tcp_minisocks.c revision 6cbb0df788b90777a7ed0f9d8261260353f48076
1/*
2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
3 *		operating system.  INET is implemented using the  BSD Socket
4 *		interface as the means of communication with the user level.
5 *
6 *		Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Version:	$Id: tcp_minisocks.c,v 1.15 2002/02/01 22:01:04 davem Exp $
9 *
10 * Authors:	Ross Biro
11 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14 *		Florian La Roche, <flla@stud.uni-sb.de>
15 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
17 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
18 *		Matthew Dillon, <dillon@apollo.west.oic.com>
19 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 *		Jorge Cwik, <jorge@laser.satlink.net>
21 */
22
23#include <linux/config.h>
24#include <linux/mm.h>
25#include <linux/module.h>
26#include <linux/sysctl.h>
27#include <linux/workqueue.h>
28#include <net/tcp.h>
29#include <net/inet_common.h>
30#include <net/xfrm.h>
31
32#ifdef CONFIG_SYSCTL
33#define SYNC_INIT 0 /* let the user enable it */
34#else
35#define SYNC_INIT 1
36#endif
37
38int sysctl_tcp_tw_recycle;
39int sysctl_tcp_max_tw_buckets = NR_FILE*2;
40
41int sysctl_tcp_syncookies = SYNC_INIT;
42int sysctl_tcp_abort_on_overflow;
43
44static void tcp_tw_schedule(struct tcp_tw_bucket *tw, int timeo);
45
46static __inline__ int tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
47{
48	if (seq == s_win)
49		return 1;
50	if (after(end_seq, s_win) && before(seq, e_win))
51		return 1;
52	return (seq == e_win && seq == end_seq);
53}
54
55/* New-style handling of TIME_WAIT sockets. */
56
57int tcp_tw_count;
58
59
60/* Must be called with locally disabled BHs. */
61static void tcp_timewait_kill(struct tcp_tw_bucket *tw)
62{
63	struct tcp_ehash_bucket *ehead;
64	struct tcp_bind_hashbucket *bhead;
65	struct tcp_bind_bucket *tb;
66
67	/* Unlink from established hashes. */
68	ehead = &tcp_ehash[tw->tw_hashent];
69	write_lock(&ehead->lock);
70	if (hlist_unhashed(&tw->tw_node)) {
71		write_unlock(&ehead->lock);
72		return;
73	}
74	__hlist_del(&tw->tw_node);
75	sk_node_init(&tw->tw_node);
76	write_unlock(&ehead->lock);
77
78	/* Disassociate with bind bucket. */
79	bhead = &tcp_bhash[tcp_bhashfn(tw->tw_num)];
80	spin_lock(&bhead->lock);
81	tb = tw->tw_tb;
82	__hlist_del(&tw->tw_bind_node);
83	tw->tw_tb = NULL;
84	tcp_bucket_destroy(tb);
85	spin_unlock(&bhead->lock);
86
87#ifdef SOCK_REFCNT_DEBUG
88	if (atomic_read(&tw->tw_refcnt) != 1) {
89		printk(KERN_DEBUG "tw_bucket %p refcnt=%d\n", tw,
90		       atomic_read(&tw->tw_refcnt));
91	}
92#endif
93	tcp_tw_put(tw);
94}
95
96/*
97 * * Main purpose of TIME-WAIT state is to close connection gracefully,
98 *   when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
99 *   (and, probably, tail of data) and one or more our ACKs are lost.
100 * * What is TIME-WAIT timeout? It is associated with maximal packet
101 *   lifetime in the internet, which results in wrong conclusion, that
102 *   it is set to catch "old duplicate segments" wandering out of their path.
103 *   It is not quite correct. This timeout is calculated so that it exceeds
104 *   maximal retransmission timeout enough to allow to lose one (or more)
105 *   segments sent by peer and our ACKs. This time may be calculated from RTO.
106 * * When TIME-WAIT socket receives RST, it means that another end
107 *   finally closed and we are allowed to kill TIME-WAIT too.
108 * * Second purpose of TIME-WAIT is catching old duplicate segments.
109 *   Well, certainly it is pure paranoia, but if we load TIME-WAIT
110 *   with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
111 * * If we invented some more clever way to catch duplicates
112 *   (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
113 *
114 * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
115 * When you compare it to RFCs, please, read section SEGMENT ARRIVES
116 * from the very beginning.
117 *
118 * NOTE. With recycling (and later with fin-wait-2) TW bucket
119 * is _not_ stateless. It means, that strictly speaking we must
120 * spinlock it. I do not want! Well, probability of misbehaviour
121 * is ridiculously low and, seems, we could use some mb() tricks
122 * to avoid misread sequence numbers, states etc.  --ANK
123 */
124enum tcp_tw_status
125tcp_timewait_state_process(struct tcp_tw_bucket *tw, struct sk_buff *skb,
126			   struct tcphdr *th, unsigned len)
127{
128	struct tcp_options_received tmp_opt;
129	int paws_reject = 0;
130
131	tmp_opt.saw_tstamp = 0;
132	if (th->doff > (sizeof(struct tcphdr) >> 2) && tw->tw_ts_recent_stamp) {
133		tcp_parse_options(skb, &tmp_opt, 0);
134
135		if (tmp_opt.saw_tstamp) {
136			tmp_opt.ts_recent	   = tw->tw_ts_recent;
137			tmp_opt.ts_recent_stamp = tw->tw_ts_recent_stamp;
138			paws_reject = tcp_paws_check(&tmp_opt, th->rst);
139		}
140	}
141
142	if (tw->tw_substate == TCP_FIN_WAIT2) {
143		/* Just repeat all the checks of tcp_rcv_state_process() */
144
145		/* Out of window, send ACK */
146		if (paws_reject ||
147		    !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
148				   tw->tw_rcv_nxt,
149				   tw->tw_rcv_nxt + tw->tw_rcv_wnd))
150			return TCP_TW_ACK;
151
152		if (th->rst)
153			goto kill;
154
155		if (th->syn && !before(TCP_SKB_CB(skb)->seq, tw->tw_rcv_nxt))
156			goto kill_with_rst;
157
158		/* Dup ACK? */
159		if (!after(TCP_SKB_CB(skb)->end_seq, tw->tw_rcv_nxt) ||
160		    TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
161			tcp_tw_put(tw);
162			return TCP_TW_SUCCESS;
163		}
164
165		/* New data or FIN. If new data arrive after half-duplex close,
166		 * reset.
