tcp_minisocks.c revision 81166dd6fa8eb780b2132d32fbc77eb6ac04e44e
1/*
2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
3 *		operating system.  INET is implemented using the  BSD Socket
4 *		interface as the means of communication with the user level.
5 *
6 *		Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors:	Ross Biro
9 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12 *		Florian La Roche, <flla@stud.uni-sb.de>
13 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16 *		Matthew Dillon, <dillon@apollo.west.oic.com>
17 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 *		Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21#include <linux/mm.h>
22#include <linux/module.h>
23#include <linux/slab.h>
24#include <linux/sysctl.h>
25#include <linux/workqueue.h>
26#include <net/tcp.h>
27#include <net/inet_common.h>
28#include <net/xfrm.h>
29
30int sysctl_tcp_syncookies __read_mostly = 1;
31EXPORT_SYMBOL(sysctl_tcp_syncookies);
32
33int sysctl_tcp_abort_on_overflow __read_mostly;
34
35struct inet_timewait_death_row tcp_death_row = {
36	.sysctl_max_tw_buckets = NR_FILE * 2,
37	.period		= TCP_TIMEWAIT_LEN / INET_TWDR_TWKILL_SLOTS,
38	.death_lock	= __SPIN_LOCK_UNLOCKED(tcp_death_row.death_lock),
39	.hashinfo	= &tcp_hashinfo,
40	.tw_timer	= TIMER_INITIALIZER(inet_twdr_hangman, 0,
41					    (unsigned long)&tcp_death_row),
42	.twkill_work	= __WORK_INITIALIZER(tcp_death_row.twkill_work,
43					     inet_twdr_twkill_work),
44/* Short-time timewait calendar */
45
46	.twcal_hand	= -1,
47	.twcal_timer	= TIMER_INITIALIZER(inet_twdr_twcal_tick, 0,
48					    (unsigned long)&tcp_death_row),
49};
50EXPORT_SYMBOL_GPL(tcp_death_row);
51
52static bool tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
53{
54	if (seq == s_win)
55		return true;
56	if (after(end_seq, s_win) && before(seq, e_win))
57		return true;
58	return seq == e_win && seq == end_seq;
59}
60
61/*
62 * * Main purpose of TIME-WAIT state is to close connection gracefully,
63 *   when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
64 *   (and, probably, tail of data) and one or more our ACKs are lost.
65 * * What is TIME-WAIT timeout? It is associated with maximal packet
66 *   lifetime in the internet, which results in wrong conclusion, that
67 *   it is set to catch "old duplicate segments" wandering out of their path.
68 *   It is not quite correct. This timeout is calculated so that it exceeds
69 *   maximal retransmission timeout enough to allow to lose one (or more)
70 *   segments sent by peer and our ACKs. This time may be calculated from RTO.
71 * * When TIME-WAIT socket receives RST, it means that another end
72 *   finally closed and we are allowed to kill TIME-WAIT too.
73 * * Second purpose of TIME-WAIT is catching old duplicate segments.
74 *   Well, certainly it is pure paranoia, but if we load TIME-WAIT
75 *   with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
76 * * If we invented some more clever way to catch duplicates
77 *   (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
78 *
79 * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
80 * When you compare it to RFCs, please, read section SEGMENT ARRIVES
81 * from the very beginning.
