tcp_minisocks.c revision 1ac530b3553e0b4dc1e18a32bed57cfa84cd57cb
1/*
2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
3 *		operating system.  INET is implemented using the  BSD Socket
4 *		interface as the means of communication with the user level.
5 *
6 *		Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors:	Ross Biro
9 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12 *		Florian La Roche, <flla@stud.uni-sb.de>
13 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16 *		Matthew Dillon, <dillon@apollo.west.oic.com>
17 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 *		Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21#include <linux/mm.h>
22#include <linux/module.h>
23#include <linux/sysctl.h>
24#include <linux/workqueue.h>
25#include <net/tcp.h>
26#include <net/inet_common.h>
27#include <net/xfrm.h>
28
29#ifdef CONFIG_SYSCTL
30#define SYNC_INIT 0 /* let the user enable it */
31#else
32#define SYNC_INIT 1
33#endif
34
35int sysctl_tcp_syncookies __read_mostly = SYNC_INIT;
36EXPORT_SYMBOL(sysctl_tcp_syncookies);
37
38int sysctl_tcp_abort_on_overflow __read_mostly;
39
40struct inet_timewait_death_row tcp_death_row = {
41	.sysctl_max_tw_buckets = NR_FILE * 2,
42	.period		= TCP_TIMEWAIT_LEN / INET_TWDR_TWKILL_SLOTS,
43	.death_lock	= __SPIN_LOCK_UNLOCKED(tcp_death_row.death_lock),
44	.hashinfo	= &tcp_hashinfo,
45	.tw_timer	= TIMER_INITIALIZER(inet_twdr_hangman, 0,
46					    (unsigned long)&tcp_death_row),
47	.twkill_work	= __WORK_INITIALIZER(tcp_death_row.twkill_work,
48					     inet_twdr_twkill_work),
49/* Short-time timewait calendar */
50
51	.twcal_hand	= -1,
52	.twcal_timer	= TIMER_INITIALIZER(inet_twdr_twcal_tick, 0,
53					    (unsigned long)&tcp_death_row),
54};
55
56EXPORT_SYMBOL_GPL(tcp_death_row);
57
58static __inline__ int tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
59{
60	if (seq == s_win)
61		return 1;
62	if (after(end_seq, s_win) && before(seq, e_win))
63		return 1;
64	return (seq == e_win && seq == end_seq);
65}
66
67/*
68 * * Main purpose of TIME-WAIT state is to close connection gracefully,
69 *   when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
70 *   (and, probably, tail of data) and one or more our ACKs are lost.
71 * * What is TIME-WAIT timeout? It is associated with maximal packet
72 *   lifetime in the internet, which results in wrong conclusion, that
73 *   it is set to catch "old duplicate segments" wandering out of their path.
74 *   It is not quite correct. This timeout is calculated so that it exceeds
75 *   maximal retransmission timeout enough to allow to lose one (or more)
76 *   segments sent by peer and our ACKs. This time may be calculated from RTO.
77 * * When TIME-WAIT socket receives RST, it means that another end
78 *   finally closed and we are allowed to kill TIME-WAIT too.
79 * * Second purpose of TIME-WAIT is catching old duplicate segments.
80 *   Well, certainly it is pure paranoia, but if we load TIME-WAIT
81 *   with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
82 * * If we invented some more clever way to catch duplicates
83 *   (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
84 *
85 * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
86 * When you compare it to RFCs, please, read section SEGMENT ARRIVES
87 * from the very beginning.
