tcp_minisocks.c revision 4308fc58dceda40fac8a8d9c05b7cfba0a6bbed3
1/*
2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
3 *		operating system.  INET is implemented using the  BSD Socket
4 *		interface as the means of communication with the user level.
5 *
6 *		Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors:	Ross Biro
9 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12 *		Florian La Roche, <flla@stud.uni-sb.de>
13 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16 *		Matthew Dillon, <dillon@apollo.west.oic.com>
17 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 *		Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21#include <linux/mm.h>
22#include <linux/module.h>
23#include <linux/slab.h>
24#include <linux/sysctl.h>
25#include <linux/workqueue.h>
26#include <net/tcp.h>
27#include <net/inet_common.h>
28#include <net/xfrm.h>
29
30int sysctl_tcp_syncookies __read_mostly = 1;
31EXPORT_SYMBOL(sysctl_tcp_syncookies);
32
33int sysctl_tcp_abort_on_overflow __read_mostly;
34
35struct inet_timewait_death_row tcp_death_row = {
36	.sysctl_max_tw_buckets = NR_FILE * 2,
37	.period		= TCP_TIMEWAIT_LEN / INET_TWDR_TWKILL_SLOTS,
38	.death_lock	= __SPIN_LOCK_UNLOCKED(tcp_death_row.death_lock),
39	.hashinfo	= &tcp_hashinfo,
40	.tw_timer	= TIMER_INITIALIZER(inet_twdr_hangman, 0,
41					    (unsigned long)&tcp_death_row),
42	.twkill_work	= __WORK_INITIALIZER(tcp_death_row.twkill_work,
43					     inet_twdr_twkill_work),
44/* Short-time timewait calendar */
45
46	.twcal_hand	= -1,
47	.twcal_timer	= TIMER_INITIALIZER(inet_twdr_twcal_tick, 0,
48					    (unsigned long)&tcp_death_row),
49};
50EXPORT_SYMBOL_GPL(tcp_death_row);
51
52static bool tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
53{
54	if (seq == s_win)
55		return true;
56	if (after(end_seq, s_win) && before(seq, e_win))
57		return true;
58	return seq == e_win && seq == end_seq;
59}
60
61/*
62 * * Main purpose of TIME-WAIT state is to close connection gracefully,
63 *   when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
64 *   (and, probably, tail of data) and one or more our ACKs are lost.
65 * * What is TIME-WAIT timeout? It is associated with maximal packet
66 *   lifetime in the internet, which results in wrong conclusion, that
67 *   it is set to catch "old duplicate segments" wandering out of their path.
68 *   It is not quite correct. This timeout is calculated so that it exceeds
69 *   maximal retransmission timeout enough to allow to lose one (or more)
70 *   segments sent by peer and our ACKs. This time may be calculated from RTO.
71 * * When TIME-WAIT socket receives RST, it means that another end
72 *   finally closed and we are allowed to kill TIME-WAIT too.
73 * * Second purpose of TIME-WAIT is catching old duplicate segments.
74 *   Well, certainly it is pure paranoia, but if we load TIME-WAIT
75 *   with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
76 * * If we invented some more clever way to catch duplicates
77 *   (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
78 *
79 * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
80 * When you compare it to RFCs, please, read section SEGMENT ARRIVES
81 * from the very beginning.
