tcp_minisocks.c revision 4bc2f18ba4f22a90ab593c0a580fc9a19c4777b6
1/*
2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
3 *		operating system.  INET is implemented using the  BSD Socket
4 *		interface as the means of communication with the user level.
5 *
6 *		Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors:	Ross Biro
9 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12 *		Florian La Roche, <flla@stud.uni-sb.de>
13 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16 *		Matthew Dillon, <dillon@apollo.west.oic.com>
17 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 *		Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21#include <linux/mm.h>
22#include <linux/module.h>
23#include <linux/slab.h>
24#include <linux/sysctl.h>
25#include <linux/workqueue.h>
26#include <net/tcp.h>
27#include <net/inet_common.h>
28#include <net/xfrm.h>
29
30int sysctl_tcp_syncookies __read_mostly = 1;
31EXPORT_SYMBOL(sysctl_tcp_syncookies);
32
33int sysctl_tcp_abort_on_overflow __read_mostly;
34
35struct inet_timewait_death_row tcp_death_row = {
36	.sysctl_max_tw_buckets = NR_FILE * 2,
37	.period		= TCP_TIMEWAIT_LEN / INET_TWDR_TWKILL_SLOTS,
38	.death_lock	= __SPIN_LOCK_UNLOCKED(tcp_death_row.death_lock),
39	.hashinfo	= &tcp_hashinfo,
40	.tw_timer	= TIMER_INITIALIZER(inet_twdr_hangman, 0,
41					    (unsigned long)&tcp_death_row),
42	.twkill_work	= __WORK_INITIALIZER(tcp_death_row.twkill_work,
43					     inet_twdr_twkill_work),
44/* Short-time timewait calendar */
45
46	.twcal_hand	= -1,
47	.twcal_timer	= TIMER_INITIALIZER(inet_twdr_twcal_tick, 0,
48					    (unsigned long)&tcp_death_row),
49};
50EXPORT_SYMBOL_GPL(tcp_death_row);
51
52static __inline__ int tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
53{
54	if (seq == s_win)
55		return 1;
56	if (after(end_seq, s_win) && before(seq, e_win))
57		return 1;
58	return (seq == e_win && seq == end_seq);
59}
60
61/*
62 * * Main purpose of TIME-WAIT state is to close connection gracefully,
63 *   when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
64 *   (and, probably, tail of data) and one or more our ACKs are lost.
65 * * What is TIME-WAIT timeout? It is associated with maximal packet
66 *   lifetime in the internet, which results in wrong conclusion, that
67 *   it is set to catch "old duplicate segments" wandering out of their path.
68 *   It is not quite correct. This timeout is calculated so that it exceeds
69 *   maximal retransmission timeout enough to allow to lose one (or more)
70 *   segments sent by peer and our ACKs. This time may be calculated from RTO.
71 * * When TIME-WAIT socket receives RST, it means that another end
72 *   finally closed and we are allowed to kill TIME-WAIT too.
73 * * Second purpose of TIME-WAIT is catching old duplicate segments.
74 *   Well, certainly it is pure paranoia, but if we load TIME-WAIT
75 *   with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
76 * * If we invented some more clever way to catch duplicates
77 *   (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
78 *
79 * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
80 * When you compare it to RFCs, please, read section SEGMENT ARRIVES
81 * from the very beginning.
