tcp_minisocks.c revision 8292a17a399ffb7c5c8b083db4ad994e090055f7
1/*
2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
3 *		operating system.  INET is implemented using the  BSD Socket
4 *		interface as the means of communication with the user level.
5 *
6 *		Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Version:	$Id: tcp_minisocks.c,v 1.15 2002/02/01 22:01:04 davem Exp $
9 *
10 * Authors:	Ross Biro
11 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14 *		Florian La Roche, <flla@stud.uni-sb.de>
15 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
17 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
18 *		Matthew Dillon, <dillon@apollo.west.oic.com>
19 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 *		Jorge Cwik, <jorge@laser.satlink.net>
21 */
22
23#include <linux/config.h>
24#include <linux/mm.h>
25#include <linux/module.h>
26#include <linux/sysctl.h>
27#include <linux/workqueue.h>
28#include <net/tcp.h>
29#include <net/inet_common.h>
30#include <net/xfrm.h>
31
32#ifdef CONFIG_SYSCTL
33#define SYNC_INIT 0 /* let the user enable it */
34#else
35#define SYNC_INIT 1
36#endif
37
38int sysctl_tcp_syncookies = SYNC_INIT;
39int sysctl_tcp_abort_on_overflow;
40
41struct inet_timewait_death_row tcp_death_row = {
42	.sysctl_max_tw_buckets = NR_FILE * 2,
43	.period		= TCP_TIMEWAIT_LEN / INET_TWDR_TWKILL_SLOTS,
44	.death_lock	= SPIN_LOCK_UNLOCKED,
45	.hashinfo	= &tcp_hashinfo,
46	.tw_timer	= TIMER_INITIALIZER(inet_twdr_hangman, 0,
47					    (unsigned long)&tcp_death_row),
48	.twkill_work	= __WORK_INITIALIZER(tcp_death_row.twkill_work,
49					     inet_twdr_twkill_work,
50					     &tcp_death_row),
51/* Short-time timewait calendar */
52
53	.twcal_hand	= -1,
54	.twcal_timer	= TIMER_INITIALIZER(inet_twdr_twcal_tick, 0,
55					    (unsigned long)&tcp_death_row),
56};
57
58EXPORT_SYMBOL_GPL(tcp_death_row);
59
60static __inline__ int tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
61{
62	if (seq == s_win)
63		return 1;
64	if (after(end_seq, s_win) && before(seq, e_win))
65		return 1;
66	return (seq == e_win && seq == end_seq);
67}
68
69/*
70 * * Main purpose of TIME-WAIT state is to close connection gracefully,
71 *   when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
72 *   (and, probably, tail of data) and one or more our ACKs are lost.
73 * * What is TIME-WAIT timeout? It is associated with maximal packet
74 *   lifetime in the internet, which results in wrong conclusion, that
75 *   it is set to catch "old duplicate segments" wandering out of their path.
76 *   It is not quite correct. This timeout is calculated so that it exceeds
77 *   maximal retransmission timeout enough to allow to lose one (or more)
78 *   segments sent by peer and our ACKs. This time may be calculated from RTO.
79 * * When TIME-WAIT socket receives RST, it means that another end
80 *   finally closed and we are allowed to kill TIME-WAIT too.
81 * * Second purpose of TIME-WAIT is catching old duplicate segments.
82 *   Well, certainly it is pure paranoia, but if we load TIME-WAIT
83 *   with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
84 * * If we invented some more clever way to catch duplicates
85 *   (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
86 *
87 * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
88 * When you compare it to RFCs, please, read section SEGMENT ARRIVES
89 * from the very beginning.