82 *
83 * NOTE. With recycling (and later with fin-wait-2) TW bucket
84 * is _not_ stateless. It means, that strictly speaking we must
85 * spinlock it. I do not want! Well, probability of misbehaviour
86 * is ridiculously low and, seems, we could use some mb() tricks
87 * to avoid misread sequence numbers, states etc.  --ANK
88 *
89 * We don't need to initialize tmp_out.sack_ok as we don't use the results
90 */
91enum tcp_tw_status
92tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
93			   const struct tcphdr *th)
94{
95	struct tcp_options_received tmp_opt;
96	const u8 *hash_location;
97	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
98	bool paws_reject = false;
99
100	tmp_opt.saw_tstamp = 0;
101	if (th->doff > (sizeof(*th) >> 2) && tcptw->tw_ts_recent_stamp) {
102		tcp_parse_options(skb, &tmp_opt, &hash_location, 0, NULL);
103
104		if (tmp_opt.saw_tstamp) {
105			tmp_opt.ts_recent	= tcptw->tw_ts_recent;
106			tmp_opt.ts_recent_stamp	= tcptw->tw_ts_recent_stamp;
107			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
108		}
109	}
110
111	if (tw->tw_substate == TCP_FIN_WAIT2) {
112		/* Just repeat all the checks of tcp_rcv_state_process() */
113
114		/* Out of window, send ACK */
115		if (paws_reject ||
116		    !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
117				   tcptw->tw_rcv_nxt,
118				   tcptw->tw_rcv_nxt + tcptw->tw_rcv_wnd))
119			return TCP_TW_ACK;
120
121		if (th->rst)
122			goto kill;
123
124		if (th->syn && !before(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt))
125			goto kill_with_rst;
126
127		/* Dup ACK? */
128		if (!th->ack ||
129		    !after(TCP_SKB_CB(skb)->end_seq, tcptw->tw_rcv_nxt) ||
130		    TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
131			inet_twsk_put(tw);
132			return TCP_TW_SUCCESS;
133		}
134
135		/* New data or FIN. If new data arrive after half-duplex close,
136		 * reset.
137		 */
138		if (!th->fin ||
139		    TCP_SKB_CB(skb)->end_seq != tcptw->tw_rcv_nxt + 1) {
140kill_with_rst:
141			inet_twsk_deschedule(tw, &tcp_death_row);
142			inet_twsk_put(tw);
143			return TCP_TW_RST;
144		}
145
146		/* FIN arrived, enter true time-wait state. */
147		tw->tw_substate	  = TCP_TIME_WAIT;
148		tcptw->tw_rcv_nxt = TCP_SKB_CB(skb)->end_seq;
149		if (tmp_opt.saw_tstamp) {
150			tcptw->tw_ts_recent_stamp = get_seconds();
151			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
152		}
153
154		if (tcp_death_row.sysctl_tw_recycle &&
155		    tcptw->tw_ts_recent_stamp &&
156		    tcp_tw_remember_stamp(tw))
157			inet_twsk_schedule(tw, &tcp_death_row, tw->tw_timeout,
158					   TCP_TIMEWAIT_LEN);
159		else
160			inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
161					   TCP_TIMEWAIT_LEN);
162		return TCP_TW_ACK;
163	}
164
165	/*
166	 *	Now real TIME-WAIT state.
167	 *
168	 *	RFC 1122:
169	 *	"When a connection is [...] on TIME-WAIT state [...]
170	 *	[a TCP] MAY accept a new SYN from the remote TCP to
171	 *	reopen the connection directly, if it:
172	 *
173	 *	(1)  assigns its initial sequence number for the new
174	 *	connection to be larger than the largest sequence
175	 *	number it used on the previous connection incarnation,
176	 *	and
177	 *
178	 *	(2)  returns to TIME-WAIT state if the SYN turns out
179	 *	to be an old duplicate".
180	 */
181
182	if (!paws_reject &&
183	    (TCP_SKB_CB(skb)->seq == tcptw->tw_rcv_nxt &&
184	     (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
185		/* In window segment, it may be only reset or bare ack. */
186
187		if (th->rst) {
188			/* This is TIME_WAIT assassination, in two flavors.
189			 * Oh well... nobody has a sufficient solution to this
190			 * protocol bug yet.