82 *
83 * NOTE. With recycling (and later with fin-wait-2) TW bucket
84 * is _not_ stateless. It means, that strictly speaking we must
85 * spinlock it. I do not want! Well, probability of misbehaviour
86 * is ridiculously low and, seems, we could use some mb() tricks
87 * to avoid misread sequence numbers, states etc.  --ANK
88 */
89enum tcp_tw_status
90tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
91			   const struct tcphdr *th)
92{
93	struct tcp_options_received tmp_opt;
94	u8 *hash_location;
95	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
96	int paws_reject = 0;
97
98	tmp_opt.saw_tstamp = 0;
99	if (th->doff > (sizeof(*th) >> 2) && tcptw->tw_ts_recent_stamp) {
100		tcp_parse_options(skb, &tmp_opt, &hash_location, 0);
101
102		if (tmp_opt.saw_tstamp) {
103			tmp_opt.ts_recent	= tcptw->tw_ts_recent;
104			tmp_opt.ts_recent_stamp	= tcptw->tw_ts_recent_stamp;
105			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
106		}
107	}
108
109	if (tw->tw_substate == TCP_FIN_WAIT2) {
110		/* Just repeat all the checks of tcp_rcv_state_process() */
111
112		/* Out of window, send ACK */
113		if (paws_reject ||
114		    !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
115				   tcptw->tw_rcv_nxt,
116				   tcptw->tw_rcv_nxt + tcptw->tw_rcv_wnd))
117			return TCP_TW_ACK;
118
119		if (th->rst)
120			goto kill;
121
122		if (th->syn && !before(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt))
123			goto kill_with_rst;
124
125		/* Dup ACK? */
126		if (!th->ack ||
127		    !after(TCP_SKB_CB(skb)->end_seq, tcptw->tw_rcv_nxt) ||
128		    TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
129			inet_twsk_put(tw);
130			return TCP_TW_SUCCESS;
131		}
132
133		/* New data or FIN. If new data arrive after half-duplex close,
134		 * reset.
135		 */
136		if (!th->fin ||
137		    TCP_SKB_CB(skb)->end_seq != tcptw->tw_rcv_nxt + 1) {
138kill_with_rst:
139			inet_twsk_deschedule(tw, &tcp_death_row);
140			inet_twsk_put(tw);
141			return TCP_TW_RST;
142		}
143
144		/* FIN arrived, enter true time-wait state. */
145		tw->tw_substate	  = TCP_TIME_WAIT;
146		tcptw->tw_rcv_nxt = TCP_SKB_CB(skb)->end_seq;
147		if (tmp_opt.saw_tstamp) {
148			tcptw->tw_ts_recent_stamp = get_seconds();
149			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
150		}
151
152		/* I am shamed, but failed to make it more elegant.
153		 * Yes, it is direct reference to IP, which is impossible
154		 * to generalize to IPv6. Taking into account that IPv6
155		 * do not understand recycling in any case, it not
156		 * a big problem in practice. --ANK */
157		if (tw->tw_family == AF_INET &&
158		    tcp_death_row.sysctl_tw_recycle && tcptw->tw_ts_recent_stamp &&
159		    tcp_v4_tw_remember_stamp(tw))
160			inet_twsk_schedule(tw, &tcp_death_row, tw->tw_timeout,
161					   TCP_TIMEWAIT_LEN);
162		else
163			inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
164					   TCP_TIMEWAIT_LEN);
165		return TCP_TW_ACK;
166	}
167
168	/*
169	 *	Now real TIME-WAIT state.
170	 *
171	 *	RFC 1122:
172	 *	"When a connection is [...] on TIME-WAIT state [...]
173	 *	[a TCP] MAY accept a new SYN from the remote TCP to
174	 *	reopen the connection directly, if it:
175	 *
176	 *	(1)  assigns its initial sequence number for the new
177	 *	connection to be larger than the largest sequence
178	 *	number it used on the previous connection incarnation,
179	 *	and
180	 *
181	 *	(2)  returns to TIME-WAIT state if the SYN turns out
182	 *	to be an old duplicate".
183	 */
184
185	if (!paws_reject &&
186	    (TCP_SKB_CB(skb)->seq == tcptw->tw_rcv_nxt &&
187	     (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
188		/* In window segment, it may be only reset or bare ack. */
189
190		if (th->rst) {
191			/* This is TIME_WAIT assassination, in two flavors.
192			 * Oh well... nobody has a sufficient solution to this
193			 * protocol bug yet.
194			 */
195			if (sysctl_tcp_rfc1337 == 0) {
196kill:
197				inet_twsk_deschedule(tw, &tcp_death_row);
198				inet_twsk_put(tw);
199				return TCP_TW_SUCCESS;
200			}
201		}
202		inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
203				   TCP_TIMEWAIT_LEN);
204
205		if (tmp_opt.saw_tstamp) {
206			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
207			tcptw->tw_ts_recent_stamp = get_seconds();
208		}
209
210		inet_twsk_put(tw);
211		return TCP_TW_SUCCESS;
212	}
213
214	/* Out of window segment.