90 *
91 * NOTE. With recycling (and later with fin-wait-2) TW bucket
92 * is _not_ stateless. It means, that strictly speaking we must
93 * spinlock it. I do not want! Well, probability of misbehaviour
94 * is ridiculously low and, seems, we could use some mb() tricks
95 * to avoid misread sequence numbers, states etc.  --ANK
96 */
97enum tcp_tw_status
98tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
99			   const struct tcphdr *th)
100{
101	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
102	struct tcp_options_received tmp_opt;
103	int paws_reject = 0;
104
105	tmp_opt.saw_tstamp = 0;
106	if (th->doff > (sizeof(*th) >> 2) && tcptw->tw_ts_recent_stamp) {
107		tcp_parse_options(skb, &tmp_opt, 0);
108
109		if (tmp_opt.saw_tstamp) {
110			tmp_opt.ts_recent	= tcptw->tw_ts_recent;
111			tmp_opt.ts_recent_stamp	= tcptw->tw_ts_recent_stamp;
112			paws_reject = tcp_paws_check(&tmp_opt, th->rst);
113		}
114	}
115
116	if (tw->tw_substate == TCP_FIN_WAIT2) {
117		/* Just repeat all the checks of tcp_rcv_state_process() */
118
119		/* Out of window, send ACK */
120		if (paws_reject ||
121		    !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
122				   tcptw->tw_rcv_nxt,
123				   tcptw->tw_rcv_nxt + tcptw->tw_rcv_wnd))
124			return TCP_TW_ACK;
125
126		if (th->rst)
127			goto kill;
128
129		if (th->syn && !before(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt))
130			goto kill_with_rst;
131
132		/* Dup ACK? */
133		if (!after(TCP_SKB_CB(skb)->end_seq, tcptw->tw_rcv_nxt) ||
134		    TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
135			inet_twsk_put(tw);
136			return TCP_TW_SUCCESS;
137		}
138
139		/* New data or FIN. If new data arrive after half-duplex close,
140		 * reset.
141		 */
142		if (!th->fin ||
143		    TCP_SKB_CB(skb)->end_seq != tcptw->tw_rcv_nxt + 1) {
144kill_with_rst:
145			inet_twsk_deschedule(tw, &tcp_death_row);
146			inet_twsk_put(tw);
147			return TCP_TW_RST;
148		}
149
150		/* FIN arrived, enter true time-wait state. */
151		tw->tw_substate	  = TCP_TIME_WAIT;
152		tcptw->tw_rcv_nxt = TCP_SKB_CB(skb)->end_seq;
153		if (tmp_opt.saw_tstamp) {
154			tcptw->tw_ts_recent_stamp = xtime.tv_sec;
155			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
156		}
157
158		/* I am shamed, but failed to make it more elegant.
159		 * Yes, it is direct reference to IP, which is impossible
160		 * to generalize to IPv6. Taking into account that IPv6
161		 * do not understand recycling in any case, it not
162		 * a big problem in practice. --ANK */
163		if (tw->tw_family == AF_INET &&
164		    tcp_death_row.sysctl_tw_recycle && tcptw->tw_ts_recent_stamp &&
165		    tcp_v4_tw_remember_stamp(tw))
166			inet_twsk_schedule(tw, &tcp_death_row, tw->tw_timeout,
167					   TCP_TIMEWAIT_LEN);
168		else
169			inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
170					   TCP_TIMEWAIT_LEN);
171		return TCP_TW_ACK;
172	}
173
174	/*
175	 *	Now real TIME-WAIT state.
176	 *
177	 *	RFC 1122:
178	 *	"When a connection is [...] on TIME-WAIT state [...]
179	 *	[a TCP] MAY accept a new SYN from the remote TCP to
180	 *	reopen the connection directly, if it:
181	 *
182	 *	(1)  assigns its initial sequence number for the new
183	 *	connection to be larger than the largest sequence
184	 *	number it used on the previous connection incarnation,
185	 *	and
186	 *
187	 *	(2)  returns to TIME-WAIT state if the SYN turns out
188	 *	to be an old duplicate".
189	 */
190
191	if (!paws_reject &&
192	    (TCP_SKB_CB(skb)->seq == tcptw->tw_rcv_nxt &&
193	     (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
194		/* In window segment, it may be only reset or bare ack. */
195
196		if (th->rst) {
197			/* This is TIME_WAIT assassination, in two flavors.
198			 * Oh well... nobody has a sufficient solution to this
199			 * protocol bug yet.
200			 */
201			if (sysctl_tcp_rfc1337 == 0) {
202kill:
203				inet_twsk_deschedule(tw, &tcp_death_row);
204				inet_twsk_put(tw);
205				return TCP_TW_SUCCESS;
206			}
207		}
208		inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
209				   TCP_TIMEWAIT_LEN);
210
211		if (tmp_opt.saw_tstamp) {
212			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
213			tcptw->tw_ts_recent_stamp = xtime.tv_sec;
214		}
215
216		inet_twsk_put(tw);
217		return TCP_TW_SUCCESS;
218	}
219
220	/* Out of window segment.
221
222	   All the segments are ACKed immediately.
223
224	   The only exception is new SYN. We accept it, if it is
225	   not old duplicate and we are not in danger to be killed
226	   by delayed old duplicates. RFC check is that it has
227	   newer sequence number works at rates <40Mbit/sec.