82 *
83 * NOTE. With recycling (and later with fin-wait-2) TW bucket
84 * is _not_ stateless. It means, that strictly speaking we must
85 * spinlock it. I do not want! Well, probability of misbehaviour
86 * is ridiculously low and, seems, we could use some mb() tricks
87 * to avoid misread sequence numbers, states etc.  --ANK
88 */
89enum tcp_tw_status
90tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
91			   const struct tcphdr *th)
92{
93	struct tcp_options_received tmp_opt;
94	const u8 *hash_location;
95	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
96	bool paws_reject = false;
97
98	tmp_opt.saw_tstamp = 0;
99	if (th->doff > (sizeof(*th) >> 2) && tcptw->tw_ts_recent_stamp) {
100		tcp_parse_options(skb, &tmp_opt, &hash_location, 0);
101
102		if (tmp_opt.saw_tstamp) {
103			tmp_opt.ts_recent	= tcptw->tw_ts_recent;
104			tmp_opt.ts_recent_stamp	= tcptw->tw_ts_recent_stamp;
105			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
106		}
107	}
108
109	if (tw->tw_substate == TCP_FIN_WAIT2) {
110		/* Just repeat all the checks of tcp_rcv_state_process() */
111
112		/* Out of window, send ACK */
113		if (paws_reject ||
114		    !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
115				   tcptw->tw_rcv_nxt,
116				   tcptw->tw_rcv_nxt + tcptw->tw_rcv_wnd))
117			return TCP_TW_ACK;
118
119		if (th->rst)
120			goto kill;
121
122		if (th->syn && !before(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt))
123			goto kill_with_rst;
124
125		/* Dup ACK? */
126		if (!th->ack ||
127		    !after(TCP_SKB_CB(skb)->end_seq, tcptw->tw_rcv_nxt) ||
128		    TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
129			inet_twsk_put(tw);
130			return TCP_TW_SUCCESS;
131		}
132
133		/* New data or FIN. If new data arrive after half-duplex close,
134		 * reset.
135		 */
136		if (!th->fin ||
137		    TCP_SKB_CB(skb)->end_seq != tcptw->tw_rcv_nxt + 1) {
138kill_with_rst:
139			inet_twsk_deschedule(tw, &tcp_death_row);
140			inet_twsk_put(tw);
141			return TCP_TW_RST;
142		}
143
144		/* FIN arrived, enter true time-wait state. */
145		tw->tw_substate	  = TCP_TIME_WAIT;
146		tcptw->tw_rcv_nxt = TCP_SKB_CB(skb)->end_seq;
147		if (tmp_opt.saw_tstamp) {
148			tcptw->tw_ts_recent_stamp = get_seconds();
149			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
150		}
151
152		if (tcp_death_row.sysctl_tw_recycle &&
153		    tcptw->tw_ts_recent_stamp &&
154		    tcp_tw_remember_stamp(tw))
155			inet_twsk_schedule(tw, &tcp_death_row, tw->tw_timeout,
156					   TCP_TIMEWAIT_LEN);
157		else
158			inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
159					   TCP_TIMEWAIT_LEN);
160		return TCP_TW_ACK;
161	}
162
163	/*
164	 *	Now real TIME-WAIT state.
165	 *
166	 *	RFC 1122:
167	 *	"When a connection is [...] on TIME-WAIT state [...]
168	 *	[a TCP] MAY accept a new SYN from the remote TCP to
169	 *	reopen the connection directly, if it:
170	 *
171	 *	(1)  assigns its initial sequence number for the new
172	 *	connection to be larger than the largest sequence
173	 *	number it used on the previous connection incarnation,
174	 *	and
175	 *
176	 *	(2)  returns to TIME-WAIT state if the SYN turns out
177	 *	to be an old duplicate".
178	 */
179
180	if (!paws_reject &&
181	    (TCP_SKB_CB(skb)->seq == tcptw->tw_rcv_nxt &&
182	     (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
183		/* In window segment, it may be only reset or bare ack. */
184
185		if (th->rst) {
186			/* This is TIME_WAIT assassination, in two flavors.
187			 * Oh well... nobody has a sufficient solution to this
188			 * protocol bug yet.
189			 */
190			if (sysctl_tcp_rfc1337 == 0) {
191kill:
192				inet_twsk_deschedule(tw, &tcp_death_row);
193				inet_twsk_put(tw);
194				return TCP_TW_SUCCESS;
195			}
196		}
197		inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
198				   TCP_TIMEWAIT_LEN);
199
200		if (tmp_opt.saw_tstamp) {
201			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
202			tcptw->tw_ts_recent_stamp = get_seconds();
203		}
204
205		inet_twsk_put(tw);
206		return TCP_TW_SUCCESS;
207	}
208
209	/* Out of window segment.
210
211	   All the segments are ACKed immediately.
212
213	   The only exception is new SYN. We accept it, if it is
214	   not old duplicate and we are not in danger to be killed
215	   by delayed old duplicates. RFC check is that it has
216	   newer sequence number works at rates <40Mbit/sec.
217	   However, if paws works, it is reliable AND even more,
218	   we even may relax silly seq space cutoff.