167		 */
168		if (!th->fin ||
169		    TCP_SKB_CB(skb)->end_seq != tw->tw_rcv_nxt + 1) {
170kill_with_rst:
171			tcp_tw_deschedule(tw);
172			tcp_tw_put(tw);
173			return TCP_TW_RST;
174		}
175
176		/* FIN arrived, enter true time-wait state. */
177		tw->tw_substate	= TCP_TIME_WAIT;
178		tw->tw_rcv_nxt	= TCP_SKB_CB(skb)->end_seq;
179		if (tmp_opt.saw_tstamp) {
180			tw->tw_ts_recent_stamp	= xtime.tv_sec;
181			tw->tw_ts_recent	= tmp_opt.rcv_tsval;
182		}
183
184		/* I am shamed, but failed to make it more elegant.
185		 * Yes, it is direct reference to IP, which is impossible
186		 * to generalize to IPv6. Taking into account that IPv6
187		 * do not undertsnad recycling in any case, it not
188		 * a big problem in practice. --ANK */
189		if (tw->tw_family == AF_INET &&
190		    sysctl_tcp_tw_recycle && tw->tw_ts_recent_stamp &&
191		    tcp_v4_tw_remember_stamp(tw))
192			tcp_tw_schedule(tw, tw->tw_timeout);
193		else
194			tcp_tw_schedule(tw, TCP_TIMEWAIT_LEN);
195		return TCP_TW_ACK;
196	}
197
198	/*
199	 *	Now real TIME-WAIT state.
200	 *
201	 *	RFC 1122:
202	 *	"When a connection is [...] on TIME-WAIT state [...]
203	 *	[a TCP] MAY accept a new SYN from the remote TCP to
204	 *	reopen the connection directly, if it:
205	 *
206	 *	(1)  assigns its initial sequence number for the new
207	 *	connection to be larger than the largest sequence
208	 *	number it used on the previous connection incarnation,
209	 *	and
210	 *
211	 *	(2)  returns to TIME-WAIT state if the SYN turns out
212	 *	to be an old duplicate".
213	 */
214
215	if (!paws_reject &&
216	    (TCP_SKB_CB(skb)->seq == tw->tw_rcv_nxt &&
217	     (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
218		/* In window segment, it may be only reset or bare ack. */
219
220		if (th->rst) {
221			/* This is TIME_WAIT assasination, in two flavors.
222			 * Oh well... nobody has a sufficient solution to this
223			 * protocol bug yet.
224			 */
225			if (sysctl_tcp_rfc1337 == 0) {
226kill:
227				tcp_tw_deschedule(tw);
228				tcp_tw_put(tw);
229				return TCP_TW_SUCCESS;
230			}
231		}
232		tcp_tw_schedule(tw, TCP_TIMEWAIT_LEN);
233
234		if (tmp_opt.saw_tstamp) {
235			tw->tw_ts_recent	= tmp_opt.rcv_tsval;
236			tw->tw_ts_recent_stamp	= xtime.tv_sec;
237		}
238
239		tcp_tw_put(tw);
240		return TCP_TW_SUCCESS;
241	}
242
243	/* Out of window segment.
244
245	   All the segments are ACKed immediately.
246
247	   The only exception is new SYN. We accept it, if it is
248	   not old duplicate and we are not in danger to be killed
249	   by delayed old duplicates. RFC check is that it has
250	   newer sequence number works at rates <40Mbit/sec.
251	   However, if paws works, it is reliable AND even more,
252	   we even may relax silly seq space cutoff.
253
254	   RED-PEN: we violate main RFC requirement, if this SYN will appear
255	   old duplicate (i.e. we receive RST in reply to SYN-ACK),
256	   we must return socket to time-wait state. It is not good,
257	   but not fatal yet.
258	 */
259
260	if (th->syn && !th->rst && !th->ack && !paws_reject &&
261	    (after(TCP_SKB_CB(skb)->seq, tw->tw_rcv_nxt) ||
262	     (tmp_opt.saw_tstamp && (s32)(tw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) {
263		u32 isn = tw->tw_snd_nxt + 65535 + 2;
264		if (isn == 0)
265			isn++;
266		TCP_SKB_CB(skb)->when = isn;
267		return TCP_TW_SYN;
268	}
269
270	if (paws_reject)
271		NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
272
273	if(!th->rst) {
274		/* In this case we must reset the TIMEWAIT timer.
275		 *
276		 * If it is ACKless SYN it may be both old duplicate
277		 * and new good SYN with random sequence number <rcv_nxt.
278		 * Do not reschedule in the last case.