215
216	   All the segments are ACKed immediately.
217
218	   The only exception is new SYN. We accept it, if it is
219	   not old duplicate and we are not in danger to be killed
220	   by delayed old duplicates. RFC check is that it has
221	   newer sequence number works at rates <40Mbit/sec.
222	   However, if paws works, it is reliable AND even more,
223	   we even may relax silly seq space cutoff.
224
225	   RED-PEN: we violate main RFC requirement, if this SYN will appear
226	   old duplicate (i.e. we receive RST in reply to SYN-ACK),
227	   we must return socket to time-wait state. It is not good,
228	   but not fatal yet.
229	 */
230
231	if (th->syn && !th->rst && !th->ack && !paws_reject &&
232	    (after(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt) ||
233	     (tmp_opt.saw_tstamp &&
234	      (s32)(tcptw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) {
235		u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
236		if (isn == 0)
237			isn++;
238		TCP_SKB_CB(skb)->when = isn;
239		return TCP_TW_SYN;
240	}
241
242	if (paws_reject)
243		NET_INC_STATS_BH(twsk_net(tw), LINUX_MIB_PAWSESTABREJECTED);
244
245	if (!th->rst) {
246		/* In this case we must reset the TIMEWAIT timer.
247		 *
248		 * If it is ACKless SYN it may be both old duplicate
249		 * and new good SYN with random sequence number <rcv_nxt.
250		 * Do not reschedule in the last case.
251		 */
252		if (paws_reject || th->ack)
253			inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
254					   TCP_TIMEWAIT_LEN);
255
256		/* Send ACK. Note, we do not put the bucket,
257		 * it will be released by caller.
258		 */
259		return TCP_TW_ACK;
260	}
261	inet_twsk_put(tw);
262	return TCP_TW_SUCCESS;
263}
264EXPORT_SYMBOL(tcp_timewait_state_process);
265
266/*
267 * Move a socket to time-wait or dead fin-wait-2 state.
268 */
269void tcp_time_wait(struct sock *sk, int state, int timeo)
270{
271	struct inet_timewait_sock *tw = NULL;
272	const struct inet_connection_sock *icsk = inet_csk(sk);
273	const struct tcp_sock *tp = tcp_sk(sk);
274	int recycle_ok = 0;
275
276	if (tcp_death_row.sysctl_tw_recycle && tp->rx_opt.ts_recent_stamp)
277		recycle_ok = icsk->icsk_af_ops->remember_stamp(sk);
278
279	if (tcp_death_row.tw_count < tcp_death_row.sysctl_max_tw_buckets)
280		tw = inet_twsk_alloc(sk, state);
281
282	if (tw != NULL) {
283		struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
284		const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
285
286		tw->tw_rcv_wscale	= tp->rx_opt.rcv_wscale;
287		tcptw->tw_rcv_nxt	= tp->rcv_nxt;
288		tcptw->tw_snd_nxt	= tp->snd_nxt;
289		tcptw->tw_rcv_wnd	= tcp_receive_window(tp);
290		tcptw->tw_ts_recent	= tp->rx_opt.ts_recent;
291		tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
292
293#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
294		if (tw->tw_family == PF_INET6) {
295			struct ipv6_pinfo *np = inet6_sk(sk);
296			struct inet6_timewait_sock *tw6;
297
298			tw->tw_ipv6_offset = inet6_tw_offset(sk->sk_prot);
299			tw6 = inet6_twsk((struct sock *)tw);
300			ipv6_addr_copy(&tw6->tw_v6_daddr, &np->daddr);
301			ipv6_addr_copy(&tw6->tw_v6_rcv_saddr, &np->rcv_saddr);
302			tw->tw_ipv6only = np->ipv6only;
303		}
304#endif
305
306#ifdef CONFIG_TCP_MD5SIG
307		/*
308		 * The timewait bucket does not have the key DB from the
309		 * sock structure. We just make a quick copy of the
310		 * md5 key being used (if indeed we are using one)
311		 * so the timewait ack generating code has the key.
