tcp_minisocks.c revision 3687b1dc6fe83a500ba4d3235704594f6a111a2d
1/*
2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
3 *		operating system.  INET is implemented using the  BSD Socket
4 *		interface as the means of communication with the user level.
5 *
6 *		Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Version:	$Id: tcp_minisocks.c,v 1.15 2002/02/01 22:01:04 davem Exp $
9 *
10 * Authors:	Ross Biro
11 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14 *		Florian La Roche, <flla@stud.uni-sb.de>
15 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
17 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
18 *		Matthew Dillon, <dillon@apollo.west.oic.com>
19 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 *		Jorge Cwik, <jorge@laser.satlink.net>
21 */
22
23#include <linux/mm.h>
24#include <linux/module.h>
25#include <linux/sysctl.h>
26#include <linux/workqueue.h>
27#include <net/tcp.h>
28#include <net/inet_common.h>
29#include <net/xfrm.h>
30
31#ifdef CONFIG_SYSCTL
32#define SYNC_INIT 0 /* let the user enable it */
33#else
34#define SYNC_INIT 1
35#endif
36
37int sysctl_tcp_syncookies = SYNC_INIT;
38int sysctl_tcp_abort_on_overflow;
39
40struct inet_timewait_death_row tcp_death_row = {
41	.sysctl_max_tw_buckets = NR_FILE * 2,
42	.period		= TCP_TIMEWAIT_LEN / INET_TWDR_TWKILL_SLOTS,
43	.death_lock	= __SPIN_LOCK_UNLOCKED(tcp_death_row.death_lock),
44	.hashinfo	= &tcp_hashinfo,
45	.tw_timer	= TIMER_INITIALIZER(inet_twdr_hangman, 0,
46					    (unsigned long)&tcp_death_row),
47	.twkill_work	= __WORK_INITIALIZER(tcp_death_row.twkill_work,
48					     inet_twdr_twkill_work,
49					     &tcp_death_row),
50/* Short-time timewait calendar */
51
52	.twcal_hand	= -1,
53	.twcal_timer	= TIMER_INITIALIZER(inet_twdr_twcal_tick, 0,
54					    (unsigned long)&tcp_death_row),
55};
56
57EXPORT_SYMBOL_GPL(tcp_death_row);
58
59static __inline__ int tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
60{
61	if (seq == s_win)
62		return 1;
63	if (after(end_seq, s_win) && before(seq, e_win))
64		return 1;
65	return (seq == e_win && seq == end_seq);
66}
67
68/*
69 * * Main purpose of TIME-WAIT state is to close connection gracefully,
70 *   when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
71 *   (and, probably, tail of data) and one or more our ACKs are lost.
72 * * What is TIME-WAIT timeout? It is associated with maximal packet
73 *   lifetime in the internet, which results in wrong conclusion, that
74 *   it is set to catch "old duplicate segments" wandering out of their path.
75 *   It is not quite correct. This timeout is calculated so that it exceeds
76 *   maximal retransmission timeout enough to allow to lose one (or more)
77 *   segments sent by peer and our ACKs. This time may be calculated from RTO.
78 * * When TIME-WAIT socket receives RST, it means that another end
79 *   finally closed and we are allowed to kill TIME-WAIT too.
80 * * Second purpose of TIME-WAIT is catching old duplicate segments.
81 *   Well, certainly it is pure paranoia, but if we load TIME-WAIT
82 *   with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
83 * * If we invented some more clever way to catch duplicates
84 *   (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
85 *
86 * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
87 * When you compare it to RFCs, please, read section SEGMENT ARRIVES
88 * from the very beginning.