88 *
89 * NOTE. With recycling (and later with fin-wait-2) TW bucket
90 * is _not_ stateless. It means, that strictly speaking we must
91 * spinlock it. I do not want! Well, probability of misbehaviour
92 * is ridiculously low and, seems, we could use some mb() tricks
93 * to avoid misread sequence numbers, states etc.  --ANK
94 */
95enum tcp_tw_status
96tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
97			   const struct tcphdr *th)
98{
99	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
100	struct tcp_options_received tmp_opt;
101	int paws_reject = 0;
102
103	tmp_opt.saw_tstamp = 0;
104	if (th->doff > (sizeof(*th) >> 2) && tcptw->tw_ts_recent_stamp) {
105		tcp_parse_options(skb, &tmp_opt, 0);
106
107		if (tmp_opt.saw_tstamp) {
108			tmp_opt.ts_recent	= tcptw->tw_ts_recent;
109			tmp_opt.ts_recent_stamp	= tcptw->tw_ts_recent_stamp;
110			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
111		}
112	}
113
114	if (tw->tw_substate == TCP_FIN_WAIT2) {
115		/* Just repeat all the checks of tcp_rcv_state_process() */
116
117		/* Out of window, send ACK */
118		if (paws_reject ||
119		    !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
120				   tcptw->tw_rcv_nxt,
121				   tcptw->tw_rcv_nxt + tcptw->tw_rcv_wnd))
122			return TCP_TW_ACK;
123
124		if (th->rst)
125			goto kill;
126
127		if (th->syn && !before(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt))
128			goto kill_with_rst;
129
130		/* Dup ACK? */
131		if (!th->ack ||
132		    !after(TCP_SKB_CB(skb)->end_seq, tcptw->tw_rcv_nxt) ||
133		    TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
134			inet_twsk_put(tw);
135			return TCP_TW_SUCCESS;
136		}
137
138		/* New data or FIN. If new data arrive after half-duplex close,
139		 * reset.
140		 */
141		if (!th->fin ||
142		    TCP_SKB_CB(skb)->end_seq != tcptw->tw_rcv_nxt + 1) {
143kill_with_rst:
144			inet_twsk_deschedule(tw, &tcp_death_row);
145			inet_twsk_put(tw);
146			return TCP_TW_RST;
147		}
148
149		/* FIN arrived, enter true time-wait state. */
150		tw->tw_substate	  = TCP_TIME_WAIT;
151		tcptw->tw_rcv_nxt = TCP_SKB_CB(skb)->end_seq;
152		if (tmp_opt.saw_tstamp) {
153			tcptw->tw_ts_recent_stamp = get_seconds();
154			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
155		}
156
157		/* I am shamed, but failed to make it more elegant.
158		 * Yes, it is direct reference to IP, which is impossible
159		 * to generalize to IPv6. Taking into account that IPv6
160		 * do not understand recycling in any case, it not
161		 * a big problem in practice. --ANK */
162		if (tw->tw_family == AF_INET &&
163		    tcp_death_row.sysctl_tw_recycle && tcptw->tw_ts_recent_stamp &&
164		    tcp_v4_tw_remember_stamp(tw))
165			inet_twsk_schedule(tw, &tcp_death_row, tw->tw_timeout,
166					   TCP_TIMEWAIT_LEN);
167		else
168			inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
169					   TCP_TIMEWAIT_LEN);
170		return TCP_TW_ACK;
171	}
172
173	/*
174	 *	Now real TIME-WAIT state.
175	 *
176	 *	RFC 1122:
177	 *	"When a connection is [...] on TIME-WAIT state [...]
178	 *	[a TCP] MAY accept a new SYN from the remote TCP to
179	 *	reopen the connection directly, if it:
180	 *
181	 *	(1)  assigns its initial sequence number for the new
182	 *	connection to be larger than the largest sequence
183	 *	number it used on the previous connection incarnation,
184	 *	and
185	 *
186	 *	(2)  returns to TIME-WAIT state if the SYN turns out
187	 *	to be an old duplicate".
188	 */
189
190	if (!paws_reject &&
191	    (TCP_SKB_CB(skb)->seq == tcptw->tw_rcv_nxt &&
192	     (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
193		/* In window segment, it may be only reset or bare ack. */
194
195		if (th->rst) {
196			/* This is TIME_WAIT assassination, in two flavors.
197			 * Oh well... nobody has a sufficient solution to this
198			 * protocol bug yet.