219
220	   RED-PEN: we violate main RFC requirement, if this SYN will appear
221	   old duplicate (i.e. we receive RST in reply to SYN-ACK),
222	   we must return socket to time-wait state. It is not good,
223	   but not fatal yet.
224	 */
225
226	if (th->syn && !th->rst && !th->ack && !paws_reject &&
227	    (after(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt) ||
228	     (tmp_opt.saw_tstamp &&
229	      (s32)(tcptw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) {
230		u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
231		if (isn == 0)
232			isn++;
233		TCP_SKB_CB(skb)->when = isn;
234		return TCP_TW_SYN;
235	}
236
237	if (paws_reject)
238		NET_INC_STATS_BH(twsk_net(tw), LINUX_MIB_PAWSESTABREJECTED);
239
240	if (!th->rst) {
241		/* In this case we must reset the TIMEWAIT timer.
242		 *
243		 * If it is ACKless SYN it may be both old duplicate
244		 * and new good SYN with random sequence number <rcv_nxt.
245		 * Do not reschedule in the last case.
246		 */
247		if (paws_reject || th->ack)
248			inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
249					   TCP_TIMEWAIT_LEN);
250
251		/* Send ACK. Note, we do not put the bucket,
252		 * it will be released by caller.
253		 */
254		return TCP_TW_ACK;
255	}
256	inet_twsk_put(tw);
257	return TCP_TW_SUCCESS;
258}
259EXPORT_SYMBOL(tcp_timewait_state_process);
260
261/*
262 * Move a socket to time-wait or dead fin-wait-2 state.
263 */
264void tcp_time_wait(struct sock *sk, int state, int timeo)
265{
266	struct inet_timewait_sock *tw = NULL;
267	const struct inet_connection_sock *icsk = inet_csk(sk);
268	const struct tcp_sock *tp = tcp_sk(sk);
269	bool recycle_ok = false;
270	bool recycle_on = false;
271
272	if (tcp_death_row.sysctl_tw_recycle && tp->rx_opt.ts_recent_stamp) {
273		recycle_ok = tcp_remember_stamp(sk);
274		recycle_on = true;
275	}
276
277	if (tcp_death_row.tw_count < tcp_death_row.sysctl_max_tw_buckets)
278		tw = inet_twsk_alloc(sk, state);
279
280	if (tw != NULL) {
281		struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
282		const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
283		struct inet_sock *inet = inet_sk(sk);
284		struct inet_peer *peer = NULL;
285
286		tw->tw_transparent	= inet->transparent;
287		tw->tw_rcv_wscale	= tp->rx_opt.rcv_wscale;
288		tcptw->tw_rcv_nxt	= tp->rcv_nxt;
289		tcptw->tw_snd_nxt	= tp->snd_nxt;
290		tcptw->tw_rcv_wnd	= tcp_receive_window(tp);
291		tcptw->tw_ts_recent	= tp->rx_opt.ts_recent;
292		tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
293
294#if IS_ENABLED(CONFIG_IPV6)
295		if (tw->tw_family == PF_INET6) {
296			struct ipv6_pinfo *np = inet6_sk(sk);
297			struct inet6_timewait_sock *tw6;
298
299			tw->tw_ipv6_offset = inet6_tw_offset(sk->sk_prot);
300			tw6 = inet6_twsk((struct sock *)tw);
301			tw6->tw_v6_daddr = np->daddr;
302			tw6->tw_v6_rcv_saddr = np->rcv_saddr;
303			tw->tw_tclass = np->tclass;
304			tw->tw_ipv6only = np->ipv6only;
305		}
306#endif
307
308		if (recycle_on)
309			peer = icsk->icsk_af_ops->get_peer(sk);
310		tcptw->tw_peer = peer;
311		if (peer)
312			atomic_inc(&peer->refcnt);
313
314#ifdef CONFIG_TCP_MD5SIG
315		/*
316		 * The timewait bucket does not have the key DB from the
317		 * sock structure. We just make a quick copy of the
318		 * md5 key being used (if indeed we are using one)
319		 * so the timewait ack generating code has the key.
