printk(KERN_DEBUG "tw_bucket %p refcnt=%d\n", tw,
90		       atomic_read(&tw->tw_refcnt));
91	}
92#endif
93	tcp_tw_put(tw);
94}
95
96/*
97 * * Main purpose of TIME-WAIT state is to close connection gracefully,
98 *   when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
99 *   (and, probably, tail of data) and one or more our ACKs are lost.
100 * * What is TIME-WAIT timeout? It is associated with maximal packet
101 *   lifetime in the internet, which results in wrong conclusion, that
102 *   it is set to catch "old duplicate segments" wandering out of their path.
103 *   It is not quite correct. This timeout is calculated so that it exceeds
104 *   maximal retransmission timeout enough to allow to lose one (or more)
105 *   segments sent by peer and our ACKs. This time may be calculated from RTO.
106 * * When TIME-WAIT socket receives RST, it means that another end
107 *   finally closed and we are allowed to kill TIME-WAIT too.
108 * * Second purpose of TIME-WAIT is catching old duplicate segments.
109 *   Well, certainly it is pure paranoia, but if we load TIME-WAIT
110 *   with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
111 * * If we invented some more clever way to catch duplicates
112 *   (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
113 *
114 * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
115 * When you compare it to RFCs, please, read section SEGMENT ARRIVES
116 * from the very beginning.
117 *
118 * NOTE. With recycling (and later with fin-wait-2) TW bucket
119 * is _not_ stateless. It means, that strictly speaking we must
120 * spinlock it. I do not want! Well, probability of misbehaviour
121 * is ridiculously low and, seems, we could use some mb() tricks
122 * to avoid misread sequence numbers, states etc.  --ANK
123 */
124enum tcp_tw_status
125tcp_timewait_state_process(struct tcp_tw_bucket *tw, struct sk_buff *skb,
126			   struct tcphdr *th, unsigned len)
127{
128	struct tcp_options_received tmp_opt;
129	int paws_reject = 0;
130
131	tmp_opt.saw_tstamp = 0;
132	if (th->doff > (sizeof(struct tcphdr) >> 2) && tw->tw_ts_recent_stamp) {
133		tcp_parse_options(skb, &tmp_opt, 0);
134
135		if (tmp_opt.saw_tstamp) {
136			tmp_opt.ts_recent	   = tw->tw_ts_recent;
137			tmp_opt.ts_recent_stamp = tw->tw_ts_recent_stamp;
138			paws_reject = tcp_paws_check(&tmp_opt, th->rst);
139		}
140	}
141
142	if (tw->tw_substate == TCP_FIN_WAIT2) {
143		/* Just repeat all the checks of tcp_rcv_state_process() */
144
145		/* Out of window, send ACK */
146		if (paws_reject ||
147		    !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
148				   tw->tw_rcv_nxt,
149				   tw->tw_rcv_nxt + tw->tw_rcv_wnd))
150			return TCP_TW_ACK;
151
152		if (th->rst)
153			goto kill;
154
155		if (th->syn && !before(TCP_SKB_CB(skb)->seq, tw->tw_rcv_nxt))
156			goto kill_with_rst;
157
158		/* Dup ACK? */
159		if (!after(TCP_SKB_CB(skb)->end_seq, tw->tw_rcv_nxt) ||
160		    TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
161			tcp_tw_put(tw);
162			return TCP_TW_SUCCESS;
163		}
164
165		/* New data or FIN. If new data arrive after half-duplex close,
166		 * reset.
167		 */
168		if (!th->fin ||
169		    TCP_SKB_CB(skb)->end_seq != tw->tw_rcv_nxt + 1) {
170kill_with_rst:
171			tcp_tw_deschedule(tw);
172			tcp_tw_put(tw);
173			return TCP_TW_RST;
174		}
175
176		/* FIN arrived, enter true time-wait state. */
177		tw->tw_substate	= TCP_TIME_WAIT;
178		tw->tw_rcv_nxt	= TCP_SKB_CB(skb)->end_seq;
179		if (tmp_opt.saw_tstamp) {
180			tw->tw_ts_recent_stamp	= xtime.tv_sec;
181			tw->tw_ts_recent	= tmp_opt.rcv_tsval;
182		}
183
184		/* I am shamed, but failed to make it more elegant.
185		 * Yes, it is direct reference to IP, which is impossible
186		 * to generalize to IPv6. Taking into account that IPv6
187		 * do not undertsnad recycling in any case, it not
188		 * a big problem in practice. --ANK */
189		if (tw->tw_family == AF_INET &&
190		    sysctl_tcp_tw_recycle && tw->tw_ts_recent_stamp &&
191		    tcp_v4_tw_remember_stamp(tw))
192			tcp_tw_schedule(tw, tw->tw_timeout);
193		else
194			tcp_tw_schedule(tw, TCP_TIMEWAIT_LEN);
195		return TCP_TW_ACK;
196	}
197
198	/*
199	 *	Now real TIME-WAIT state.
200	 *
201	 *	RFC 1122:
202	 *	"When a connection is [...] on TIME-WAIT state [...]