191			 */
192			if (sysctl_tcp_rfc1337 == 0) {
193kill:
194				inet_twsk_deschedule(tw, &tcp_death_row);
195				inet_twsk_put(tw);
196				return TCP_TW_SUCCESS;
197			}
198		}
199		inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
200				   TCP_TIMEWAIT_LEN);
201
202		if (tmp_opt.saw_tstamp) {
203			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
204			tcptw->tw_ts_recent_stamp = get_seconds();
205		}
206
207		inet_twsk_put(tw);
208		return TCP_TW_SUCCESS;
209	}
210
211	/* Out of window segment.
212
213	   All the segments are ACKed immediately.
214
215	   The only exception is new SYN. We accept it, if it is
216	   not old duplicate and we are not in danger to be killed
217	   by delayed old duplicates. RFC check is that it has
218	   newer sequence number works at rates <40Mbit/sec.
219	   However, if paws works, it is reliable AND even more,
220	   we even may relax silly seq space cutoff.
221
222	   RED-PEN: we violate main RFC requirement, if this SYN will appear
223	   old duplicate (i.e. we receive RST in reply to SYN-ACK),
224	   we must return socket to time-wait state. It is not good,
225	   but not fatal yet.
226	 */
227
228	if (th->syn && !th->rst && !th->ack && !paws_reject &&
229	    (after(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt) ||
230	     (tmp_opt.saw_tstamp &&
231	      (s32)(tcptw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) {
232		u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
233		if (isn == 0)
234			isn++;
235		TCP_SKB_CB(skb)->when = isn;
236		return TCP_TW_SYN;
237	}
238
239	if (paws_reject)
240		NET_INC_STATS_BH(twsk_net(tw), LINUX_MIB_PAWSESTABREJECTED);
241
242	if (!th->rst) {
243		/* In this case we must reset the TIMEWAIT timer.
244		 *
245		 * If it is ACKless SYN it may be both old duplicate
246		 * and new good SYN with random sequence number <rcv_nxt.
247		 * Do not reschedule in the last case.
248		 */
249		if (paws_reject || th->ack)
250			inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
251					   TCP_TIMEWAIT_LEN);
252
253		/* Send ACK. Note, we do not put the bucket,
254		 * it will be released by caller.
255		 */
256		return TCP_TW_ACK;
257	}
258	inet_twsk_put(tw);
259	return TCP_TW_SUCCESS;
260}
261EXPORT_SYMBOL(tcp_timewait_state_process);
262
263/*
264 * Move a socket to time-wait or dead fin-wait-2 state.
265 */
266void tcp_time_wait(struct sock *sk, int state, int timeo)
267{
268	struct inet_timewait_sock *tw = NULL;
269	const struct inet_connection_sock *icsk = inet_csk(sk);
270	const struct tcp_sock *tp = tcp_sk(sk);
271	bool recycle_ok = false;
272
273	if (tcp_death_row.sysctl_tw_recycle && tp->rx_opt.ts_recent_stamp)
274		recycle_ok = tcp_remember_stamp(sk);
275
276	if (tcp_death_row.tw_count < tcp_death_row.sysctl_max_tw_buckets)
277		tw = inet_twsk_alloc(sk, state);
278
279	if (tw != NULL) {
280		struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
281		const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
282		struct inet_sock *inet = inet_sk(sk);
283
284		tw->tw_transparent	= inet->transparent;
285		tw->tw_rcv_wscale	= tp->rx_opt.rcv_wscale;
286		tcptw->tw_rcv_nxt	= tp->rcv_nxt;
287		tcptw->tw_snd_nxt	= tp->snd_nxt;
288		tcptw->tw_rcv_wnd	= tcp_receive_window(tp);
289		tcptw->tw_ts_recent	= tp->rx_opt.ts_recent;
290		tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
291
292#if IS_ENABLED(CONFIG_IPV6)
293		if (tw->tw_family == PF_INET6) {
294			struct ipv6_pinfo *np = inet6_sk(sk);
295			struct inet6_timewait_sock *tw6;
296
297			tw->tw_ipv6_offset = inet6_tw_offset(sk->sk_prot);
298			tw6 = inet6_twsk((struct sock *)tw);
299			tw6->tw_v6_daddr = np->daddr;
300			tw6->tw_v6_rcv_saddr = np->rcv_saddr;
301			tw->tw_tclass = np->tclass;
302			tw->tw_ipv6only = np->ipv6only;
303		}
304#endif
305
306#ifdef CONFIG_TCP_MD5SIG
307		/*
308		 * The timewait bucket does not have the key DB from the
309		 * sock structure. We just make a quick copy of the
310		 * md5 key being used (if indeed we are using one)
311		 * so the timewait ack generating code has the key.