320		 */
321		do {
322			struct tcp_md5sig_key *key;
323			tcptw->tw_md5_key = NULL;
324			key = tp->af_specific->md5_lookup(sk, sk);
325			if (key != NULL) {
326				tcptw->tw_md5_key = kmemdup(key, sizeof(*key), GFP_ATOMIC);
327				if (tcptw->tw_md5_key && tcp_alloc_md5sig_pool(sk) == NULL)
328					BUG();
329			}
330		} while (0);
331#endif
332
333		/* Linkage updates. */
334		__inet_twsk_hashdance(tw, sk, &tcp_hashinfo);
335
336		/* Get the TIME_WAIT timeout firing. */
337		if (timeo < rto)
338			timeo = rto;
339
340		if (recycle_ok) {
341			tw->tw_timeout = rto;
342		} else {
343			tw->tw_timeout = TCP_TIMEWAIT_LEN;
344			if (state == TCP_TIME_WAIT)
345				timeo = TCP_TIMEWAIT_LEN;
346		}
347
348		inet_twsk_schedule(tw, &tcp_death_row, timeo,
349				   TCP_TIMEWAIT_LEN);
350		inet_twsk_put(tw);
351	} else {
352		/* Sorry, if we're out of memory, just CLOSE this
353		 * socket up.  We've got bigger problems than
354		 * non-graceful socket closings.
355		 */
356		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPTIMEWAITOVERFLOW);
357	}
358
359	tcp_update_metrics(sk);
360	tcp_done(sk);
361}
362
363void tcp_twsk_destructor(struct sock *sk)
364{
365	struct tcp_timewait_sock *twsk = tcp_twsk(sk);
366
367	if (twsk->tw_peer)
368		inet_putpeer(twsk->tw_peer);
369#ifdef CONFIG_TCP_MD5SIG
370	if (twsk->tw_md5_key) {
371		tcp_free_md5sig_pool();
372		kfree_rcu(twsk->tw_md5_key, rcu);
373	}
374#endif
375}
376EXPORT_SYMBOL_GPL(tcp_twsk_destructor);
377
378static inline void TCP_ECN_openreq_child(struct tcp_sock *tp,
379					 struct request_sock *req)
380{
381	tp->ecn_flags = inet_rsk(req)->ecn_ok ? TCP_ECN_OK : 0;
382}
383
384/* This is not only more efficient than what we used to do, it eliminates
385 * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
386 *
387 * Actually, we could lots of memory writes here. tp of listening
388 * socket contains all necessary default parameters.
389 */
390struct sock *tcp_create_openreq_child(struct sock *sk, struct request_sock *req, struct sk_buff *skb)
391{
392	struct sock *newsk = inet_csk_clone_lock(sk, req, GFP_ATOMIC);
393
394	if (newsk != NULL) {
395		const struct inet_request_sock *ireq = inet_rsk(req);
396		struct tcp_request_sock *treq = tcp_rsk(req);
397		struct inet_connection_sock *newicsk = inet_csk(newsk);
398		struct tcp_sock *newtp = tcp_sk(newsk);
399		struct tcp_sock *oldtp = tcp_sk(sk);
400		struct tcp_cookie_values *oldcvp = oldtp->cookie_values;
401
402		newsk->sk_rx_dst = dst_clone(skb_dst(skb));
403
404		/* TCP Cookie Transactions require space for the cookie pair,
405		 * as it differs for each connection.  There is no need to
406		 * copy any s_data_payload stored at the original socket.
407		 * Failure will prevent resuming the connection.