279		 */
280		if (paws_reject || th->ack)
281			tcp_tw_schedule(tw, TCP_TIMEWAIT_LEN);
282
283		/* Send ACK. Note, we do not put the bucket,
284		 * it will be released by caller.
285		 */
286		return TCP_TW_ACK;
287	}
288	tcp_tw_put(tw);
289	return TCP_TW_SUCCESS;
290}
291
292/* Enter the time wait state.  This is called with locally disabled BH.
293 * Essentially we whip up a timewait bucket, copy the
294 * relevant info into it from the SK, and mess with hash chains
295 * and list linkage.
296 */
297static void __tcp_tw_hashdance(struct sock *sk, struct tcp_tw_bucket *tw)
298{
299	struct tcp_ehash_bucket *ehead = &tcp_ehash[sk->sk_hashent];
300	struct tcp_bind_hashbucket *bhead;
301
302	/* Step 1: Put TW into bind hash. Original socket stays there too.
303	   Note, that any socket with inet_sk(sk)->num != 0 MUST be bound in
304	   binding cache, even if it is closed.
305	 */
306	bhead = &tcp_bhash[tcp_bhashfn(inet_sk(sk)->num)];
307	spin_lock(&bhead->lock);
308	tw->tw_tb = tcp_sk(sk)->bind_hash;
309	BUG_TRAP(tcp_sk(sk)->bind_hash);
310	tw_add_bind_node(tw, &tw->tw_tb->owners);
311	spin_unlock(&bhead->lock);
312
313	write_lock(&ehead->lock);
314
315	/* Step 2: Remove SK from established hash. */
316	if (__sk_del_node_init(sk))
317		sock_prot_dec_use(sk->sk_prot);
318
319	/* Step 3: Hash TW into TIMEWAIT half of established hash table. */
320	tw_add_node(tw, &(ehead + tcp_ehash_size)->chain);
321	atomic_inc(&tw->tw_refcnt);
322
323	write_unlock(&ehead->lock);
324}
325
326/*
327 * Move a socket to time-wait or dead fin-wait-2 state.
328 */
329void tcp_time_wait(struct sock *sk, int state, int timeo)
330{
331	struct tcp_tw_bucket *tw = NULL;
332	struct tcp_sock *tp = tcp_sk(sk);
333	int recycle_ok = 0;
334
335	if (sysctl_tcp_tw_recycle && tp->rx_opt.ts_recent_stamp)
336		recycle_ok = tp->af_specific->remember_stamp(sk);
337
338	if (tcp_tw_count < sysctl_tcp_max_tw_buckets)
339		tw = kmem_cache_alloc(tcp_timewait_cachep, SLAB_ATOMIC);
340
341	if(tw != NULL) {
342		struct inet_sock *inet = inet_sk(sk);
343		int rto = (tp->rto<<2) - (tp->rto>>1);
344
345		/* Give us an identity. */
346		tw->tw_daddr		= inet->daddr;
347		tw->tw_rcv_saddr	= inet->rcv_saddr;
348		tw->tw_bound_dev_if	= sk->sk_bound_dev_if;
349		tw->tw_num		= inet->num;
350		tw->tw_state		= TCP_TIME_WAIT;
351		tw->tw_substate		= state;
352		tw->tw_sport		= inet->sport;
353		tw->tw_dport		= inet->dport;
354		tw->tw_family		= sk->sk_family;
355		tw->tw_reuse		= sk->sk_reuse;
356		tw->tw_rcv_wscale	= tp->rx_opt.rcv_wscale;
357		atomic_set(&tw->tw_refcnt, 1);
358
359		tw->tw_hashent		= sk->sk_hashent;
360		tw->tw_rcv_nxt		= tp->rcv_nxt;
361		tw->tw_snd_nxt		= tp->snd_nxt;
362		tw->tw_rcv_wnd		= tcp_receive_window(tp);
363		tw->tw_ts_recent	= tp->rx_opt.ts_recent;
364		tw->tw_ts_recent_stamp	= tp->rx_opt.ts_recent_stamp;
365		tw_dead_node_init(tw);
366
367#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
368		if (tw->tw_family == PF_INET6) {
369			struct ipv6_pinfo *np = inet6_sk(sk);
370
371			ipv6_addr_copy(&tw->tw_v6_daddr, &np->daddr);
372			ipv6_addr_copy(&tw->tw_v6_rcv_saddr, &np->rcv_saddr);
373			tw->tw_v6_ipv6only = np->ipv6only;
374		} else {
375			memset(&tw->tw_v6_daddr, 0, sizeof(tw->tw_v6_daddr));
376			memset(&tw->tw_v6_rcv_saddr, 0, sizeof(tw->tw_v6_rcv_saddr));
377			tw->tw_v6_ipv6only = 0;
378		}
379#endif
380		/* Linkage updates. */
381		__tcp_tw_hashdance(sk, tw);
382
383		/* Get the TIME_WAIT timeout firing. */
384		if (timeo < rto)
385			timeo = rto;
386
387		if (recycle_ok) {
388			tw->tw_timeout = rto;
389		} else {
390			tw->tw_timeout = TCP_TIMEWAIT_LEN;
391			if (state == TCP_TIME_WAIT)
392				timeo = TCP_TIMEWAIT_LEN;
393		}
394
395		tcp_tw_schedule(tw, timeo);
396		tcp_tw_put(tw);
397	} else {
398		/* Sorry, if we're out of memory, just CLOSE this
399		 * socket up.  We've got bigger problems than
400		 * non-graceful socket closings.