89 *
90 * NOTE. With recycling (and later with fin-wait-2) TW bucket
91 * is _not_ stateless. It means, that strictly speaking we must
92 * spinlock it. I do not want! Well, probability of misbehaviour
93 * is ridiculously low and, seems, we could use some mb() tricks
94 * to avoid misread sequence numbers, states etc.  --ANK
95 */
96enum tcp_tw_status
97tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
98			   const struct tcphdr *th)
99{
100	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
101	struct tcp_options_received tmp_opt;
102	int paws_reject = 0;
103
104	tmp_opt.saw_tstamp = 0;
105	if (th->doff > (sizeof(*th) >> 2) && tcptw->tw_ts_recent_stamp) {
106		tcp_parse_options(skb, &tmp_opt, 0);
107
108		if (tmp_opt.saw_tstamp) {
109			tmp_opt.ts_recent	= tcptw->tw_ts_recent;
110			tmp_opt.ts_recent_stamp	= tcptw->tw_ts_recent_stamp;
111			paws_reject = tcp_paws_check(&tmp_opt, th->rst);
112		}
113	}
114
115	if (tw->tw_substate == TCP_FIN_WAIT2) {
116		/* Just repeat all the checks of tcp_rcv_state_process() */
117
118		/* Out of window, send ACK */
119		if (paws_reject ||
120		    !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
121				   tcptw->tw_rcv_nxt,
122				   tcptw->tw_rcv_nxt + tcptw->tw_rcv_wnd))
123			return TCP_TW_ACK;
124
125		if (th->rst)
126			goto kill;
127
128		if (th->syn && !before(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt))
129			goto kill_with_rst;
130
131		/* Dup ACK? */
132		if (!after(TCP_SKB_CB(skb)->end_seq, tcptw->tw_rcv_nxt) ||
133		    TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
134			inet_twsk_put(tw);
135			return TCP_TW_SUCCESS;
136		}
137
138		/* New data or FIN. If new data arrive after half-duplex close,
139		 * reset.
140		 */
141		if (!th->fin ||
142		    TCP_SKB_CB(skb)->end_seq != tcptw->tw_rcv_nxt + 1) {
143kill_with_rst:
144			inet_twsk_deschedule(tw, &tcp_death_row);
145			inet_twsk_put(tw);
146			return TCP_TW_RST;
147		}
148
149		/* FIN arrived, enter true time-wait state. */
150		tw->tw_substate	  = TCP_TIME_WAIT;
151		tcptw->tw_rcv_nxt = TCP_SKB_CB(skb)->end_seq;
152		if (tmp_opt.saw_tstamp) {
153			tcptw->tw_ts_recent_stamp = xtime.tv_sec;
154			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
155		}
156
157		/* I am shamed, but failed to make it more elegant.
158		 * Yes, it is direct reference to IP, which is impossible
159		 * to generalize to IPv6. Taking into account that IPv6
160		 * do not understand recycling in any case, it not
161		 * a big problem in practice. --ANK */
162		if (tw->tw_family == AF_INET &&
163		    tcp_death_row.sysctl_tw_recycle && tcptw->tw_ts_recent_stamp &&
164		    tcp_v4_tw_remember_stamp(tw))
165			inet_twsk_schedule(tw, &tcp_death_row, tw->tw_timeout,
166					   TCP_TIMEWAIT_LEN);
167		else
168			inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
169					   TCP_TIMEWAIT_LEN);
170		return TCP_TW_ACK;
171	}
172
173	/*
174	 *	Now real TIME-WAIT state.
175	 *
176	 *	RFC 1122:
177	 *	"When a connection is [...] on TIME-WAIT state [...]
178	 *	[a TCP] MAY accept a new SYN from the remote TCP to
179	 *	reopen the connection directly, if it:
180	 *
181	 *	(1)  assigns its initial sequence number for the new
182	 *	connection to be larger than the largest sequence
183	 *	number it used on the previous connection incarnation,
184	 *	and
185	 *
186	 *	(2)  returns to TIME-WAIT state if the SYN turns out
187	 *	to be an old duplicate".
188	 */
189
190	if (!paws_reject &&
191	    (TCP_SKB_CB(skb)->seq == tcptw->tw_rcv_nxt &&
192	     (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
193		/* In window segment, it may be only reset or bare ack. */
194
195		if (th->rst) {
196			/* This is TIME_WAIT assassination, in two flavors.
197			 * Oh well... nobody has a sufficient solution to this
198			 * protocol bug yet.
199			 */
200			if (sysctl_tcp_rfc1337 == 0) {
201kill:
202				inet_twsk_deschedule(tw, &tcp_death_row);
203				inet_twsk_put(tw);
204				return TCP_TW_SUCCESS;
205			}
206		}
207		inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
208				   TCP_TIMEWAIT_LEN);
209
210		if (tmp_opt.saw_tstamp) {
211			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
212			tcptw->tw_ts_recent_stamp = xtime.tv_sec;
213		}
214
215		inet_twsk_put(tw);
216		return TCP_TW_SUCCESS;
217	}
218
219	/* Out of window segment.
220
221	   All the segments are ACKed immediately.
222
223	   The only exception is new SYN. We accept it, if it is
224	   not old duplicate and we are not in danger to be killed
225	   by delayed old duplicates. RFC check is that it has
226	   newer sequence number works at rates <40Mbit/sec.