203	 *	[a TCP] MAY accept a new SYN from the remote TCP to
204	 *	reopen the connection directly, if it:
205	 *
206	 *	(1)  assigns its initial sequence number for the new
207	 *	connection to be larger than the largest sequence
208	 *	number it used on the previous connection incarnation,
209	 *	and
210	 *
211	 *	(2)  returns to TIME-WAIT state if the SYN turns out
212	 *	to be an old duplicate".
213	 */
214
215	if (!paws_reject &&
216	    (TCP_SKB_CB(skb)->seq == tw->tw_rcv_nxt &&
217	     (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
218		/* In window segment, it may be only reset or bare ack. */
219
220		if (th->rst) {
221			/* This is TIME_WAIT assasination, in two flavors.
222			 * Oh well... nobody has a sufficient solution to this
223			 * protocol bug yet.
224			 */
225			if (sysctl_tcp_rfc1337 == 0) {
226kill:
227				tcp_tw_deschedule(tw);
228				tcp_tw_put(tw);
229				return TCP_TW_SUCCESS;
230			}
231		}
232		tcp_tw_schedule(tw, TCP_TIMEWAIT_LEN);
233
234		if (tmp_opt.saw_tstamp) {
235			tw->tw_ts_recent	= tmp_opt.rcv_tsval;
236			tw->tw_ts_recent_stamp	= xtime.tv_sec;
237		}
238
239		tcp_tw_put(tw);
240		return TCP_TW_SUCCESS;
241	}
242
243	/* Out of window segment.
244
245	   All the segments are ACKed immediately.
246
247	   The only exception is new SYN. We accept it, if it is
248	   not old duplicate and we are not in danger to be killed
249	   by delayed old duplicates. RFC check is that it has
250	   newer sequence number works at rates <40Mbit/sec.
251	   However, if paws works, it is reliable AND even more,
252	   we even may relax silly seq space cutoff.
253
254	   RED-PEN: we violate main RFC requirement, if this SYN will appear
255	   old duplicate (i.e. we receive RST in reply to SYN-ACK),
256	   we must return socket to time-wait state. It is not good,
257	   but not fatal yet.
258	 */
259
260	if (th->syn && !th->rst && !th->ack && !paws_reject &&
261	    (after(TCP_SKB_CB(skb)->seq, tw->tw_rcv_nxt) ||
262	     (tmp_opt.saw_tstamp && (s32)(tw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) {
263		u32 isn = tw->tw_snd_nxt + 65535 + 2;
264		if (isn == 0)
265			isn++;
266		TCP_SKB_CB(skb)->when = isn;
267		return TCP_TW_SYN;
268	}
269
270	if (paws_reject)
271		NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
272
273	if(!th->rst) {
274		/* In this case we must reset the TIMEWAIT timer.
275		 *
276		 * If it is ACKless SYN it may be both old duplicate
277		 * and new good SYN with random sequence number <rcv_nxt.
278		 * Do not reschedule in the last case.
279		 */
280		if (paws_reject || th->ack)
281			tcp_tw_schedule(tw, TCP_TIMEWAIT_LEN);
282
283		/* Send ACK. Note, we do not put the bucket,
284		 * it will be released by caller.
285		 */
286		return TCP_TW_ACK;
287	}
288	tcp_tw_put(tw);
289	return TCP_TW_SUCCESS;
290}
291
292/* Enter the time wait state.  This is called with locally disabled BH.
293 * Essentially we whip up a timewait bucket, copy the
294 * relevant info into it from the SK, and mess with hash chains
295 * and list linkage.
296 */
297static void __tcp_tw_hashdance(struct sock *sk, struct tcp_tw_bucket *tw)
298{
299	struct tcp_ehash_bucket *ehead = &tcp_ehash[sk->sk_hashent];
300	struct tcp_bind_hashbucket *bhead;
301
302	/* Step 1: Put TW into bind hash. Original socket stays there too.
303	   Note, that any socket with inet_sk(sk)->num != 0 MUST be bound in
304	   binding cache, even if it is closed.
305	 */
306	bhead = &tcp_bhash[tcp_bhashfn(inet_sk(sk)->num)];
307	spin_lock(&bhead->lock);
308	tw->tw_tb = tcp_sk(sk)->bind_hash;
309	BUG_TRAP(tcp_sk(sk)->bind_hash);
310	tw_add_bind_node(tw, &tw->tw_tb->owners);
311	spin_unlock(&bhead->lock);
312
313	write_lock(&ehead->lock);
314
315	/* Step 2: Remove SK from established hash. */
316	if (__sk_del_node_init(sk))
317		sock_prot_dec_use(sk->sk_prot);
318
319	/* Step 3: Hash TW into TIMEWAIT half of established hash table. */
320	tw_add_node(tw, &(ehead + tcp_ehash_size)->chain);
321	atomic_inc(&tw->tw_refcnt);
322
323	write_unlock(&ehead->lock);
324}
325
326/*
327 * Move a socket to time-wait or dead fin-wait-2 state.