312		 */
313		do {
314			struct tcp_md5sig_key *key;
315			memset(tcptw->tw_md5_key, 0, sizeof(tcptw->tw_md5_key));
316			tcptw->tw_md5_keylen = 0;
317			key = tp->af_specific->md5_lookup(sk, sk);
318			if (key != NULL) {
319				memcpy(&tcptw->tw_md5_key, key->key, key->keylen);
320				tcptw->tw_md5_keylen = key->keylen;
321				if (tcp_alloc_md5sig_pool(sk) == NULL)
322					BUG();
323			}
324		} while (0);
325#endif
326
327		/* Linkage updates. */
328		__inet_twsk_hashdance(tw, sk, &tcp_hashinfo);
329
330		/* Get the TIME_WAIT timeout firing. */
331		if (timeo < rto)
332			timeo = rto;
333
334		if (recycle_ok) {
335			tw->tw_timeout = rto;
336		} else {
337			tw->tw_timeout = TCP_TIMEWAIT_LEN;
338			if (state == TCP_TIME_WAIT)
339				timeo = TCP_TIMEWAIT_LEN;
340		}
341
342		inet_twsk_schedule(tw, &tcp_death_row, timeo,
343				   TCP_TIMEWAIT_LEN);
344		inet_twsk_put(tw);
345	} else {
346		/* Sorry, if we're out of memory, just CLOSE this
347		 * socket up.  We've got bigger problems than
348		 * non-graceful socket closings.
349		 */
350		LIMIT_NETDEBUG(KERN_INFO "TCP: time wait bucket table overflow\n");
351	}
352
353	tcp_update_metrics(sk);
354	tcp_done(sk);
355}
356
357void tcp_twsk_destructor(struct sock *sk)
358{
359#ifdef CONFIG_TCP_MD5SIG
360	struct tcp_timewait_sock *twsk = tcp_twsk(sk);
361	if (twsk->tw_md5_keylen)
362		tcp_free_md5sig_pool();
363#endif
364}
365EXPORT_SYMBOL_GPL(tcp_twsk_destructor);
366
367static inline void TCP_ECN_openreq_child(struct tcp_sock *tp,
368					 struct request_sock *req)
369{
370	tp->ecn_flags = inet_rsk(req)->ecn_ok ? TCP_ECN_OK : 0;
371}
372
373/* This is not only more efficient than what we used to do, it eliminates
374 * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
375 *
376 * Actually, we could lots of memory writes here. tp of listening
377 * socket contains all necessary default parameters.
378 */
379struct sock *tcp_create_openreq_child(struct sock *sk, struct request_sock *req, struct sk_buff *skb)
380{
381	struct sock *newsk = inet_csk_clone(sk, req, GFP_ATOMIC);
382
383	if (newsk != NULL) {
384		const struct inet_request_sock *ireq = inet_rsk(req);
385		struct tcp_request_sock *treq = tcp_rsk(req);
386		struct inet_connection_sock *newicsk = inet_csk(newsk);
387		struct tcp_sock *newtp = tcp_sk(newsk);
388		struct tcp_sock *oldtp = tcp_sk(sk);
389		struct tcp_cookie_values *oldcvp = oldtp->cookie_values;
390
391		/* TCP Cookie Transactions require space for the cookie pair,
392		 * as it differs for each connection.  There is no need to
393		 * copy any s_data_payload stored at the original socket.
394		 * Failure will prevent resuming the connection.