227	   However, if paws works, it is reliable AND even more,
228	   we even may relax silly seq space cutoff.
229
230	   RED-PEN: we violate main RFC requirement, if this SYN will appear
231	   old duplicate (i.e. we receive RST in reply to SYN-ACK),
232	   we must return socket to time-wait state. It is not good,
233	   but not fatal yet.
234	 */
235
236	if (th->syn && !th->rst && !th->ack && !paws_reject &&
237	    (after(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt) ||
238	     (tmp_opt.saw_tstamp &&
239	      (s32)(tcptw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) {
240		u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
241		if (isn == 0)
242			isn++;
243		TCP_SKB_CB(skb)->when = isn;
244		return TCP_TW_SYN;
245	}
246
247	if (paws_reject)
248		NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
249
250	if(!th->rst) {
251		/* In this case we must reset the TIMEWAIT timer.
252		 *
253		 * If it is ACKless SYN it may be both old duplicate
254		 * and new good SYN with random sequence number <rcv_nxt.
255		 * Do not reschedule in the last case.
256		 */
257		if (paws_reject || th->ack)
258			inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
259					   TCP_TIMEWAIT_LEN);
260
261		/* Send ACK. Note, we do not put the bucket,
262		 * it will be released by caller.
263		 */
264		return TCP_TW_ACK;
265	}
266	inet_twsk_put(tw);
267	return TCP_TW_SUCCESS;
268}
269
270/*
271 * Move a socket to time-wait or dead fin-wait-2 state.
272 */
273void tcp_time_wait(struct sock *sk, int state, int timeo)
274{
275	struct inet_timewait_sock *tw = NULL;
276	const struct inet_connection_sock *icsk = inet_csk(sk);
277	const struct tcp_sock *tp = tcp_sk(sk);
278	int recycle_ok = 0;
279
280	if (tcp_death_row.sysctl_tw_recycle && tp->rx_opt.ts_recent_stamp)
281		recycle_ok = icsk->icsk_af_ops->remember_stamp(sk);
282
283	if (tcp_death_row.tw_count < tcp_death_row.sysctl_max_tw_buckets)
284		tw = inet_twsk_alloc(sk, state);
285
286	if (tw != NULL) {
287		struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
288		const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
289
290		tw->tw_rcv_wscale	= tp->rx_opt.rcv_wscale;
291		tcptw->tw_rcv_nxt	= tp->rcv_nxt;
292		tcptw->tw_snd_nxt	= tp->snd_nxt;
293		tcptw->tw_rcv_wnd	= tcp_receive_window(tp);
294		tcptw->tw_ts_recent	= tp->rx_opt.ts_recent;
295		tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
296
297#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
298		if (tw->tw_family == PF_INET6) {
299			struct ipv6_pinfo *np = inet6_sk(sk);
300			struct inet6_timewait_sock *tw6;
301
302			tw->tw_ipv6_offset = inet6_tw_offset(sk->sk_prot);
303			tw6 = inet6_twsk((struct sock *)tw);
304			ipv6_addr_copy(&tw6->tw_v6_daddr, &np->daddr);
305			ipv6_addr_copy(&tw6->tw_v6_rcv_saddr, &np->rcv_saddr);
306			tw->tw_ipv6only = np->ipv6only;
307		}
308#endif
309		/* Linkage updates. */
310		__inet_twsk_hashdance(tw, sk, &tcp_hashinfo);
311
312		/* Get the TIME_WAIT timeout firing. */
313		if (timeo < rto)
314			timeo = rto;
315
316		if (recycle_ok) {
317			tw->tw_timeout = rto;
318		} else {
319			tw->tw_timeout = TCP_TIMEWAIT_LEN;
320			if (state == TCP_TIME_WAIT)
321				timeo = TCP_TIMEWAIT_LEN;
322		}
323
324		inet_twsk_schedule(tw, &tcp_death_row, timeo,
325				   TCP_TIMEWAIT_LEN);
326		inet_twsk_put(tw);
327	} else {
328		/* Sorry, if we're out of memory, just CLOSE this
329		 * socket up.  We've got bigger problems than
330		 * non-graceful socket closings.
331		 */
332		if (net_ratelimit())
333			printk(KERN_INFO "TCP: time wait bucket table overflow\n");
334	}
335
336	tcp_update_metrics(sk);
337	tcp_done(sk);
338}
339
340/* This is not only more efficient than what we used to do, it eliminates
341 * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
342 *
343 * Actually, we could lots of memory writes here. tp of listening
344 * socket contains all necessary default parameters.