328 */
329void tcp_time_wait(struct sock *sk, int state, int timeo)
330{
331	struct tcp_tw_bucket *tw = NULL;
332	struct tcp_sock *tp = tcp_sk(sk);
333	int recycle_ok = 0;
334
335	if (sysctl_tcp_tw_recycle && tp->rx_opt.ts_recent_stamp)
336		recycle_ok = tp->af_specific->remember_stamp(sk);
337
338	if (tcp_tw_count < sysctl_tcp_max_tw_buckets)
339		tw = kmem_cache_alloc(tcp_timewait_cachep, SLAB_ATOMIC);
340
341	if(tw != NULL) {
342		struct inet_sock *inet = inet_sk(sk);
343		int rto = (tp->rto<<2) - (tp->rto>>1);
344
345		/* Give us an identity. */
346		tw->tw_daddr		= inet->daddr;
347		tw->tw_rcv_saddr	= inet->rcv_saddr;
348		tw->tw_bound_dev_if	= sk->sk_bound_dev_if;
349		tw->tw_num		= inet->num;
350		tw->tw_state		= TCP_TIME_WAIT;
351		tw->tw_substate		= state;
352		tw->tw_sport		= inet->sport;
353		tw->tw_dport		= inet->dport;
354		tw->tw_family		= sk->sk_family;
355		tw->tw_reuse		= sk->sk_reuse;
356		tw->tw_rcv_wscale	= tp->rx_opt.rcv_wscale;
357		atomic_set(&tw->tw_refcnt, 1);
358
359		tw->tw_hashent		= sk->sk_hashent;
360		tw->tw_rcv_nxt		= tp->rcv_nxt;
361		tw->tw_snd_nxt		= tp->snd_nxt;
362		tw->tw_rcv_wnd		= tcp_receive_window(tp);
363		tw->tw_ts_recent	= tp->rx_opt.ts_recent;
364		tw->tw_ts_recent_stamp	= tp->rx_opt.ts_recent_stamp;
365		tw_dead_node_init(tw);
366
367#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
368		if (tw->tw_family == PF_INET6) {
369			struct ipv6_pinfo *np = inet6_sk(sk);
370
371			ipv6_addr_copy(&tw->tw_v6_daddr, &np->daddr);
372			ipv6_addr_copy(&tw->tw_v6_rcv_saddr, &np->rcv_saddr);
373			tw->tw_v6_ipv6only = np->ipv6only;
374		} else {
375			memset(&tw->tw_v6_daddr, 0, sizeof(tw->tw_v6_daddr));
376			memset(&tw->tw_v6_rcv_saddr, 0, sizeof(tw->tw_v6_rcv_saddr));
377			tw->tw_v6_ipv6only = 0;
378		}
379#endif
380		/* Linkage updates. */
381		__tcp_tw_hashdance(sk, tw);
382
383		/* Get the TIME_WAIT timeout firing. */
384		if (timeo < rto)
385			timeo = rto;
386
387		if (recycle_ok) {
388			tw->tw_timeout = rto;
389		} else {
390			tw->tw_timeout = TCP_TIMEWAIT_LEN;
391			if (state == TCP_TIME_WAIT)
392				timeo = TCP_TIMEWAIT_LEN;
393		}
394
395		tcp_tw_schedule(tw, timeo);
396		tcp_tw_put(tw);
397	} else {
398		/* Sorry, if we're out of memory, just CLOSE this
399		 * socket up.  We've got bigger problems than
400		 * non-graceful socket closings.
401		 */
402		if (net_ratelimit())
403			printk(KERN_INFO "TCP: time wait bucket table overflow\n");
404	}
405
406	tcp_update_metrics(sk);
407	tcp_done(sk);
408}
409
410/* Kill off TIME_WAIT sockets once their lifetime has expired. */
411static int tcp_tw_death_row_slot;
412
413static void tcp_twkill(unsigned long);
414
415/* TIME_WAIT reaping mechanism. */
416#define TCP_TWKILL_SLOTS	8	/* Please keep this a power of 2. */
417#define TCP_TWKILL_PERIOD	(TCP_TIMEWAIT_LEN/TCP_TWKILL_SLOTS)
418
419#define TCP_TWKILL_QUOTA	100
420
421static struct hlist_head tcp_tw_death_row[TCP_TWKILL_SLOTS];
422static DEFINE_SPINLOCK(tw_death_lock);
423static struct timer_list tcp_tw_timer = TIMER_INITIALIZER(tcp_twkill, 0, 0);
424static void twkill_work(void *);
425static DECLARE_WORK(tcp_twkill_work, twkill_work, NULL);
426static u32 twkill_thread_slots;
427
428/* Returns non-zero if quota exceeded.  */
429static int tcp_do_twkill_work(int slot, unsigned int quota)
430{
431	struct tcp_tw_bucket *tw;
432	struct hlist_node *node;
433	unsigned int killed;
434	int ret;
435
436	/* NOTE: compare this to previous version where lock
437	 * was released after detaching chain. It was racy,
438	 * because tw buckets are scheduled in not serialized context
439	 * in 2.3 (with netfilter), and with softnet it is common, because
440	 * soft irqs are not sequenced.