401		 */
402		if (net_ratelimit())
403			printk(KERN_INFO "TCP: time wait bucket table overflow\n");
404	}
405
406	tcp_update_metrics(sk);
407	tcp_done(sk);
408}
409
410/* Kill off TIME_WAIT sockets once their lifetime has expired. */
411static int tcp_tw_death_row_slot;
412
413static void tcp_twkill(unsigned long);
414
415/* TIME_WAIT reaping mechanism. */
416#define TCP_TWKILL_SLOTS	8	/* Please keep this a power of 2. */
417#define TCP_TWKILL_PERIOD	(TCP_TIMEWAIT_LEN/TCP_TWKILL_SLOTS)
418
419#define TCP_TWKILL_QUOTA	100
420
421static struct hlist_head tcp_tw_death_row[TCP_TWKILL_SLOTS];
422static DEFINE_SPINLOCK(tw_death_lock);
423static struct timer_list tcp_tw_timer = TIMER_INITIALIZER(tcp_twkill, 0, 0);
424static void twkill_work(void *);
425static DECLARE_WORK(tcp_twkill_work, twkill_work, NULL);
426static u32 twkill_thread_slots;
427
428/* Returns non-zero if quota exceeded.  */
429static int tcp_do_twkill_work(int slot, unsigned int quota)
430{
431	struct tcp_tw_bucket *tw;
432	struct hlist_node *node;
433	unsigned int killed;
434	int ret;
435
436	/* NOTE: compare this to previous version where lock
437	 * was released after detaching chain. It was racy,
438	 * because tw buckets are scheduled in not serialized context
439	 * in 2.3 (with netfilter), and with softnet it is common, because
440	 * soft irqs are not sequenced.
441	 */
442	killed = 0;
443	ret = 0;
444rescan:
445	tw_for_each_inmate(tw, node, &tcp_tw_death_row[slot]) {
446		__tw_del_dead_node(tw);
447		spin_unlock(&tw_death_lock);
448		tcp_timewait_kill(tw);
449		tcp_tw_put(tw);
450		killed++;
451		spin_lock(&tw_death_lock);
452		if (killed > quota) {
453			ret = 1;
454			break;
455		}
456
457		/* While we dropped tw_death_lock, another cpu may have
458		 * killed off the next TW bucket in the list, therefore
459		 * do a fresh re-read of the hlist head node with the
460		 * lock reacquired.  We still use the hlist traversal
461		 * macro in order to get the prefetches.
462		 */
463		goto rescan;
464	}
465
466	tcp_tw_count -= killed;
467	NET_ADD_STATS_BH(LINUX_MIB_TIMEWAITED, killed);
468
469	return ret;
470}
471
472static void tcp_twkill(unsigned long dummy)
473{
474	int need_timer, ret;
475
476	spin_lock(&tw_death_lock);
477
478	if (tcp_tw_count == 0)
479		goto out;
480
481	need_timer = 0;
482	ret = tcp_do_twkill_work(tcp_tw_death_row_slot, TCP_TWKILL_QUOTA);
483	if (ret) {
484		twkill_thread_slots |= (1 << tcp_tw_death_row_slot);
485		mb();
486		schedule_work(&tcp_twkill_work);
487		need_timer = 1;
488	} else {
489		/* We purged the entire slot, anything left?  */
490		if (tcp_tw_count)
491			need_timer = 1;
492	}
493	tcp_tw_death_row_slot =
494		((tcp_tw_death_row_slot + 1) & (TCP_TWKILL_SLOTS - 1));
495	if (need_timer)
496		mod_timer(&tcp_tw_timer, jiffies + TCP_TWKILL_PERIOD);
497out:
498	spin_unlock(&tw_death_lock);
499}
500
501extern void twkill_slots_invalid(void);
502
503static void twkill_work(void *dummy)
504{
505	int i;
506
507	if ((TCP_TWKILL_SLOTS - 1) > (sizeof(twkill_thread_slots) * 8))
508		twkill_slots_invalid();
509
510	while (twkill_thread_slots) {
511		spin_lock_bh(&tw_death_lock);
512		for (i = 0; i < TCP_TWKILL_SLOTS; i++) {
513			if (!(twkill_thread_slots & (1 << i)))
514				continue;
515
516			while (tcp_do_twkill_work(i, TCP_TWKILL_QUOTA) != 0) {
517				if (need_resched()) {
518					spin_unlock_bh(&tw_death_lock);
519					schedule();
520					spin_lock_bh(&tw_death_lock);
521				}
522			}
523
524			twkill_thread_slots &= ~(1 << i);
525		}
526		spin_unlock_bh(&tw_death_lock);
527	}
528}
529
530/* These are always called from BH context.  See callers in
531 * tcp_input.c to verify this.
532 */
533
534/* This is for handling early-kills of TIME_WAIT sockets. */
535void tcp_tw_deschedule(struct tcp_tw_bucket *tw)
536{
537	spin_lock(&tw_death_lock);
538	if (tw_del_dead_node(tw)) {
539		tcp_tw_put(tw);
540		if (--tcp_tw_count == 0)
541			del_timer(&tcp_tw_timer);
542	}
543	spin_unlock(&tw_death_lock);
544	tcp_timewait_kill(tw);
545}
546
547/* Short-time timewait calendar */
548
549static int tcp_twcal_hand = -1;
550static int tcp_twcal_jiffie;
551static void tcp_twcal_tick(unsigned long);
552static struct timer_list tcp_twcal_timer =
553		TIMER_INITIALIZER(tcp_twcal_tick, 0, 0);
554static struct hlist_head tcp_twcal_row[TCP_TW_RECYCLE_SLOTS];
555
556static void tcp_tw_schedule(struct tcp_tw_bucket *tw, int timeo)
557{
558	struct hlist_head *list;
559	int slot;
560
561	/* timeout := RTO * 3.5
562	 *
563	 * 3.5 = 1+2+0.5 to wait for two retransmits.