312		 */
313		do {
314			struct tcp_md5sig_key *key;
315			tcptw->tw_md5_key = NULL;
316			key = tp->af_specific->md5_lookup(sk, sk);
317			if (key != NULL) {
318				tcptw->tw_md5_key = kmemdup(key, sizeof(*key), GFP_ATOMIC);
319				if (tcptw->tw_md5_key && tcp_alloc_md5sig_pool(sk) == NULL)
320					BUG();
321			}
322		} while (0);
323#endif
324
325		/* Linkage updates. */
326		__inet_twsk_hashdance(tw, sk, &tcp_hashinfo);
327
328		/* Get the TIME_WAIT timeout firing. */
329		if (timeo < rto)
330			timeo = rto;
331
332		if (recycle_ok) {
333			tw->tw_timeout = rto;
334		} else {
335			tw->tw_timeout = TCP_TIMEWAIT_LEN;
336			if (state == TCP_TIME_WAIT)
337				timeo = TCP_TIMEWAIT_LEN;
338		}
339
340		inet_twsk_schedule(tw, &tcp_death_row, timeo,
341				   TCP_TIMEWAIT_LEN);
342		inet_twsk_put(tw);
343	} else {
344		/* Sorry, if we're out of memory, just CLOSE this
345		 * socket up.  We've got bigger problems than
346		 * non-graceful socket closings.
347		 */
348		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPTIMEWAITOVERFLOW);
349	}
350
351	tcp_update_metrics(sk);
352	tcp_done(sk);
353}
354
355void tcp_twsk_destructor(struct sock *sk)
356{
357#ifdef CONFIG_TCP_MD5SIG
358	struct tcp_timewait_sock *twsk = tcp_twsk(sk);
359
360	if (twsk->tw_md5_key) {
361		tcp_free_md5sig_pool();
362		kfree_rcu(twsk->tw_md5_key, rcu);
363	}
364#endif
365}
366EXPORT_SYMBOL_GPL(tcp_twsk_destructor);
367
368static inline void TCP_ECN_openreq_child(struct tcp_sock *tp,
369					 struct request_sock *req)
370{
371	tp->ecn_flags = inet_rsk(req)->ecn_ok ? TCP_ECN_OK : 0;
372}
373
374/* This is not only more efficient than what we used to do, it eliminates
375 * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
376 *
377 * Actually, we could lots of memory writes here. tp of listening
378 * socket contains all necessary default parameters.
379 */
380struct sock *tcp_create_openreq_child(struct sock *sk, struct request_sock *req, struct sk_buff *skb)
381{
382	struct sock *newsk = inet_csk_clone_lock(sk, req, GFP_ATOMIC);
383
384	if (newsk != NULL) {
385		const struct inet_request_sock *ireq = inet_rsk(req);
386		struct tcp_request_sock *treq = tcp_rsk(req);
387		struct inet_connection_sock *newicsk = inet_csk(newsk);
388		struct tcp_sock *newtp = tcp_sk(newsk);
389		struct tcp_sock *oldtp = tcp_sk(sk);
390		struct tcp_cookie_values *oldcvp = oldtp->cookie_values;
391
392		/* TCP Cookie Transactions require space for the cookie pair,
393		 * as it differs for each connection.  There is no need to
394		 * copy any s_data_payload stored at the original socket.