199			 */
200			if (sysctl_tcp_rfc1337 == 0) {
201kill:
202				inet_twsk_deschedule(tw, &tcp_death_row);
203				inet_twsk_put(tw);
204				return TCP_TW_SUCCESS;
205			}
206		}
207		inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
208				   TCP_TIMEWAIT_LEN);
209
210		if (tmp_opt.saw_tstamp) {
211			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
212			tcptw->tw_ts_recent_stamp = get_seconds();
213		}
214
215		inet_twsk_put(tw);
216		return TCP_TW_SUCCESS;
217	}
218
219	/* Out of window segment.
220
221	   All the segments are ACKed immediately.
222
223	   The only exception is new SYN. We accept it, if it is
224	   not old duplicate and we are not in danger to be killed
225	   by delayed old duplicates. RFC check is that it has
226	   newer sequence number works at rates <40Mbit/sec.
227	   However, if paws works, it is reliable AND even more,
228	   we even may relax silly seq space cutoff.
229
230	   RED-PEN: we violate main RFC requirement, if this SYN will appear
231	   old duplicate (i.e. we receive RST in reply to SYN-ACK),
232	   we must return socket to time-wait state. It is not good,
233	   but not fatal yet.
234	 */
235
236	if (th->syn && !th->rst && !th->ack && !paws_reject &&
237	    (after(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt) ||
238	     (tmp_opt.saw_tstamp &&
239	      (s32)(tcptw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) {
240		u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
241		if (isn == 0)
242			isn++;
243		TCP_SKB_CB(skb)->when = isn;
244		return TCP_TW_SYN;
245	}
246
247	if (paws_reject)
248		NET_INC_STATS_BH(twsk_net(tw), LINUX_MIB_PAWSESTABREJECTED);
249
250	if (!th->rst) {
251		/* In this case we must reset the TIMEWAIT timer.
252		 *
253		 * If it is ACKless SYN it may be both old duplicate
254		 * and new good SYN with random sequence number <rcv_nxt.
255		 * Do not reschedule in the last case.
256		 */
257		if (paws_reject || th->ack)
258			inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
259					   TCP_TIMEWAIT_LEN);
260
261		/* Send ACK. Note, we do not put the bucket,
262		 * it will be released by caller.
263		 */
264		return TCP_TW_ACK;
265	}
266	inet_twsk_put(tw);
267	return TCP_TW_SUCCESS;
268}
269
270/*
271 * Move a socket to time-wait or dead fin-wait-2 state.
272 */
273void tcp_time_wait(struct sock *sk, int state, int timeo)
274{
275	struct inet_timewait_sock *tw = NULL;
276	const struct inet_connection_sock *icsk = inet_csk(sk);
277	const struct tcp_sock *tp = tcp_sk(sk);
278	int recycle_ok = 0;
279
280	if (tcp_death_row.sysctl_tw_recycle && tp->rx_opt.ts_recent_stamp)
281		recycle_ok = icsk->icsk_af_ops->remember_stamp(sk);
282
283	if (tcp_death_row.tw_count < tcp_death_row.sysctl_max_tw_buckets)
284		tw = inet_twsk_alloc(sk, state);
285
286	if (tw != NULL) {
287		struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
288		const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
289
290		tw->tw_rcv_wscale	= tp->rx_opt.rcv_wscale;
291		tcptw->tw_rcv_nxt	= tp->rcv_nxt;
292		tcptw->tw_snd_nxt	= tp->snd_nxt;
293		tcptw->tw_rcv_wnd	= tcp_receive_window(tp);
294		tcptw->tw_ts_recent	= tp->rx_opt.ts_recent;
295		tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
296
297#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
298		if (tw->tw_family == PF_INET6) {
299			struct ipv6_pinfo *np = inet6_sk(sk);
300			struct inet6_timewait_sock *tw6;
301
302			tw->tw_ipv6_offset = inet6_tw_offset(sk->sk_prot);
303			tw6 = inet6_twsk((struct sock *)tw);
304			ipv6_addr_copy(&tw6->tw_v6_daddr, &np->daddr);
305			ipv6_addr_copy(&tw6->tw_v6_rcv_saddr, &np->rcv_saddr);
306			tw->tw_ipv6only = np->ipv6only;
307		}
308#endif
309
310#ifdef CONFIG_TCP_MD5SIG
311		/*
312		 * The timewait bucket does not have the key DB from the
313		 * sock structure. We just make a quick copy of the
314		 * md5 key being used (if indeed we are using one)
315		 * so the timewait ack generating code has the key.