564	 *
565	 * RATIONALE: if FIN arrived and we entered TIME-WAIT state,
566	 * our ACK acking that FIN can be lost. If N subsequent retransmitted
567	 * FINs (or previous seqments) are lost (probability of such event
568	 * is p^(N+1), where p is probability to lose single packet and
569	 * time to detect the loss is about RTO*(2^N - 1) with exponential
570	 * backoff). Normal timewait length is calculated so, that we
571	 * waited at least for one retransmitted FIN (maximal RTO is 120sec).
572	 * [ BTW Linux. following BSD, violates this requirement waiting
573	 *   only for 60sec, we should wait at least for 240 secs.
574	 *   Well, 240 consumes too much of resources 8)
575	 * ]
576	 * This interval is not reduced to catch old duplicate and
577	 * responces to our wandering segments living for two MSLs.
578	 * However, if we use PAWS to detect
579	 * old duplicates, we can reduce the interval to bounds required
580	 * by RTO, rather than MSL. So, if peer understands PAWS, we
581	 * kill tw bucket after 3.5*RTO (it is important that this number
582	 * is greater than TS tick!) and detect old duplicates with help
583	 * of PAWS.
584	 */
585	slot = (timeo + (1<<TCP_TW_RECYCLE_TICK) - 1) >> TCP_TW_RECYCLE_TICK;
586
587	spin_lock(&tw_death_lock);
588
589	/* Unlink it, if it was scheduled */
590	if (tw_del_dead_node(tw))
591		tcp_tw_count--;
592	else
593		atomic_inc(&tw->tw_refcnt);
594
595	if (slot >= TCP_TW_RECYCLE_SLOTS) {
596		/* Schedule to slow timer */
597		if (timeo >= TCP_TIMEWAIT_LEN) {
598			slot = TCP_TWKILL_SLOTS-1;
599		} else {
600			slot = (timeo + TCP_TWKILL_PERIOD-1) / TCP_TWKILL_PERIOD;
601			if (slot >= TCP_TWKILL_SLOTS)
602				slot = TCP_TWKILL_SLOTS-1;
603		}
604		tw->tw_ttd = jiffies + timeo;
605		slot = (tcp_tw_death_row_slot + slot) & (TCP_TWKILL_SLOTS - 1);
606		list = &tcp_tw_death_row[slot];
607	} else {
608		tw->tw_ttd = jiffies + (slot << TCP_TW_RECYCLE_TICK);
609
610		if (tcp_twcal_hand < 0) {
611			tcp_twcal_hand = 0;
612			tcp_twcal_jiffie = jiffies;
613			tcp_twcal_timer.expires = tcp_twcal_jiffie + (slot<<TCP_TW_RECYCLE_TICK);
614			add_timer(&tcp_twcal_timer);
615		} else {
616			if (time_after(tcp_twcal_timer.expires, jiffies + (slot<<TCP_TW_RECYCLE_TICK)))
617				mod_timer(&tcp_twcal_timer, jiffies + (slot<<TCP_TW_RECYCLE_TICK));
618			slot = (tcp_twcal_hand + slot)&(TCP_TW_RECYCLE_SLOTS-1);
619		}
620		list = &tcp_twcal_row[slot];
621	}
622
623	hlist_add_head(&tw->tw_death_node, list);
624
625	if (tcp_tw_count++ == 0)
626		mod_timer(&tcp_tw_timer, jiffies+TCP_TWKILL_PERIOD);
627	spin_unlock(&tw_death_lock);
628}
629
630void tcp_twcal_tick(unsigned long dummy)
631{
632	int n, slot;
633	unsigned long j;
634	unsigned long now = jiffies;
635	int killed = 0;
636	int adv = 0;
637
638	spin_lock(&tw_death_lock);
639	if (tcp_twcal_hand < 0)
640		goto out;
641
642	slot = tcp_twcal_hand;
643	j = tcp_twcal_jiffie;
644
645	for (n=0; n<TCP_TW_RECYCLE_SLOTS; n++) {
646		if (time_before_eq(j, now)) {
647			struct hlist_node *node, *safe;
648			struct tcp_tw_bucket *tw;
649
650			tw_for_each_inmate_safe(tw, node, safe,
651					   &tcp_twcal_row[slot]) {
652				__tw_del_dead_node(tw);
653				tcp_timewait_kill(tw);
654				tcp_tw_put(tw);
655				killed++;
656			}
657		} else {
658			if (!adv) {
659				adv = 1;
660				tcp_twcal_jiffie = j;
661				tcp_twcal_hand = slot;
662			}
663
664			if (!hlist_empty(&tcp_twcal_row[slot])) {
665				mod_timer(&tcp_twcal_timer, j);
666				goto out;
667			}
668		}
669		j += (1<<TCP_TW_RECYCLE_TICK);
670		slot = (slot+1)&(TCP_TW_RECYCLE_SLOTS-1);
671	}
672	tcp_twcal_hand = -1;
673
674out:
675	if ((tcp_tw_count -= killed) == 0)
676		del_timer(&tcp_tw_timer);
677	NET_ADD_STATS_BH(LINUX_MIB_TIMEWAITKILLED, killed);
678	spin_unlock(&tw_death_lock);
679}
680
681/* This is not only more efficient than what we used to do, it eliminates
682 * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
683 *
684 * Actually, we could lots of memory writes here. tp of listening
685 * socket contains all necessary default parameters.