345 */
346struct sock *tcp_create_openreq_child(struct sock *sk, struct request_sock *req, struct sk_buff *skb)
347{
348	struct sock *newsk = inet_csk_clone(sk, req, GFP_ATOMIC);
349
350	if (newsk != NULL) {
351		const struct inet_request_sock *ireq = inet_rsk(req);
352		struct tcp_request_sock *treq = tcp_rsk(req);
353		struct inet_connection_sock *newicsk = inet_csk(sk);
354		struct tcp_sock *newtp;
355
356		/* Now setup tcp_sock */
357		newtp = tcp_sk(newsk);
358		newtp->pred_flags = 0;
359		newtp->rcv_nxt = treq->rcv_isn + 1;
360		newtp->snd_nxt = newtp->snd_una = newtp->snd_sml = treq->snt_isn + 1;
361
362		tcp_prequeue_init(newtp);
363
364		tcp_init_wl(newtp, treq->snt_isn, treq->rcv_isn);
365
366		newtp->srtt = 0;
367		newtp->mdev = TCP_TIMEOUT_INIT;
368		newicsk->icsk_rto = TCP_TIMEOUT_INIT;
369
370		newtp->packets_out = 0;
371		newtp->left_out = 0;
372		newtp->retrans_out = 0;
373		newtp->sacked_out = 0;
374		newtp->fackets_out = 0;
375		newtp->snd_ssthresh = 0x7fffffff;
376
377		/* So many TCP implementations out there (incorrectly) count the
378		 * initial SYN frame in their delayed-ACK and congestion control
379		 * algorithms that we must have the following bandaid to talk
380		 * efficiently to them.  -DaveM
381		 */
382		newtp->snd_cwnd = 2;
383		newtp->snd_cwnd_cnt = 0;
384		newtp->bytes_acked = 0;
385
386		newtp->frto_counter = 0;
387		newtp->frto_highmark = 0;
388
389		newicsk->icsk_ca_ops = &tcp_init_congestion_ops;
390
391		tcp_set_ca_state(newsk, TCP_CA_Open);
392		tcp_init_xmit_timers(newsk);
393		skb_queue_head_init(&newtp->out_of_order_queue);
394		newtp->rcv_wup = treq->rcv_isn + 1;
395		newtp->write_seq = treq->snt_isn + 1;
396		newtp->pushed_seq = newtp->write_seq;
397		newtp->copied_seq = treq->rcv_isn + 1;
398
399		newtp->rx_opt.saw_tstamp = 0;
400
401		newtp->rx_opt.dsack = 0;
402		newtp->rx_opt.eff_sacks = 0;
403
404		newtp->rx_opt.num_sacks = 0;
405		newtp->urg_data = 0;
406
407		if (sock_flag(newsk, SOCK_KEEPOPEN))
408			inet_csk_reset_keepalive_timer(newsk,
409						       keepalive_time_when(newtp));
410
411		newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
412		if((newtp->rx_opt.sack_ok = ireq->sack_ok) != 0) {
413			if (sysctl_tcp_fack)
414				newtp->rx_opt.sack_ok |= 2;
415		}
416		newtp->window_clamp = req->window_clamp;
417		newtp->rcv_ssthresh = req->rcv_wnd;
418		newtp->rcv_wnd = req->rcv_wnd;
419		newtp->rx_opt.wscale_ok = ireq->wscale_ok;
420		if (newtp->rx_opt.wscale_ok) {
421			newtp->rx_opt.snd_wscale = ireq->snd_wscale;
422			newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
423		} else {
424			newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
425			newtp->window_clamp = min(newtp->window_clamp, 65535U);
426		}
427		newtp->snd_wnd = ntohs(skb->h.th->window) << newtp->rx_opt.snd_wscale;
428		newtp->max_window = newtp->snd_wnd;
429
430		if (newtp->rx_opt.tstamp_ok) {
431			newtp->rx_opt.ts_recent = req->ts_recent;
432			newtp->rx_opt.ts_recent_stamp = xtime.tv_sec;
433			newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
434		} else {
435			newtp->rx_opt.ts_recent_stamp = 0;
436			newtp->tcp_header_len = sizeof(struct tcphdr);
437		}
438		if (skb->len >= TCP_MIN_RCVMSS+newtp->tcp_header_len)
439			newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
440		newtp->rx_opt.mss_clamp = req->mss;
441		TCP_ECN_openreq_child(newtp, req);
442
443		TCP_INC_STATS_BH(TCP_MIB_PASSIVEOPENS);
444	}
445	return newsk;
446}
447
448/*
449 *	Process an incoming packet for SYN_RECV sockets represented
450 *	as a request_sock.