395		 *
396		 * Presumed copied, in order of appearance:
397		 *	cookie_in_always, cookie_out_never
398		 */
399		if (oldcvp != NULL) {
400			struct tcp_cookie_values *newcvp =
401				kzalloc(sizeof(*newtp->cookie_values),
402					GFP_ATOMIC);
403
404			if (newcvp != NULL) {
405				kref_init(&newcvp->kref);
406				newcvp->cookie_desired =
407						oldcvp->cookie_desired;
408				newtp->cookie_values = newcvp;
409			} else {
410				/* Not Yet Implemented */
411				newtp->cookie_values = NULL;
412			}
413		}
414
415		/* Now setup tcp_sock */
416		newtp->pred_flags = 0;
417
418		newtp->rcv_wup = newtp->copied_seq =
419		newtp->rcv_nxt = treq->rcv_isn + 1;
420
421		newtp->snd_sml = newtp->snd_una =
422		newtp->snd_nxt = newtp->snd_up =
423			treq->snt_isn + 1 + tcp_s_data_size(oldtp);
424
425		tcp_prequeue_init(newtp);
426
427		tcp_init_wl(newtp, treq->rcv_isn);
428
429		newtp->srtt = 0;
430		newtp->mdev = TCP_TIMEOUT_INIT;
431		newicsk->icsk_rto = TCP_TIMEOUT_INIT;
432
433		newtp->packets_out = 0;
434		newtp->retrans_out = 0;
435		newtp->sacked_out = 0;
436		newtp->fackets_out = 0;
437		newtp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
438
439		/* So many TCP implementations out there (incorrectly) count the
440		 * initial SYN frame in their delayed-ACK and congestion control
441		 * algorithms that we must have the following bandaid to talk
442		 * efficiently to them.  -DaveM
443		 */
444		newtp->snd_cwnd = 2;
445		newtp->snd_cwnd_cnt = 0;
446		newtp->bytes_acked = 0;
447
448		newtp->frto_counter = 0;
449		newtp->frto_highmark = 0;
450
451		newicsk->icsk_ca_ops = &tcp_init_congestion_ops;
452
453		tcp_set_ca_state(newsk, TCP_CA_Open);
454		tcp_init_xmit_timers(newsk);
455		skb_queue_head_init(&newtp->out_of_order_queue);
456		newtp->write_seq = newtp->pushed_seq =
457			treq->snt_isn + 1 + tcp_s_data_size(oldtp);
458
459		newtp->rx_opt.saw_tstamp = 0;
460
461		newtp->rx_opt.dsack = 0;
462		newtp->rx_opt.num_sacks = 0;
463
464		newtp->urg_data = 0;
465
466		if (sock_flag(newsk, SOCK_KEEPOPEN))
467			inet_csk_reset_keepalive_timer(newsk,
468						       keepalive_time_when(newtp));
469
470		newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
471		if ((newtp->rx_opt.sack_ok = ireq->sack_ok) != 0) {
472			if (sysctl_tcp_fack)
473				tcp_enable_fack(newtp);
474		}
475		newtp->window_clamp = req->window_clamp;
476		newtp->rcv_ssthresh = req->rcv_wnd;
477		newtp->rcv_wnd = req->rcv_wnd;
478		newtp->rx_opt.wscale_ok = ireq->wscale_ok;
479		if (newtp->rx_opt.wscale_ok) {
480			newtp->rx_opt.snd_wscale = ireq->snd_wscale;
481			newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
482		} else {
483			newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
484			newtp->window_clamp = min(newtp->window_clamp, 65535U);
485		}
486		newtp->snd_wnd = (ntohs(tcp_hdr(skb)->window) <<
487				  newtp->rx_opt.snd_wscale);
488		newtp->max_window = newtp->snd_wnd;
489
490		if (newtp->rx_opt.tstamp_ok) {
491			newtp->rx_opt.ts_recent = req->ts_recent;
492			newtp->rx_opt.ts_recent_stamp = get_seconds();
493			newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
494		} else {
495			newtp->rx_opt.ts_recent_stamp = 0;
496			newtp->tcp_header_len = sizeof(struct tcphdr);
497		}
498#ifdef CONFIG_TCP_MD5SIG
499		newtp->md5sig_info = NULL;	/*XXX*/
500		if (newtp->af_specific->md5_lookup(sk, newsk))
501			newtp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
502#endif
503		if (skb->len >= TCP_MSS_DEFAULT + newtp->tcp_header_len)
504			newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
505		newtp->rx_opt.mss_clamp = req->mss;
506		TCP_ECN_openreq_child(newtp, req);
507
508		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_PASSIVEOPENS);
509	}
510	return newsk;
511}
512EXPORT_SYMBOL(tcp_create_openreq_child);
513
514/*
515 *	Process an incoming packet for SYN_RECV sockets represented
516 *	as a request_sock.