686 */
687struct sock *tcp_create_openreq_child(struct sock *sk, struct request_sock *req, struct sk_buff *skb)
688{
689	/* allocate the newsk from the same slab of the master sock,
690	 * if not, at sk_free time we'll try to free it from the wrong
691	 * slabcache (i.e. is it TCPv4 or v6?), this is handled thru sk->sk_prot -acme */
692	struct sock *newsk = sk_alloc(PF_INET, GFP_ATOMIC, sk->sk_prot, 0);
693
694	if(newsk != NULL) {
695		struct inet_request_sock *ireq = inet_rsk(req);
696		struct tcp_request_sock *treq = tcp_rsk(req);
697		struct tcp_sock *newtp;
698		struct sk_filter *filter;
699
700		memcpy(newsk, sk, sizeof(struct tcp_sock));
701		newsk->sk_state = TCP_SYN_RECV;
702
703		/* SANITY */
704		sk_node_init(&newsk->sk_node);
705		tcp_sk(newsk)->bind_hash = NULL;
706
707		/* Clone the TCP header template */
708		inet_sk(newsk)->dport = ireq->rmt_port;
709
710		sock_lock_init(newsk);
711		bh_lock_sock(newsk);
712
713		rwlock_init(&newsk->sk_dst_lock);
714		newsk->sk_dst_cache = NULL;
715		atomic_set(&newsk->sk_rmem_alloc, 0);
716		skb_queue_head_init(&newsk->sk_receive_queue);
717		atomic_set(&newsk->sk_wmem_alloc, 0);
718		skb_queue_head_init(&newsk->sk_write_queue);
719		atomic_set(&newsk->sk_omem_alloc, 0);
720		newsk->sk_wmem_queued = 0;
721		newsk->sk_forward_alloc = 0;
722
723		sock_reset_flag(newsk, SOCK_DONE);
724		newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
725		newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
726		newsk->sk_send_head = NULL;
727		rwlock_init(&newsk->sk_callback_lock);
728		skb_queue_head_init(&newsk->sk_error_queue);
729		newsk->sk_write_space = sk_stream_write_space;
730
731		if ((filter = newsk->sk_filter) != NULL)
732			sk_filter_charge(newsk, filter);
733
734		if (unlikely(xfrm_sk_clone_policy(newsk))) {
735			/* It is still raw copy of parent, so invalidate
736			 * destructor and make plain sk_free() */
737			newsk->sk_destruct = NULL;
738			sk_free(newsk);
739			return NULL;
740		}
741
742		/* Now setup tcp_sock */
743		newtp = tcp_sk(newsk);
744		newtp->pred_flags = 0;
745		newtp->rcv_nxt = treq->rcv_isn + 1;
746		newtp->snd_nxt = treq->snt_isn + 1;
747		newtp->snd_una = treq->snt_isn + 1;
748		newtp->snd_sml = treq->snt_isn + 1;
749
750		tcp_prequeue_init(newtp);
751
752		tcp_init_wl(newtp, treq->snt_isn, treq->rcv_isn);
753
754		newtp->retransmits = 0;
755		newtp->backoff = 0;
756		newtp->srtt = 0;
757		newtp->mdev = TCP_TIMEOUT_INIT;
758		newtp->rto = TCP_TIMEOUT_INIT;
759
760		newtp->packets_out = 0;
761		newtp->left_out = 0;
762		newtp->retrans_out = 0;
763		newtp->sacked_out = 0;
764		newtp->fackets_out = 0;
765		newtp->snd_ssthresh = 0x7fffffff;
766
767		/* So many TCP implementations out there (incorrectly) count the
768		 * initial SYN frame in their delayed-ACK and congestion control
769		 * algorithms that we must have the following bandaid to talk
770		 * efficiently to them.  -DaveM
771		 */
772		newtp->snd_cwnd = 2;
773		newtp->snd_cwnd_cnt = 0;
774
775		newtp->frto_counter = 0;
776		newtp->frto_highmark = 0;
777
778		newtp->ca_ops = &tcp_reno;
779
780		tcp_set_ca_state(newtp, TCP_CA_Open);
781		tcp_init_xmit_timers(newsk);
782		skb_queue_head_init(&newtp->out_of_order_queue);
783		newtp->rcv_wup = treq->rcv_isn + 1;
784		newtp->write_seq = treq->snt_isn + 1;
785		newtp->pushed_seq = newtp->write_seq;
786		newtp->copied_seq = treq->rcv_isn + 1;
787
788		newtp->rx_opt.saw_tstamp = 0;
789
790		newtp->rx_opt.dsack = 0;
791		newtp->rx_opt.eff_sacks = 0;
792
793		newtp->probes_out = 0;
794		newtp->rx_opt.num_sacks = 0;
795		newtp->urg_data = 0;
796		/* Deinitialize accept_queue to trap illegal accesses. */
797		memset(&newtp->accept_queue, 0, sizeof(newtp->accept_queue));
798
799		/* Back to base struct sock members. */
800		newsk->sk_err = 0;
801		newsk->sk_priority = 0;
802		atomic_set(&newsk->sk_refcnt, 2);
803
804		/*
805		 * Increment the counter in the same struct proto as the master
806		 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
807		 * is the same as sk->sk_prot->socks, as this field was copied
808		 * with memcpy), same rationale as the first comment in this
809		 * function.
