tcp_minisocks.c revision 6687e988d9aeaccad6774e6a8304f681f3ec0a03
1/*
2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
3 *		operating system.  INET is implemented using the  BSD Socket
4 *		interface as the means of communication with the user level.
5 *
6 *		Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Version:	$Id: tcp_minisocks.c,v 1.15 2002/02/01 22:01:04 davem Exp $
9 *
10 * Authors:	Ross Biro
11 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14 *		Florian La Roche, <flla@stud.uni-sb.de>
15 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
17 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
18 *		Matthew Dillon, <dillon@apollo.west.oic.com>
19 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 *		Jorge Cwik, <jorge@laser.satlink.net>
21 */
22
23#include <linux/config.h>
24#include <linux/mm.h>
25#include <linux/module.h>
26#include <linux/sysctl.h>
27#include <linux/workqueue.h>
28#include <net/tcp.h>
29#include <net/inet_common.h>
30#include <net/xfrm.h>
31
32#ifdef CONFIG_SYSCTL
33#define SYNC_INIT 0 /* let the user enable it */
34#else
35#define SYNC_INIT 1
36#endif
37
38int sysctl_tcp_syncookies = SYNC_INIT;
39int sysctl_tcp_abort_on_overflow;
40
41struct inet_timewait_death_row tcp_death_row = {
42	.sysctl_max_tw_buckets = NR_FILE * 2,
43	.period		= TCP_TIMEWAIT_LEN / INET_TWDR_TWKILL_SLOTS,
44	.death_lock	= SPIN_LOCK_UNLOCKED,
45	.hashinfo	= &tcp_hashinfo,
46	.tw_timer	= TIMER_INITIALIZER(inet_twdr_hangman, 0,
47					    (unsigned long)&tcp_death_row),
48	.twkill_work	= __WORK_INITIALIZER(tcp_death_row.twkill_work,
49					     inet_twdr_twkill_work,
50					     &tcp_death_row),
51/* Short-time timewait calendar */
52
53	.twcal_hand	= -1,
54	.twcal_timer	= TIMER_INITIALIZER(inet_twdr_twcal_tick, 0,
55					    (unsigned long)&tcp_death_row),
56};
57
58EXPORT_SYMBOL_GPL(tcp_death_row);
59
60static __inline__ int tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
61{
62	if (seq == s_win)
63		return 1;
64	if (after(end_seq, s_win) && before(seq, e_win))
65		return 1;
66	return (seq == e_win && seq == end_seq);
67}
68
69/*
70 * * Main purpose of TIME-WAIT state is to close connection gracefully,
71 *   when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
72 *   (and, probably, tail of data) and one or more our ACKs are lost.
73 * * What is TIME-WAIT timeout? It is associated with maximal packet
74 *   lifetime in the internet, which results in wrong conclusion, that
75 *   it is set to catch "old duplicate segments" wandering out of their path.
76 *   It is not quite correct. This timeout is calculated so that it exceeds
77 *   maximal retransmission timeout enough to allow to lose one (or more)
78 *   segments sent by peer and our ACKs. This time may be calculated from RTO.
79 * * When TIME-WAIT socket receives RST, it means that another end
80 *   finally closed and we are allowed to kill TIME-WAIT too.
81 * * Second purpose of TIME-WAIT is catching old duplicate segments.
82 *   Well, certainly it is pure paranoia, but if we load TIME-WAIT
83 *   with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
84 * * If we invented some more clever way to catch duplicates
85 *   (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
86 *
87 * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
88 * When you compare it to RFCs, please, read section SEGMENT ARRIVES
89 * from the very beginning.