451 */
452
453struct sock *tcp_check_req(struct sock *sk,struct sk_buff *skb,
454			   struct request_sock *req,
455			   struct request_sock **prev)
456{
457	struct tcphdr *th = skb->h.th;
458	u32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
459	int paws_reject = 0;
460	struct tcp_options_received tmp_opt;
461	struct sock *child;
462
463	tmp_opt.saw_tstamp = 0;
464	if (th->doff > (sizeof(struct tcphdr)>>2)) {
465		tcp_parse_options(skb, &tmp_opt, 0);
466
467		if (tmp_opt.saw_tstamp) {
468			tmp_opt.ts_recent = req->ts_recent;
469			/* We do not store true stamp, but it is not required,
470			 * it can be estimated (approximately)
471			 * from another data.
472			 */
473			tmp_opt.ts_recent_stamp = xtime.tv_sec - ((TCP_TIMEOUT_INIT/HZ)<<req->retrans);
474			paws_reject = tcp_paws_check(&tmp_opt, th->rst);
475		}
476	}
477
478	/* Check for pure retransmitted SYN. */
479	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
480	    flg == TCP_FLAG_SYN &&
481	    !paws_reject) {
482		/*
483		 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
484		 * this case on figure 6 and figure 8, but formal
485		 * protocol description says NOTHING.
486		 * To be more exact, it says that we should send ACK,
487		 * because this segment (at least, if it has no data)
488		 * is out of window.
489		 *
490		 *  CONCLUSION: RFC793 (even with RFC1122) DOES NOT
491		 *  describe SYN-RECV state. All the description
492		 *  is wrong, we cannot believe to it and should
493		 *  rely only on common sense and implementation
494		 *  experience.
495		 *
496		 * Enforce "SYN-ACK" according to figure 8, figure 6
497		 * of RFC793, fixed by RFC1122.
498		 */
499		req->rsk_ops->rtx_syn_ack(sk, req, NULL);
500		return NULL;
501	}
502
503	/* Further reproduces section "SEGMENT ARRIVES"
504	   for state SYN-RECEIVED of RFC793.
505	   It is broken, however, it does not work only
506	   when SYNs are crossed.
507
508	   You would think that SYN crossing is impossible here, since
509	   we should have a SYN_SENT socket (from connect()) on our end,
510	   but this is not true if the crossed SYNs were sent to both
511	   ends by a malicious third party.  We must defend against this,
512	   and to do that we first verify the ACK (as per RFC793, page
513	   36) and reset if it is invalid.  Is this a true full defense?
514	   To convince ourselves, let us consider a way in which the ACK
515	   test can still pass in this 'malicious crossed SYNs' case.
516	   Malicious sender sends identical SYNs (and thus identical sequence
517	   numbers) to both A and B:
518
519		A: gets SYN, seq=7
520		B: gets SYN, seq=7
521
522	   By our good fortune, both A and B select the same initial
523	   send sequence number of seven :-)
524
525		A: sends SYN|ACK, seq=7, ack_seq=8
526		B: sends SYN|ACK, seq=7, ack_seq=8
527
528	   So we are now A eating this SYN|ACK, ACK test passes.  So
529	   does sequence test, SYN is truncated, and thus we consider
530	   it a bare ACK.
531
532	   If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
533	   bare ACK.  Otherwise, we create an established connection.  Both
534	   ends (listening sockets) accept the new incoming connection and try
535	   to talk to each other. 8-)
536
537	   Note: This case is both harmless, and rare.  Possibility is about the
538	   same as us discovering intelligent life on another plant tomorrow.
539
540	   But generally, we should (RFC lies!) to accept ACK
541	   from SYNACK both here and in tcp_rcv_state_process().
542	   tcp_rcv_state_process() does not, hence, we do not too.
543
544	   Note that the case is absolutely generic:
545	   we cannot optimize anything here without
546	   violating protocol. All the checks must be made
547	   before attempt to create socket.
548	 */
549
550	/* RFC793 page 36: "If the connection is in any non-synchronized state ...