316		 */
317		do {
318			struct tcp_md5sig_key *key;
319			memset(tcptw->tw_md5_key, 0, sizeof(tcptw->tw_md5_key));
320			tcptw->tw_md5_keylen = 0;
321			key = tp->af_specific->md5_lookup(sk, sk);
322			if (key != NULL) {
323				memcpy(&tcptw->tw_md5_key, key->key, key->keylen);
324				tcptw->tw_md5_keylen = key->keylen;
325				if (tcp_alloc_md5sig_pool() == NULL)
326					BUG();
327			}
328		} while (0);
329#endif
330
331		/* Linkage updates. */
332		__inet_twsk_hashdance(tw, sk, &tcp_hashinfo);
333
334		/* Get the TIME_WAIT timeout firing. */
335		if (timeo < rto)
336			timeo = rto;
337
338		if (recycle_ok) {
339			tw->tw_timeout = rto;
340		} else {
341			tw->tw_timeout = TCP_TIMEWAIT_LEN;
342			if (state == TCP_TIME_WAIT)
343				timeo = TCP_TIMEWAIT_LEN;
344		}
345
346		inet_twsk_schedule(tw, &tcp_death_row, timeo,
347				   TCP_TIMEWAIT_LEN);
348		inet_twsk_put(tw);
349	} else {
350		/* Sorry, if we're out of memory, just CLOSE this
351		 * socket up.  We've got bigger problems than
352		 * non-graceful socket closings.
353		 */
354		LIMIT_NETDEBUG(KERN_INFO "TCP: time wait bucket table overflow\n");
355	}
356
357	tcp_update_metrics(sk);
358	tcp_done(sk);
359}
360
361void tcp_twsk_destructor(struct sock *sk)
362{
363#ifdef CONFIG_TCP_MD5SIG
364	struct tcp_timewait_sock *twsk = tcp_twsk(sk);
365	if (twsk->tw_md5_keylen)
366		tcp_put_md5sig_pool();
367#endif
368}
369
370EXPORT_SYMBOL_GPL(tcp_twsk_destructor);
371
372static inline void TCP_ECN_openreq_child(struct tcp_sock *tp,
373					 struct request_sock *req)
374{
375	tp->ecn_flags = inet_rsk(req)->ecn_ok ? TCP_ECN_OK : 0;
376}
377
378/* This is not only more efficient than what we used to do, it eliminates
379 * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
380 *
381 * Actually, we could lots of memory writes here. tp of listening
382 * socket contains all necessary default parameters.
383 */
384struct sock *tcp_create_openreq_child(struct sock *sk, struct request_sock *req, struct sk_buff *skb)
385{
386	struct sock *newsk = inet_csk_clone(sk, req, GFP_ATOMIC);
387
388	if (newsk != NULL) {
389		const struct inet_request_sock *ireq = inet_rsk(req);
390		struct tcp_request_sock *treq = tcp_rsk(req);
391		struct inet_connection_sock *newicsk = inet_csk(newsk);
392		struct tcp_sock *newtp;
393
394		/* Now setup tcp_sock */
395		newtp = tcp_sk(newsk);
396		newtp->pred_flags = 0;
397		newtp->rcv_wup = newtp->copied_seq = newtp->rcv_nxt = treq->rcv_isn + 1;
398		newtp->snd_sml = newtp->snd_una = newtp->snd_nxt = treq->snt_isn + 1;
399		newtp->snd_up = treq->snt_isn + 1;
400
401		tcp_prequeue_init(newtp);
402
403		tcp_init_wl(newtp, treq->rcv_isn);
404
405		newtp->srtt = 0;
406		newtp->mdev = TCP_TIMEOUT_INIT;
407		newicsk->icsk_rto = TCP_TIMEOUT_INIT;
408
409		newtp->packets_out = 0;
410		newtp->retrans_out = 0;
411		newtp->sacked_out = 0;
412		newtp->fackets_out = 0;
413		newtp->snd_ssthresh = 0x7fffffff;
414
415		/* So many TCP implementations out there (incorrectly) count the
416		 * initial SYN frame in their delayed-ACK and congestion control
417		 * algorithms that we must have the following bandaid to talk