228	   However, if paws works, it is reliable AND even more,
229	   we even may relax silly seq space cutoff.
230
231	   RED-PEN: we violate main RFC requirement, if this SYN will appear
232	   old duplicate (i.e. we receive RST in reply to SYN-ACK),
233	   we must return socket to time-wait state. It is not good,
234	   but not fatal yet.
235	 */
236
237	if (th->syn && !th->rst && !th->ack && !paws_reject &&
238	    (after(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt) ||
239	     (tmp_opt.saw_tstamp &&
240	      (s32)(tcptw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) {
241		u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
242		if (isn == 0)
243			isn++;
244		TCP_SKB_CB(skb)->when = isn;
245		return TCP_TW_SYN;
246	}
247
248	if (paws_reject)
249		NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
250
251	if(!th->rst) {
252		/* In this case we must reset the TIMEWAIT timer.
253		 *
254		 * If it is ACKless SYN it may be both old duplicate
255		 * and new good SYN with random sequence number <rcv_nxt.
256		 * Do not reschedule in the last case.
257		 */
258		if (paws_reject || th->ack)
259			inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
260					   TCP_TIMEWAIT_LEN);
261
262		/* Send ACK. Note, we do not put the bucket,
263		 * it will be released by caller.
264		 */
265		return TCP_TW_ACK;
266	}
267	inet_twsk_put(tw);
268	return TCP_TW_SUCCESS;
269}
270
271/*
272 * Move a socket to time-wait or dead fin-wait-2 state.
273 */
274void tcp_time_wait(struct sock *sk, int state, int timeo)
275{
276	struct inet_timewait_sock *tw = NULL;
277	const struct inet_connection_sock *icsk = inet_csk(sk);
278	const struct tcp_sock *tp = tcp_sk(sk);
279	int recycle_ok = 0;
280
281	if (tcp_death_row.sysctl_tw_recycle && tp->rx_opt.ts_recent_stamp)
282		recycle_ok = icsk->icsk_af_ops->remember_stamp(sk);
283
284	if (tcp_death_row.tw_count < tcp_death_row.sysctl_max_tw_buckets)
285		tw = inet_twsk_alloc(sk, state);
286
287	if (tw != NULL) {
288		struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
289		const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
290
291		tw->tw_rcv_wscale	= tp->rx_opt.rcv_wscale;
292		tcptw->tw_rcv_nxt	= tp->rcv_nxt;
293		tcptw->tw_snd_nxt	= tp->snd_nxt;
294		tcptw->tw_rcv_wnd	= tcp_receive_window(tp);
295		tcptw->tw_ts_recent	= tp->rx_opt.ts_recent;
296		tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
297
298#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
299		if (tw->tw_family == PF_INET6) {
300			struct ipv6_pinfo *np = inet6_sk(sk);
301			struct tcp6_timewait_sock *tcp6tw = tcp6_twsk((struct sock *)tw);
302
303			ipv6_addr_copy(&tcp6tw->tw_v6_daddr, &np->daddr);
304			ipv6_addr_copy(&tcp6tw->tw_v6_rcv_saddr, &np->rcv_saddr);
305			tw->tw_ipv6only = np->ipv6only;
306		}
307#endif
308		/* Linkage updates. */
309		__inet_twsk_hashdance(tw, sk, &tcp_hashinfo);
310
311		/* Get the TIME_WAIT timeout firing. */
312		if (timeo < rto)
313			timeo = rto;
314
315		if (recycle_ok) {
316			tw->tw_timeout = rto;
317		} else {
318			tw->tw_timeout = TCP_TIMEWAIT_LEN;
319			if (state == TCP_TIME_WAIT)
320				timeo = TCP_TIMEWAIT_LEN;
321		}
322
323		inet_twsk_schedule(tw, &tcp_death_row, timeo,
324				   TCP_TIMEWAIT_LEN);
325		inet_twsk_put(tw);
326	} else {
327		/* Sorry, if we're out of memory, just CLOSE this
328		 * socket up.  We've got bigger problems than
329		 * non-graceful socket closings.
330		 */
331		if (net_ratelimit())
332			printk(KERN_INFO "TCP: time wait bucket table overflow\n");
333	}
334
335	tcp_update_metrics(sk);
336	tcp_done(sk);
337}
338
339/* This is not only more efficient than what we used to do, it eliminates
340 * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
341 *
342 * Actually, we could lots of memory writes here. tp of listening
343 * socket contains all necessary default parameters.