395		 * Failure will prevent resuming the connection.
396		 *
397		 * Presumed copied, in order of appearance:
398		 *	cookie_in_always, cookie_out_never
399		 */
400		if (oldcvp != NULL) {
401			struct tcp_cookie_values *newcvp =
402				kzalloc(sizeof(*newtp->cookie_values),
403					GFP_ATOMIC);
404
405			if (newcvp != NULL) {
406				kref_init(&newcvp->kref);
407				newcvp->cookie_desired =
408						oldcvp->cookie_desired;
409				newtp->cookie_values = newcvp;
410			} else {
411				/* Not Yet Implemented */
412				newtp->cookie_values = NULL;
413			}
414		}
415
416		/* Now setup tcp_sock */
417		newtp->pred_flags = 0;
418
419		newtp->rcv_wup = newtp->copied_seq =
420		newtp->rcv_nxt = treq->rcv_isn + 1;
421
422		newtp->snd_sml = newtp->snd_una =
423		newtp->snd_nxt = newtp->snd_up =
424			treq->snt_isn + 1 + tcp_s_data_size(oldtp);
425
426		tcp_prequeue_init(newtp);
427		INIT_LIST_HEAD(&newtp->tsq_node);
428
429		tcp_init_wl(newtp, treq->rcv_isn);
430
431		newtp->srtt = 0;
432		newtp->mdev = TCP_TIMEOUT_INIT;
433		newicsk->icsk_rto = TCP_TIMEOUT_INIT;
434
435		newtp->packets_out = 0;
436		newtp->retrans_out = 0;
437		newtp->sacked_out = 0;
438		newtp->fackets_out = 0;
439		newtp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
440		tcp_enable_early_retrans(newtp);
441
442		/* So many TCP implementations out there (incorrectly) count the
443		 * initial SYN frame in their delayed-ACK and congestion control
444		 * algorithms that we must have the following bandaid to talk
445		 * efficiently to them.  -DaveM
446		 */
447		newtp->snd_cwnd = TCP_INIT_CWND;
448		newtp->snd_cwnd_cnt = 0;
449		newtp->bytes_acked = 0;
450
451		newtp->frto_counter = 0;
452		newtp->frto_highmark = 0;
453
454		if (newicsk->icsk_ca_ops != &tcp_init_congestion_ops &&
455		    !try_module_get(newicsk->icsk_ca_ops->owner))
456			newicsk->icsk_ca_ops = &tcp_init_congestion_ops;
457
458		tcp_set_ca_state(newsk, TCP_CA_Open);
459		tcp_init_xmit_timers(newsk);
460		skb_queue_head_init(&newtp->out_of_order_queue);
461		newtp->write_seq = newtp->pushed_seq =
462			treq->snt_isn + 1 + tcp_s_data_size(oldtp);
463
464		newtp->rx_opt.saw_tstamp = 0;
465
466		newtp->rx_opt.dsack = 0;
467		newtp->rx_opt.num_sacks = 0;
468
469		newtp->urg_data = 0;
470
471		if (sock_flag(newsk, SOCK_KEEPOPEN))
472			inet_csk_reset_keepalive_timer(newsk,
473						       keepalive_time_when(newtp));
474
475		newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
476		if ((newtp->rx_opt.sack_ok = ireq->sack_ok) != 0) {
477			if (sysctl_tcp_fack)
478				tcp_enable_fack(newtp);
479		}
480		newtp->window_clamp = req->window_clamp;
481		newtp->rcv_ssthresh = req->rcv_wnd;
482		newtp->rcv_wnd = req->rcv_wnd;
483		newtp->rx_opt.wscale_ok = ireq->wscale_ok;
484		if (newtp->rx_opt.wscale_ok) {
485			newtp->rx_opt.snd_wscale = ireq->snd_wscale;
486			newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
487		} else {
488			newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
489			newtp->window_clamp = min(newtp->window_clamp, 65535U);
490		}
491		newtp->snd_wnd = (ntohs(tcp_hdr(skb)->window) <<
492				  newtp->rx_opt.snd_wscale);
493		newtp->max_window = newtp->snd_wnd;
494
495		if (newtp->rx_opt.tstamp_ok) {
496			newtp->rx_opt.ts_recent = req->ts_recent;
497			newtp->rx_opt.ts_recent_stamp = get_seconds();