90 *
91 * NOTE. With recycling (and later with fin-wait-2) TW bucket
92 * is _not_ stateless. It means, that strictly speaking we must
93 * spinlock it. I do not want! Well, probability of misbehaviour
94 * is ridiculously low and, seems, we could use some mb() tricks
95 * to avoid misread sequence numbers, states etc.  --ANK
96 */
97enum tcp_tw_status
98tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
99			   const struct tcphdr *th)
100{
101	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
102	struct tcp_options_received tmp_opt;
103	int paws_reject = 0;
104
105	tmp_opt.saw_tstamp = 0;
106	if (th->doff > (sizeof(*th) >> 2) && tcptw->tw_ts_recent_stamp) {
107		tcp_parse_options(skb, &tmp_opt, 0);
108
109		if (tmp_opt.saw_tstamp) {
110			tmp_opt.ts_recent	= tcptw->tw_ts_recent;
111			tmp_opt.ts_recent_stamp	= tcptw->tw_ts_recent_stamp;
112			paws_reject = tcp_paws_check(&tmp_opt, th->rst);
113		}
114	}
115
116	if (tw->tw_substate == TCP_FIN_WAIT2) {
117		/* Just repeat all the checks of tcp_rcv_state_process() */
118
119		/* Out of window, send ACK */
120		if (paws_reject ||
121		    !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
122				   tcptw->tw_rcv_nxt,
123				   tcptw->tw_rcv_nxt + tcptw->tw_rcv_wnd))
124			return TCP_TW_ACK;
125
126		if (th->rst)
127			goto kill;
128
129		if (th->syn && !before(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt))
130			goto kill_with_rst;
131
132		/* Dup ACK? */
133		if (!after(TCP_SKB_CB(skb)->end_seq, tcptw->tw_rcv_nxt) ||
134		    TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
135			inet_twsk_put(tw);
136			return TCP_TW_SUCCESS;
137		}
138
139		/* New data or FIN. If new data arrive after half-duplex close,
140		 * reset.
141		 */
142		if (!th->fin ||
143		    TCP_SKB_CB(skb)->end_seq != tcptw->tw_rcv_nxt + 1) {
144kill_with_rst:
145			inet_twsk_deschedule(tw, &tcp_death_row);
146			inet_twsk_put(tw);
147			return TCP_TW_RST;
148		}
149
150		/* FIN arrived, enter true time-wait state. */
151		tw->tw_substate	  = TCP_TIME_WAIT;
152		tcptw->tw_rcv_nxt = TCP_SKB_CB(skb)->end_seq;
153		if (tmp_opt.saw_tstamp) {
154			tcptw->tw_ts_recent_stamp = xtime.tv_sec;
155			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
156		}
157
158		/* I am shamed, but failed to make it more elegant.
159		 * Yes, it is direct reference to IP, which is impossible
160		 * to generalize to IPv6. Taking into account that IPv6
161		 * do not undertsnad recycling in any case, it not
162		 * a big problem in practice. --ANK */
163		if (tw->tw_family == AF_INET &&
164		    tcp_death_row.sysctl_tw_recycle && tcptw->tw_ts_recent_stamp &&
165		    tcp_v4_tw_remember_stamp(tw))
166			inet_twsk_schedule(tw, &tcp_death_row, tw->tw_timeout,
167					   TCP_TIMEWAIT_LEN);
168		else
169			inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
170					   TCP_TIMEWAIT_LEN);
171		return TCP_TW_ACK;
172	}
173
174	/*
175	 *	Now real TIME-WAIT state.
176	 *
177	 *	RFC 1122:
178	 *	"When a connection is [...] on TIME-WAIT state [...]
179	 *	[a TCP] MAY accept a new SYN from the remote TCP to
180	 *	reopen the connection directly, if it:
181	 *
182	 *	(1)  assigns its initial sequence number for the new
183	 *	connection to be larger than the largest sequence
184	 *	number it used on the previous connection incarnation,
185	 *	and
186	 *
187	 *	(2)  returns to TIME-WAIT state if the SYN turns out
188	 *	to be an old duplicate".
189	 */
190
191	if (!paws_reject &&
192	    (TCP_SKB_CB(skb)->seq == tcptw->tw_rcv_nxt &&
193	     (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
194		/* In window segment, it may be only reset or bare ack. */
195
196		if (th->rst) {
197			/* This is TIME_WAIT assasination, in two flavors.
198			 * Oh well... nobody has a sufficient solution to this
199			 * protocol bug yet.
200			 */
201			if (sysctl_tcp_rfc1337 == 0) {
202kill:
203				inet_twsk_deschedule(tw, &tcp_death_row);
204				inet_twsk_put(tw);
205				return TCP_TW_SUCCESS;
206			}
207		}
208		inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
209				   TCP_TIMEWAIT_LEN);
210
211		if (tmp_opt.saw_tstamp) {
212			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
213			tcptw->tw_ts_recent_stamp = xtime.tv_sec;
214		}
215
216		inet_twsk_put(tw);
217		return TCP_TW_SUCCESS;
218	}
219
220	/* Out of window segment.
221
222	   All the segments are ACKed immediately.
223
224	   The only exception is new SYN. We accept it, if it is
225	   not old duplicate and we are not in danger to be killed
226	   by delayed old duplicates. RFC check is that it has
227	   newer sequence number works at rates <40Mbit/sec.