344 */
345struct sock *tcp_create_openreq_child(struct sock *sk, struct request_sock *req, struct sk_buff *skb)
346{
347	struct sock *newsk = inet_csk_clone(sk, req, GFP_ATOMIC);
348
349	if (newsk != NULL) {
350		const struct inet_request_sock *ireq = inet_rsk(req);
351		struct tcp_request_sock *treq = tcp_rsk(req);
352		struct inet_connection_sock *newicsk = inet_csk(sk);
353		struct tcp_sock *newtp;
354
355		/* Now setup tcp_sock */
356		newtp = tcp_sk(newsk);
357		newtp->pred_flags = 0;
358		newtp->rcv_nxt = treq->rcv_isn + 1;
359		newtp->snd_nxt = newtp->snd_una = newtp->snd_sml = treq->snt_isn + 1;
360
361		tcp_prequeue_init(newtp);
362
363		tcp_init_wl(newtp, treq->snt_isn, treq->rcv_isn);
364
365		newtp->srtt = 0;
366		newtp->mdev = TCP_TIMEOUT_INIT;
367		newicsk->icsk_rto = TCP_TIMEOUT_INIT;
368
369		newtp->packets_out = 0;
370		newtp->left_out = 0;
371		newtp->retrans_out = 0;
372		newtp->sacked_out = 0;
373		newtp->fackets_out = 0;
374		newtp->snd_ssthresh = 0x7fffffff;
375
376		/* So many TCP implementations out there (incorrectly) count the
377		 * initial SYN frame in their delayed-ACK and congestion control
378		 * algorithms that we must have the following bandaid to talk
379		 * efficiently to them.  -DaveM
380		 */
381		newtp->snd_cwnd = 2;
382		newtp->snd_cwnd_cnt = 0;
383		newtp->bytes_acked = 0;
384
385		newtp->frto_counter = 0;
386		newtp->frto_highmark = 0;
387
388		newicsk->icsk_ca_ops = &tcp_init_congestion_ops;
389
390		tcp_set_ca_state(newsk, TCP_CA_Open);
391		tcp_init_xmit_timers(newsk);
392		skb_queue_head_init(&newtp->out_of_order_queue);
393		newtp->rcv_wup = treq->rcv_isn + 1;
394		newtp->write_seq = treq->snt_isn + 1;
395		newtp->pushed_seq = newtp->write_seq;
396		newtp->copied_seq = treq->rcv_isn + 1;
397
398		newtp->rx_opt.saw_tstamp = 0;
399
400		newtp->rx_opt.dsack = 0;
401		newtp->rx_opt.eff_sacks = 0;
402
403		newtp->rx_opt.num_sacks = 0;
404		newtp->urg_data = 0;
405
406		if (sock_flag(newsk, SOCK_KEEPOPEN))
407			inet_csk_reset_keepalive_timer(newsk,
408						       keepalive_time_when(newtp));
409
410		newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
411		if((newtp->rx_opt.sack_ok = ireq->sack_ok) != 0) {
412			if (sysctl_tcp_fack)
413				newtp->rx_opt.sack_ok |= 2;
414		}
415		newtp->window_clamp = req->window_clamp;
416		newtp->rcv_ssthresh = req->rcv_wnd;
417		newtp->rcv_wnd = req->rcv_wnd;
418		newtp->rx_opt.wscale_ok = ireq->wscale_ok;
419		if (newtp->rx_opt.wscale_ok) {
420			newtp->rx_opt.snd_wscale = ireq->snd_wscale;
421			newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
422		} else {
423			newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
424			newtp->window_clamp = min(newtp->window_clamp, 65535U);
425		}
426		newtp->snd_wnd = ntohs(skb->h.th->window) << newtp->rx_opt.snd_wscale;
427		newtp->max_window = newtp->snd_wnd;
428
429		if (newtp->rx_opt.tstamp_ok) {
430			newtp->rx_opt.ts_recent = req->ts_recent;
431			newtp->rx_opt.ts_recent_stamp = xtime.tv_sec;
432			newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
433		} else {
434			newtp->rx_opt.ts_recent_stamp = 0;
435			newtp->tcp_header_len = sizeof(struct tcphdr);
436		}
437		if (skb->len >= TCP_MIN_RCVMSS+newtp->tcp_header_len)
438			newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
439		newtp->rx_opt.mss_clamp = req->mss;
440		TCP_ECN_openreq_child(newtp, req);
441		if (newtp->ecn_flags&TCP_ECN_OK)
442			sock_set_flag(newsk, SOCK_NO_LARGESEND);
443
444		TCP_INC_STATS_BH(TCP_MIB_PASSIVEOPENS);
445	}
446	return newsk;
447}
448
449/*
450 *	Process an incoming packet for SYN_RECV sockets represented
451 *	as a request_sock.