498			newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
499		} else {
500			newtp->rx_opt.ts_recent_stamp = 0;
501			newtp->tcp_header_len = sizeof(struct tcphdr);
502		}
503#ifdef CONFIG_TCP_MD5SIG
504		newtp->md5sig_info = NULL;	/*XXX*/
505		if (newtp->af_specific->md5_lookup(sk, newsk))
506			newtp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
507#endif
508		if (skb->len >= TCP_MSS_DEFAULT + newtp->tcp_header_len)
509			newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
510		newtp->rx_opt.mss_clamp = req->mss;
511		TCP_ECN_openreq_child(newtp, req);
512		newtp->fastopen_rsk = NULL;
513
514		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_PASSIVEOPENS);
515	}
516	return newsk;
517}
518EXPORT_SYMBOL(tcp_create_openreq_child);
519
520/*
521 * Process an incoming packet for SYN_RECV sockets represented as a
522 * request_sock. Normally sk is the listener socket but for TFO it
523 * points to the child socket.
524 *
525 * XXX (TFO) - The current impl contains a special check for ack
526 * validation and inside tcp_v4_reqsk_send_ack(). Can we do better?
527 *
528 * We don't need to initialize tmp_opt.sack_ok as we don't use the results
529 */
530
531struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
532			   struct request_sock *req,
533			   struct request_sock **prev,
534			   bool fastopen)
535{
536	struct tcp_options_received tmp_opt;
537	const u8 *hash_location;
538	struct sock *child;
539	const struct tcphdr *th = tcp_hdr(skb);
540	__be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
541	bool paws_reject = false;
542
543	BUG_ON(fastopen == (sk->sk_state == TCP_LISTEN));
544
545	tmp_opt.saw_tstamp = 0;
546	if (th->doff > (sizeof(struct tcphdr)>>2)) {
547		tcp_parse_options(skb, &tmp_opt, &hash_location, 0, NULL);
548
549		if (tmp_opt.saw_tstamp) {
550			tmp_opt.ts_recent = req->ts_recent;
551			/* We do not store true stamp, but it is not required,
552			 * it can be estimated (approximately)
553			 * from another data.
554			 */
555			tmp_opt.ts_recent_stamp = get_seconds() - ((TCP_TIMEOUT_INIT/HZ)<<req->retrans);
556			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
557		}
558	}
559
560	/* Check for pure retransmitted SYN. */
561	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
562	    flg == TCP_FLAG_SYN &&
563	    !paws_reject) {
564		/*
565		 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
566		 * this case on figure 6 and figure 8, but formal
567		 * protocol description says NOTHING.
568		 * To be more exact, it says that we should send ACK,
569		 * because this segment (at least, if it has no data)
570		 * is out of window.
571		 *
572		 *  CONCLUSION: RFC793 (even with RFC1122) DOES NOT
573		 *  describe SYN-RECV state. All the description
574		 *  is wrong, we cannot believe to it and should
575		 *  rely only on common sense and implementation
576		 *  experience.
577		 *
578		 * Enforce "SYN-ACK" according to figure 8, figure 6
579		 * of RFC793, fixed by RFC1122.
580		 *
581		 * Note that even if there is new data in the SYN packet
582		 * they will be thrown away too.
583		 */
584		req->rsk_ops->rtx_syn_ack(sk, req, NULL);
585		return NULL;
586	}
587
588	/* Further reproduces section "SEGMENT ARRIVES"
589	   for state SYN-RECEIVED of RFC793.