441	 */
442	killed = 0;
443	ret = 0;
444rescan:
445	tw_for_each_inmate(tw, node, &tcp_tw_death_row[slot]) {
446		__tw_del_dead_node(tw);
447		spin_unlock(&tw_death_lock);
448		tcp_timewait_kill(tw);
449		tcp_tw_put(tw);
450		killed++;
451		spin_lock(&tw_death_lock);
452		if (killed > quota) {
453			ret = 1;
454			break;
455		}
456
457		/* While we dropped tw_death_lock, another cpu may have
458		 * killed off the next TW bucket in the list, therefore
459		 * do a fresh re-read of the hlist head node with the
460		 * lock reacquired.  We still use the hlist traversal
461		 * macro in order to get the prefetches.
462		 */
463		goto rescan;
464	}
465
466	tcp_tw_count -= killed;
467	NET_ADD_STATS_BH(LINUX_MIB_TIMEWAITED, killed);
468
469	return ret;
470}
471
472static void tcp_twkill(unsigned long dummy)
473{
474	int need_timer, ret;
475
476	spin_lock(&tw_death_lock);
477
478	if (tcp_tw_count == 0)
479		goto out;
480
481	need_timer = 0;
482	ret = tcp_do_twkill_work(tcp_tw_death_row_slot, TCP_TWKILL_QUOTA);
483	if (ret) {
484		twkill_thread_slots |= (1 << tcp_tw_death_row_slot);
485		mb();
486		schedule_work(&tcp_twkill_work);
487		need_timer = 1;
488	} else {
489		/* We purged the entire slot, anything left?  */
490		if (tcp_tw_count)
491			need_timer = 1;
492	}
493	tcp_tw_death_row_slot =
494		((tcp_tw_death_row_slot + 1) & (TCP_TWKILL_SLOTS - 1));
495	if (need_timer)
496		mod_timer(&tcp_tw_timer, jiffies + TCP_TWKILL_PERIOD);
497out:
498	spin_unlock(&tw_death_lock);
499}
500
501extern void twkill_slots_invalid(void);
502
503static void twkill_work(void *dummy)
504{
505	int i;
506
507	if ((TCP_TWKILL_SLOTS - 1) > (sizeof(twkill_thread_slots) * 8))
508		twkill_slots_invalid();
509
510	while (twkill_thread_slots) {
511		spin_lock_bh(&tw_death_lock);
512		for (i = 0; i < TCP_TWKILL_SLOTS; i++) {
513			if (!(twkill_thread_slots & (1 << i)))
514				continue;
515
516			while (tcp_do_twkill_work(i, TCP_TWKILL_QUOTA) != 0) {
517				if (need_resched()) {
518					spin_unlock_bh(&tw_death_lock);
519					schedule();
520					spin_lock_bh(&tw_death_lock);
521				}
522			}
523
524			twkill_thread_slots &= ~(1 << i);
525		}
526		spin_unlock_bh(&tw_death_lock);
527	}
528}
529
530/* These are always called from BH context.  See callers in
531 * tcp_input.c to verify this.
532 */
533
534/* This is for handling early-kills of TIME_WAIT sockets. */
535void tcp_tw_deschedule(struct tcp_tw_bucket *tw)
536{
537	spin_lock(&tw_death_lock);
538	if (tw_del_dead_node(tw)) {
539		tcp_tw_put(tw);
540		if (--tcp_tw_count == 0)
541			del_timer(&tcp_tw_timer);
542	}
543	spin_unlock(&tw_death_lock);
544	tcp_timewait_kill(tw);
545}
546
547/* Short-time timewait calendar */
548
549static int tcp_twcal_hand = -1;
550static int tcp_twcal_jiffie;
551static void tcp_twcal_tick(unsigned long);
552static struct timer_list tcp_twcal_timer =
553		TIMER_INITIALIZER(tcp_twcal_tick, 0, 0);
554static struct hlist_head tcp_twcal_row[TCP_TW_RECYCLE_SLOTS];
555
556static void tcp_tw_schedule(struct tcp_tw_bucket *tw, int timeo)
557{
558	struct hlist_head *list;
559	int slot;
560
561	/* timeout := RTO * 3.5
562	 *
563	 * 3.5 = 1+2+0.5 to wait for two retransmits.
564	 *
565	 * RATIONALE: if FIN arrived and we entered TIME-WAIT state,
566	 * our ACK acking that FIN can be lost. If N subsequent retransmitted
567	 * FINs (or previous seqments) are lost (probability of such event
568	 * is p^(N+1), where p is probability to lose single packet and
569	 * time to detect the loss is about RTO*(2^N - 1) with exponential
570	 * backoff). Normal timewait length is calculated so, that we
571	 * waited at least for one retransmitted FIN (maximal RTO is 120sec).
572	 * [ BTW Linux. following BSD, violates this requirement waiting
573	 *   only for 60sec, we should wait at least for 240 secs.
574	 *   Well, 240 consumes too much of resources 8)
575	 * ]
576	 * This interval is not reduced to catch old duplicate and
577	 * responces to our wandering segments living for two MSLs.
578	 * However, if we use PAWS to detect
579	 * old duplicates, we can reduce the interval to bounds required
580	 * by RTO, rather than MSL. So, if peer understands PAWS, we
581	 * kill tw bucket after 3.5*RTO (it is important that this number
582	 * is greater than TS tick!) and detect old duplicates with help
583	 * of PAWS.