452 */
453
454struct sock *tcp_check_req(struct sock *sk,struct sk_buff *skb,
455			   struct request_sock *req,
456			   struct request_sock **prev)
457{
458	struct tcphdr *th = skb->h.th;
459	u32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
460	int paws_reject = 0;
461	struct tcp_options_received tmp_opt;
462	struct sock *child;
463
464	tmp_opt.saw_tstamp = 0;
465	if (th->doff > (sizeof(struct tcphdr)>>2)) {
466		tcp_parse_options(skb, &tmp_opt, 0);
467
468		if (tmp_opt.saw_tstamp) {
469			tmp_opt.ts_recent = req->ts_recent;
470			/* We do not store true stamp, but it is not required,
471			 * it can be estimated (approximately)
472			 * from another data.
473			 */
474			tmp_opt.ts_recent_stamp = xtime.tv_sec - ((TCP_TIMEOUT_INIT/HZ)<<req->retrans);
475			paws_reject = tcp_paws_check(&tmp_opt, th->rst);
476		}
477	}
478
479	/* Check for pure retransmitted SYN. */
480	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
481	    flg == TCP_FLAG_SYN &&
482	    !paws_reject) {
483		/*
484		 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
485		 * this case on figure 6 and figure 8, but formal
486		 * protocol description says NOTHING.
487		 * To be more exact, it says that we should send ACK,
488		 * because this segment (at least, if it has no data)
489		 * is out of window.
490		 *
491		 *  CONCLUSION: RFC793 (even with RFC1122) DOES NOT
492		 *  describe SYN-RECV state. All the description
493		 *  is wrong, we cannot believe to it and should
494		 *  rely only on common sense and implementation
495		 *  experience.
496		 *
497		 * Enforce "SYN-ACK" according to figure 8, figure 6
498		 * of RFC793, fixed by RFC1122.
499		 */
500		req->rsk_ops->rtx_syn_ack(sk, req, NULL);
501		return NULL;
502	}
503
504	/* Further reproduces section "SEGMENT ARRIVES"
505	   for state SYN-RECEIVED of RFC793.
506	   It is broken, however, it does not work only
507	   when SYNs are crossed.
508
509	   You would think that SYN crossing is impossible here, since
510	   we should have a SYN_SENT socket (from connect()) on our end,
511	   but this is not true if the crossed SYNs were sent to both
512	   ends by a malicious third party.  We must defend against this,
513	   and to do that we first verify the ACK (as per RFC793, page
514	   36) and reset if it is invalid.  Is this a true full defense?
515	   To convince ourselves, let us consider a way in which the ACK
516	   test can still pass in this 'malicious crossed SYNs' case.
517	   Malicious sender sends identical SYNs (and thus identical sequence
518	   numbers) to both A and B:
519
520		A: gets SYN, seq=7
521		B: gets SYN, seq=7
522
523	   By our good fortune, both A and B select the same initial
524	   send sequence number of seven :-)
525
526		A: sends SYN|ACK, seq=7, ack_seq=8
527		B: sends SYN|ACK, seq=7, ack_seq=8
528
529	   So we are now A eating this SYN|ACK, ACK test passes.  So
530	   does sequence test, SYN is truncated, and thus we consider
531	   it a bare ACK.
532
533	   If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
534	   bare ACK.  Otherwise, we create an established connection.  Both
535	   ends (listening sockets) accept the new incoming connection and try
536	   to talk to each other. 8-)
537
538	   Note: This case is both harmless, and rare.  Possibility is about the
539	   same as us discovering intelligent life on another plant tomorrow.
540
541	   But generally, we should (RFC lies!) to accept ACK
542	   from SYNACK both here and in tcp_rcv_state_process().
543	   tcp_rcv_state_process() does not, hence, we do not too.
544
545	   Note that the case is absolutely generic:
546	   we cannot optimize anything here without
547	   violating protocol. All the checks must be made
548	   before attempt to create socket.