590	   It is broken, however, it does not work only
591	   when SYNs are crossed.
592
593	   You would think that SYN crossing is impossible here, since
594	   we should have a SYN_SENT socket (from connect()) on our end,
595	   but this is not true if the crossed SYNs were sent to both
596	   ends by a malicious third party.  We must defend against this,
597	   and to do that we first verify the ACK (as per RFC793, page
598	   36) and reset if it is invalid.  Is this a true full defense?
599	   To convince ourselves, let us consider a way in which the ACK
600	   test can still pass in this 'malicious crossed SYNs' case.
601	   Malicious sender sends identical SYNs (and thus identical sequence
602	   numbers) to both A and B:
603
604		A: gets SYN, seq=7
605		B: gets SYN, seq=7
606
607	   By our good fortune, both A and B select the same initial
608	   send sequence number of seven :-)
609
610		A: sends SYN|ACK, seq=7, ack_seq=8
611		B: sends SYN|ACK, seq=7, ack_seq=8
612
613	   So we are now A eating this SYN|ACK, ACK test passes.  So
614	   does sequence test, SYN is truncated, and thus we consider
615	   it a bare ACK.
616
617	   If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
618	   bare ACK.  Otherwise, we create an established connection.  Both
619	   ends (listening sockets) accept the new incoming connection and try
620	   to talk to each other. 8-)
621
622	   Note: This case is both harmless, and rare.  Possibility is about the
623	   same as us discovering intelligent life on another plant tomorrow.
624
625	   But generally, we should (RFC lies!) to accept ACK
626	   from SYNACK both here and in tcp_rcv_state_process().
627	   tcp_rcv_state_process() does not, hence, we do not too.
628
629	   Note that the case is absolutely generic:
630	   we cannot optimize anything here without
631	   violating protocol. All the checks must be made
632	   before attempt to create socket.
633	 */
634
635	/* RFC793 page 36: "If the connection is in any non-synchronized state ...
636	 *                  and the incoming segment acknowledges something not yet
637	 *                  sent (the segment carries an unacceptable ACK) ...
638	 *                  a reset is sent."
639	 *
640	 * Invalid ACK: reset will be sent by listening socket.
641	 * Note that the ACK validity check for a Fast Open socket is done
642	 * elsewhere and is checked directly against the child socket rather
643	 * than req because user data may have been sent out.
644	 */
645	if ((flg & TCP_FLAG_ACK) && !fastopen &&
646	    (TCP_SKB_CB(skb)->ack_seq !=
647	     tcp_rsk(req)->snt_isn + 1 + tcp_s_data_size(tcp_sk(sk))))
648		return sk;
649
650	/* Also, it would be not so bad idea to check rcv_tsecr, which
651	 * is essentially ACK extension and too early or too late values
652	 * should cause reset in unsynchronized states.
653	 */
654
655	/* RFC793: "first check sequence number". */
656
657	if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
658					  tcp_rsk(req)->rcv_nxt, tcp_rsk(req)->rcv_nxt + req->rcv_wnd)) {
659		/* Out of window: send ACK and drop. */
660		if (!(flg & TCP_FLAG_RST))
661			req->rsk_ops->send_ack(sk, skb, req);
662		if (paws_reject)
663			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
664		return NULL;
665	}
666
667	/* In sequence, PAWS is OK. */
668
669	if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_nxt))
670		req->ts_recent = tmp_opt.rcv_tsval;
671
672	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
673		/* Truncate SYN, it is out of window starting
674		   at tcp_rsk(req)->rcv_isn + 1. */
675		flg &= ~TCP_FLAG_SYN;
676	}
677
678	/* RFC793: "second check the RST bit" and
679	 *	   "fourth, check the SYN bit"
680	 */
681	if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
682		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
683		goto embryonic_reset;
684	}
685
686	/* ACK sequence verified above, just make sure ACK is
687	 * set.  If ACK not set, just silently drop the packet.