584	 */
585	slot = (timeo + (1<<TCP_TW_RECYCLE_TICK) - 1) >> TCP_TW_RECYCLE_TICK;
586
587	spin_lock(&tw_death_lock);
588
589	/* Unlink it, if it was scheduled */
590	if (tw_del_dead_node(tw))
591		tcp_tw_count--;
592	else
593		atomic_inc(&tw->tw_refcnt);
594
595	if (slot >= TCP_TW_RECYCLE_SLOTS) {
596		/* Schedule to slow timer */
597		if (timeo >= TCP_TIMEWAIT_LEN) {
598			slot = TCP_TWKILL_SLOTS-1;
599		} else {
600			slot = (timeo + TCP_TWKILL_PERIOD-1) / TCP_TWKILL_PERIOD;
601			if (slot >= TCP_TWKILL_SLOTS)
602				slot = TCP_TWKILL_SLOTS-1;
603		}
604		tw->tw_ttd = jiffies + timeo;
605		slot = (tcp_tw_death_row_slot + slot) & (TCP_TWKILL_SLOTS - 1);
606		list = &tcp_tw_death_row[slot];
607	} else {
608		tw->tw_ttd = jiffies + (slot << TCP_TW_RECYCLE_TICK);
609
610		if (tcp_twcal_hand < 0) {
611			tcp_twcal_hand = 0;
612			tcp_twcal_jiffie = jiffies;
613			tcp_twcal_timer.expires = tcp_twcal_jiffie + (slot<<TCP_TW_RECYCLE_TICK);
614			add_timer(&tcp_twcal_timer);
615		} else {
616			if (time_after(tcp_twcal_timer.expires, jiffies + (slot<<TCP_TW_RECYCLE_TICK)))
617				mod_timer(&tcp_twcal_timer, jiffies + (slot<<TCP_TW_RECYCLE_TICK));
618			slot = (tcp_twcal_hand + slot)&(TCP_TW_RECYCLE_SLOTS-1);
619		}
620		list = &tcp_twcal_row[slot];
621	}
622
623	hlist_add_head(&tw->tw_death_node, list);
624
625	if (tcp_tw_count++ == 0)
626		mod_timer(&tcp_tw_timer, jiffies+TCP_TWKILL_PERIOD);
627	spin_unlock(&tw_death_lock);
628}
629
630void tcp_twcal_tick(unsigned long dummy)
631{
632	int n, slot;
633	unsigned long j;
634	unsigned long now = jiffies;
635	int killed = 0;
636	int adv = 0;
637
638	spin_lock(&tw_death_lock);
639	if (tcp_twcal_hand < 0)
640		goto out;
641
642	slot = tcp_twcal_hand;
643	j = tcp_twcal_jiffie;
644
645	for (n=0; n<TCP_TW_RECYCLE_SLOTS; n++) {
646		if (time_before_eq(j, now)) {
647			struct hlist_node *node, *safe;
648			struct tcp_tw_bucket *tw;
649
650			tw_for_each_inmate_safe(tw, node, safe,
651					   &tcp_twcal_row[slot]) {
652				__tw_del_dead_node(tw);
653				tcp_timewait_kill(tw);
654				tcp_tw_put(tw);
655				killed++;
656			}
657		} else {
658			if (!adv) {
659				adv = 1;
660				tcp_twcal_jiffie = j;
661				tcp_twcal_hand = slot;
662			}
663
664			if (!hlist_empty(&tcp_twcal_row[slot])) {
665				mod_timer(&tcp_twcal_timer, j);
666				goto out;
667			}
668		}
669		j += (1<<TCP_TW_RECYCLE_TICK);
670		slot = (slot+1)&(TCP_TW_RECYCLE_SLOTS-1);
671	}
672	tcp_twcal_hand = -1;
673
674out:
675	if ((tcp_tw_count -= killed) == 0)
676		del_timer(&tcp_tw_timer);
677	NET_ADD_STATS_BH(LINUX_MIB_TIMEWAITKILLED, killed);
678	spin_unlock(&tw_death_lock);
679}
680
681/* This is not only more efficient than what we used to do, it eliminates
682 * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
683 *
684 * Actually, we could lots of memory writes here. tp of listening
685 * socket contains all necessary default parameters.