551	 *                  and the incoming segment acknowledges something not yet
552	 *                  sent (the segment carries an unacceptable ACK) ...
553	 *                  a reset is sent."
554	 *
555	 * Invalid ACK: reset will be sent by listening socket
556	 */
557	if ((flg & TCP_FLAG_ACK) &&
558	    (TCP_SKB_CB(skb)->ack_seq != tcp_rsk(req)->snt_isn + 1))
559		return sk;
560
561	/* Also, it would be not so bad idea to check rcv_tsecr, which
562	 * is essentially ACK extension and too early or too late values
563	 * should cause reset in unsynchronized states.
564	 */
565
566	/* RFC793: "first check sequence number". */
567
568	if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
569					  tcp_rsk(req)->rcv_isn + 1, tcp_rsk(req)->rcv_isn + 1 + req->rcv_wnd)) {
570		/* Out of window: send ACK and drop. */
571		if (!(flg & TCP_FLAG_RST))
572			req->rsk_ops->send_ack(skb, req);
573		if (paws_reject)
574			NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
575		return NULL;
576	}
577
578	/* In sequence, PAWS is OK. */
579
580	if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_isn + 1))
581			req->ts_recent = tmp_opt.rcv_tsval;
582
583		if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
584			/* Truncate SYN, it is out of window starting
585			   at tcp_rsk(req)->rcv_isn + 1. */
586			flg &= ~TCP_FLAG_SYN;
587		}
588
589		/* RFC793: "second check the RST bit" and
590		 *	   "fourth, check the SYN bit"
591		 */
592		if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
593			TCP_INC_STATS_BH(TCP_MIB_ATTEMPTFAILS);
594			goto embryonic_reset;
595		}
596
597		/* ACK sequence verified above, just make sure ACK is
598		 * set.  If ACK not set, just silently drop the packet.
599		 */
600		if (!(flg & TCP_FLAG_ACK))
601			return NULL;
602
603		/* If TCP_DEFER_ACCEPT is set, drop bare ACK. */
604		if (inet_csk(sk)->icsk_accept_queue.rskq_defer_accept &&
605		    TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
606			inet_rsk(req)->acked = 1;
607			return NULL;
608		}
609
610		/* OK, ACK is valid, create big socket and
611		 * feed this segment to it. It will repeat all
612		 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
613		 * ESTABLISHED STATE. If it will be dropped after
614		 * socket is created, wait for troubles.
615		 */
616		child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb,
617								 req, NULL);
618		if (child == NULL)
619			goto listen_overflow;
620
621		inet_csk_reqsk_queue_unlink(sk, req, prev);
622		inet_csk_reqsk_queue_removed(sk, req);
623
624		inet_csk_reqsk_queue_add(sk, req, child);
625		return child;
626
627	listen_overflow:
628		if (!sysctl_tcp_abort_on_overflow) {
629			inet_rsk(req)->acked = 1;
630			return NULL;
631		}
632
633	embryonic_reset:
634		NET_INC_STATS_BH(LINUX_MIB_EMBRYONICRSTS);
635		if (!(flg & TCP_FLAG_RST))
636			req->rsk_ops->send_reset(skb);
637
638		inet_csk_reqsk_queue_drop(sk, req, prev);
639		return NULL;
640}
641
642/*
643 * Queue segment on the new socket if the new socket is active,
644 * otherwise we just shortcircuit this and continue with
645 * the new socket.
646 */
647
648int tcp_child_process(struct sock *parent, struct sock *child,
649		      struct sk_buff *skb)
650{
651	int ret = 0;
652	int state = child->sk_state;
653
654	if (!sock_owned_by_user(child)) {
655		ret = tcp_rcv_state_process(child, skb, skb->h.th, skb->len);
656
657		/* Wakeup parent, send SIGIO */
658		if (state == TCP_SYN_RECV && child->sk_state != state)
659			parent->sk_data_ready(parent, 0);
660	} else {
661		/* Alas, it is possible again, because we do lookup
662		 * in main socket hash table and lock on listening
663		 * socket does not protect us more.
664		 */
665		sk_add_backlog(child, skb);
666	}
667
668	bh_unlock_sock(child);
669	sock_put(child);
670	return ret;
671}
672
673EXPORT_SYMBOL(tcp_check_req);
674EXPORT_SYMBOL(tcp_child_process);
675EXPORT_SYMBOL(tcp_create_openreq_child);
676EXPORT_SYMBOL(tcp_timewait_state_process);
677