810		 *
811		 * This _changes_ the previous behaviour, where
812		 * tcp_create_openreq_child always was incrementing the
813		 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
814		 * to be taken into account in all callers. -acme
815		 */
816		sk_refcnt_debug_inc(newsk);
817
818		atomic_inc(&tcp_sockets_allocated);
819
820		if (sock_flag(newsk, SOCK_KEEPOPEN))
821			tcp_reset_keepalive_timer(newsk,
822						  keepalive_time_when(newtp));
823		newsk->sk_socket = NULL;
824		newsk->sk_sleep = NULL;
825
826		newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
827		if((newtp->rx_opt.sack_ok = ireq->sack_ok) != 0) {
828			if (sysctl_tcp_fack)
829				newtp->rx_opt.sack_ok |= 2;
830		}
831		newtp->window_clamp = req->window_clamp;
832		newtp->rcv_ssthresh = req->rcv_wnd;
833		newtp->rcv_wnd = req->rcv_wnd;
834		newtp->rx_opt.wscale_ok = ireq->wscale_ok;
835		if (newtp->rx_opt.wscale_ok) {
836			newtp->rx_opt.snd_wscale = ireq->snd_wscale;
837			newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
838		} else {
839			newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
840			newtp->window_clamp = min(newtp->window_clamp, 65535U);
841		}
842		newtp->snd_wnd = ntohs(skb->h.th->window) << newtp->rx_opt.snd_wscale;
843		newtp->max_window = newtp->snd_wnd;
844
845		if (newtp->rx_opt.tstamp_ok) {
846			newtp->rx_opt.ts_recent = req->ts_recent;
847			newtp->rx_opt.ts_recent_stamp = xtime.tv_sec;
848			newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
849		} else {
850			newtp->rx_opt.ts_recent_stamp = 0;
851			newtp->tcp_header_len = sizeof(struct tcphdr);
852		}
853		if (skb->len >= TCP_MIN_RCVMSS+newtp->tcp_header_len)
854			newtp->ack.last_seg_size = skb->len-newtp->tcp_header_len;
855		newtp->rx_opt.mss_clamp = req->mss;
856		TCP_ECN_openreq_child(newtp, req);
857		if (newtp->ecn_flags&TCP_ECN_OK)
858			sock_set_flag(newsk, SOCK_NO_LARGESEND);
859
860		TCP_INC_STATS_BH(TCP_MIB_PASSIVEOPENS);
861	}
862	return newsk;
863}
864
865/*
866 *	Process an incoming packet for SYN_RECV sockets represented
867 *	as a request_sock.
868 */
869
870struct sock *tcp_check_req(struct sock *sk,struct sk_buff *skb,
871			   struct request_sock *req,
872			   struct request_sock **prev)
873{
874	struct tcphdr *th = skb->h.th;
875	struct tcp_sock *tp = tcp_sk(sk);
876	u32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
877	int paws_reject = 0;
878	struct tcp_options_received tmp_opt;
879	struct sock *child;
880
881	tmp_opt.saw_tstamp = 0;
882	if (th->doff > (sizeof(struct tcphdr)>>2)) {
883		tcp_parse_options(skb, &tmp_opt, 0);
884
885		if (tmp_opt.saw_tstamp) {
886			tmp_opt.ts_recent = req->ts_recent;
887			/* We do not store true stamp, but it is not required,
888			 * it can be estimated (approximately)
889			 * from another data.
890			 */
891			tmp_opt.ts_recent_stamp = xtime.tv_sec - ((TCP_TIMEOUT_INIT/HZ)<<req->retrans);
892			paws_reject = tcp_paws_check(&tmp_opt, th->rst);
893		}
894	}
895
896	/* Check for pure retransmitted SYN. */
897	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
898	    flg == TCP_FLAG_SYN &&
899	    !paws_reject) {
900		/*
901		 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
902		 * this case on figure 6 and figure 8, but formal
903		 * protocol description says NOTHING.
904		 * To be more exact, it says that we should send ACK,
905		 * because this segment (at least, if it has no data)
906		 * is out of window.
907		 *
908		 *  CONCLUSION: RFC793 (even with RFC1122) DOES NOT
909		 *  describe SYN-RECV state. All the description
910		 *  is wrong, we cannot believe to it and should
911		 *  rely only on common sense and implementation
912		 *  experience.
913		 *
914		 * Enforce "SYN-ACK" according to figure 8, figure 6
915		 * of RFC793, fixed by RFC1122.
916		 */
917		req->rsk_ops->rtx_syn_ack(sk, req, NULL);
918		return NULL;
919	}
920
921	/* Further reproduces section "SEGMENT ARRIVES"
922	   for state SYN-RECEIVED of RFC793.
923	   It is broken, however, it does not work only
924	   when SYNs are crossed.
925
926	   You would think that SYN crossing is impossible here, since
927	   we should have a SYN_SENT socket (from connect()) on our end,
928	   but this is not true if the crossed SYNs were sent to both
929	   ends by a malicious third party.  We must defend against this,
930	   and to do that we first verify the ACK (as per RFC793, page
931	   36) and reset if it is invalid.  Is this a true full defense?
932	   To convince ourselves, let us consider a way in which the ACK
933	   test can still pass in this 'malicious crossed SYNs' case.
934	   Malicious sender sends identical SYNs (and thus identical sequence
935	   numbers) to both A and B:
936
937		A: gets SYN, seq=7
938		B: gets SYN, seq=7
939
940	   By our good fortune, both A and B select the same initial
941	   send sequence number of seven :-)
942
943		A: sends SYN|ACK, seq=7, ack_seq=8
944		B: sends SYN|ACK, seq=7, ack_seq=8
945
946	   So we are now A eating this SYN|ACK, ACK test passes.  So
947	   does sequence test, SYN is truncated, and thus we consider
948	   it a bare ACK.