686 */
687struct sock *tcp_create_openreq_child(struct sock *sk, struct open_request *req, struct sk_buff *skb)
688{
689	/* allocate the newsk from the same slab of the master sock,
690	 * if not, at sk_free time we'll try to free it from the wrong
691	 * slabcache (i.e. is it TCPv4 or v6?), this is handled thru sk->sk_prot -acme */
692	struct sock *newsk = sk_alloc(PF_INET, GFP_ATOMIC, sk->sk_prot, 0);
693
694	if(newsk != NULL) {
695		struct tcp_sock *newtp;
696		struct sk_filter *filter;
697
698		memcpy(newsk, sk, sizeof(struct tcp_sock));
699		newsk->sk_state = TCP_SYN_RECV;
700
701		/* SANITY */
702		sk_node_init(&newsk->sk_node);
703		tcp_sk(newsk)->bind_hash = NULL;
704
705		/* Clone the TCP header template */
706		inet_sk(newsk)->dport = req->rmt_port;
707
708		sock_lock_init(newsk);
709		bh_lock_sock(newsk);
710
711		rwlock_init(&newsk->sk_dst_lock);
712		atomic_set(&newsk->sk_rmem_alloc, 0);
713		skb_queue_head_init(&newsk->sk_receive_queue);
714		atomic_set(&newsk->sk_wmem_alloc, 0);
715		skb_queue_head_init(&newsk->sk_write_queue);
716		atomic_set(&newsk->sk_omem_alloc, 0);
717		newsk->sk_wmem_queued = 0;
718		newsk->sk_forward_alloc = 0;
719
720		sock_reset_flag(newsk, SOCK_DONE);
721		newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
722		newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
723		newsk->sk_send_head = NULL;
724		rwlock_init(&newsk->sk_callback_lock);
725		skb_queue_head_init(&newsk->sk_error_queue);
726		newsk->sk_write_space = sk_stream_write_space;
727
728		if ((filter = newsk->sk_filter) != NULL)
729			sk_filter_charge(newsk, filter);
730
731		if (unlikely(xfrm_sk_clone_policy(newsk))) {
732			/* It is still raw copy of parent, so invalidate
733			 * destructor and make plain sk_free() */
734			newsk->sk_destruct = NULL;
735			sk_free(newsk);
736			return NULL;
737		}
738
739		/* Now setup tcp_sock */
740		newtp = tcp_sk(newsk);
741		newtp->pred_flags = 0;
742		newtp->rcv_nxt = req->rcv_isn + 1;
743		newtp->snd_nxt = req->snt_isn + 1;
744		newtp->snd_una = req->snt_isn + 1;
745		newtp->snd_sml = req->snt_isn + 1;
746
747		tcp_prequeue_init(newtp);
748
749		tcp_init_wl(newtp, req->snt_isn, req->rcv_isn);
750
751		newtp->retransmits = 0;
752		newtp->backoff = 0;
753		newtp->srtt = 0;
754		newtp->mdev = TCP_TIMEOUT_INIT;
755		newtp->rto = TCP_TIMEOUT_INIT;
756
757		newtp->packets_out = 0;
758		newtp->left_out = 0;
759		newtp->retrans_out = 0;
760		newtp->sacked_out = 0;
761		newtp->fackets_out = 0;
762		newtp->snd_ssthresh = 0x7fffffff;
763
764		/* So many TCP implementations out there (incorrectly) count the
765		 * initial SYN frame in their delayed-ACK and congestion control
766		 * algorithms that we must have the following bandaid to talk
767		 * efficiently to them.  -DaveM
768		 */
769		newtp->snd_cwnd = 2;
770		newtp->snd_cwnd_cnt = 0;
771
772		newtp->frto_counter = 0;
773		newtp->frto_highmark = 0;
774
775		tcp_set_ca_state(newtp, TCP_CA_Open);
776		tcp_init_xmit_timers(newsk);
777		skb_queue_head_init(&newtp->out_of_order_queue);
778		newtp->rcv_wup = req->rcv_isn + 1;
779		newtp->write_seq = req->snt_isn + 1;
780		newtp->pushed_seq = newtp->write_seq;
781		newtp->copied_seq = req->rcv_isn + 1;
782
783		newtp->rx_opt.saw_tstamp = 0;
784
785		newtp->rx_opt.dsack = 0;
786		newtp->rx_opt.eff_sacks = 0;
787
788		newtp->probes_out = 0;
789		newtp->rx_opt.num_sacks = 0;
790		newtp->urg_data = 0;
791		newtp->listen_opt = NULL;
792		newtp->accept_queue = newtp->accept_queue_tail = NULL;
793		/* Deinitialize syn_wait_lock to trap illegal accesses. */
794		memset(&newtp->syn_wait_lock, 0, sizeof(newtp->syn_wait_lock));
795
796		/* Back to base struct sock members. */
797		newsk->sk_err = 0;
798		newsk->sk_priority = 0;
799		atomic_set(&newsk->sk_refcnt, 2);
800#ifdef INET_REFCNT_DEBUG
801		atomic_inc(&inet_sock_nr);
802#endif
803		atomic_inc(&tcp_sockets_allocated);
804
805		if (sock_flag(newsk, SOCK_KEEPOPEN))
806			tcp_reset_keepalive_timer(newsk,
807						  keepalive_time_when(newtp));
808		newsk->sk_socket = NULL;
809		newsk->sk_sleep = NULL;
810
811		newtp->rx_opt.tstamp_ok = req->tstamp_ok;
812		if((newtp->rx_opt.sack_ok = req->sack_ok) != 0) {
813			if (sysctl_tcp_fack)
814				newtp->rx_opt.sack_ok |= 2;
815		}
816		newtp->window_clamp = req->window_clamp;
817		newtp->rcv_ssthresh = req->rcv_wnd;
818		newtp->rcv_wnd = req->rcv_wnd;
819		newtp->rx_opt.wscale_ok = req->wscale_ok;
820		if (newtp->rx_opt.wscale_ok) {
821			newtp->rx_opt.snd_wscale = req->snd_wscale;