408		 *
409		 * Presumed copied, in order of appearance:
410		 *	cookie_in_always, cookie_out_never
411		 */
412		if (oldcvp != NULL) {
413			struct tcp_cookie_values *newcvp =
414				kzalloc(sizeof(*newtp->cookie_values),
415					GFP_ATOMIC);
416
417			if (newcvp != NULL) {
418				kref_init(&newcvp->kref);
419				newcvp->cookie_desired =
420						oldcvp->cookie_desired;
421				newtp->cookie_values = newcvp;
422			} else {
423				/* Not Yet Implemented */
424				newtp->cookie_values = NULL;
425			}
426		}
427
428		/* Now setup tcp_sock */
429		newtp->pred_flags = 0;
430
431		newtp->rcv_wup = newtp->copied_seq =
432		newtp->rcv_nxt = treq->rcv_isn + 1;
433
434		newtp->snd_sml = newtp->snd_una =
435		newtp->snd_nxt = newtp->snd_up =
436			treq->snt_isn + 1 + tcp_s_data_size(oldtp);
437
438		tcp_prequeue_init(newtp);
439
440		tcp_init_wl(newtp, treq->rcv_isn);
441
442		newtp->srtt = 0;
443		newtp->mdev = TCP_TIMEOUT_INIT;
444		newicsk->icsk_rto = TCP_TIMEOUT_INIT;
445
446		newtp->packets_out = 0;
447		newtp->retrans_out = 0;
448		newtp->sacked_out = 0;
449		newtp->fackets_out = 0;
450		newtp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
451		tcp_enable_early_retrans(newtp);
452
453		/* So many TCP implementations out there (incorrectly) count the
454		 * initial SYN frame in their delayed-ACK and congestion control
455		 * algorithms that we must have the following bandaid to talk
456		 * efficiently to them.  -DaveM
457		 */
458		newtp->snd_cwnd = TCP_INIT_CWND;
459		newtp->snd_cwnd_cnt = 0;
460		newtp->bytes_acked = 0;
461
462		newtp->frto_counter = 0;
463		newtp->frto_highmark = 0;
464
465		if (newicsk->icsk_ca_ops != &tcp_init_congestion_ops &&
466		    !try_module_get(newicsk->icsk_ca_ops->owner))
467			newicsk->icsk_ca_ops = &tcp_init_congestion_ops;
468
469		tcp_set_ca_state(newsk, TCP_CA_Open);
470		tcp_init_xmit_timers(newsk);
471		skb_queue_head_init(&newtp->out_of_order_queue);
472		newtp->write_seq = newtp->pushed_seq =
473			treq->snt_isn + 1 + tcp_s_data_size(oldtp);
474
475		newtp->rx_opt.saw_tstamp = 0;
476
477		newtp->rx_opt.dsack = 0;
478		newtp->rx_opt.num_sacks = 0;
479
480		newtp->urg_data = 0;
481
482		if (sock_flag(newsk, SOCK_KEEPOPEN))
483			inet_csk_reset_keepalive_timer(newsk,
484						       keepalive_time_when(newtp));
485
486		newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
487		if ((newtp->rx_opt.sack_ok = ireq->sack_ok) != 0) {
488			if (sysctl_tcp_fack)
489				tcp_enable_fack(newtp);
490		}
491		newtp->window_clamp = req->window_clamp;
492		newtp->rcv_ssthresh = req->rcv_wnd;
493		newtp->rcv_wnd = req->rcv_wnd;
494		newtp->rx_opt.wscale_ok = ireq->wscale_ok;
495		if (newtp->rx_opt.wscale_ok) {
496			newtp->rx_opt.snd_wscale = ireq->snd_wscale;
497			newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
498		} else {
499			newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
500			newtp->window_clamp = min(newtp->window_clamp, 65535U);
501		}
502		newtp->snd_wnd = (ntohs(tcp_hdr(skb)->window) <<
503				  newtp->rx_opt.snd_wscale);
504		newtp->max_window = newtp->snd_wnd;
505
506		if (newtp->rx_opt.tstamp_ok) {
507			newtp->rx_opt.ts_recent = req->ts_recent;
508			newtp->rx_opt.ts_recent_stamp = get_seconds();
509			newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
510		} else {
511			newtp->rx_opt.ts_recent_stamp = 0;
512			newtp->tcp_header_len = sizeof(struct tcphdr);
513		}
514#ifdef CONFIG_TCP_MD5SIG
515		newtp->md5sig_info = NULL;	/*XXX*/
516		if (newtp->af_specific->md5_lookup(sk, newsk))
517			newtp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
518#endif
519		if (skb->len >= TCP_MSS_DEFAULT + newtp->tcp_header_len)
520			newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
521		newtp->rx_opt.mss_clamp = req->mss;
522		TCP_ECN_openreq_child(newtp, req);
523
524		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_PASSIVEOPENS);
525	}
526	return newsk;
527}
528EXPORT_SYMBOL(tcp_create_openreq_child);
529
530/*
531 *	Process an incoming packet for SYN_RECV sockets represented
532 *	as a request_sock.