949
950	   If tp->defer_accept, we silently drop this bare ACK.  Otherwise,
951	   we create an established connection.  Both ends (listening sockets)
952	   accept the new incoming connection and try to talk to each other. 8-)
953
954	   Note: This case is both harmless, and rare.  Possibility is about the
955	   same as us discovering intelligent life on another plant tomorrow.
956
957	   But generally, we should (RFC lies!) to accept ACK
958	   from SYNACK both here and in tcp_rcv_state_process().
959	   tcp_rcv_state_process() does not, hence, we do not too.
960
961	   Note that the case is absolutely generic:
962	   we cannot optimize anything here without
963	   violating protocol. All the checks must be made
964	   before attempt to create socket.
965	 */
966
967	/* RFC793 page 36: "If the connection is in any non-synchronized state ...
968	 *                  and the incoming segment acknowledges something not yet
969	 *                  sent (the segment carries an unaccaptable ACK) ...
970	 *                  a reset is sent."
971	 *
972	 * Invalid ACK: reset will be sent by listening socket
973	 */
974	if ((flg & TCP_FLAG_ACK) &&
975	    (TCP_SKB_CB(skb)->ack_seq != tcp_rsk(req)->snt_isn + 1))
976		return sk;
977
978	/* Also, it would be not so bad idea to check rcv_tsecr, which
979	 * is essentially ACK extension and too early or too late values
980	 * should cause reset in unsynchronized states.
981	 */
982
983	/* RFC793: "first check sequence number". */
984
985	if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
986					  tcp_rsk(req)->rcv_isn + 1, tcp_rsk(req)->rcv_isn + 1 + req->rcv_wnd)) {
987		/* Out of window: send ACK and drop. */
988		if (!(flg & TCP_FLAG_RST))
989			req->rsk_ops->send_ack(skb, req);
990		if (paws_reject)
991			NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
992		return NULL;
993	}
994
995	/* In sequence, PAWS is OK. */
996
997	if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_isn + 1))
998			req->ts_recent = tmp_opt.rcv_tsval;
999
1000		if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
1001			/* Truncate SYN, it is out of window starting
1002			   at tcp_rsk(req)->rcv_isn + 1. */
1003			flg &= ~TCP_FLAG_SYN;
1004		}
1005
1006		/* RFC793: "second check the RST bit" and
1007		 *	   "fourth, check the SYN bit"
1008		 */
1009		if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN))
1010			goto embryonic_reset;
1011
1012		/* ACK sequence verified above, just make sure ACK is
1013		 * set.  If ACK not set, just silently drop the packet.
1014		 */
1015		if (!(flg & TCP_FLAG_ACK))
1016			return NULL;
1017
1018		/* If TCP_DEFER_ACCEPT is set, drop bare ACK. */
1019		if (tp->defer_accept && TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
1020			inet_rsk(req)->acked = 1;
1021			return NULL;
1022		}
1023
1024		/* OK, ACK is valid, create big socket and
1025		 * feed this segment to it. It will repeat all
1026		 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
1027		 * ESTABLISHED STATE. If it will be dropped after
1028		 * socket is created, wait for troubles.
1029		 */
1030		child = tp->af_specific->syn_recv_sock(sk, skb, req, NULL);
1031		if (child == NULL)
1032			goto listen_overflow;
1033
1034		tcp_synq_unlink(tp, req, prev);
1035		tcp_synq_removed(sk, req);
1036
1037		tcp_acceptq_queue(sk, req, child);
1038		return child;
1039
1040	listen_overflow:
1041		if (!sysctl_tcp_abort_on_overflow) {
1042			inet_rsk(req)->acked = 1;
1043			return NULL;
1044		}
1045
1046	embryonic_reset:
1047		NET_INC_STATS_BH(LINUX_MIB_EMBRYONICRSTS);
1048		if (!(flg & TCP_FLAG_RST))
1049			req->rsk_ops->send_reset(skb);
1050
1051		tcp_synq_drop(sk, req, prev);
1052		return NULL;
1053}
1054
1055/*
1056 * Queue segment on the new socket if the new socket is active,
1057 * otherwise we just shortcircuit this and continue with
1058 * the new socket.
1059 */
1060
1061int tcp_child_process(struct sock *parent, struct sock *child,
1062		      struct sk_buff *skb)
1063{
1064	int ret = 0;
1065	int state = child->sk_state;
1066
1067	if (!sock_owned_by_user(child)) {
1068		ret = tcp_rcv_state_process(child, skb, skb->h.th, skb->len);
1069
1070		/* Wakeup parent, send SIGIO */
1071		if (state == TCP_SYN_RECV && child->sk_state != state)
1072			parent->sk_data_ready(parent, 0);
1073	} else {
1074		/* Alas, it is possible again, because we do lookup
1075		 * in main socket hash table and lock on listening
1076		 * socket does not protect us more.
1077		 */
1078		sk_add_backlog(child, skb);
1079	}
1080
1081	bh_unlock_sock(child);
1082	sock_put(child);
1083	return ret;
1084}
1085
1086EXPORT_SYMBOL(tcp_check_req);
1087EXPORT_SYMBOL(tcp_child_process);
1088EXPORT_SYMBOL(tcp_create_openreq_child);
1089EXPORT_SYMBOL(tcp_timewait_state_process);
1090EXPORT_SYMBOL(tcp_tw_deschedule);
1091