517 */
518
519struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
520			   struct request_sock *req,
521			   struct request_sock **prev)
522{
523	struct tcp_options_received tmp_opt;
524	u8 *hash_location;
525	struct sock *child;
526	const struct tcphdr *th = tcp_hdr(skb);
527	__be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
528	int paws_reject = 0;
529
530	tmp_opt.saw_tstamp = 0;
531	if (th->doff > (sizeof(struct tcphdr)>>2)) {
532		tcp_parse_options(skb, &tmp_opt, &hash_location, 0);
533
534		if (tmp_opt.saw_tstamp) {
535			tmp_opt.ts_recent = req->ts_recent;
536			/* We do not store true stamp, but it is not required,
537			 * it can be estimated (approximately)
538			 * from another data.
539			 */
540			tmp_opt.ts_recent_stamp = get_seconds() - ((TCP_TIMEOUT_INIT/HZ)<<req->retrans);
541			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
542		}
543	}
544
545	/* Check for pure retransmitted SYN. */
546	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
547	    flg == TCP_FLAG_SYN &&
548	    !paws_reject) {
549		/*
550		 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
551		 * this case on figure 6 and figure 8, but formal
552		 * protocol description says NOTHING.
553		 * To be more exact, it says that we should send ACK,
554		 * because this segment (at least, if it has no data)
555		 * is out of window.
556		 *
557		 *  CONCLUSION: RFC793 (even with RFC1122) DOES NOT
558		 *  describe SYN-RECV state. All the description
559		 *  is wrong, we cannot believe to it and should
560		 *  rely only on common sense and implementation
561		 *  experience.
562		 *
563		 * Enforce "SYN-ACK" according to figure 8, figure 6
564		 * of RFC793, fixed by RFC1122.
565		 */
566		req->rsk_ops->rtx_syn_ack(sk, req, NULL);
567		return NULL;
568	}
569
570	/* Further reproduces section "SEGMENT ARRIVES"
571	   for state SYN-RECEIVED of RFC793.
572	   It is broken, however, it does not work only
573	   when SYNs are crossed.
574
575	   You would think that SYN crossing is impossible here, since
576	   we should have a SYN_SENT socket (from connect()) on our end,
577	   but this is not true if the crossed SYNs were sent to both
578	   ends by a malicious third party.  We must defend against this,
579	   and to do that we first verify the ACK (as per RFC793, page
580	   36) and reset if it is invalid.  Is this a true full defense?
581	   To convince ourselves, let us consider a way in which the ACK
582	   test can still pass in this 'malicious crossed SYNs' case.
583	   Malicious sender sends identical SYNs (and thus identical sequence
584	   numbers) to both A and B:
585
586		A: gets SYN, seq=7
587		B: gets SYN, seq=7
588
589	   By our good fortune, both A and B select the same initial
590	   send sequence number of seven :-)
591
592		A: sends SYN|ACK, seq=7, ack_seq=8
593		B: sends SYN|ACK, seq=7, ack_seq=8
594
595	   So we are now A eating this SYN|ACK, ACK test passes.  So
596	   does sequence test, SYN is truncated, and thus we consider
597	   it a bare ACK.
598
599	   If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
600	   bare ACK.  Otherwise, we create an established connection.  Both
601	   ends (listening sockets) accept the new incoming connection and try
602	   to talk to each other. 8-)
603
604	   Note: This case is both harmless, and rare.  Possibility is about the
605	   same as us discovering intelligent life on another plant tomorrow.
606
607	   But generally, we should (RFC lies!) to accept ACK
608	   from SYNACK both here and in tcp_rcv_state_process().
609	   tcp_rcv_state_process() does not, hence, we do not too.
610
611	   Note that the case is absolutely generic:
612	   we cannot optimize anything here without
613	   violating protocol. All the checks must be made
614	   before attempt to create socket.
615	 */
616
617	/* RFC793 page 36: "If the connection is in any non-synchronized state ...
618	 *                  and the incoming segment acknowledges something not yet
619	 *                  sent (the segment carries an unacceptable ACK) ...
620	 *                  a reset is sent."