228	   However, if paws works, it is reliable AND even more,
229	   we even may relax silly seq space cutoff.
230
231	   RED-PEN: we violate main RFC requirement, if this SYN will appear
232	   old duplicate (i.e. we receive RST in reply to SYN-ACK),
233	   we must return socket to time-wait state. It is not good,
234	   but not fatal yet.
235	 */
236
237	if (th->syn && !th->rst && !th->ack && !paws_reject &&
238	    (after(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt) ||
239	     (tmp_opt.saw_tstamp &&
240	      (s32)(tcptw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) {
241		u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
242		if (isn == 0)
243			isn++;
244		TCP_SKB_CB(skb)->when = isn;
245		return TCP_TW_SYN;
246	}
247
248	if (paws_reject)
249		NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
250
251	if(!th->rst) {
252		/* In this case we must reset the TIMEWAIT timer.
253		 *
254		 * If it is ACKless SYN it may be both old duplicate
255		 * and new good SYN with random sequence number <rcv_nxt.
256		 * Do not reschedule in the last case.
257		 */
258		if (paws_reject || th->ack)
259			inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
260					   TCP_TIMEWAIT_LEN);
261
262		/* Send ACK. Note, we do not put the bucket,
263		 * it will be released by caller.
264		 */
265		return TCP_TW_ACK;
266	}
267	inet_twsk_put(tw);
268	return TCP_TW_SUCCESS;
269}
270
271/*
272 * Move a socket to time-wait or dead fin-wait-2 state.
273 */
274void tcp_time_wait(struct sock *sk, int state, int timeo)
275{
276	struct inet_timewait_sock *tw = NULL;
277	const struct tcp_sock *tp = tcp_sk(sk);
278	int recycle_ok = 0;
279
280	if (tcp_death_row.sysctl_tw_recycle && tp->rx_opt.ts_recent_stamp)
281		recycle_ok = tp->af_specific->remember_stamp(sk);
282
283	if (tcp_death_row.tw_count < tcp_death_row.sysctl_max_tw_buckets)
284		tw = inet_twsk_alloc(sk, state);
285
286	if (tw != NULL) {
287		struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
288		const struct inet_connection_sock *icsk = inet_csk(sk);
289		const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
290
291		tw->tw_rcv_wscale	= tp->rx_opt.rcv_wscale;
292		tcptw->tw_rcv_nxt	= tp->rcv_nxt;
293		tcptw->tw_snd_nxt	= tp->snd_nxt;
294		tcptw->tw_rcv_wnd	= tcp_receive_window(tp);
295		tcptw->tw_ts_recent	= tp->rx_opt.ts_recent;
296		tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
297
298#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
299		if (tw->tw_family == PF_INET6) {
300			struct ipv6_pinfo *np = inet6_sk(sk);
301			struct tcp6_timewait_sock *tcp6tw = tcp6_twsk((struct sock *)tw);
302
303			ipv6_addr_copy(&tcp6tw->tw_v6_daddr, &np->daddr);
304			ipv6_addr_copy(&tcp6tw->tw_v6_rcv_saddr, &np->rcv_saddr);
305			tw->tw_ipv6only = np->ipv6only;
306		}
307#endif
308		/* Linkage updates. */
309		__inet_twsk_hashdance(tw, sk, &tcp_hashinfo);
310
311		/* Get the TIME_WAIT timeout firing. */
312		if (timeo < rto)
313			timeo = rto;
314
315		if (recycle_ok) {
316			tw->tw_timeout = rto;
317		} else {
318			tw->tw_timeout = TCP_TIMEWAIT_LEN;
319			if (state == TCP_TIME_WAIT)
320				timeo = TCP_TIMEWAIT_LEN;
321		}
322
323		inet_twsk_schedule(tw, &tcp_death_row, timeo,
324				   TCP_TIMEWAIT_LEN);
325		inet_twsk_put(tw);
326	} else {
327		/* Sorry, if we're out of memory, just CLOSE this
328		 * socket up.  We've got bigger problems than
329		 * non-graceful socket closings.
330		 */
331		if (net_ratelimit())
332			printk(KERN_INFO "TCP: time wait bucket table overflow\n");
333	}
334
335	tcp_update_metrics(sk);
336	tcp_done(sk);
337}
338
339/* This is not only more efficient than what we used to do, it eliminates
340 * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
341 *
342 * Actually, we could lots of memory writes here. tp of listening
343 * socket contains all necessary default parameters.