549	 */
550
551	/* RFC793 page 36: "If the connection is in any non-synchronized state ...
552	 *                  and the incoming segment acknowledges something not yet
553	 *                  sent (the segment carries an unacceptable ACK) ...
554	 *                  a reset is sent."
555	 *
556	 * Invalid ACK: reset will be sent by listening socket
557	 */
558	if ((flg & TCP_FLAG_ACK) &&
559	    (TCP_SKB_CB(skb)->ack_seq != tcp_rsk(req)->snt_isn + 1))
560		return sk;
561
562	/* Also, it would be not so bad idea to check rcv_tsecr, which
563	 * is essentially ACK extension and too early or too late values
564	 * should cause reset in unsynchronized states.
565	 */
566
567	/* RFC793: "first check sequence number". */
568
569	if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
570					  tcp_rsk(req)->rcv_isn + 1, tcp_rsk(req)->rcv_isn + 1 + req->rcv_wnd)) {
571		/* Out of window: send ACK and drop. */
572		if (!(flg & TCP_FLAG_RST))
573			req->rsk_ops->send_ack(skb, req);
574		if (paws_reject)
575			NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
576		return NULL;
577	}
578
579	/* In sequence, PAWS is OK. */
580
581	if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_isn + 1))
582			req->ts_recent = tmp_opt.rcv_tsval;
583
584		if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
585			/* Truncate SYN, it is out of window starting
586			   at tcp_rsk(req)->rcv_isn + 1. */
587			flg &= ~TCP_FLAG_SYN;
588		}
589
590		/* RFC793: "second check the RST bit" and
591		 *	   "fourth, check the SYN bit"
592		 */
593		if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN))
594			goto embryonic_reset;
595
596		/* ACK sequence verified above, just make sure ACK is
597		 * set.  If ACK not set, just silently drop the packet.
598		 */
599		if (!(flg & TCP_FLAG_ACK))
600			return NULL;
601
602		/* If TCP_DEFER_ACCEPT is set, drop bare ACK. */
603		if (inet_csk(sk)->icsk_accept_queue.rskq_defer_accept &&
604		    TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
605			inet_rsk(req)->acked = 1;
606			return NULL;
607		}
608
609		/* OK, ACK is valid, create big socket and
610		 * feed this segment to it. It will repeat all
611		 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
612		 * ESTABLISHED STATE. If it will be dropped after
613		 * socket is created, wait for troubles.
614		 */
615		child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb,
616								 req, NULL);
617		if (child == NULL)
618			goto listen_overflow;
619
620		inet_csk_reqsk_queue_unlink(sk, req, prev);
621		inet_csk_reqsk_queue_removed(sk, req);
622
623		inet_csk_reqsk_queue_add(sk, req, child);
624		return child;
625
626	listen_overflow:
627		if (!sysctl_tcp_abort_on_overflow) {
628			inet_rsk(req)->acked = 1;
629			return NULL;
630		}
631
632	embryonic_reset:
633		NET_INC_STATS_BH(LINUX_MIB_EMBRYONICRSTS);
634		if (!(flg & TCP_FLAG_RST))
635			req->rsk_ops->send_reset(skb);
636
637		inet_csk_reqsk_queue_drop(sk, req, prev);
638		return NULL;
639}
640
641/*
642 * Queue segment on the new socket if the new socket is active,
643 * otherwise we just shortcircuit this and continue with
644 * the new socket.
645 */
646
647int tcp_child_process(struct sock *parent, struct sock *child,
648		      struct sk_buff *skb)
649{
650	int ret = 0;
651	int state = child->sk_state;
652
653	if (!sock_owned_by_user(child)) {
654		ret = tcp_rcv_state_process(child, skb, skb->h.th, skb->len);
655
656		/* Wakeup parent, send SIGIO */
657		if (state == TCP_SYN_RECV && child->sk_state != state)
658			parent->sk_data_ready(parent, 0);
659	} else {
660		/* Alas, it is possible again, because we do lookup
661		 * in main socket hash table and lock on listening
662		 * socket does not protect us more.
663		 */
664		sk_add_backlog(child, skb);
665	}
666
667	bh_unlock_sock(child);
668	sock_put(child);
669	return ret;
670}
671
672EXPORT_SYMBOL(tcp_check_req);
673EXPORT_SYMBOL(tcp_child_process);
674EXPORT_SYMBOL(tcp_create_openreq_child);
675EXPORT_SYMBOL(tcp_timewait_state_process);
676