621	 *
622	 * Invalid ACK: reset will be sent by listening socket
623	 */
624	if ((flg & TCP_FLAG_ACK) &&
625	    (TCP_SKB_CB(skb)->ack_seq !=
626	     tcp_rsk(req)->snt_isn + 1 + tcp_s_data_size(tcp_sk(sk))))
627		return sk;
628
629	/* Also, it would be not so bad idea to check rcv_tsecr, which
630	 * is essentially ACK extension and too early or too late values
631	 * should cause reset in unsynchronized states.
632	 */
633
634	/* RFC793: "first check sequence number". */
635
636	if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
637					  tcp_rsk(req)->rcv_isn + 1, tcp_rsk(req)->rcv_isn + 1 + req->rcv_wnd)) {
638		/* Out of window: send ACK and drop. */
639		if (!(flg & TCP_FLAG_RST))
640			req->rsk_ops->send_ack(sk, skb, req);
641		if (paws_reject)
642			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
643		return NULL;
644	}
645
646	/* In sequence, PAWS is OK. */
647
648	if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_isn + 1))
649		req->ts_recent = tmp_opt.rcv_tsval;
650
651	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
652		/* Truncate SYN, it is out of window starting
653		   at tcp_rsk(req)->rcv_isn + 1. */
654		flg &= ~TCP_FLAG_SYN;
655	}
656
657	/* RFC793: "second check the RST bit" and
658	 *	   "fourth, check the SYN bit"
659	 */
660	if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
661		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
662		goto embryonic_reset;
663	}
664
665	/* ACK sequence verified above, just make sure ACK is
666	 * set.  If ACK not set, just silently drop the packet.
667	 */
668	if (!(flg & TCP_FLAG_ACK))
669		return NULL;
670
671	/* While TCP_DEFER_ACCEPT is active, drop bare ACK. */
672	if (req->retrans < inet_csk(sk)->icsk_accept_queue.rskq_defer_accept &&
673	    TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
674		inet_rsk(req)->acked = 1;
675		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDEFERACCEPTDROP);
676		return NULL;
677	}
678
679	/* OK, ACK is valid, create big socket and
680	 * feed this segment to it. It will repeat all
681	 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
682	 * ESTABLISHED STATE. If it will be dropped after
683	 * socket is created, wait for troubles.
684	 */
685	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL);
686	if (child == NULL)
687		goto listen_overflow;
688
689	inet_csk_reqsk_queue_unlink(sk, req, prev);
690	inet_csk_reqsk_queue_removed(sk, req);
691
692	inet_csk_reqsk_queue_add(sk, req, child);
693	return child;
694
695listen_overflow:
696	if (!sysctl_tcp_abort_on_overflow) {
697		inet_rsk(req)->acked = 1;
698		return NULL;
699	}
700
701embryonic_reset:
702	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_EMBRYONICRSTS);
703	if (!(flg & TCP_FLAG_RST))
704		req->rsk_ops->send_reset(sk, skb);
705
706	inet_csk_reqsk_queue_drop(sk, req, prev);
707	return NULL;
708}
709EXPORT_SYMBOL(tcp_check_req);
710
711/*
712 * Queue segment on the new socket if the new socket is active,
713 * otherwise we just shortcircuit this and continue with
714 * the new socket.
715 */
716
717int tcp_child_process(struct sock *parent, struct sock *child,
718		      struct sk_buff *skb)
719{
720	int ret = 0;
721	int state = child->sk_state;
722
723	if (!sock_owned_by_user(child)) {
724		ret = tcp_rcv_state_process(child, skb, tcp_hdr(skb),
725					    skb->len);
726		/* Wakeup parent, send SIGIO */
727		if (state == TCP_SYN_RECV && child->sk_state != state)
728			parent->sk_data_ready(parent, 0);
729	} else {
730		/* Alas, it is possible again, because we do lookup
731		 * in main socket hash table and lock on listening
732		 * socket does not protect us more.
733		 */
734		__sk_add_backlog(child, skb);
735	}
736
737	bh_unlock_sock(child);
738	sock_put(child);
739	return ret;
740}
741EXPORT_SYMBOL(tcp_child_process);
742