344 */
345struct sock *tcp_create_openreq_child(struct sock *sk, struct request_sock *req, struct sk_buff *skb)
346{
347	struct sock *newsk = inet_csk_clone(sk, req, GFP_ATOMIC);
348
349	if (newsk != NULL) {
350		const struct inet_request_sock *ireq = inet_rsk(req);
351		struct tcp_request_sock *treq = tcp_rsk(req);
352		struct inet_connection_sock *newicsk = inet_csk(sk);
353		struct tcp_sock *newtp;
354
355		/* Now setup tcp_sock */
356		newtp = tcp_sk(newsk);
357		newtp->pred_flags = 0;
358		newtp->rcv_nxt = treq->rcv_isn + 1;
359		newtp->snd_nxt = newtp->snd_una = newtp->snd_sml = treq->snt_isn + 1;
360
361		tcp_prequeue_init(newtp);
362
363		tcp_init_wl(newtp, treq->snt_isn, treq->rcv_isn);
364
365		newtp->srtt = 0;
366		newtp->mdev = TCP_TIMEOUT_INIT;
367		newicsk->icsk_rto = TCP_TIMEOUT_INIT;
368
369		newtp->packets_out = 0;
370		newtp->left_out = 0;
371		newtp->retrans_out = 0;
372		newtp->sacked_out = 0;
373		newtp->fackets_out = 0;
374		newtp->snd_ssthresh = 0x7fffffff;
375
376		/* So many TCP implementations out there (incorrectly) count the
377		 * initial SYN frame in their delayed-ACK and congestion control
378		 * algorithms that we must have the following bandaid to talk
379		 * efficiently to them.  -DaveM
380		 */
381		newtp->snd_cwnd = 2;
382		newtp->snd_cwnd_cnt = 0;
383
384		newtp->frto_counter = 0;
385		newtp->frto_highmark = 0;
386
387		newicsk->icsk_ca_ops = &tcp_reno;
388
389		tcp_set_ca_state(newsk, TCP_CA_Open);
390		tcp_init_xmit_timers(newsk);
391		skb_queue_head_init(&newtp->out_of_order_queue);
392		newtp->rcv_wup = treq->rcv_isn + 1;
393		newtp->write_seq = treq->snt_isn + 1;
394		newtp->pushed_seq = newtp->write_seq;
395		newtp->copied_seq = treq->rcv_isn + 1;
396
397		newtp->rx_opt.saw_tstamp = 0;
398
399		newtp->rx_opt.dsack = 0;
400		newtp->rx_opt.eff_sacks = 0;
401
402		newtp->rx_opt.num_sacks = 0;
403		newtp->urg_data = 0;
404
405		if (sock_flag(newsk, SOCK_KEEPOPEN))
406			inet_csk_reset_keepalive_timer(newsk,
407						       keepalive_time_when(newtp));
408
409		newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
410		if((newtp->rx_opt.sack_ok = ireq->sack_ok) != 0) {
411			if (sysctl_tcp_fack)
412				newtp->rx_opt.sack_ok |= 2;
413		}
414		newtp->window_clamp = req->window_clamp;
415		newtp->rcv_ssthresh = req->rcv_wnd;
416		newtp->rcv_wnd = req->rcv_wnd;
417		newtp->rx_opt.wscale_ok = ireq->wscale_ok;
418		if (newtp->rx_opt.wscale_ok) {
419			newtp->rx_opt.snd_wscale = ireq->snd_wscale;
420			newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
421		} else {
422			newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
423			newtp->window_clamp = min(newtp->window_clamp, 65535U);
424		}
425		newtp->snd_wnd = ntohs(skb->h.th->window) << newtp->rx_opt.snd_wscale;
426		newtp->max_window = newtp->snd_wnd;
427
428		if (newtp->rx_opt.tstamp_ok) {
429			newtp->rx_opt.ts_recent = req->ts_recent;
430			newtp->rx_opt.ts_recent_stamp = xtime.tv_sec;
431			newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
432		} else {
433			newtp->rx_opt.ts_recent_stamp = 0;
434			newtp->tcp_header_len = sizeof(struct tcphdr);
435		}
436		if (skb->len >= TCP_MIN_RCVMSS+newtp->tcp_header_len)
437			newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
438		newtp->rx_opt.mss_clamp = req->mss;
439		TCP_ECN_openreq_child(newtp, req);
440		if (newtp->ecn_flags&TCP_ECN_OK)
441			sock_set_flag(newsk, SOCK_NO_LARGESEND);
442
443		TCP_INC_STATS_BH(TCP_MIB_PASSIVEOPENS);
444	}
445	return newsk;
446}
447
448/*
449 *	Process an incoming packet for SYN_RECV sockets represented
450 *	as a request_sock.