418		 * efficiently to them.  -DaveM
419		 */
420		newtp->snd_cwnd = 2;
421		newtp->snd_cwnd_cnt = 0;
422		newtp->bytes_acked = 0;
423
424		newtp->frto_counter = 0;
425		newtp->frto_highmark = 0;
426
427		newicsk->icsk_ca_ops = &tcp_init_congestion_ops;
428
429		tcp_set_ca_state(newsk, TCP_CA_Open);
430		tcp_init_xmit_timers(newsk);
431		skb_queue_head_init(&newtp->out_of_order_queue);
432		newtp->write_seq = treq->snt_isn + 1;
433		newtp->pushed_seq = newtp->write_seq;
434
435		newtp->rx_opt.saw_tstamp = 0;
436
437		newtp->rx_opt.dsack = 0;
438		newtp->rx_opt.num_sacks = 0;
439
440		newtp->urg_data = 0;
441
442		if (sock_flag(newsk, SOCK_KEEPOPEN))
443			inet_csk_reset_keepalive_timer(newsk,
444						       keepalive_time_when(newtp));
445
446		newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
447		if ((newtp->rx_opt.sack_ok = ireq->sack_ok) != 0) {
448			if (sysctl_tcp_fack)
449				tcp_enable_fack(newtp);
450		}
451		newtp->window_clamp = req->window_clamp;
452		newtp->rcv_ssthresh = req->rcv_wnd;
453		newtp->rcv_wnd = req->rcv_wnd;
454		newtp->rx_opt.wscale_ok = ireq->wscale_ok;
455		if (newtp->rx_opt.wscale_ok) {
456			newtp->rx_opt.snd_wscale = ireq->snd_wscale;
457			newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
458		} else {
459			newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
460			newtp->window_clamp = min(newtp->window_clamp, 65535U);
461		}
462		newtp->snd_wnd = (ntohs(tcp_hdr(skb)->window) <<
463				  newtp->rx_opt.snd_wscale);
464		newtp->max_window = newtp->snd_wnd;
465
466		if (newtp->rx_opt.tstamp_ok) {
467			newtp->rx_opt.ts_recent = req->ts_recent;
468			newtp->rx_opt.ts_recent_stamp = get_seconds();
469			newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
470		} else {
471			newtp->rx_opt.ts_recent_stamp = 0;
472			newtp->tcp_header_len = sizeof(struct tcphdr);
473		}
474#ifdef CONFIG_TCP_MD5SIG
475		newtp->md5sig_info = NULL;	/*XXX*/
476		if (newtp->af_specific->md5_lookup(sk, newsk))
477			newtp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
478#endif
479		if (skb->len >= TCP_MIN_RCVMSS+newtp->tcp_header_len)
480			newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
481		newtp->rx_opt.mss_clamp = req->mss;
482		TCP_ECN_openreq_child(newtp, req);
483
484		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_PASSIVEOPENS);
485	}
486	return newsk;
487}
488
489/*
490 *	Process an incoming packet for SYN_RECV sockets represented
491 *	as a request_sock.
492 */
493
494struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
495			   struct request_sock *req,
496			   struct request_sock **prev)
497{
498	const struct tcphdr *th = tcp_hdr(skb);
499	__be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
500	int paws_reject = 0;
501	struct tcp_options_received tmp_opt;
502	struct sock *child;
503
504	tmp_opt.saw_tstamp = 0;
505	if (th->doff > (sizeof(struct tcphdr)>>2)) {
506		tcp_parse_options(skb, &tmp_opt, 0);
507
508		if (tmp_opt.saw_tstamp) {
509			tmp_opt.ts_recent = req->ts_recent;
510			/* We do not store true stamp, but it is not required,
511			 * it can be estimated (approximately)
512			 * from another data.