533 */
534
535struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
536			   struct request_sock *req,
537			   struct request_sock **prev)
538{
539	struct tcp_options_received tmp_opt;
540	const u8 *hash_location;
541	struct sock *child;
542	const struct tcphdr *th = tcp_hdr(skb);
543	__be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
544	bool paws_reject = false;
545
546	tmp_opt.saw_tstamp = 0;
547	if (th->doff > (sizeof(struct tcphdr)>>2)) {
548		tcp_parse_options(skb, &tmp_opt, &hash_location, 0);
549
550		if (tmp_opt.saw_tstamp) {
551			tmp_opt.ts_recent = req->ts_recent;
552			/* We do not store true stamp, but it is not required,
553			 * it can be estimated (approximately)
554			 * from another data.
555			 */
556			tmp_opt.ts_recent_stamp = get_seconds() - ((TCP_TIMEOUT_INIT/HZ)<<req->retrans);
557			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
558		}
559	}
560
561	/* Check for pure retransmitted SYN. */
562	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
563	    flg == TCP_FLAG_SYN &&
564	    !paws_reject) {
565		/*
566		 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
567		 * this case on figure 6 and figure 8, but formal
568		 * protocol description says NOTHING.
569		 * To be more exact, it says that we should send ACK,
570		 * because this segment (at least, if it has no data)
571		 * is out of window.
572		 *
573		 *  CONCLUSION: RFC793 (even with RFC1122) DOES NOT
574		 *  describe SYN-RECV state. All the description
575		 *  is wrong, we cannot believe to it and should
576		 *  rely only on common sense and implementation
577		 *  experience.
578		 *
579		 * Enforce "SYN-ACK" according to figure 8, figure 6
580		 * of RFC793, fixed by RFC1122.
581		 */
582		req->rsk_ops->rtx_syn_ack(sk, req, NULL);
583		return NULL;
584	}
585
586	/* Further reproduces section "SEGMENT ARRIVES"
587	   for state SYN-RECEIVED of RFC793.
588	   It is broken, however, it does not work only
589	   when SYNs are crossed.
590
591	   You would think that SYN crossing is impossible here, since
592	   we should have a SYN_SENT socket (from connect()) on our end,
593	   but this is not true if the crossed SYNs were sent to both
594	   ends by a malicious third party.  We must defend against this,
595	   and to do that we first verify the ACK (as per RFC793, page
596	   36) and reset if it is invalid.  Is this a true full defense?
597	   To convince ourselves, let us consider a way in which the ACK
598	   test can still pass in this 'malicious crossed SYNs' case.
599	   Malicious sender sends identical SYNs (and thus identical sequence
600	   numbers) to both A and B:
601
602		A: gets SYN, seq=7
603		B: gets SYN, seq=7
604
605	   By our good fortune, both A and B select the same initial
606	   send sequence number of seven :-)
607
608		A: sends SYN|ACK, seq=7, ack_seq=8
609		B: sends SYN|ACK, seq=7, ack_seq=8
610
611	   So we are now A eating this SYN|ACK, ACK test passes.  So
612	   does sequence test, SYN is truncated, and thus we consider
613	   it a bare ACK.
614
615	   If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
616	   bare ACK.  Otherwise, we create an established connection.  Both
617	   ends (listening sockets) accept the new incoming connection and try
618	   to talk to each other. 8-)
619
620	   Note: This case is both harmless, and rare.  Possibility is about the
621	   same as us discovering intelligent life on another plant tomorrow.
622
623	   But generally, we should (RFC lies!) to accept ACK
624	   from SYNACK both here and in tcp_rcv_state_process().
625	   tcp_rcv_state_process() does not, hence, we do not too.
626
627	   Note that the case is absolutely generic:
628	   we cannot optimize anything here without
629	   violating protocol. All the checks must be made
630	   before attempt to create socket.
631	 */
632
633	/* RFC793 page 36: "If the connection is in any non-synchronized state ...
634	 *                  and the incoming segment acknowledges something not yet
635	 *                  sent (the segment carries an unacceptable ACK) ...
636	 *                  a reset is sent."