451 */
452
453struct sock *tcp_check_req(struct sock *sk,struct sk_buff *skb,
454			   struct request_sock *req,
455			   struct request_sock **prev)
456{
457	struct tcphdr *th = skb->h.th;
458	struct tcp_sock *tp = tcp_sk(sk);
459	u32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
460	int paws_reject = 0;
461	struct tcp_options_received tmp_opt;
462	struct sock *child;
463
464	tmp_opt.saw_tstamp = 0;
465	if (th->doff > (sizeof(struct tcphdr)>>2)) {
466		tcp_parse_options(skb, &tmp_opt, 0);
467
468		if (tmp_opt.saw_tstamp) {
469			tmp_opt.ts_recent = req->ts_recent;
470			/* We do not store true stamp, but it is not required,
471			 * it can be estimated (approximately)
472			 * from another data.
473			 */
474			tmp_opt.ts_recent_stamp = xtime.tv_sec - ((TCP_TIMEOUT_INIT/HZ)<<req->retrans);
475			paws_reject = tcp_paws_check(&tmp_opt, th->rst);
476		}
477	}
478
479	/* Check for pure retransmitted SYN. */
480	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
481	    flg == TCP_FLAG_SYN &&
482	    !paws_reject) {
483		/*
484		 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
485		 * this case on figure 6 and figure 8, but formal
486		 * protocol description says NOTHING.
487		 * To be more exact, it says that we should send ACK,
488		 * because this segment (at least, if it has no data)
489		 * is out of window.
490		 *
491		 *  CONCLUSION: RFC793 (even with RFC1122) DOES NOT
492		 *  describe SYN-RECV state. All the description
493		 *  is wrong, we cannot believe to it and should
494		 *  rely only on common sense and implementation
495		 *  experience.
496		 *
497		 * Enforce "SYN-ACK" according to figure 8, figure 6
498		 * of RFC793, fixed by RFC1122.
499		 */
500		req->rsk_ops->rtx_syn_ack(sk, req, NULL);
501		return NULL;
502	}
503
504	/* Further reproduces section "SEGMENT ARRIVES"
505	   for state SYN-RECEIVED of RFC793.
506	   It is broken, however, it does not work only
507	   when SYNs are crossed.
508
509	   You would think that SYN crossing is impossible here, since
510	   we should have a SYN_SENT socket (from connect()) on our end,
511	   but this is not true if the crossed SYNs were sent to both
512	   ends by a malicious third party.  We must defend against this,
513	   and to do that we first verify the ACK (as per RFC793, page
514	   36) and reset if it is invalid.  Is this a true full defense?
515	   To convince ourselves, let us consider a way in which the ACK
516	   test can still pass in this 'malicious crossed SYNs' case.
517	   Malicious sender sends identical SYNs (and thus identical sequence
518	   numbers) to both A and B:
519
520		A: gets SYN, seq=7
521		B: gets SYN, seq=7
522
523	   By our good fortune, both A and B select the same initial
524	   send sequence number of seven :-)
525
526		A: sends SYN|ACK, seq=7, ack_seq=8
527		B: sends SYN|ACK, seq=7, ack_seq=8
528
529	   So we are now A eating this SYN|ACK, ACK test passes.  So
530	   does sequence test, SYN is truncated, and thus we consider
531	   it a bare ACK.
532
533	   If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
534	   bare ACK.  Otherwise, we create an established connection.  Both
535	   ends (listening sockets) accept the new incoming connection and try
536	   to talk to each other. 8-)
537
538	   Note: This case is both harmless, and rare.  Possibility is about the
539	   same as us discovering intelligent life on another plant tomorrow.
540
541	   But generally, we should (RFC lies!) to accept ACK
542	   from SYNACK both here and in tcp_rcv_state_process().
543	   tcp_rcv_state_process() does not, hence, we do not too.
544
545	   Note that the case is absolutely generic:
546	   we cannot optimize anything here without
547	   violating protocol. All the checks must be made
548	   before attempt to create socket.
549	 */
550
551	/* RFC793 page 36: "If the connection is in any non-synchronized state ...