513			 */
514			tmp_opt.ts_recent_stamp = get_seconds() - ((TCP_TIMEOUT_INIT/HZ)<<req->retrans);
515			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
516		}
517	}
518
519	/* Check for pure retransmitted SYN. */
520	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
521	    flg == TCP_FLAG_SYN &&
522	    !paws_reject) {
523		/*
524		 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
525		 * this case on figure 6 and figure 8, but formal
526		 * protocol description says NOTHING.
527		 * To be more exact, it says that we should send ACK,
528		 * because this segment (at least, if it has no data)
529		 * is out of window.
530		 *
531		 *  CONCLUSION: RFC793 (even with RFC1122) DOES NOT
532		 *  describe SYN-RECV state. All the description
533		 *  is wrong, we cannot believe to it and should
534		 *  rely only on common sense and implementation
535		 *  experience.
536		 *
537		 * Enforce "SYN-ACK" according to figure 8, figure 6
538		 * of RFC793, fixed by RFC1122.
539		 */
540		req->rsk_ops->rtx_syn_ack(sk, req);
541		return NULL;
542	}
543
544	/* Further reproduces section "SEGMENT ARRIVES"
545	   for state SYN-RECEIVED of RFC793.
546	   It is broken, however, it does not work only
547	   when SYNs are crossed.
548
549	   You would think that SYN crossing is impossible here, since
550	   we should have a SYN_SENT socket (from connect()) on our end,
551	   but this is not true if the crossed SYNs were sent to both
552	   ends by a malicious third party.  We must defend against this,
553	   and to do that we first verify the ACK (as per RFC793, page
554	   36) and reset if it is invalid.  Is this a true full defense?
555	   To convince ourselves, let us consider a way in which the ACK
556	   test can still pass in this 'malicious crossed SYNs' case.
557	   Malicious sender sends identical SYNs (and thus identical sequence
558	   numbers) to both A and B:
559
560		A: gets SYN, seq=7
561		B: gets SYN, seq=7
562
563	   By our good fortune, both A and B select the same initial
564	   send sequence number of seven :-)
565
566		A: sends SYN|ACK, seq=7, ack_seq=8
567		B: sends SYN|ACK, seq=7, ack_seq=8
568
569	   So we are now A eating this SYN|ACK, ACK test passes.  So
570	   does sequence test, SYN is truncated, and thus we consider
571	   it a bare ACK.
572
573	   If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
574	   bare ACK.  Otherwise, we create an established connection.  Both
575	   ends (listening sockets) accept the new incoming connection and try
576	   to talk to each other. 8-)
577
578	   Note: This case is both harmless, and rare.  Possibility is about the
579	   same as us discovering intelligent life on another plant tomorrow.
580
581	   But generally, we should (RFC lies!) to accept ACK
582	   from SYNACK both here and in tcp_rcv_state_process().
583	   tcp_rcv_state_process() does not, hence, we do not too.
584
585	   Note that the case is absolutely generic:
586	   we cannot optimize anything here without
587	   violating protocol. All the checks must be made
588	   before attempt to create socket.
589	 */
590
591	/* RFC793 page 36: "If the connection is in any non-synchronized state ...
592	 *                  and the incoming segment acknowledges something not yet
593	 *                  sent (the segment carries an unacceptable ACK) ...
594	 *                  a reset is sent."
595	 *
596	 * Invalid ACK: reset will be sent by listening socket
597	 */
598	if ((flg & TCP_FLAG_ACK) &&
599	    (TCP_SKB_CB(skb)->ack_seq != tcp_rsk(req)->snt_isn + 1))
600		return sk;
601
602	/* Also, it would be not so bad idea to check rcv_tsecr, which
603	 * is essentially ACK extension and too early or too late values
604	 * should cause reset in unsynchronized states.