688	 *
689	 * XXX (TFO) - if we ever allow "data after SYN", the
690	 * following check needs to be removed.
691	 */
692	if (!(flg & TCP_FLAG_ACK))
693		return NULL;
694
695	/* For Fast Open no more processing is needed (sk is the
696	 * child socket).
697	 */
698	if (fastopen)
699		return sk;
700
701	/* While TCP_DEFER_ACCEPT is active, drop bare ACK. */
702	if (req->retrans < inet_csk(sk)->icsk_accept_queue.rskq_defer_accept &&
703	    TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
704		inet_rsk(req)->acked = 1;
705		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDEFERACCEPTDROP);
706		return NULL;
707	}
708	if (tmp_opt.saw_tstamp && tmp_opt.rcv_tsecr)
709		tcp_rsk(req)->snt_synack = tmp_opt.rcv_tsecr;
710	else if (req->retrans) /* don't take RTT sample if retrans && ~TS */
711		tcp_rsk(req)->snt_synack = 0;
712
713	/* OK, ACK is valid, create big socket and
714	 * feed this segment to it. It will repeat all
715	 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
716	 * ESTABLISHED STATE. If it will be dropped after
717	 * socket is created, wait for troubles.
718	 */
719	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL);
720	if (child == NULL)
721		goto listen_overflow;
722
723	inet_csk_reqsk_queue_unlink(sk, req, prev);
724	inet_csk_reqsk_queue_removed(sk, req);
725
726	inet_csk_reqsk_queue_add(sk, req, child);
727	return child;
728
729listen_overflow:
730	if (!sysctl_tcp_abort_on_overflow) {
731		inet_rsk(req)->acked = 1;
732		return NULL;
733	}
734
735embryonic_reset:
736	if (!(flg & TCP_FLAG_RST)) {
737		/* Received a bad SYN pkt - for TFO We try not to reset
738		 * the local connection unless it's really necessary to
739		 * avoid becoming vulnerable to outside attack aiming at
740		 * resetting legit local connections.
741		 */
742		req->rsk_ops->send_reset(sk, skb);
743	} else if (fastopen) { /* received a valid RST pkt */
744		reqsk_fastopen_remove(sk, req, true);
745		tcp_reset(sk);
746	}
747	if (!fastopen) {
748		inet_csk_reqsk_queue_drop(sk, req, prev);
749		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_EMBRYONICRSTS);
750	}
751	return NULL;
752}
753EXPORT_SYMBOL(tcp_check_req);
754
755/*
756 * Queue segment on the new socket if the new socket is active,
757 * otherwise we just shortcircuit this and continue with
758 * the new socket.
759 *
760 * For the vast majority of cases child->sk_state will be TCP_SYN_RECV
761 * when entering. But other states are possible due to a race condition
762 * where after __inet_lookup_established() fails but before the listener
763 * locked is obtained, other packets cause the same connection to
764 * be created.
765 */
766
767int tcp_child_process(struct sock *parent, struct sock *child,
768		      struct sk_buff *skb)
769{
770	int ret = 0;
771	int state = child->sk_state;
772
773	if (!sock_owned_by_user(child)) {
774		ret = tcp_rcv_state_process(child, skb, tcp_hdr(skb),
775					    skb->len);
776		/* Wakeup parent, send SIGIO */
777		if (state == TCP_SYN_RECV && child->sk_state != state)
778			parent->sk_data_ready(parent, 0);
779	} else {
780		/* Alas, it is possible again, because we do lookup
781		 * in main socket hash table and lock on listening
782		 * socket does not protect us more.
783		 */
784		__sk_add_backlog(child, skb);
785	}
786
787	bh_unlock_sock(child);
788	sock_put(child);
789	return ret;
790}
791EXPORT_SYMBOL(tcp_child_process);
792