637	 *
638	 * Invalid ACK: reset will be sent by listening socket
639	 */
640	if ((flg & TCP_FLAG_ACK) &&
641	    (TCP_SKB_CB(skb)->ack_seq !=
642	     tcp_rsk(req)->snt_isn + 1 + tcp_s_data_size(tcp_sk(sk))))
643		return sk;
644
645	/* Also, it would be not so bad idea to check rcv_tsecr, which
646	 * is essentially ACK extension and too early or too late values
647	 * should cause reset in unsynchronized states.
648	 */
649
650	/* RFC793: "first check sequence number". */
651
652	if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
653					  tcp_rsk(req)->rcv_isn + 1, tcp_rsk(req)->rcv_isn + 1 + req->rcv_wnd)) {
654		/* Out of window: send ACK and drop. */
655		if (!(flg & TCP_FLAG_RST))
656			req->rsk_ops->send_ack(sk, skb, req);
657		if (paws_reject)
658			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
659		return NULL;
660	}
661
662	/* In sequence, PAWS is OK. */
663
664	if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_isn + 1))
665		req->ts_recent = tmp_opt.rcv_tsval;
666
667	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
668		/* Truncate SYN, it is out of window starting
669		   at tcp_rsk(req)->rcv_isn + 1. */
670		flg &= ~TCP_FLAG_SYN;
671	}
672
673	/* RFC793: "second check the RST bit" and
674	 *	   "fourth, check the SYN bit"
675	 */
676	if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
677		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
678		goto embryonic_reset;
679	}
680
681	/* ACK sequence verified above, just make sure ACK is
682	 * set.  If ACK not set, just silently drop the packet.
683	 */
684	if (!(flg & TCP_FLAG_ACK))
685		return NULL;
686
687	/* While TCP_DEFER_ACCEPT is active, drop bare ACK. */
688	if (req->retrans < inet_csk(sk)->icsk_accept_queue.rskq_defer_accept &&
689	    TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
690		inet_rsk(req)->acked = 1;
691		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDEFERACCEPTDROP);
692		return NULL;
693	}
694	if (tmp_opt.saw_tstamp && tmp_opt.rcv_tsecr)
695		tcp_rsk(req)->snt_synack = tmp_opt.rcv_tsecr;
696	else if (req->retrans) /* don't take RTT sample if retrans && ~TS */
697		tcp_rsk(req)->snt_synack = 0;
698
699	/* OK, ACK is valid, create big socket and
700	 * feed this segment to it. It will repeat all
701	 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
702	 * ESTABLISHED STATE. If it will be dropped after
703	 * socket is created, wait for troubles.
704	 */
705	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL);
706	if (child == NULL)
707		goto listen_overflow;
708
709	inet_csk_reqsk_queue_unlink(sk, req, prev);
710	inet_csk_reqsk_queue_removed(sk, req);
711
712	inet_csk_reqsk_queue_add(sk, req, child);
713	return child;
714
715listen_overflow:
716	if (!sysctl_tcp_abort_on_overflow) {
717		inet_rsk(req)->acked = 1;
718		return NULL;
719	}
720
721embryonic_reset:
722	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_EMBRYONICRSTS);
723	if (!(flg & TCP_FLAG_RST))
724		req->rsk_ops->send_reset(sk, skb);
725
726	inet_csk_reqsk_queue_drop(sk, req, prev);
727	return NULL;
728}
729EXPORT_SYMBOL(tcp_check_req);
730
731/*
732 * Queue segment on the new socket if the new socket is active,
733 * otherwise we just shortcircuit this and continue with
734 * the new socket.
735 */
736
737int tcp_child_process(struct sock *parent, struct sock *child,
738		      struct sk_buff *skb)
739{
740	int ret = 0;
741	int state = child->sk_state;
742
743	if (!sock_owned_by_user(child)) {
744		ret = tcp_rcv_state_process(child, skb, tcp_hdr(skb),
745					    skb->len);
746		/* Wakeup parent, send SIGIO */
747		if (state == TCP_SYN_RECV && child->sk_state != state)
748			parent->sk_data_ready(parent, 0);
749	} else {
750		/* Alas, it is possible again, because we do lookup
751		 * in main socket hash table and lock on listening
752		 * socket does not protect us more.
753		 */
754		__sk_add_backlog(child, skb);
755	}
756
757	bh_unlock_sock(child);
758	sock_put(child);
759	return ret;
760}
761EXPORT_SYMBOL(tcp_child_process);
762