605	 */
606
607	/* RFC793: "first check sequence number". */
608
609	if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
610					  tcp_rsk(req)->rcv_isn + 1, tcp_rsk(req)->rcv_isn + 1 + req->rcv_wnd)) {
611		/* Out of window: send ACK and drop. */
612		if (!(flg & TCP_FLAG_RST))
613			req->rsk_ops->send_ack(sk, skb, req);
614		if (paws_reject)
615			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
616		return NULL;
617	}
618
619	/* In sequence, PAWS is OK. */
620
621	if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_isn + 1))
622		req->ts_recent = tmp_opt.rcv_tsval;
623
624	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
625		/* Truncate SYN, it is out of window starting
626		   at tcp_rsk(req)->rcv_isn + 1. */
627		flg &= ~TCP_FLAG_SYN;
628	}
629
630	/* RFC793: "second check the RST bit" and
631	 *	   "fourth, check the SYN bit"
632	 */
633	if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
634		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
635		goto embryonic_reset;
636	}
637
638	/* ACK sequence verified above, just make sure ACK is
639	 * set.  If ACK not set, just silently drop the packet.
640	 */
641	if (!(flg & TCP_FLAG_ACK))
642		return NULL;
643
644	/* If TCP_DEFER_ACCEPT is set, drop bare ACK. */
645	if (inet_csk(sk)->icsk_accept_queue.rskq_defer_accept &&
646	    TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
647		inet_rsk(req)->acked = 1;
648		return NULL;
649	}
650
651	/* OK, ACK is valid, create big socket and
652	 * feed this segment to it. It will repeat all
653	 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
654	 * ESTABLISHED STATE. If it will be dropped after
655	 * socket is created, wait for troubles.
656	 */
657	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL);
658	if (child == NULL)
659		goto listen_overflow;
660#ifdef CONFIG_TCP_MD5SIG
661	else {
662		/* Copy over the MD5 key from the original socket */
663		struct tcp_md5sig_key *key;
664		struct tcp_sock *tp = tcp_sk(sk);
665		key = tp->af_specific->md5_lookup(sk, child);
666		if (key != NULL) {
667			/*
668			 * We're using one, so create a matching key on the
669			 * newsk structure. If we fail to get memory then we
670			 * end up not copying the key across. Shucks.
671			 */
672			char *newkey = kmemdup(key->key, key->keylen,
673					       GFP_ATOMIC);
674			if (newkey) {
675				if (!tcp_alloc_md5sig_pool())
676					BUG();
677				tp->af_specific->md5_add(child, child, newkey,
678							 key->keylen);
679			}
680		}
681	}
682#endif
683
684	inet_csk_reqsk_queue_unlink(sk, req, prev);
685	inet_csk_reqsk_queue_removed(sk, req);
686
687	inet_csk_reqsk_queue_add(sk, req, child);
688	return child;
689
690listen_overflow:
691	if (!sysctl_tcp_abort_on_overflow) {
692		inet_rsk(req)->acked = 1;
693		return NULL;
694	}
695
696embryonic_reset:
697	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_EMBRYONICRSTS);
698	if (!(flg & TCP_FLAG_RST))
699		req->rsk_ops->send_reset(sk, skb);
700
701	inet_csk_reqsk_queue_drop(sk, req, prev);
702	return NULL;
703}
704
705/*
706 * Queue segment on the new socket if the new socket is active,
707 * otherwise we just shortcircuit this and continue with
708 * the new socket.
709 */
710
711int tcp_child_process(struct sock *parent, struct sock *child,
712		      struct sk_buff *skb)
713{
714	int ret = 0;
715	int state = child->sk_state;
716
717	if (!sock_owned_by_user(child)) {
718		ret = tcp_rcv_state_process(child, skb, tcp_hdr(skb),
719					    skb->len);
720		/* Wakeup parent, send SIGIO */
721		if (state == TCP_SYN_RECV && child->sk_state != state)
722			parent->sk_data_ready(parent, 0);
723	} else {
724		/* Alas, it is possible again, because we do lookup
725		 * in main socket hash table and lock on listening
726		 * socket does not protect us more.
727		 */
728		sk_add_backlog(child, skb);
729	}
730
731	bh_unlock_sock(child);
732	sock_put(child);
733	return ret;
734}
735
736EXPORT_SYMBOL(tcp_check_req);
737EXPORT_SYMBOL(tcp_child_process);
738EXPORT_SYMBOL(tcp_create_openreq_child);
739EXPORT_SYMBOL(tcp_timewait_state_process);
740