552	 *                  and the incoming segment acknowledges something not yet
553	 *                  sent (the segment carries an unaccaptable ACK) ...
554	 *                  a reset is sent."
555	 *
556	 * Invalid ACK: reset will be sent by listening socket
557	 */
558	if ((flg & TCP_FLAG_ACK) &&
559	    (TCP_SKB_CB(skb)->ack_seq != tcp_rsk(req)->snt_isn + 1))
560		return sk;
561
562	/* Also, it would be not so bad idea to check rcv_tsecr, which
563	 * is essentially ACK extension and too early or too late values
564	 * should cause reset in unsynchronized states.
565	 */
566
567	/* RFC793: "first check sequence number". */
568
569	if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
570					  tcp_rsk(req)->rcv_isn + 1, tcp_rsk(req)->rcv_isn + 1 + req->rcv_wnd)) {
571		/* Out of window: send ACK and drop. */
572		if (!(flg & TCP_FLAG_RST))
573			req->rsk_ops->send_ack(skb, req);
574		if (paws_reject)
575			NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
576		return NULL;
577	}
578
579	/* In sequence, PAWS is OK. */
580
581	if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_isn + 1))
582			req->ts_recent = tmp_opt.rcv_tsval;
583
584		if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
585			/* Truncate SYN, it is out of window starting
586			   at tcp_rsk(req)->rcv_isn + 1. */
587			flg &= ~TCP_FLAG_SYN;
588		}
589
590		/* RFC793: "second check the RST bit" and
591		 *	   "fourth, check the SYN bit"
592		 */
593		if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN))
594			goto embryonic_reset;
595
596		/* ACK sequence verified above, just make sure ACK is
597		 * set.  If ACK not set, just silently drop the packet.
598		 */
599		if (!(flg & TCP_FLAG_ACK))
600			return NULL;
601
602		/* If TCP_DEFER_ACCEPT is set, drop bare ACK. */
603		if (inet_csk(sk)->icsk_accept_queue.rskq_defer_accept &&
604		    TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
605			inet_rsk(req)->acked = 1;
606			return NULL;
607		}
608
609		/* OK, ACK is valid, create big socket and
610		 * feed this segment to it. It will repeat all
611		 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
612		 * ESTABLISHED STATE. If it will be dropped after
613		 * socket is created, wait for troubles.
614		 */
615		child = tp->af_specific->syn_recv_sock(sk, skb, req, NULL);
616		if (child == NULL)
617			goto listen_overflow;
618
619		inet_csk_reqsk_queue_unlink(sk, req, prev);
620		inet_csk_reqsk_queue_removed(sk, req);
621
622		inet_csk_reqsk_queue_add(sk, req, child);
623		return child;
624
625	listen_overflow:
626		if (!sysctl_tcp_abort_on_overflow) {
627			inet_rsk(req)->acked = 1;
628			return NULL;
629		}
630
631	embryonic_reset:
632		NET_INC_STATS_BH(LINUX_MIB_EMBRYONICRSTS);
633		if (!(flg & TCP_FLAG_RST))
634			req->rsk_ops->send_reset(skb);
635
636		inet_csk_reqsk_queue_drop(sk, req, prev);
637		return NULL;
638}
639
640/*
641 * Queue segment on the new socket if the new socket is active,
642 * otherwise we just shortcircuit this and continue with
643 * the new socket.
644 */
645
646int tcp_child_process(struct sock *parent, struct sock *child,
647		      struct sk_buff *skb)
648{
649	int ret = 0;
650	int state = child->sk_state;
651
652	if (!sock_owned_by_user(child)) {
653		ret = tcp_rcv_state_process(child, skb, skb->h.th, skb->len);
654
655		/* Wakeup parent, send SIGIO */
656		if (state == TCP_SYN_RECV && child->sk_state != state)
657			parent->sk_data_ready(parent, 0);
658	} else {
659		/* Alas, it is possible again, because we do lookup
660		 * in main socket hash table and lock on listening
661		 * socket does not protect us more.
662		 */
663		sk_add_backlog(child, skb);
664	}
665
666	bh_unlock_sock(child);
667	sock_put(child);
668	return ret;
669}
670
671EXPORT_SYMBOL(tcp_check_req);
672EXPORT_SYMBOL(tcp_child_process);
673EXPORT_SYMBOL(tcp_create_openreq_child);
674EXPORT_SYMBOL(tcp_timewait_state_process);
675