822			newtp->rx_opt.rcv_wscale = req->rcv_wscale;
823		} else {
824			newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
825			newtp->window_clamp = min(newtp->window_clamp, 65535U);
826		}
827		newtp->snd_wnd = ntohs(skb->h.th->window) << newtp->rx_opt.snd_wscale;
828		newtp->max_window = newtp->snd_wnd;
829
830		if (newtp->rx_opt.tstamp_ok) {
831			newtp->rx_opt.ts_recent = req->ts_recent;
832			newtp->rx_opt.ts_recent_stamp = xtime.tv_sec;
833			newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
834		} else {
835			newtp->rx_opt.ts_recent_stamp = 0;
836			newtp->tcp_header_len = sizeof(struct tcphdr);
837		}
838		if (skb->len >= TCP_MIN_RCVMSS+newtp->tcp_header_len)
839			newtp->ack.last_seg_size = skb->len-newtp->tcp_header_len;
840		newtp->rx_opt.mss_clamp = req->mss;
841		TCP_ECN_openreq_child(newtp, req);
842		if (newtp->ecn_flags&TCP_ECN_OK)
843			sock_set_flag(newsk, SOCK_NO_LARGESEND);
844
845		tcp_ca_init(newtp);
846
847		TCP_INC_STATS_BH(TCP_MIB_PASSIVEOPENS);
848	}
849	return newsk;
850}
851
852/*
853 *	Process an incoming packet for SYN_RECV sockets represented
854 *	as an open_request.
855 */
856
857struct sock *tcp_check_req(struct sock *sk,struct sk_buff *skb,
858			   struct open_request *req,
859			   struct open_request **prev)
860{
861	struct tcphdr *th = skb->h.th;
862	struct tcp_sock *tp = tcp_sk(sk);
863	u32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
864	int paws_reject = 0;
865	struct tcp_options_received tmp_opt;
866	struct sock *child;
867
868	tmp_opt.saw_tstamp = 0;
869	if (th->doff > (sizeof(struct tcphdr)>>2)) {
870		tcp_parse_options(skb, &tmp_opt, 0);
871
872		if (tmp_opt.saw_tstamp) {
873			tmp_opt.ts_recent = req->ts_recent;
874			/* We do not store true stamp, but it is not required,
875			 * it can be estimated (approximately)
876			 * from another data.
877			 */
878			tmp_opt.ts_recent_stamp = xtime.tv_sec - ((TCP_TIMEOUT_INIT/HZ)<<req->retrans);
879			paws_reject = tcp_paws_check(&tmp_opt, th->rst);
880		}
881	}
882
883	/* Check for pure retransmitted SYN. */
884	if (TCP_SKB_CB(skb)->seq == req->rcv_isn &&
885	    flg == TCP_FLAG_SYN &&
886	    !paws_reject) {
887		/*
888		 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
889		 * this case on figure 6 and figure 8, but formal
890		 * protocol description says NOTHING.
891		 * To be more exact, it says that we should send ACK,
892		 * because this segment (at least, if it has no data)
893		 * is out of window.
894		 *
895		 *  CONCLUSION: RFC793 (even with RFC1122) DOES NOT
896		 *  describe SYN-RECV state. All the description
897		 *  is wrong, we cannot believe to it and should
898		 *  rely only on common sense and implementation
899		 *  experience.
900		 *
901		 * Enforce "SYN-ACK" according to figure 8, figure 6
902		 * of RFC793, fixed by RFC1122.
903		 */
904		req->class->rtx_syn_ack(sk, req, NULL);
905		return NULL;
906	}
907
908	/* Further reproduces section "SEGMENT ARRIVES"
909	   for state SYN-RECEIVED of RFC793.
910	   It is broken, however, it does not work only
911	   when SYNs are crossed.
912
913	   You would think that SYN crossing is impossible here, since
914	   we should have a SYN_SENT socket (from connect()) on our end,
915	   but this is not true if the crossed SYNs were sent to both
916	   ends by a malicious third party.  We must defend against this,
917	   and to do that we first verify the ACK (as per RFC793, page
918	   36) and reset if it is invalid.  Is this a true full defense?
919	   To convince ourselves, let us consider a way in which the ACK
920	   test can still pass in this 'malicious crossed SYNs' case.
921	   Malicious sender sends identical SYNs (and thus identical sequence
922	   numbers) to both A and B:
923
924		A: gets SYN, seq=7
925		B: gets SYN, seq=7
926
927	   By our good fortune, both A and B select the same initial
928	   send sequence number of seven :-)
929
930		A: sends SYN|ACK, seq=7, ack_seq=8
931		B: sends SYN|ACK, seq=7, ack_seq=8
932
933	   So we are now A eating this SYN|ACK, ACK test passes.  So
934	   does sequence test, SYN is truncated, and thus we consider
935	   it a bare ACK.
936
937	   If tp->defer_accept, we silently drop this bare ACK.  Otherwise,
938	   we create an established connection.  Both ends (listening sockets)
939	   accept the new incoming connection and try to talk to each other. 8-)
940
941	   Note: This case is both harmless, and rare.  Possibility is about the
942	   same as us discovering intelligent life on another plant tomorrow.
943
944	   But generally, we should (RFC lies!) to accept ACK
945	   from SYNACK both here and in tcp_rcv_state_process().
946	   tcp_rcv_state_process() does not, hence, we do not too.
947
948	   Note that the case is absolutely generic:
949	   we cannot optimize anything here without
950	   violating protocol. All the checks must be made
951	   before attempt to create socket.
952	 */
953
954	/* RFC793 page 36: "If the connection is in any non-synchronized state ...
955	 *                  and the incoming segment acknowledges something not yet
956	 *                  sent (the segment carries an unaccaptable ACK) ...
957	 *                  a reset is sent."
958	 *
959	 * Invalid ACK: reset will be sent by listening socket
960	 */
961	if ((flg & TCP_FLAG_ACK) &&
962	    (TCP_SKB_CB(skb)->ack_seq != req->snt_isn+1))
963		return sk;
964
965	/* Also, it would be not so bad idea to check rcv_tsecr, which
966	 * is essentially ACK extension and too early or too late values
967	 * should cause reset in unsynchronized states.
968	 */
969
970	/* RFC793: "first check sequence number". */
971
972	if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
973					  req->rcv_isn+1, req->rcv_isn+1+req->rcv_wnd)) {
974		/* Out of window: send ACK and drop. */
975		if (!(flg & TCP_FLAG_RST))
976			req->class->send_ack(skb, req);
977		if (paws_reject)
978			NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
979		return NULL;
980	}
981
982	/* In sequence, PAWS is OK. */
983
984	if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, req->rcv_isn+1))
985			req->ts_recent = tmp_opt.rcv_tsval;
986
987		if (TCP_SKB_CB(skb)->seq == req->rcv_isn) {
988			/* Truncate SYN, it is out of window starting
989			   at req->rcv_isn+1. */
990			flg &= ~TCP_FLAG_SYN;
991		}
992
993		/* RFC793: "second check the RST bit" and
994		 *	   "fourth, check the SYN bit"
995		 */
996		if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN))
997			goto embryonic_reset;
998
999		/* ACK sequence verified above, just make sure ACK is
1000		 * set.  If ACK not set, just silently drop the packet.
1001		 */
1002		if (!(flg & TCP_FLAG_ACK))
1003			return NULL;
1004
1005		/* If TCP_DEFER_ACCEPT is set, drop bare ACK. */
1006		if (tp->defer_accept && TCP_SKB_CB(skb)->end_seq == req->rcv_isn+1) {
1007			req->acked = 1;
1008			return NULL;
1009		}
1010
1011		/* OK, ACK is valid, create big socket and
1012		 * feed this segment to it. It will repeat all
1013		 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
1014		 * ESTABLISHED STATE. If it will be dropped after
1015		 * socket is created, wait for troubles.
1016		 */
1017		child = tp->af_specific->syn_recv_sock(sk, skb, req, NULL);
1018		if (child == NULL)
1019			goto listen_overflow;
1020
1021		tcp_synq_unlink(tp, req, prev);
1022		tcp_synq_removed(sk, req);
1023
1024		tcp_acceptq_queue(sk, req, child);
1025		return child;
1026
1027	listen_overflow:
1028		if (!sysctl_tcp_abort_on_overflow) {
1029			req->acked = 1;
1030			return NULL;
1031		}
1032
1033	embryonic_reset:
1034		NET_INC_STATS_BH(LINUX_MIB_EMBRYONICRSTS);
1035		if (!(flg & TCP_FLAG_RST))
1036			req->class->send_reset(skb);
1037
1038		tcp_synq_drop(sk, req, prev);
1039		return NULL;
1040}
1041
1042/*
1043 * Queue segment on the new socket if the new socket is active,
1044 * otherwise we just shortcircuit this and continue with
1045 * the new socket.
1046 */
1047
1048int tcp_child_process(struct sock *parent, struct sock *child,
1049		      struct sk_buff *skb)
1050{
1051	int ret = 0;
1052	int state = child->sk_state;
1053
1054	if (!sock_owned_by_user(child)) {
1055		ret = tcp_rcv_state_process(child, skb, skb->h.th, skb->len);
1056
1057		/* Wakeup parent, send SIGIO */
1058		if (state == TCP_SYN_RECV && child->sk_state != state)
1059			parent->sk_data_ready(parent, 0);
1060	} else {
1061		/* Alas, it is possible again, because we do lookup
1062		 * in main socket hash table and lock on listening
1063		 * socket does not protect us more.
1064		 */
1065		sk_add_backlog(child, skb);
1066	}
1067
1068	bh_unlock_sock(child);
1069	sock_put(child);
1070	return ret;
1071}
1072
1073EXPORT_SYMBOL(tcp_check_req);
1074EXPORT_SYMBOL(tcp_child_process);
1075EXPORT_SYMBOL(tcp_create_openreq_child);
1076EXPORT_SYMBOL(tcp_timewait_state_process);
1077EXPORT_SYMBOL(tcp_tw_deschedule);
1078